JP2985096B2 - Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer - Google Patents

Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer

Info

Publication number
JP2985096B2
JP2985096B2 JP2256474A JP25647490A JP2985096B2 JP 2985096 B2 JP2985096 B2 JP 2985096B2 JP 2256474 A JP2256474 A JP 2256474A JP 25647490 A JP25647490 A JP 25647490A JP 2985096 B2 JP2985096 B2 JP 2985096B2
Authority
JP
Japan
Prior art keywords
thin film
emitting layer
light emitting
sio
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2256474A
Other languages
Japanese (ja)
Other versions
JPH04209693A (en
Inventor
内嗣 南
新三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2256474A priority Critical patent/JP2985096B2/en
Publication of JPH04209693A publication Critical patent/JPH04209693A/en
Application granted granted Critical
Publication of JP2985096B2 publication Critical patent/JP2985096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [利用分野] 本発明はZn2SiO4:Mn薄膜を発光層として用いる交流駆
動薄膜エレクトロルミネッセンス素子に関する。
The present invention relates to an AC-driven thin-film electroluminescence device using a Zn 2 SiO 4 : Mn thin film as a light-emitting layer.

[従来技術] エレクトロルミネッセンス素子(以下EL素子と呼ぶ)
は、平面形固体発光表示装置への応用に対し古くから研
究され、その実用化に対し根強い期待がある。このEL素
子は構造上、ガラスまたはプラスチックフィルム基板上
に蛍光体の結晶性薄膜を形成させることを特徴とする薄
膜形と蛍光体粉末を有機系誘電体バインダー中に均一に
分散混合させることを特徴とする有機分散形及び蛍光体
粉末をガラス等の無機系バインダーで結着させることを
特徴とする無機分散形に分けられる。無機分散形ELは、
しばしばセラミックス形ELと呼ばれることもあるが、あ
くまでも蛍光体粉末粒子がこの無機形バインダー中に分
散したものに過ぎない。これら従来のEL素子には発光層
としてマンガン添加硫化亜鉛(ZnS:Mn)や銅添加硫化亜
鉛(ZnS:Cu)蛍光体からなる薄膜あるいは粉末等が使用
されている。前者は二重絶縁構造交流駆動薄膜EL素子と
して、後者は有機分散形交流駆動EL素子としてそれぞれ
黄橙色発光および青緑色発光のものが実用されている。
蛍光体としては酸素酸塩系、酸化物系あるいは前記した
硫化物系等多くの材料が知られている。前二者はEL素子
用発光層として殆ど機能しないため専らCRT用もしくは
ランプ用蛍光体として利用されている。後者の硫化物系
蛍光体でも前記した一部を除けば実用レベルのEL素子用
発光層としては殆ど役立っていない。
[Prior art] Electroluminescence element (hereinafter referred to as EL element)
Has been studied for a long time for application to a flat panel solid-state light-emitting display device, and there is a strong expectation for its practical use. This EL device is characterized in that a crystalline thin film of phosphor is formed on a glass or plastic film substrate in structure, and the thin film and phosphor powder are uniformly dispersed and mixed in an organic dielectric binder. And an inorganic dispersion type wherein the phosphor powder is bound with an inorganic binder such as glass. Inorganic dispersion type EL
It is often referred to as a ceramic EL, but is merely a dispersion of the phosphor powder particles in the inorganic binder. In these conventional EL devices, a thin film or powder made of a manganese-doped zinc sulfide (ZnS: Mn) or copper-doped zinc sulfide (ZnS: Cu) phosphor is used as a light emitting layer. The former is practically used as an AC-driven thin-film EL element having a double insulation structure, and the latter is practically used as an organic dispersed-type AC driven EL element, which emits yellow-orange light and blue-green light.
As the phosphor, many materials such as an oxyacid salt type, an oxide type or the above-mentioned sulfide type are known. The former two hardly function as a light emitting layer for an EL element, so they are exclusively used as phosphors for CRTs or lamps. Except for the above-mentioned part, the latter sulfide-based phosphor hardly serves as a light emitting layer for an EL element at a practical level.

[発明が解決しようとする課題] EL素子は、高価であり、また発光層として硫化物系蛍
光体を使用しているため、前述したような黄橙色もし
くは青緑色発光のものしか利用できない。硫化物系蛍
光体は、ドープしている付活剤の量が微量であり、従っ
て不純物に敏感である。水や酸素に対して弱く、安定
性に極めて乏しい。硫化物系蛍光体は硫化物故に透明
電極や絶縁層等の酸化物と化学的に反応を生じ易く該発
光層に酸化等のダメージを与えたり、さらに、薄膜形
の場合では、高電圧印加によるカタストロフィックな絶
縁破壊を生じたり、分散形の場合では、実用に耐える十
分な輝度が得られない等の問題点があった。それ故EL素
子が広く実用化されるためには、多色発光を実現し、安
価で高い安定性を有する素子の開発が不可欠である。こ
のため、従来のEL素子にあっては、薄膜形は高価なコン
ピュータ用端末ディスプレイ等限られた用途のみに使用
され、分散形は輝度が低いため、これも、夜間の警告表
示灯用発光パネルや室内装飾用の発光パネル等に一部利
用される程度であった。
[Problems to be Solved by the Invention] Since the EL element is expensive and uses a sulfide-based phosphor as the light-emitting layer, only the above-described yellow-orange or blue-green light-emitting elements can be used. The sulfide-based phosphor has a small amount of the doping activator and is therefore sensitive to impurities. Weak against water and oxygen and extremely poor in stability. Sulfide-based phosphors are likely to chemically react with oxides such as transparent electrodes and insulating layers due to sulfides, causing damage such as oxidation to the light-emitting layer. There have been problems such as the occurrence of catastrophic dielectric breakdown and the failure of obtaining a sufficient luminance for practical use in the case of the dispersed type. Therefore, in order for EL elements to be widely put to practical use, it is essential to develop an inexpensive and highly stable element that realizes multicolor light emission. For this reason, in the conventional EL element, the thin film type is used only for limited applications such as an expensive computer terminal display, and the dispersed type has a low luminance. It was only partially used for light-emitting panels for interior decoration.

