JP2004307808A - Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material - Google Patents

Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material Download PDF

Info

Publication number
JP2004307808A
JP2004307808A JP2003347585A JP2003347585A JP2004307808A JP 2004307808 A JP2004307808 A JP 2004307808A JP 2003347585 A JP2003347585 A JP 2003347585A JP 2003347585 A JP2003347585 A JP 2003347585A JP 2004307808 A JP2004307808 A JP 2004307808A
Authority
JP
Japan
Prior art keywords
oxide
gadolinium
vanadium
thin film
white light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347585A
Other languages
Japanese (ja)
Inventor
Uchitsugu Minami
内嗣 南
Toshihiro Miyata
俊弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003347585A priority Critical patent/JP2004307808A/en
Publication of JP2004307808A publication Critical patent/JP2004307808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material which has high brightness, high color purity and high stability and to provide a white luminous thin film electroluminescent element which uses a thin film of the fluorescent material as a luminescent layer. <P>SOLUTION: The gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material comprises a gadolinium oxide-vanadium oxide multicomponent oxide as a base material, whose main component is gadolinium(Gd) and vanadium(V), and contains as luminescence center materials thulium(Tm), erbium(Er) and europium(Eu) to gadolinium(Gd) each 0.9-2.0 atom%, 0.2-1.0 atom% and 0.05-0.4 atom%, preferably each 1.0-1.5 atom%, 0.5-0.9 atom% and 0.1-0.3 atom%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明DETAILED DESCRIPTION OF THE INVENTION

産業上の利用分野Industrial applications

本発明は酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体及び該蛍光体の薄膜を発光層に用いる薄膜エレクトロルミネッセンス素子に関する。The present invention relates to a gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor and a thin film electroluminescent device using a thin film of the phosphor for a light emitting layer.

従来のエレクトロルミネッセンス素子(以下EL素子と呼ぶ)用白色発光蛍光体薄膜としては、硫化ストロンチウム(SrS)等にセリウム(Ce)、カリウム(K)及びユーロピウム(Eu)等の複数の金属元素を同時に発光中心材料及び電荷補償材料として添加した硫化物蛍光体薄膜が開発されている。As a conventional white light-emitting phosphor thin film for an electroluminescence element (hereinafter referred to as an EL element), a plurality of metal elements such as cerium (Ce), potassium (K), and europium (Eu) are simultaneously applied to strontium sulfide (SrS) or the like. Sulfide phosphor thin films added as emission center materials and charge compensation materials have been developed.

発明が解決しようとする課題Problems to be solved by the invention

しかしながら、上記の硫化物系蛍光体薄膜は輝度、白色純度共に十分な特性を実現できていない。加えて上記全ての硫化物蛍光体薄膜は化学的に不安定であり、特に水分に対して極めて不安定であることから薄膜EL素子の作製時において、水分を完全に除去するための特別な封止処理を施さなければならず、それが素子の作製コストを押し上げるという致命的な欠点がある。However, the above-mentioned sulfide-based phosphor thin film has not been able to realize sufficient characteristics in both luminance and white purity. In addition, all of the above-mentioned sulfide phosphor thin films are chemically unstable, and particularly extremely unstable with respect to moisture. Therefore, a special sealing for completely removing moisture is required at the time of manufacturing a thin film EL device. Stop processing must be performed, which has a fatal drawback that it increases the manufacturing cost of the device.

本発明は、このような事情に鑑み、化学的に極めて安定な酸化物を母体材料として用いる新規な酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体及び該蛍光体の薄膜を発光層に用いる薄膜エレクトロルミネッセンス素子を提供することを課題とする。In view of such circumstances, the present invention provides a novel gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor using a chemically extremely stable oxide as a base material, and a thin film of the phosphor as a light-emitting layer. It is an object to provide a thin-film electroluminescence element.

課題を解決するための手段Means for solving the problem

前記課題を解決するための本発明の第1の態様は、ガドリニム(Gd)とバナジウム(V)を主成分とするGd−V−O系酸化物において、発光中心材料として添加する金属元素がツリウム(Tm)、エルビウム(Er)及びユーロピウム(Eu)であり、ガドリニウム(Gd)に対してそれぞれ、0.9から2.0原子%、0.2から1.0原子%及び0.05から0.4原子%、好ましくはそれぞれ、1.0から1.5原子%、0.5から0.9原子%及び0.1から0.3原子%含有することを特徴とする酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体にある。According to a first aspect of the present invention for solving the above-mentioned problem, in a Gd-VO-based oxide containing gadolinium (Gd) and vanadium (V) as main components, a metal element added as a luminescent center material is thulium. (Tm), erbium (Er) and europium (Eu), respectively, from 0.9 to 2.0 atomic%, 0.2 to 1.0 atomic% and 0.05 to 0 atomic% with respect to gadolinium (Gd). Gadolinium oxide-vanadium oxide, characterized by containing 0.4 at%, preferably 1.0 to 1.5 at%, 0.5 to 0.9 at% and 0.1 to 0.3 at%, respectively. Multi-component oxide white light emitting phosphor.

本発明の第2の態様は、母体材料中のバナジウム(V)を40から60原子%、好ましくは45から55原子%含有することを特徴とする酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体にある。According to a second aspect of the present invention, there is provided gadolinium oxide-vanadium oxide multi-component oxide white light-emitting fluorescence, which contains 40 to 60 atomic%, preferably 45 to 55 atomic% of vanadium (V) in a base material. In the body.

本発明の第3の態様は、前記母体材料が酸化ガドリニウム(Gd)と酸化バナジウム(V)からなる複合酸化物であることを特徴とする酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜にある。In a third aspect of the present invention, the base material is a composite oxide composed of gadolinium oxide (Gd 2 O 3 ) and vanadium oxide (V 2 O 5 ), wherein gadolinium oxide-vanadium oxide multi-component oxidation is performed. In the white light-emitting phosphor thin film.

本発明の第4の態様は、前記母体材料が3元化合物であるGdVOが主成分であることを特徴とする酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体にある。A fourth aspect of the present invention resides in a gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor, wherein the base material is mainly composed of GdVO 4 which is a ternary compound.

本発明の第5の態様は、第1〜4の何れかの態様に記載の酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体を公知の方法で薄膜化して発光層として使用することを特徴とする白色発光薄膜エレクトロルミネッセンス素子にある。A fifth aspect of the present invention is characterized in that the gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor according to any one of the first to fourth aspects is thinned by a known method and used as a light emitting layer. White light-emitting thin film electroluminescent element.

本発明は、これまで申請者らが行ってきた多元系酸化物蛍光体研究の中で発明した、新しい母体材料系であるGd−V−O系酸化物に、発光中心材料としてツリウム(Tm)、エルビウム(Er)及びユーロピウム(Eu)を同時に添加することにより白色薄膜蛍光体として利用できるという知見に基づいて完成されたものである。The present invention relates to a Gd-VO-based oxide which is a new base material system, which has been invented in the research on multi-component oxide phosphors conducted by the applicants, and uses thulium (Tm) as a luminescent center material. , Erbium (Er) and europium (Eu) can be used simultaneously as a white thin-film phosphor.

すなわち、母体材料としては、ガドリニウム(Gd)とバナジウム(V)を含む酸化物であり、付活剤としてはTm、Er及びEuが用いられる。That is, the base material is an oxide containing gadolinium (Gd) and vanadium (V), and Tm, Er, and Eu are used as the activator.

発光中心となる発光中心材料であるツリウム(Tm)、エルビウム(Er)及びユーロピウム(Eu)はガドリニウム(Gd)に対してそれぞれ、0.9から2.0原子%、0.2から1.0原子%及び0.05から0.4原子%、好ましくはそれぞれ、1.0から1.5原子%、0.5から0.9原子%及び0.1から0.3原子%の範囲で添加すればよい。Thulium (Tm), erbium (Er), and europium (Eu), which are luminescent center materials serving as luminescent centers, are 0.9 to 2.0 atomic% and 0.2 to 1.0 atomic% with respect to gadolinium (Gd), respectively. At% and 0.05 to 0.4 at%, preferably 1.0 to 1.5 at%, 0.5 to 0.9 at% and 0.1 to 0.3 at%, respectively. do it.

本発明の母体材料としてのGd−V−O系酸化物としては、酸化ガドリニウム−酸化バナジウム系酸化物等の複合酸化物や3元化であるGdVO等を挙げることができる。The Gd-V-O-based oxide as a base material of the present invention, gadolinium oxide - can be exemplified GdVO 4 or the like as a composite oxide or 3 Motoka such oxide vanadium oxide.

本発明のGd−V−O系酸化物中のバナジウム(V)含有量は、ガドリニウム(Gd)に対して40から60原子%、好ましくは45から55原子%である。The vanadium (V) content in the Gd-VO-based oxide of the present invention is 40 to 60 atomic%, preferably 45 to 55 atomic% with respect to gadolinium (Gd).

本発明の酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体は、母体材料に発光中心を添加して、母体材料の化学的組成や焼成条件等の蛍光体作製条件を最適化することにより達成できる。該蛍光体は所望の形状に加工することによりEL素子用発光層として使用できる。The gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor of the present invention is achieved by adding a luminescent center to a host material and optimizing the phosphor production conditions such as the chemical composition of the host material and firing conditions. it can. The phosphor can be used as a light emitting layer for an EL element by processing it into a desired shape.