ところで、多色発光、高輝度、高効率そして安定なEL
素子を得るには新規なEL素子用発光層材料を開発する以
外に不可能である。
By the way, multi-color emission, high brightness, high efficiency and stable EL
It is impossible to obtain a device except by developing a new light emitting layer material for an EL device.

本発明では、酸素酸塩系蛍光体もしくは酸化物蛍光体
からなる高品質結晶性薄膜を該EL素子用発光層として用
いることによって、安価で極めて安定性に優れた緑色発
光EL素子を実現するものである。
In the present invention, an inexpensive and extremely stable green light emitting EL device is realized by using a high quality crystalline thin film composed of an oxyacid salt-based phosphor or an oxide phosphor as the light emitting layer for the EL device. It is.

[問題点を解決するための手段] 本発明は、鋭意研究を進めた結果前記問題点を解決す
る材料として、高品質結晶性Zn2SiO4:Mnが最適であるこ
とを発見するに至った。高品質結晶性Zn2SiO4:Mn薄膜は
各種基板上に例えば各種制御雰囲気中にて電子ビーム蒸
着法、活性化反応性蒸着(ARE)法、スパッタ法、クラ
スタイオンビーム(ICB)法、イオンビームスパッタ(I
BS)法、化学気相結晶成長(CVD)法、原子層エピタキ
シャル(ALE)成長法、分子線エピタキシャル成長(MB
E)法、ガスソースMBE(またはCBE)法、エレクトロン
サイクロトロン共鳴(ECR)を利用する結晶成長法等既
知の結晶成長技術を用いて比較的高温基板上に形成可能
であるが、該薄膜を形成した後、基板材料等と共に該薄
膜をこの薄膜を構成する少なくとも一種の蛍光体成分元
素を含む非酸化性ガスまたは一部酸化性ガスを含む非酸
化性ガス雰囲気の中で、もしくはこれらの雰囲気と等価
な雰囲気中にて、750℃〜1200℃、好ましくは900℃〜10
50℃の温度範囲で熱処理することによって得ることがで
きる。
[Means for Solving the Problems] As a result of intensive research, the present invention has found that high-quality crystalline Zn 2 SiO 4 : Mn is optimal as a material for solving the above problems. . High quality crystalline Zn 2 SiO 4 : Mn thin films can be deposited on various substrates in various controlled atmospheres, for example, electron beam evaporation, activated reactive evaporation (ARE), sputtering, cluster ion beam (ICB), ion Beam sputter (I
BS) method, chemical vapor crystal growth (CVD) method, atomic layer epitaxial (ALE) growth method, molecular beam epitaxial growth (MB
E) method, gas source MBE (or CBE) method, crystal growth method using electron cyclotron resonance (ECR), etc., can be formed on a relatively high temperature substrate using a known crystal growth technique. After that, the thin film together with the substrate material and the like is formed in a non-oxidizing gas atmosphere containing at least one kind of phosphor component element or a non-oxidizing gas atmosphere partially containing an oxidizing gas constituting the thin film, or with these atmospheres. In an equivalent atmosphere, 750 ° C to 1200 ° C, preferably 900 ° C to 10 ° C
It can be obtained by heat treatment in a temperature range of 50 ° C.