薄膜EL素子用発光層の構造としては、公知の薄膜片絶縁構造、薄膜二重絶縁構造、セラミックス形絶縁層を用いる片絶縁構造あるいは、薄膜とセラミックスの二重絶縁構造を挙げることができるが、これらに限定されるものではない。Examples of the structure of the light emitting layer for a thin film EL element include a known thin film insulating structure, a thin film double insulating structure, a single insulating structure using a ceramic type insulating layer, and a double insulating structure of a thin film and ceramics. It is not limited to these.

図1には、典型的な薄膜片絶縁構造の薄膜EL素子の一例を示す。図1に示すように、BaTiO基板などの絶縁基板上に、本発明になる酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜が形成されている。この蛍光体薄膜上には、スパッタリング等により、ZnO:Alなどの透明導電性膜が設けられ、絶縁基板の反対側には、Alの蒸着膜等からなる背面電極が設けられ、薄膜エレクトロルミネッセンス素子が構成されている。FIG. 1 shows an example of a typical thin film EL element having a thin film piece insulating structure. As shown in FIG. 1, a gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor thin film according to the present invention is formed on an insulating substrate such as a BaTiO 3 substrate. A transparent conductive film of ZnO: Al or the like is provided on the phosphor thin film by sputtering or the like, and a back electrode made of an evaporated Al film or the like is provided on the opposite side of the insulating substrate. Is configured.

このような薄膜エレクトロルミネッセンス素子では、透明導電性膜と背面電極との間に、50〜600Vの交流電圧を印加すると、蛍光体薄膜が発光する。In such a thin film electroluminescent element, when an AC voltage of 50 to 600 V is applied between the transparent conductive film and the back electrode, the phosphor thin film emits light.

本発明による該白色発光酸化物蛍光体の薄膜は、スパッタ法、化学気相成長(CVD)法、電子ビーム蒸着法、原子層エピタキシー法、レーザーアブレーション法等の公知の薄膜堆積技術を用いて成膜した後、大気中、不活性ガス、硫黄を含む雰囲気中、真空中、非酸化性ガス、あるいは一部酸化性ガス、または一部還元性ガスと硫黄を含む非酸化性ガス雰囲気中で熱処理を施すことにより、薄膜エレクトロルミネッセンス素子用発光層としての十分な機能を付与することができる。熱処理の好ましい温度範囲は850〜1100℃、好ましくは、950〜1050℃である。The thin film of the white light-emitting oxide phosphor according to the present invention is formed by using a known thin film deposition technique such as a sputtering method, a chemical vapor deposition (CVD) method, an electron beam evaporation method, an atomic layer epitaxy method, or a laser ablation method. After film formation, heat treatment in air, in an atmosphere containing inert gas or sulfur, in vacuum, in a non-oxidizing gas, or in a non-oxidizing gas atmosphere containing a partially oxidizing gas or a partially reducing gas and sulfur By applying, a sufficient function as a light emitting layer for a thin film electroluminescence element can be provided. The preferred temperature range for the heat treatment is 850-1100 ° C, preferably 950-1050 ° C.

また、本発明の該酸化物蛍光体の化学的な安定性をいかして、水溶液を用いる公知の化学的成膜方法、例えば、溶液塗布法あるいはゾル−ゲル法を用いて成膜した後、熱処理を施すことも有効である。In addition, taking advantage of the chemical stability of the oxide phosphor of the present invention, a known chemical film forming method using an aqueous solution, for example, a film forming method using a solution coating method or a sol-gel method, followed by heat treatment Is also effective.

上記した薄膜堆積技術を使用して成膜した酸化物薄膜蛍光体の膜厚は0.1〜10μm、より好ましくは0.5〜3μmである。上述した成膜法において、適切な成膜条件を設定することにより薄膜EL素子特性のコントロール及び白色発光の実現が可能となる。The thickness of the oxide thin film phosphor formed using the above-described thin film deposition technique is 0.1 to 10 μm, and more preferably 0.5 to 3 μm. In the above-described film forming method, by setting appropriate film forming conditions, it is possible to control the characteristics of the thin film EL element and realize white light emission.

上記透明電極としてはZnO:Al、SnO:F、SnO:Sb、インジウム・錫酸化物(ITO)系等の透明導電膜を使用することができる。絶縁層の一例としてBaTiOを挙げることができるが、その比誘電率が100以上あれば良く、900℃程度の熱処理に耐えられれば、必ずしもBaTiOである必要はない。また、素子構造にも特別な制限はなく、基体材料として900℃以上の耐熱性を有する石英、アルミナ等の各種セラミックスおよびサファイヤ等の各種単結晶を用い、従来からの二重絶縁構造を採用することは一向に差し支えない。As the transparent electrode, a transparent conductive film such as ZnO: Al, SnO 2 : F, SnO 2 : Sb, and indium tin oxide (ITO) can be used. As an example of the insulating layer, BaTiO 3 can be given, but it is sufficient that the relative dielectric constant is 100 or more, and BaTiO 3 is not necessarily required as long as it can withstand a heat treatment at about 900 ° C. There is no particular limitation on the element structure, and various types of ceramics such as quartz and alumina having a heat resistance of 900 ° C. or more and various single crystals such as sapphire are used as a base material, and a conventional double insulating structure is employed. That is no problem.

上述した母体材料は900〜1000℃程度の熱処理を施すことにより容易に結晶化することから、高い結晶性の蛍光体を作製可能である。その結果、これを発光層に用いたEL素子では高電界印加時におけるホットエレクトロンの生成効率が高まり、そのため発光中心の励起効率も大幅に向上し、高い発光輝度が得られる。The above-mentioned base material is easily crystallized by performing a heat treatment at about 900 to 1000 ° C., so that a highly crystalline phosphor can be manufactured. As a result, in an EL element using this as a light-emitting layer, the generation efficiency of hot electrons when a high electric field is applied is increased, so that the excitation efficiency of the emission center is also greatly improved, and a high light emission luminance is obtained.

以下、本発明の実施形態を実施例により説明するがあくまで例示であり本発明はこれに限定されるものではない。
(実施例1)
Hereinafter, embodiments of the present invention will be described with reference to examples, but are merely examples, and the present invention is not limited thereto.
(Example 1)

ガドリニウム(Gd)に対してバナジウ厶(V)を50原子%混合した粉末に発光中心材料として二酸化ツリウム(Tm)粉末、二酸化ユーロピウム(Eu)粉末及び、二酸化エルビウム(Er)粉末をGdに対して、それぞれ1.0原子%,0.2原子%及び0.7原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体粉末を作製した。該蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃〜390℃、基体−ターゲット間距離25mmの条件下でTm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜発光層を形成した。その後、大気中において、1020℃で1時間のアニール処理を行った。熱処理後の該蛍光体薄膜はフォトルミネッセンス(PL)およびカソードルミネッセンス(CL)において共に高効率白色発光を実現した。As a luminescent center material, thulium dioxide (Tm 2 O 3 ) powder, europium dioxide (Eu 2 O 3 ) powder, and erbium dioxide (Er 2 ) as a luminescent center material in a powder in which vanadium (V) is mixed with gadolinium (Gd) at 50 atomic%. O 3 ) powder was sufficiently mixed with Gd to contain 1.0 atomic%, 0.2 atomic%, and 0.7 atomic%, respectively, and then at 1000 ° C. in an argon (Ar) gas atmosphere. By calcination for a period of time, a gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor powder was produced, which was co-added with Tm, Eu, and Er. A sputtering target is prepared using the phosphor powder, and a sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer is provided with a gas pressure of 6 Pa, a sputtering power of 100 W, a substrate temperature of 275 in argon (Ar) gas. A Tm, Eu, and Er co-doped gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor thin film light-emitting layer was formed under the conditions of a temperature of 390C to 390C and a distance between the substrate and the target of 25 mm. Thereafter, an annealing treatment was performed at 1020 ° C. for one hour in the air. After the heat treatment, the phosphor thin film realized high-efficiency white light emission in both photoluminescence (PL) and cathodoluminescence (CL).

そして該発光層薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、図2に示すように実用に十分耐えうる色純度の白色EL発光を実現できた。また図3に示すように、実用に十分耐えうる高輝度白色EL発光を実現した。これにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜がEL素子用発光層薄膜として十分機能した。
(実施例2)
Then, an aluminum-added zinc oxide (ZnO: Al) transparent electrode was formed on the light-emitting layer thin film, and a metal Al electrode was formed on the back surface, to produce an EL element. When a 1-kHz sine-wave AC voltage was applied to the EL element, white EL light emission of color purity enough to withstand practical use was realized as shown in FIG. In addition, as shown in FIG. 3, high-brightness white EL light emission that can withstand practical use was realized. Thereby, the Tm, Eu, and Er co-added gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor thin film sufficiently functioned as a light emitting layer thin film for an EL element.
(Example 2)