本発明に係る典型的なEL素子は、基本的には第1図に
示すような基板5/透明電極層1/薄膜発光層2/絶縁層3/背
面電極層4もしくは第2図に示すような基板5/透明電極
層1/絶縁層3/薄膜発光層2/絶縁層3/背面電極層4を備え
てなる構造のものを例示でき、また、第1図の基板5を
背面電極層4側へ構成すること、もしくは薄膜発光層2
と絶縁層3を入れ換えることも可能であり、さらに、第
3図に示すように絶縁層3が基板5を兼ねる構造(基板
兼絶縁層6)も、EL素子として機能を損なわない限り全
く問題ない。必要に応じて薄膜発光層2と絶縁層3の間
に電荷供給層として、もしくは絶縁層3の保護膜とし
て、例えば導電性を有し耐環境特性に優れたZnO系透明
導電膜等の単層もしくは多層膜層を挿入することが有効
である。さらに高コントラスト比を得る為に黒色薄膜を
例えば絶縁層3と薄膜発光層2の間に形成もしくは挿入
することもできる。
A typical EL device according to the present invention is basically a substrate 5 / transparent electrode layer 1 / thin film light emitting layer 2 / insulating layer 3 / back electrode layer 4 as shown in FIG. 1 or as shown in FIG. A substrate 5 / transparent electrode layer 1 / insulating layer 3 / thin film light emitting layer 2 / insulating layer 3 / back electrode layer 4 can be exemplified, and the substrate 5 of FIG. Side or the thin film light emitting layer 2
And the insulating layer 3 can be exchanged. Further, as shown in FIG. 3, the structure in which the insulating layer 3 also serves as the substrate 5 (substrate / insulating layer 6) has no problem as long as the function as the EL element is not impaired. . If necessary, as a charge supply layer between the thin-film light emitting layer 2 and the insulating layer 3 or as a protective film of the insulating layer 3, for example, a single layer of a ZnO-based transparent conductive film having conductivity and excellent environmental resistance characteristics. Alternatively, it is effective to insert a multilayer film layer. In order to obtain a higher contrast ratio, a black thin film can be formed or inserted between the insulating layer 3 and the thin film light emitting layer 2, for example.

また、透明電極層1と薄膜発光層2の間に絶縁もしく
は電荷障壁層を挿入しても一向に差し支えない。
Further, an insulating or charge blocking layer may be inserted between the transparent electrode layer 1 and the thin-film light emitting layer 2 without any problem.

[作用] 本発明に係るEL素子用発光層として採用したケイ酸塩
蛍光体であるZn2SiO4:Mn蛍光体は、硫化物系蛍光体と異
なり、極めて化学的に安定であり、取り扱い容易である
ため、古くから電子線励起用蛍光体として他方面で利用
されている。しかしながら、この蛍光体をそのままの状
態でEL素子用発光層として用いても全く発光しないこと
が知られている。EL素子用発光層として機能するために
は、先ず発光層自体の結晶性を向上すること、この発光
層に有効に高電界が印加できる素子構造とすること、並
びにキャリアを効率良く注入できるように発光層と絶縁
層との界面状態等を著しく改善せしめること、が必要不
可欠であった。絶縁層として高誘電率BaTiO3セラミック
板を使用する場合では、従来使用されているガラス基板
と異なり、750℃以上という高温で熱処理することが可
能となる。従って、この場合該セラミックス上に形成し
た発光層は、既知の成膜方法により作成されるが、本発
明では、さらにその結晶性が高温加熱処理によって著し
く高められることと、雰囲気制御により適当なバリアを
形成することが可能であると考えられる。その結果絶縁
層界面近傍における高電界(〜106V/cm)によってZn2Si
O4:Mn蛍光体中にホットエレクトロンが注入でき、Mn発
光中心を効率良く励起することができ、また発光中心で
あるMnの膜中の分布状態が良く、高輝度発光が実現でき
たものと推察される。また従来行われているようにガラ
ス基板等の基体上に片絶縁形、あるいは二重絶縁形の薄
膜EL素子を構成する場合でも、前で述べた高品質結晶の
成長技術と、結晶成長後の熱処理は前記の高温処理と等
価な効果を期待でき、さらに、絶縁層/発光層界面状態
の改質も期待できる。
[Function] The Zn 2 SiO 4 : Mn phosphor, which is a silicate phosphor employed as the light emitting layer for the EL device according to the present invention, is extremely chemically stable unlike the sulfide phosphor and is easy to handle. Therefore, it has long been used on the other side as a phosphor for exciting an electron beam. However, it is known that even if this phosphor is used as it is as a light emitting layer for an EL element, no light is emitted. In order to function as a light-emitting layer for an EL element, first, the crystallinity of the light-emitting layer itself must be improved, the element structure must be such that a high electric field can be effectively applied to the light-emitting layer, and carriers can be efficiently injected. It has been essential to remarkably improve the interface state between the light emitting layer and the insulating layer. When a high dielectric constant BaTiO 3 ceramic plate is used as the insulating layer, heat treatment can be performed at a high temperature of 750 ° C. or more, unlike a conventionally used glass substrate. Therefore, in this case, the light emitting layer formed on the ceramic is formed by a known film forming method. In the present invention, the crystallinity is further enhanced by high-temperature heat treatment, and an appropriate barrier is provided by controlling the atmosphere. Is thought to be possible. High electric field (~10 6 V / cm) by Zn 2 Si in the result insulating layer near the interface
Hot electrons can be injected into the O 4 : Mn phosphor, the Mn emission center can be efficiently excited, and the distribution state of Mn, which is the emission center, in the film is good, and high-brightness emission can be realized. Inferred. In addition, even when a single-insulation type or double-insulation type thin-film EL element is formed on a substrate such as a glass substrate as conventionally performed, the high-quality crystal growth technique described above and the post-crystal growth The heat treatment can be expected to have an effect equivalent to that of the high-temperature treatment described above, and can also be expected to modify the state of the interface between the insulating layer and the light emitting layer.