ガドリニウム(Gd)に対してバナジウム(V)を50原子%混合した粉末に発光中心材料として二酸化ツリウム(Tm)粉末、二酸化ユーロピウム(Eu)粉末及び、二酸化エルビウム(Er)粉末をGdに対して、それぞれ1.0,0.1及び0.7原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体粉末を作製した。該焼成蛍光体粉末を用いてスパッタリングターゲットを作製し、単結晶サファイヤ基体上にアンチモン添加酸化スズ(SnO:Sb)透明電極、その上に酸化アルミニウム(Al)絶縁層を成長させた上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度250〜800℃、基体−ターゲット間距離25mmの条件下でTm,Eu,Er共添加酸化ガドリニウム−酸化バナジウム蛍光体薄膜発光層を形成した。その後、大気中において、1000℃で1時間のアニール処理を行った。熱処理後の該蛍光体薄膜はフォトルミネッセンス(PL)およびカソードルミネッセンス(CL)において共に高効率白色発光を実現した。Thulium dioxide (Tm 2 O 3 ) powder, europium dioxide (Eu 2 O 3 ) powder, and erbium dioxide (Er 2 O) as emission center materials in a powder obtained by mixing vanadium (V) with gadolinium (Gd) at 50 atomic%. 3 ) The powder is sufficiently mixed with Gd so as to contain 1.0, 0.1 and 0.7 atomic%, respectively, and then fired at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere. , Tm, Eu and Er co-added gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor powder was prepared. A sputtering target was prepared using the fired phosphor powder, and an antimony-added tin oxide (SnO 2 : Sb) transparent electrode was grown on a single crystal sapphire substrate, and an aluminum oxide (Al 2 O 3 ) insulating layer was grown thereon. Tm, Eu, Er co-added gadolinium oxide-vanadium oxide phosphor under argon (Ar) gas, gas pressure of 6 Pa, sputter input power of 100 W, substrate temperature of 250 to 800 ° C., and substrate-target distance of 25 mm A thin film light emitting layer was formed. Thereafter, an annealing treatment was performed at 1000 ° C. for one hour in the air. After the heat treatment, the phosphor thin film realized high-efficiency white light emission in both photoluminescence (PL) and cathodoluminescence (CL).

そして該発光層薄膜上に酸化アルミニウム(Al)絶縁層を成膜し、さらにその上に金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、実用に十分耐えうる色純度の白色EL発光を実現できた。また、実用に十分耐えうる高輝度白色EL発光を実現した。これにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜が単結晶を基体とするEL素子用発光層薄膜として十分機能した。
(実施例3)
Then, an aluminum oxide (Al 2 O 3 ) insulating layer was formed on the light emitting layer thin film, and a metal Al electrode was further formed thereon to manufacture an EL element. When a 1-kHz sine-wave AC voltage was applied to the EL element, white EL light emission of color purity sufficiently endurable for practical use was realized. In addition, high-luminance white EL light emission that can withstand practical use was realized. As a result, the Tm, Eu, and Er co-doped gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor thin film sufficiently functioned as a light-emitting layer thin film for an EL element using a single crystal as a base.
(Example 3)

ガドリニウ厶(Gd)に対してバナジウム(V)を50原子%混合した粉末に発光中心材料として二酸化ツリウム(Tm)粉末、二酸化ユーロピウム(Eu)粉末及び、二酸化エルビウム(Er)粉末をGdに対して、それぞれ1.0,0.1及び0.7原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体粉末を作製した。該焼成蛍光体粉末を用いてスパッタリングターゲットを作製し、石英ガラス基体上にアンチモン添加酸化スズ(SnO:Sb)透明電極、その上に酸化アルミニウム(Al)絶縁層を成長させた上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度250〜800℃、基体−ターゲット間距離25mmの条件下でTm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜発光層を形成した。その後、大気中において、1000℃で1時間のアニール処理を行った。熱処理後の該蛍光体薄膜はフォトルミネッセンス(PL)およびカソードルミネッセンス(CL)において共に高効率白色発光を実現した。As a luminescent center material, thulium dioxide (Tm 2 O 3 ) powder, europium dioxide (Eu 2 O 3 ) powder, and erbium dioxide (Er 2 ) as a luminescent center material in a powder obtained by mixing vanadium (V) with gadolinium (Gd) at 50 atomic%. After sufficiently mixing O 3 ) powder with Gd to contain 1.0, 0.1 and 0.7 atomic%, respectively, and firing at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere. Thus, a Tm, Eu, and Er co-added gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor powder was produced. A sputtering target was prepared using the fired phosphor powder, and an antimony-added tin oxide (SnO 2 : Sb) transparent electrode was grown on a quartz glass substrate, and an aluminum oxide (Al 2 O 3 ) insulating layer was grown thereon. Tm, Eu, and Er co-added gadolinium oxide-vanadium oxide multi-component oxidation under argon (Ar) gas, gas pressure of 6 Pa, sputtering power of 100 W, substrate temperature of 250 to 800 ° C., and substrate-target distance of 25 mm. A white light emitting phosphor thin film light emitting layer was formed. Thereafter, an annealing treatment was performed at 1000 ° C. for one hour in the air. After the heat treatment, the phosphor thin film realized high-efficiency white light emission in both photoluminescence (PL) and cathodoluminescence (CL).

そして該発光層薄膜上に酸化アルミニウム(Al)絶縁層を成膜し、さらにその上に金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、実用に十分耐えうる色純度の白色EL発光を実現できた。また、実用に十分耐えうる高輝度白色EL発光を実現した。これにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜発光層薄膜が石英ガラスを基体とするEL素子用発光層薄膜として十分機能した。
(実施例4)
Then, an aluminum oxide (Al 2 O 3 ) insulating layer was formed on the light emitting layer thin film, and a metal Al electrode was further formed thereon to manufacture an EL element. When a 1-kHz sine-wave AC voltage was applied to the EL element, white EL light emission of color purity sufficiently endurable for practical use was realized. In addition, high-luminance white EL light emission that can withstand practical use was realized. As a result, the Tm, Eu, and Er co-doped gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor thin film light-emitting layer thin film sufficiently functioned as a light-emitting layer thin film for an EL element based on quartz glass.
(Example 4)

ガドリニウム(Gd)に対してバナジウム(V)を50原子%混合した粉末に発光中心材料として二酸化ツリウム(Tm)粉末、二酸化ユーロピウム(Eu)粉末及び、二酸化エルビウム(Er)粉末をGdに対して、それぞれ1.0,0.1及び0.7原子%含有するように十分混合した後、アルゴン(Ar)ガス雰囲気中にて1000℃で1時間焼成することにより、Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体粉末を作製した。該焼成蛍光体粉末を用いてスパッタリングターゲットを作製し、焼結チタン酸バリウム(BaTiO)セラミック基体兼絶縁体層上に、アルゴン(Ar)ガス中、ガス圧力6Pa、スパッタ投入電力100W、基体温度275℃〜390℃、基体−ターゲット間距離25mmの条件下でGdVOを主成分とするTm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜発光層を形成した。その後、大気中において、1020℃で1時間のアニール処理を行った。熱処理後の該蛍光体薄膜はフォトルミネッセンス(PL)およびカソードルミネッセンス(CL)において共に高効率白色発光を実現した。Thulium dioxide (Tm 2 O 3 ) powder, europium dioxide (Eu 2 O 3 ) powder, and erbium dioxide (Er 2 O) as emission center materials in a powder obtained by mixing vanadium (V) with gadolinium (Gd) at 50 atomic%. 3 ) The powder is sufficiently mixed with Gd so as to contain 1.0, 0.1 and 0.7 atomic%, respectively, and then fired at 1000 ° C. for 1 hour in an argon (Ar) gas atmosphere. , Tm, Eu and Er co-added gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor powder was prepared. A sputtering target is prepared using the fired phosphor powder, and a sintered barium titanate (BaTiO 3 ) ceramic substrate / insulator layer is provided with an argon (Ar) gas, a gas pressure of 6 Pa, a sputtering power of 100 W, and a substrate temperature. Under the conditions of 275 ° C. to 390 ° C. and a distance between the substrate and the target of 25 mm, a Tm, Eu, and Er co-added gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor thin film light emitting layer containing GdVO 4 as a main component was formed. Thereafter, an annealing treatment was performed at 1020 ° C. for one hour in the air. After the heat treatment, the phosphor thin film realized high-efficiency white light emission in both photoluminescence (PL) and cathodoluminescence (CL).

そして該発光層薄膜上にアルミニウム添加酸化亜鉛(ZnO:Al)透明電極を、背面には金属Al電極を形成しEL素子を作製した。該EL素子に1kHz正弦波交流電圧を加えたところ、実用に十分耐えうる色純度の白色EL発光を実現できた。また、実用に十分耐えうる高輝度白色EL発光を実現した。これにより、GdVOを主成分とするTm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜がEL素子用発光層薄膜として十分機能した。Then, an aluminum-added zinc oxide (ZnO: Al) transparent electrode was formed on the light-emitting layer thin film, and a metal Al electrode was formed on the back surface, to produce an EL element. When a 1-kHz sine-wave AC voltage was applied to the EL element, white EL light emission of color purity sufficiently endurable for practical use was realized. In addition, high-luminance white EL light emission that can withstand practical use was realized. Thus, Tm mainly composed of GdVO 4, Eu, Er co-doped gadolinium oxide - vanadium multi-component oxide white-emitting phosphor thin film has sufficiently functions as a light emitting layer thin film EL device.