これらの作用効果を整理すると以下のとうりである。
蛍光体薄膜の化合物母材の結晶性および組成を最適化
できる。蛍光体膜の発光中心の導入状態を最適化でき
る。蛍光体薄膜形成過程で導入された絶縁層の焼結酸
化物セラミックスのダメージを回復できる。また、焼結
酸化物セラミックスと蛍光体薄膜発光層の間に、20nm〜
1μm厚、好ましくは、50nm〜500nm厚各種薄膜層を挿
入することは、バッファ層、電荷供給層もしくは保護層
等として有効であり、その結果、低電圧駆動および高効
率で高発光輝度を実現できる。このことによって、高品
質な緑色発光が実現出来、以て広範な用途が期待出来
る。以上のように本発明は、面発光形照光ランプや面発
光形表示パネルあるいは平面光源を有する平面形表示装
置等のEL素子に対して極めて画期的な製造技術を提供す
るものである。
The following is a summary of these functions and effects.
The crystallinity and composition of the compound base material of the phosphor thin film can be optimized. The state of introduction of the luminescent center of the phosphor film can be optimized. Damage to the sintered oxide ceramics of the insulating layer introduced during the process of forming the phosphor thin film can be recovered. In addition, between the sintered oxide ceramic and the phosphor thin film light emitting layer,
Insertion of various thin film layers having a thickness of 1 μm, preferably 50 nm to 500 nm is effective as a buffer layer, a charge supply layer or a protective layer, and as a result, high emission luminance can be realized with low voltage driving and high efficiency. . As a result, high-quality green light emission can be realized, and a wide range of applications can be expected. As described above, the present invention provides an extremely innovative manufacturing technique for an EL element such as a surface-emitting illuminating lamp, a surface-emitting display panel, or a flat-panel display having a flat light source.

以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described with reference to examples.

[実施例 1] Zn2SiO4:Mn(No.P−1蛍光体)粉末成形体をターゲッ
トとし、純アルゴンガス雰囲気中、スパッタガス圧力0.
4〜10Paの範囲で、高周波電力100W、基板加熱温度350
℃、基板−ターゲット間距離25mmで高周波マグネトロン
スパッタ法によって、比誘電率(εs)5800、厚さ
(t)0.2mm、の表面平滑な焼結BaTiO3セラミック基板
兼絶縁層上に厚さ700nmのZn2SiO4:Mn薄膜を形成した。
その後、アルミナセラミックボートに仕込んだ酸化物形
蛍光体ZnO:Zn(No.P−15蛍光体)粉末中に、Zn2SiO4:Mn
付きBaTiO3セラミックスを埋め込み、電気炉内にセット
し、1000℃で5時間、アルゴン中で熱処理を行い、該薄
膜にEL素子用発光層としての機能を付与した。その後、
該発光層上に、マグネトロンスパッタ法によって、厚さ
を500nmのアルミニウム(Al)ドープ酸化亜鉛(ZnO:A
l)透明電極層を、また反対側の面には真空蒸着法によ
り金属Al背面電極層をそれぞれ形成しEL素子を作製し
た。このEL素子を1kHzの正弦波交流電圧で駆動した結
果、発光開始電圧80V、最高発光輝度2600cd/m2(200V印
加)、発光効率1.0lm/Wで、透明電極全面にわたって均
一な緑色発光が得られた。さらに該焼結酸化物セラミッ
クス基板兼絶縁層としてεs=10000,t=0.2mmの表面平
滑なPb(Mg1/3Nb2/3)O3焼結セラミックスを採用し同様
の発光層を形成したEL素子においては、発光開始電圧60
V、最高発光輝度2200cd/m2(200V印加)、発光効率0.9l
m/Wで、透明電極全面にわたって均一な緑色発光が得ら
れた。また、BaTiO3セラミックス上に、あらかじめスパ
ッタ法で50nm〜500nm厚のZnO薄膜を形成しておいた後、
Zn2SiO4:Mn発光層を形成した素子の場合、発光開始電圧
を10V〜30V低下させることが出来、かつ同程度以上のEL
特性を実現出来た。
[Example 1] A Zn 2 SiO 4 : Mn (No. P-1 phosphor) powder compact was used as a target in a pure argon gas atmosphere, and a sputtering gas pressure of 0.
In the range of 4-10Pa, high frequency power 100W, substrate heating temperature 350
At a temperature of 25 ° C. and a substrate-target distance of 25 mm, a high dielectric constant (εs) of 5800 and a thickness (t) of 0.2 mm, a surface smooth sintered BaTiO 3 ceramic substrate having a thickness of 700 nm was formed on an insulating layer by a high-frequency magnetron sputtering method. A Zn 2 SiO 4 : Mn thin film was formed.
Then, Zn 2 SiO 4 : Mn was added to the oxide phosphor ZnO: Zn (No. P-15 phosphor) powder charged in the alumina ceramic boat.
BaTiO 3 ceramics were embedded, set in an electric furnace, and heat-treated at 1000 ° C. for 5 hours in argon to give the thin film a function as a light emitting layer for an EL element. afterwards,
A 500 nm-thick aluminum (Al) -doped zinc oxide (ZnO: A) was formed on the light emitting layer by magnetron sputtering.
l) A transparent electrode layer was formed, and a metal Al back electrode layer was formed on the opposite surface by a vacuum deposition method, respectively, to produce an EL device. As a result of driving the EL elements at 1kHz sine wave AC voltage, light emission start voltage 80V, the maximum emission luminance 2600cd / m 2 (200V applied), with luminous efficiency 1.0lm / W, uniform green emission over the transparent electrode over the entire surface to obtain Was done. Further, a Pb (Mg 1/3 Nb 2/3 ) O 3 sintered ceramic having a smooth surface of εs = 10000 and t = 0.2 mm was adopted as the sintered oxide ceramic substrate / insulating layer to form a similar light emitting layer. In the EL device, the light emission starting voltage is 60
V, maximum emission luminance 2200cd / m 2 (200V applied), luminous efficiency 0.9l
At m / W, uniform green light emission was obtained over the entire surface of the transparent electrode. In addition, after forming a ZnO thin film with a thickness of 50 nm to 500 nm on the BaTiO 3 ceramics in advance by sputtering,
In the case of a device having a Zn 2 SiO 4 : Mn light emitting layer formed thereon, the light emission starting voltage can be reduced by 10 V to 30 V, and the EL of the same level or higher can be obtained.
The characteristics were realized.