発明の効果The invention's effect

本発明によれば、酸化ガドリニウム−酸化バナジウム多元系酸化物母体材料を作製し、発光中心材料としてTm、Er及びEuを同時に添加することにより、高輝度白色色発光を実現できる新しい酸化物蛍光体薄膜を実現できた。該薄膜蛍光体は、フォトルミネッセンス(PL)、カソードルミネッセンス(CL)及びエレクトロルミネッセンス(EL)のいずれにおいても高輝度白色発光を実現できた。特に、EL素子用発光層材料としては、高い色純度を実現でき、加えて、該蛍光体は酸化物特有の極めて高い化学的安定性有する。以上のことから、該薄膜蛍光体は薄膜EL素子を始めとして、蛍光ランプ、プラズマディスプレイ、ブラウン管等の蛍光体として広範な応用が可能でありその効果は絶大である。According to the present invention, a new oxide phosphor capable of realizing high-brightness white color light emission by preparing a gadolinium oxide-vanadium oxide multi-element oxide base material and simultaneously adding Tm, Er and Eu as emission center materials. A thin film was realized. The thin-film phosphor was able to achieve high-luminance white light emission in any of photoluminescence (PL), cathodoluminescence (CL), and electroluminescence (EL). In particular, as a light emitting layer material for an EL element, high color purity can be realized, and in addition, the phosphor has extremely high chemical stability unique to an oxide. From the above, the thin-film phosphor can be widely applied as a phosphor for a thin-film EL element, a fluorescent lamp, a plasma display, a cathode ray tube, and the like, and the effect is enormous.

エレクトロルミネッセンス素子の一例を示す図である。1‥‥‥‥‥‥‥‥‥透明電極層セラミックスシート 2‥‥‥‥‥‥‥‥Tm、Eu、Er共添加酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体薄膜層 3‥‥‥‥‥‥‥‥‥セラミックスシート 4‥‥‥‥‥‥‥‥‥背面電極層FIG. 3 is a diagram illustrating an example of an electroluminescence element. 1 {Transparent electrode layer ceramic sheet 2} Tm, Eu, Er co-doped gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor thin film layer 3} ‥‥‥‥‥‥ Ceramic sheet 4 ‥‥‥‥‥‥‥‥‥ Back electrode layer 実施例1におけるEL発光のCIE色度座標を示す図である。FIG. 3 is a diagram showing CIE chromaticity coordinates of EL light emission in Example 1. 実施例1における薄膜EL素子の輝度−印加電圧特性Luminance-applied voltage characteristics of thin-film EL element in Example 1

Claims (5)

ガドリニウム(Gd)とバナジウム(V)を主成分とするGd−V−O系酸化物を母体材料とし、発光中心材料として少なくともツリウム(Tm)、エルビウム(Er)及びユーロピウム(Eu)をガドリニウム(Gd)に対してそれぞれ、0.9から2.0原子%、0.2から1.0原子%及び0.05から0.4原子%、好ましくはそれぞれ、1.0から1.5原子%、0.5から0.9原子%及び0.1から0.3原子%含有することを特徴とする酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体。A Gd-VO-based oxide containing gadolinium (Gd) and vanadium (V) as main components is used as a base material, and at least thulium (Tm), erbium (Er), and europium (Eu) are used as gadolinium (Gd) as emission center materials. ), Respectively, from 0.9 to 2.0 at%, 0.2 to 1.0 at% and 0.05 to 0.4 at%, preferably 1.0 to 1.5 at%, respectively. A gadolinium oxide-vanadium oxide multi-component oxide white light emitting phosphor characterized by containing 0.5 to 0.9 atomic% and 0.1 to 0.3 atomic%. 母体材料中のバナジウム(V)をガドリニウム(Gd)に対して40から60原子%、好ましくは45から55原子%含有することを特徴とする前記請求項1記載の酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体。The gadolinium oxide-vanadium oxide multi-component oxidation according to claim 1, characterized in that vanadium (V) in the base material is contained in an amount of 40 to 60 at%, preferably 45 to 55 at% based on gadolinium (Gd). Object white light emitting phosphor. 母体材料が酸化ガドリニウム(Gd)と酸化バナジウ厶(V)を含む複合酸化物であることを特徴とする前記請求項1及び2記載の酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体。Vanadium multi-component oxide - gadolinium oxide of the claims 1 and 2 wherein the matrix material is characterized in that it is a composite oxide containing vanadium厶and gadolinium oxide (Gd 2 O 3) (V 2 O 5) White light emitting phosphor. 母体材料が3元化合物であるGdVOが主成分であることを特徴とする前記請求項1、2及び3記載の酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体。4. The gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor according to claim 1, wherein the base material is GdVO 4 which is a ternary compound. 前記請求項1〜4に記載の酸化ガドリニウム−酸化バナジウム多元系酸化物白色発光蛍光体の薄膜を発光層として使用することを特徴とする白色発光薄膜エレクトロルミネッセンス素子。A white light-emitting thin-film electroluminescent device, wherein a thin film of the gadolinium oxide-vanadium oxide multi-component oxide white light-emitting phosphor according to claim 1 is used as a light-emitting layer.
JP2003347585A 2003-03-26 2003-08-29 Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material Pending JP2004307808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347585A JP2004307808A (en) 2003-03-26 2003-08-29 Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003126029 2003-03-26
JP2003347585A JP2004307808A (en) 2003-03-26 2003-08-29 Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material

Publications (1)

Publication Number Publication Date
JP2004307808A true JP2004307808A (en) 2004-11-04

Family

ID=33478930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347585A Pending JP2004307808A (en) 2003-03-26 2003-08-29 Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material

Country Status (1)

Country Link
JP (1) JP2004307808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737454B2 (en) 2005-02-25 2010-06-15 Seiko Epson Corporation Organic light-emitting element, organic light-emitting device, and electronic apparatus
JP2011044372A (en) * 2009-08-24 2011-03-03 National Institute Of Advanced Industrial Science & Technology Sb-ADDED SnO2 HEAT RESISTANT TRANSPARENT ELECTRODE THIN FILM, INORGANIC ELECTROLUMINESCENT ELEMENT USING IT
JP2012043660A (en) * 2010-08-19 2012-03-01 Tokai Rika Co Ltd Inorganic el element and method for manufacturing the same
CN104449659A (en) * 2014-12-12 2015-03-25 武汉纺织大学 Method for rapidly preparing large-area multi-chromic composite film and multi-chromic composite film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737454B2 (en) 2005-02-25 2010-06-15 Seiko Epson Corporation Organic light-emitting element, organic light-emitting device, and electronic apparatus
JP2011044372A (en) * 2009-08-24 2011-03-03 National Institute Of Advanced Industrial Science & Technology Sb-ADDED SnO2 HEAT RESISTANT TRANSPARENT ELECTRODE THIN FILM, INORGANIC ELECTROLUMINESCENT ELEMENT USING IT
JP2012043660A (en) * 2010-08-19 2012-03-01 Tokai Rika Co Ltd Inorganic el element and method for manufacturing the same
CN104449659A (en) * 2014-12-12 2015-03-25 武汉纺织大学 Method for rapidly preparing large-area multi-chromic composite film and multi-chromic composite film

Similar Documents

Publication Publication Date Title
JP2003045660A (en) El panel
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
JP2013053279A (en) Inorganic fluorescent material
TWI242037B (en) Phosphor thin film, manufacturing method of the same and electroluminescence panel
JP2004307808A (en) Gadolinium oxide-vanadium oxide multicomponent oxide white luminous fluorescent material
JP4042895B2 (en) Oxide phosphor for PL, CL or EL, electroluminescence element, and method for producing the same
JP3472236B2 (en) Phosphor thin film, manufacturing method thereof and EL panel
JP4944408B2 (en) Oxide phosphor, light emitting element, and display device
JP2009001699A (en) Red-emitting phosphor, fed device, and eld device
JPH0935869A (en) Manufacture of electroluminescence element
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP4994678B2 (en) Green phosphor and method for producing the same
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JP5283166B2 (en) Collision excitation type EL phosphor, method for manufacturing collision excitation type EL phosphor thin film, thin film EL element, thin film EL display, and thin film EL lamp
JP2002201469A (en) Oxide phosphor for electroluminescence device and electroluminescence device
JPH10270168A (en) Phosphor thin film for electroluminescent element
JP5099820B2 (en) Red light emitting phosphor, FED device and ELD device
JP2006219641A (en) Light-emitting material and light-emitting element
JP3865122B2 (en) Sulfur oxide phosphor for electroluminescence device and electroluminescence device
JP3726134B2 (en) Electroluminescent light emitting layer thin film, inorganic thin film electroluminescent element, and method for producing light emitting layer thin film
JP4928329B2 (en) Thin film inorganic EL element
JP2011057953A (en) Ultraviolet excitation phosphor, electron-beam excitation phosphor, blue phosphor for collision excitation type el, method for producing thin film of blue phosphor for collision excitation type el, filmy el element, filmy el display, and filmy el lamp
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JP2006077111A (en) Phosphor material
JP5100067B2 (en) Fluorescent material, phosphor, display device, and phosphor manufacturing method