[実施例 2] εs=6600、t=0.2mm、の表面平滑な焼結BaTiO3
ラミック基板兼絶縁層上に、Zn2SiO4:Mn(No.P−1蛍光
体)粉末成形体ペレットを電子ビーム蒸着法によって、
厚さ600nmのZn2SiO4:Mn薄膜を形成したものをアルミナ
セラミックボートに仕込んだP−15蛍光体粉末中に埋め
込み電気炉内にセットし、1000℃で2時間、アルゴン中
で熱処理を行い、該薄膜にEL素子用発光層としての機能
を付与した。その後、該発光層上に、透明電極層を、ま
た反対側の面には真空蒸着法により金属Al背面電極層を
それぞれ形成しEL素子を作製した。
Example 2 A Zn 2 SiO 4 : Mn (No.P-1 phosphor) powder compact pellet was placed on a sintered BaTiO 3 ceramic substrate / insulating layer having a smooth surface of εs = 6600 and t = 0.2 mm. By electron beam evaporation,
A Zn 2 SiO 4 : Mn thin film having a thickness of 600 nm was formed, embedded in a P-15 phosphor powder charged in an alumina ceramic boat, set in an electric furnace, and heat-treated at 1000 ° C. for 2 hours in argon. A function as a light emitting layer for an EL element was imparted to the thin film. Thereafter, a transparent electrode layer was formed on the light-emitting layer, and a metal Al back electrode layer was formed on the opposite surface by a vacuum deposition method, to produce an EL device.

このEL素子を1kHzの正弦波交流電圧で駆動した結果、
発光開始電圧60V、発光輝度1500cd/m2(200V印加)、発
光効率0.8llm/Wで、透明電極全面にわたって均一な緑色
発光が得られた。
As a result of driving this EL element with a sine wave AC voltage of 1 kHz,
Uniform green light emission was obtained over the entire surface of the transparent electrode with a light emission start voltage of 60 V, a light emission luminance of 1500 cd / m 2 (200 V applied), and a light emission efficiency of 0.8 llm / W.

[実施例 3] εs=4600、t=0.3mmの表面平滑な焼結BaTiO3セラ
ミック基板兼絶縁層上に、厚さ約100nmのZnOを実施例1
と同じ条件下でマグネトロンスパッタ法によって形成
し、さらにその上にZn2SiO4:Mn(No.P−1蛍光体)粉末
成形体ペレットを電子ビーム蒸着法によって、厚さ600n
mのZn2SiO4:Mn薄膜を形成したものをアルミナセラミッ
クボートに仕込んだP−15蛍光体粉末中に埋設したまま
電気炉にて1000℃で5時間アルゴン中で熱処理を行い、
該薄膜にEL素子用発光層としての機能を付与した。その
後、該発光層上に、ZnO:Al透明電極層を、また反対側の
面には真空蒸着法により金属Al背面電極層をそれぞれ形
成しEL素子を作製した。
Example 3 ZnO having a thickness of about 100 nm was formed on a sintered BaTiO 3 ceramic substrate / insulating layer having a smooth surface of εs = 4600 and t = 0.3 mm.
Under the same conditions as above, and a Zn 2 SiO 4 : Mn (No. P-1 phosphor) powder compact was further formed thereon by electron beam evaporation to a thickness of 600 nm.
m Zn 2 SiO 4 : Mn thin film was formed and embedded in a P-15 phosphor powder charged in an alumina ceramic boat and heat-treated in an electric furnace at 1000 ° C. for 5 hours in argon,
The thin film was given a function as a light emitting layer for an EL element. Thereafter, a ZnO: Al transparent electrode layer was formed on the light-emitting layer, and a metal Al back electrode layer was formed on the opposite surface by a vacuum evaporation method, to produce an EL device.

このEL素子を1kHzの正弦波交流電圧で駆動した結果、
発光開始電圧45V、発光輝度5800cd/m2(300V印加)、発
光効率1.0lm/Wで、透明電極全面にわたって均一な緑色
発光が得られた。
As a result of driving this EL element with a sine wave AC voltage of 1 kHz,
Uniform green light emission was obtained over the entire surface of the transparent electrode with a light emission start voltage of 45 V, a light emission luminance of 5800 cd / m 2 (300 V applied), and a light emission efficiency of 1.0 lm / W.

[実施例 4] εs=4600、t=0.15mmの表面平滑な焼結BaTiO3セラ
ミック基板兼絶縁層上に、Zn2SiO4:Mn(No.P−1蛍光
体)粉末成形体をターゲットとし、アルゴン雰囲気中に
て、ガス圧8Paで高周波マグネトロンスパッタ法によっ
て、厚さ500nmのZn2SiO4:Mn薄膜を形成したものを電気
炉内にセットし、1000℃で3時間、アルゴン希薄した水
素ガス中、もしくは窒素ガス希釈アンモニアガス中で熱
処理を行い、該薄膜にEL素子用発光層としての機能を付
与した。その後、該発光層上に、透明電極層を、または
反対側の面には真空蒸着法により金属Al背面電極層をそ
れぞれ形成しEL素子を作製した。
Example 4 A Zn 2 SiO 4 : Mn (No.P-1 phosphor) powder compact was used as a target on a sintered BaTiO 3 ceramic substrate / insulating layer having a smooth surface of εs = 4600 and t = 0.15 mm. A 500 nm thick Zn 2 SiO 4 : Mn thin film was formed by a high-frequency magnetron sputtering method at a gas pressure of 8 Pa in an argon atmosphere and set in an electric furnace, and hydrogen diluted with argon at 1000 ° C. for 3 hours. Heat treatment was performed in a gas or in a nitrogen gas-diluted ammonia gas to give the thin film a function as a light emitting layer for an EL element. Thereafter, a transparent electrode layer was formed on the light emitting layer, or a metal Al back electrode layer was formed on the opposite surface by a vacuum deposition method, respectively, to produce an EL device.

このEL素子を1kHzの正弦波交流電圧で駆動した結果、
発光開始電圧70V、発光輝度2500cd/m2(200V印加)、発
光効率0.9lm/Wで、透明電極全面にわたって均一な緑色
発光が得られた。
As a result of driving this EL element with a sine wave AC voltage of 1 kHz,
Uniform green light emission was obtained over the entire surface of the transparent electrode with a light emission start voltage of 70 V, a light emission luminance of 2500 cd / m 2 (200 V applied), and a light emission efficiency of 0.9 lm / W.

[実施例 5] AlドープZnO透明電極をコートしたガラス基板(HOYA
−NA−40)の該透明電極上に高周波マグネトロンスパッ
タ法で厚さ500nmのTa2O5薄膜を形成した後、同スパッタ
法によって厚さ100nmのSiO2薄膜を積層してなる絶縁層
上に、厚さ800nmのZn2SiO4:Mn薄膜を実施例1の高周波
マグネトロンスパッタ法で形成した。これらの膜をアル
ミナセラミックボートに仕込んだZnO:Zn蛍光体粉末中に
埋め込み電気炉内にセットし、アルゴンガスを炉内に導
入して700℃で5時間熱処理後、続いて、水素希薄アル
ゴンガス中で750℃で30分間処理した。その後、背面電
極としてAlを真空蒸着してEL素子を作製した。
Example 5 A glass substrate coated with an Al-doped ZnO transparent electrode (HOYA
-NA-40), a 500 nm thick Ta 2 O 5 thin film is formed on the transparent electrode by a high frequency magnetron sputtering method, and then a 100 nm thick SiO 2 thin film is laminated on the insulating layer by the same sputtering method. An 800 nm thick Zn 2 SiO 4 : Mn thin film was formed by the high-frequency magnetron sputtering method of the first embodiment. These films were embedded in ZnO: Zn phosphor powder charged in an alumina ceramic boat, set in an electric furnace, and argon gas was introduced into the furnace and heat-treated at 700 ° C. for 5 hours. For 30 minutes at 750 ° C. Then, Al was vacuum-deposited as a back electrode to produce an EL element.

このEL素子を1kHzの正弦波交流電圧で駆動した結果、
発光開始電圧90V、発光輝度1000cd/m2(200V印加)、発
光効率0.5lm/Wで、全面にわたって均一な緑色発光が得
られた。
As a result of driving this EL element with a sine wave AC voltage of 1 kHz,
Uniform green light emission was obtained over the entire surface at a light emission start voltage of 90 V, a light emission luminance of 1000 cd / m 2 (200 V applied), and a light emission efficiency of 0.5 lm / W.

[実施例 6] ITO透明電極コートHOYAガラス(NA−40)基板上に実
施例5と同様でTa2O5とSiO2薄膜をそれぞれ、400nmと10
0nm形成後、超高真空下での成膜法であるMBE法で基板温
度450℃でZn2(SiO4):Mn発光層を形成した。その後、
同装置内の真空中で650℃で2時間熱処理を行った。ZnS
iO4:Mn発光層上Al電極を付けたEL素子を1kHzの正弦波で
駆動した結果、発光開始電圧70V、発光輝度2000cd/m
2(200V印加)、発光効率0.9lm/Wで、均一な緑色発光が
得られた。また、上述のZnSiO4:Mn発光層の熱処理後、
さらに、発光層上にTa2O5薄膜を500nm実施例5と同じ方
法で形成した後、Al電極を形成したEL素子を作製した。
Example 6 A thin film of Ta 2 O 5 and SiO 2 was formed on an ITO transparent electrode-coated HOYA glass (NA-40) substrate in the same manner as in Example 5 to 400 nm and 10 nm, respectively.
After the formation of 0 nm, a Zn 2 (SiO 4 ): Mn light emitting layer was formed at a substrate temperature of 450 ° C. by MBE, which is a film forming method under ultrahigh vacuum. afterwards,
Heat treatment was performed at 650 ° C. for 2 hours in a vacuum in the same apparatus. ZnS
iO 4 : As a result of driving an EL element with an Al electrode on a Mn light emitting layer with a 1 kHz sine wave, a light emission start voltage of 70 V and a light emission luminance of 2000 cd / m
2 (200 V applied), a luminous efficiency of 0.9 lm / W, and uniform green luminescence was obtained. In addition, after the above-described heat treatment of the ZnSiO 4 : Mn light emitting layer,
Further, a Ta 2 O 5 thin film was formed on the light emitting layer in the same manner as in Example 5 to a thickness of 500 nm, and then an EL device having an Al electrode formed thereon was produced.

このEL素子を1kHzの正弦波交流電圧で駆動した結果、
発光開始電圧140V、発光輝度2200cd/m2(300V印加)、
発光効率1.1lm/Wで、電極全面にわたって均一な緑色発
光が得られた。
As a result of driving this EL element with a sine wave AC voltage of 1 kHz,
Light emission start voltage 140V, light emission luminance 2200cd / m 2 (300V applied),
At a luminous efficiency of 1.1 lm / W, uniform green luminescence was obtained over the entire surface of the electrode.

また、実施例6のZn2SiO4:Mn発光層の形成はソースと
してのSiCl4およびZnソースとしてのZnCl2そして、Mnソ
ースとしてのMnCl2を、超高真空中でZnとSiを交互に450
〜550℃に過熱された基板上に供給しながら、MnをZn原
子に対して、0.1〜5%の範囲でドープして、Zn2SiO4:M
nを原子層制御成膜法で行っても、実施例6と同程度以
上のEL素子を得ることができた。
The Zn 2 SiO 4 : Mn light emitting layer of Example 6 was formed by alternately using SiCl 4 as a source, ZnCl 2 as a Zn source, and MnCl 2 as a Mn source, and Zn and Si in an ultra-high vacuum. 450
Mn is doped in the range of 0.1 to 5% with respect to Zn atoms while being supplied onto a substrate heated to ℃ 550 ° C., and Zn 2 SiO 4 : M
Even when n was performed by the atomic layer controlled film formation method, an EL device equivalent to or more than that of Example 6 could be obtained.

[発明の効果] 本発明によれば、従来、EL素子の発光層材料として利
用出来なかったZn2SiO4:Mn蛍光体を利用出来る道を提供
することが出来、その効果は絶大である。即ち既存のCR
Tやランプ用蛍光体として知られているZn2SiO4:Mn蛍光
体をEL素子用発光層として機能させた結果、酸化性雰囲
気や水分を含む酸化性雰囲気中で極めて安定な緑色発光
を容易に実現することが出来る。その結果、素子のパッ
シベーション処理が極めて簡略化出来、安価なEL素子を
提供出来るようになった。これによって発光形平面ディ
スプレイ用EL素子として、あるいは面発光体である特長
を活かす照光ランプや各種パターン表示もしくは平面光
源を必要とする各種の応用機器および商用電源駆動形発
光素子に対し大いに威力が発揮されるなど多方面に利用
でき、従来にない幅広い用途が生み出されるという効果
がある。
[Effects of the Invention] According to the present invention, it is possible to provide a way to use a Zn 2 SiO 4 : Mn phosphor which could not be conventionally used as a light emitting layer material of an EL element, and the effect is remarkable. That is, the existing CR
As a result of using Zn 2 SiO 4 : Mn phosphor, which is known as a phosphor for T and lamps, as a light-emitting layer for EL devices, extremely stable green light emission is easily achieved in an oxidizing atmosphere or an oxidizing atmosphere containing moisture. Can be realized. As a result, passivation processing of the element can be extremely simplified, and an inexpensive EL element can be provided. As a result, it is extremely effective as an EL element for a light-emitting flat display, or as an illuminating lamp that makes use of its features as a surface light emitter, various application devices that require a pattern display or a flat light source, and a commercial power supply driven light-emitting element. It can be used in a variety of ways, such as being done, and has the effect of creating a wide range of applications that have never been seen before.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は本発明に係るEL素子の構造例を示
す断面図、更に第3図は本発明に係るEL素子の構造例を
示す断面図である。 1……透明電極層、2……薄膜発光層、 3……絶縁層、 4……背面電極層、5……基板、6……基板兼絶縁層、
1 and 2 are cross-sectional views showing a structural example of an EL element according to the present invention, and FIG. 3 is a cross-sectional view showing a structural example of an EL element according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Transparent electrode layer, 2 ... Thin film light emitting layer, 3 ... Insulating layer, 4 ... Back electrode layer, 5 ... Substrate, 6 ... Substrate / insulating layer,

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Zn2SiO4:Mn薄膜を基板上に形成した後、該
基板材料等と共に該薄膜を、この薄膜を構成する少なく
とも一種の蛍光体成分元素を含む非酸化性ガスまたは一
部酸化性ガスを含む非酸化性ガス雰囲気の中で、もしく
はこれらの雰囲気と等価な雰囲気中にて、750℃〜1200
℃で熱処理することを特徴とするZn2SiO4:Mn薄膜を発光
層として用いる交流駆動薄膜エレクトロルミネッセンス
素子の製造方法。
After a Zn 2 SiO 4 : Mn thin film is formed on a substrate, the thin film together with the substrate material and the like is converted into a non-oxidizing gas or a part thereof containing at least one kind of phosphor component element constituting the thin film. In a non-oxidizing gas atmosphere containing an oxidizing gas, or in an atmosphere equivalent to these atmospheres, 750 ° C ~ 1200
A method for producing an AC-driven thin-film electroluminescent device using a Zn 2 SiO 4 : Mn thin film as a light-emitting layer, characterized by performing a heat treatment at a temperature of ° C.
【請求項2】前記発光層を比誘電率4000以上の焼結酸化
物セラミックスからなる絶縁層上に形成することを特徴
とする特許請求の範囲第1項記載の交流駆動薄膜エレク
トロルミネッセンス素子の製造方法。
2. The method according to claim 1, wherein the light emitting layer is formed on an insulating layer made of a sintered oxide ceramic having a relative dielectric constant of 4000 or more. Method.
【請求項3】前記発光層を薄膜絶縁層上に形成し、もし
くは薄膜絶縁層を発光層上に形成することを特徴とする
特許請求の範囲第1項記載の交流駆動薄膜エレクトロル
ミネッセンス素子の製造方法。
3. The method according to claim 1, wherein the light emitting layer is formed on a thin film insulating layer, or the thin film insulating layer is formed on the light emitting layer. Method.
【請求項4】前記発光層を薄膜絶縁層上に形成した、該
発光層上に第2薄膜絶縁層を形成することを特徴とする
特許請求の範囲第1項記載の交流駆動薄膜エレクトロル
ミネッセンス素子の製造方法。
4. An AC-driven thin-film electroluminescent device according to claim 1, wherein said light-emitting layer is formed on a thin-film insulating layer, and a second thin-film insulating layer is formed on said light-emitting layer. Manufacturing method.
JP2256474A 1990-09-25 1990-09-25 Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer Expired - Fee Related JP2985096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256474A JP2985096B2 (en) 1990-09-25 1990-09-25 Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256474A JP2985096B2 (en) 1990-09-25 1990-09-25 Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer

Publications (2)

Publication Number Publication Date
JPH04209693A JPH04209693A (en) 1992-07-31
JP2985096B2 true JP2985096B2 (en) 1999-11-29

Family

ID=17293140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256474A Expired - Fee Related JP2985096B2 (en) 1990-09-25 1990-09-25 Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer

Country Status (1)

Country Link
JP (1) JP2985096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953879B2 (en) * 2007-03-29 2012-06-13 スタンレー電気株式会社 Semiconductor device, manufacturing method thereof, and template substrate
JP5341431B2 (en) * 2008-08-21 2013-11-13 株式会社キクテック Inorganic electroluminescence

Also Published As

Publication number Publication date
JPH04209693A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
JPWO2003080765A1 (en) Phosphor thin film, manufacturing method thereof, and EL panel
US20020125821A1 (en) Electroluminescent display formed on glass with a thick film dielectric layer
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
JP4042895B2 (en) Oxide phosphor for PL, CL or EL, electroluminescence element, and method for producing the same
JP2001294852A (en) Fluorescent substance, method for producing the same, apparatus for producing thin film, and el element
US5612591A (en) Electroluminescent device
JPH0935869A (en) Manufacture of electroluminescence element
JP2004071398A (en) Inorganic el device and manufacturing method thereof
EP1554913A1 (en) Thin film phosphor for electroluminescent displays
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP3073057B2 (en) Manufacturing method of electroluminescence device
WO2002073708A2 (en) Electroluminescent display device
JP3016323B2 (en) Electroluminescence element
KR100283283B1 (en) Electroluminescent device having flat surface and its fabricating method
JPS6244984A (en) Thin film electroluminescence element and manufacture thereof
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JPH01130495A (en) Film type electroluminescence element
JPH09260060A (en) Electro-luminescence element and manufacture thereof
JP4928329B2 (en) Thin film inorganic EL element
Kitai Thin film electroluminescence
JPS5956390A (en) Method of forming el thin film
JPS61273894A (en) Thin film el element
JP2009256573A (en) Phosphor for collision excitation type el, manufacturing method of phosphor for collision excitation type el, thin film el device, thin film el display, and thin film el lamp

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees