JPS61273894A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPS61273894A
JPS61273894A JP60116071A JP11607185A JPS61273894A JP S61273894 A JPS61273894 A JP S61273894A JP 60116071 A JP60116071 A JP 60116071A JP 11607185 A JP11607185 A JP 11607185A JP S61273894 A JPS61273894 A JP S61273894A
Authority
JP
Japan
Prior art keywords
rare earth
emitting layer
light emitting
thin film
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60116071A
Other languages
Japanese (ja)
Other versions
JPH046275B2 (en
Inventor
隆 小倉
康一 田中
浩司 谷口
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60116071A priority Critical patent/JPS61273894A/en
Priority to FI862108A priority patent/FI83015C/en
Priority to EP86106936A priority patent/EP0209668B1/en
Priority to DE8686106936T priority patent/DE3672916D1/en
Priority to US06/867,814 priority patent/US4707419A/en
Publication of JPS61273894A publication Critical patent/JPS61273894A/en
Publication of JPH046275B2 publication Critical patent/JPH046275B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く技術分野〉 本発明は電界の印加に応答してEL(エレクトロルミネ
センス)発光する薄膜EL素子に関し、特に発光層の発
光センターとして希土類元素の化合物をドープした薄膜
EL素子に関するものである0 〈従来技術とその問題点〉 交流電界の印加によりEL発光する発光層を誘電体層で
被覆した薄膜EL素子において、発光層をZnS等の■
−■族化合物に希土類のフツ化物等をドープした材料で
構成し°た場合・希土類元素の種類により種々の発光色
のEL素子が得られる。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a thin film EL device that emits EL (electroluminescence) light in response to the application of an electric field, and particularly relates to a thin film EL device doped with a compound of a rare earth element as a light emitting center of a light emitting layer. Related to devices 0 <Prior art and its problems> In a thin-film EL device in which a light-emitting layer that emits EL light upon application of an alternating current electric field is covered with a dielectric layer, the light-emitting layer is made of ZnS, etc.
- When constructed from a material in which a group compound is doped with a rare earth fluoride, etc. - EL elements that emit light of various colors can be obtained depending on the type of rare earth element.

例えば、TbFa、SmF3.TmF3またはPrF3
等の希土類フッ化物を用いると、それぞれ緑色、赤色。
For example, TbFa, SmF3. TmF3 or PrF3
When using rare earth fluorides such as, green and red respectively.

青色、白色に発光する素子が得られる。希土類元素単体
あるいは他の希土類化合物を用いた場合も同じ発光色の
ものが得られるが、その発光輝度及び発光効率・は希土
類フツ化物を用いた場合よりも低くなる。また、Euの
ように2価にも3価にも      [なり得る元素で
は、フッ化物(EuFa)の形でドープすると比較的容
易に3価のままでドープすることができるなど原子価の
制御がし易いため、希土類を発光中心として発光層中に
ドープする場合はフツ化物の形で用いられることが多い
A device that emits blue and white light can be obtained. When a rare earth element alone or another rare earth compound is used, the same luminescent color can be obtained, but the luminance and luminous efficiency are lower than when a rare earth fluoride is used. In addition, for elements like Eu that can be divalent or trivalent, it is possible to control the valence, such as when doped in the form of fluoride (EuFa), it can be doped relatively easily while remaining trivalent. Therefore, when doping a light-emitting layer with a rare earth element as a luminescent center, it is often used in the form of a fluoride.

希土類フッ化物を発光中心とする発光層の作製には予め
適量の希土類フッ化物を混合したZnSから成る焼結ペ
レットを利用して電子ビーム蒸着法で成膜するか、希土
類フッ化物の粉末とZnS       ’の粉末を混
合した絣末をターゲットとしてRF(反応性)スパッタ
法等により成膜する方法が用いら12.      れ
る。これらの方法で作製した発光層でハ1発光ザ   
   中心である希土類フッ化物が、通常RE−Faの
分・      子の形でZnS結晶中に入っており、
希土類原子(RE)とフッ素原子(F)との原子比(F
/RE)は3又は3に極めて近い値になっている。しか
しながら、比較的大きい分子である希土類フツ化物゛が
ZnS結晶中に入ると、その周辺の結晶性を悪化させ、
発光輝度及び発光効率の減少を招くことになる。ここで
希土類原子(RE)を亜鉛原子(Zn)と置換すること
ができればZnSの結晶性の悪化を小さく抑制すること
ができる。しかしながら、通常希土類原子は3価(RE
3+ )であり、亜鉛は、2価(Zn” )であるため
、RE3+が  ’1、Zn 2+を置換するとプラス
1の正電荷が過剰とな、      リ、この電荷を補
償するためにはマイナス1価のフッ素(F−1)が格子
間位置に1つあればよい。
To produce a light-emitting layer in which rare earth fluoride is the main luminescent layer, a film is formed by electron beam evaporation using sintered pellets made of ZnS mixed with an appropriate amount of rare earth fluoride in advance, or a film is formed using rare earth fluoride powder and ZnS. A method of forming a film by RF (reactive) sputtering or the like using Kasuri powder mixed with the powder of 12. It will be done. The light-emitting layer produced by these methods can be used as a light-emitting laser.
The central rare earth fluoride is usually contained in the ZnS crystal in the form of molecules of RE-Fa.
Atomic ratio (F) of rare earth atoms (RE) and fluorine atoms (F)
/RE) is 3 or very close to 3. However, when rare earth fluoride, which is a relatively large molecule, enters the ZnS crystal, it deteriorates the crystallinity of the surrounding area.
This results in a decrease in luminance and luminous efficiency. Here, if rare earth atoms (RE) can be replaced with zinc atoms (Zn), deterioration of the crystallinity of ZnS can be suppressed to a small level. However, rare earth atoms are usually trivalent (RE
3+ ), and zinc is divalent (Zn''), so RE3+ is '1, and when Zn 2+ is replaced, there will be an excess of positive charge of +1. One valent fluorine (F-1) at an interstitial position is sufficient.

゛       このため全ての希土類原子が理想的に
亜鉛と置換したとすると、発光層中の希土類原子とフッ
素原子の比(F/RE)は1となる。
゛ Therefore, if all rare earth atoms are ideally substituted with zinc, the ratio of rare earth atoms to fluorine atoms (F/RE) in the light emitting layer will be 1.

〈発明の概要〉 本発明は上述の問題点に鑑°み、ZnS等の発光層母材
中に発光センター(活性物質)としてドープする希土類
フツ化物の希土類原子(RE)とフッ素原子(F)の原
子比(F/RE ) ヲ0.5〜2.517)範囲とす
ることにより、希土類フツ化物をドープすることに起因
する結晶格子の歪や欠陥を抑制して発光輝度及び発光効
率を確保した薄膜EL素子を提供することを目的とする
<Summary of the Invention> In view of the above-mentioned problems, the present invention is based on a rare earth atom (RE) and a fluorine atom (F) of a rare earth fluoride doped as a luminescent center (active substance) into a luminescent layer base material such as ZnS. By setting the atomic ratio (F/RE) in the range of 0.5 to 2.517), distortions and defects in the crystal lattice caused by doping with rare earth fluorides are suppressed to ensure luminance brightness and luminous efficiency. The object of the present invention is to provide a thin film EL device that has a high-performance thin-film EL device.

〈実施例〉 第1図は本発明の1実施例の説明に供する薄膜EL素子
の基本構成図である。
<Embodiment> FIG. 1 is a basic configuration diagram of a thin film EL element for explaining one embodiment of the present invention.

ガラス基板1等の透光性基板の表面を清浄化処理した後
、ITO膜等から成る透明電極2を帯状に成形してガラ
ス基板1の清浄面に平行配列する。
After cleaning the surface of a transparent substrate such as a glass substrate 1, transparent electrodes 2 made of an ITO film or the like are formed into strips and arranged in parallel to the clean surface of the glass substrate 1.

この上に下部誘電体層3としてS i02.YzOaI
Si3N4等をスパッタ法、電子ビーム蒸着法等の薄膜
生成技術により厚さ100OA乃至300OA程度堆積
する。次にこの上に発光層4として、ZnS:TbFx
を積層するが、これはZnSに発光センターとなる活性
物質としてTbFx(x=1〜3)で表わされるテルビ
ウムフッ化物を所定量ドープした焼結ベレットを蒸着源
とし、これを電子ビーム蒸着口で成膜する。また電子ビ
ーム蒸着以外にZnS粉末とTbFx粉末の混合物をタ
ーゲットとしてRFスパッタリングにより成膜しても良
い。さらに上部誘電体層5として5i02.AJ203
.Y2O3゜Si3N4等を単層または複合膜の状態で
被覆し、発光層4を上下部誘電体層3,5中に埋設する
On top of this is Si02. as the lower dielectric layer 3. YzOaI
Si3N4 or the like is deposited to a thickness of about 100 OA to 300 OA by a thin film forming technique such as sputtering or electron beam evaporation. Next, ZnS:TbFx is formed as a light emitting layer 4 on top of this.
The deposition source is a sintered pellet in which ZnS is doped with a predetermined amount of terbium fluoride represented by TbFx (x = 1 to 3) as an active material that serves as a luminescence center, and this is deposited using an electron beam evaporation port. Form a film. In addition to electron beam evaporation, the film may be formed by RF sputtering using a mixture of ZnS powder and TbFx powder as a target. Further, as the upper dielectric layer 5, 5i02. AJ203
.. A light emitting layer 4 is buried in the upper and lower dielectric layers 3 and 5 by coating Y2O3°Si3N4 or the like in a single layer or a composite film.

上部誘電体層5は下部誘電体層を同様な方法で成膜され
、その膜厚は+ 00 OA乃至500 OA程度とす
る。上部誘電体層5上には背面電極6として帯状に成形
されたA2を上記透明電極2と直交する方向に平行配列
する。透明電極2と背面電極6でマトリックス電極構造
が構成されマトリックス状の発光表示が実行される。
The upper dielectric layer 5 is formed in the same manner as the lower dielectric layer, and its thickness is approximately +00 OA to 500 OA. On the upper dielectric layer 5, strip-shaped strips A2 are arranged as back electrodes 6 in parallel in a direction orthogonal to the transparent electrode 2. A matrix electrode structure is formed by the transparent electrode 2 and the back electrode 6, and a matrix-like light emitting display is performed.

透明電極2と背面電極6間に交流電界を印加すると発光
層4内にこの交流電界が誘起され、発光層4の母材より
キャリアが電界極性に対応した発光層4の界面へホット
キャリアとして誘引されて内部電荷を形成する。次に電
界極性が反転すると誘起電界にこの内部電荷が重畳され
、ホットキャリアは他方の発光層4界面へ掃引される。
When an alternating current electric field is applied between the transparent electrode 2 and the back electrode 6, this alternating electric field is induced in the light emitting layer 4, and carriers are attracted as hot carriers from the base material of the light emitting layer 4 to the interface of the light emitting layer 4 corresponding to the electric field polarity. to form an internal charge. Next, when the electric field polarity is reversed, this internal charge is superimposed on the induced electric field, and the hot carriers are swept to the other interface of the light emitting layer 4.

この過程で発光センターとしてドープされたTbFxの
Tb電子を衝突励起し、Tbより電磁スペクトルが放出
される。この電磁スペクトルがガラス基板1を介して緑
色のEL発光として観測されることになる。発光輝度及
び発光効率を高く維持するためには発光層4の母材であ
るZnS結晶粒の結晶性を良好にしてホットキャリアの
活動を阻害しないようにすることが必要であり、このた
めに発光センターとしてドープするTbFxのTb原子
をZn原子と効率良く置換させるようにする。Tbは3
価であり、Znは2価であるため、TbがZnの位置に
配置された場合プラス1の過剰な正電荷が生成される。
In this process, Tb electrons of TbFx doped as a luminescent center are excited by collision, and an electromagnetic spectrum is emitted from Tb. This electromagnetic spectrum is observed as green EL emission through the glass substrate 1. In order to maintain high luminance and luminous efficiency, it is necessary to improve the crystallinity of the ZnS crystal grains that are the base material of the luminescent layer 4 so as not to inhibit the activity of hot carriers. The Tb atom of TbFx doped as a center is efficiently replaced with a Zn atom. Tb is 3
Since Zn is divalent, when Tb is placed at the position of Zn, an excess positive charge of +1 is generated.

これをF原子で補償する。This is compensated for by F atoms.

発光層4中のTbとFの比(F/Tb)と発光輝度との
関係を第2図に示す。発光層4中のTbとFの比は電子
ビーム蒸着時の焼結ペレットあるいはスパッタ時のター
ゲットにおけるZnSにドー1□。
FIG. 2 shows the relationship between the ratio of Tb and F (F/Tb) in the light emitting layer 4 and the luminance. The ratio of Tb to F in the light emitting layer 4 is 1□ compared to ZnS in the sintered pellet during electron beam evaporation or the target during sputtering.

、i       プするTbとFの組成を調整するか
蒸着条件また・厘 1、:、:、        はスパッタ条件を制御し
て決定する。横軸はF/Tbパ1゛        縦
軸は発光輝度を表わしている。図より明らかなζゝ )       如くSF/Tbが0.5乃至2.5の
範囲で発光輝度が、       高く特に1.0乃至
2.0の範囲で高輝度状態となっ1′。
, i is determined by adjusting the composition of Tb and F to be sputtered or by controlling the deposition conditions or sputtering conditions. The horizontal axis represents F/Tb ratio, and the vertical axis represents luminance. As is clear from the figure, the luminance is high when SF/Tb is in the range of 0.5 to 2.5, and is particularly high in the range of 1.0 to 2.01'.

2(i、       ている。従って、発光層4中に
ドープされるTbFx:、M        がTbF
3の形ではなくF/Tbが上記範囲に納まる1;・。
2(i,. Therefore, TbFx:, M doped in the light emitting layer 4 is TbF
1, where F/Tb falls within the above range instead of the shape of 3.

゛ように発光層4を成膜する。The light emitting layer 4 is formed as shown in FIG.

3、        尚、上記実施例は発光センターと
してTbFxを用いた場合について説明したが、本発明
はこれに)、 限定されるものではなく1他の希土類フッ化物をへ 1、       用いた場合にも適用可能である。
3. Although the above embodiment describes the case where TbFx is used as the luminescent center, the present invention is not limited to this, and can also be applied to cases where other rare earth fluorides are used. It is possible.

;       〈発明の効果〉 以上詳説した如く本発明によれば発光センターとして希
土類フツ化物を発光層中にドープした場、      
 合に発光輝度を低下させることなく高品位の薄膜i’
Et、素子を構成することができる。
<Effects of the Invention> As detailed above, according to the present invention, when a rare earth fluoride is doped into the luminescent layer as a luminescent center,
high-quality thin film i' without reducing luminance when
Et, the element can be constructed.

ご]Go]

【図面の簡単な説明】[Brief explanation of the drawing]

fj、ji7 、、        第1図は本発明の1実施例の説明
輪供する薄膜第2図は発光層にドープされるTbFxの
F/Tbと発光輝度の関係を示す特性図である。 1・・・ガラス基板  2・・・透明電極  3・・・
下部誘電体層  4・・・発光層  5・・・上部誘電
体層6・・・背面電極
fj, ji7,, FIG. 1 is a thin film description of one embodiment of the present invention. FIG. 2 is a characteristic diagram showing the relationship between F/Tb and luminance of TbFx doped into a light emitting layer. 1...Glass substrate 2...Transparent electrode 3...
Lower dielectric layer 4... Light emitting layer 5... Upper dielectric layer 6... Back electrode

Claims (1)

【特許請求の範囲】[Claims]  1.発光層母材中に発光中心として希土類フツ化物を
ドープして成る薄膜EL素子において、前記発光層中の
希土類原子(RE)とフッ素原子(F)の原子比(F/
RE)を0.5乃至2.5の範囲としたことを特徴とす
る薄膜EL素子。
1. In a thin film EL device in which a rare earth fluoride is doped as a luminescent center in a light emitting layer base material, the atomic ratio of rare earth atoms (RE) and fluorine atoms (F) in the light emitting layer (F/
A thin film EL device characterized in that RE) is in the range of 0.5 to 2.5.
JP60116071A 1985-05-28 1985-05-28 Thin film el element Granted JPS61273894A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60116071A JPS61273894A (en) 1985-05-28 1985-05-28 Thin film el element
FI862108A FI83015C (en) 1985-05-28 1986-05-20 TUNNFILMELEKTROLUMINISCENSANORDNING OCH PROCESS FOER DESS PRODUKTION.
EP86106936A EP0209668B1 (en) 1985-05-28 1986-05-22 Thin film electroluminescence devices and process for producing the same
DE8686106936T DE3672916D1 (en) 1985-05-28 1986-05-22 THICK LAYER ELECTROLUMINESCENT DEVICES AND METHOD FOR THE PRODUCTION THEREOF.
US06/867,814 US4707419A (en) 1985-05-28 1986-05-27 Thin film EL devices and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116071A JPS61273894A (en) 1985-05-28 1985-05-28 Thin film el element

Publications (2)

Publication Number Publication Date
JPS61273894A true JPS61273894A (en) 1986-12-04
JPH046275B2 JPH046275B2 (en) 1992-02-05

Family

ID=14677991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116071A Granted JPS61273894A (en) 1985-05-28 1985-05-28 Thin film el element

Country Status (1)

Country Link
JP (1) JPS61273894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276281A (en) * 1985-09-30 1987-04-08 新技術事業団 Manufacturing thin el element
JPH03245488A (en) * 1990-02-21 1991-11-01 Fuji Electric Co Ltd Manufacture of membranous electroluminescence element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143297A (en) * 1983-02-03 1984-08-16 松下電器産業株式会社 Ac drive thin film electric field light emitting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143297A (en) * 1983-02-03 1984-08-16 松下電器産業株式会社 Ac drive thin film electric field light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276281A (en) * 1985-09-30 1987-04-08 新技術事業団 Manufacturing thin el element
JPH03245488A (en) * 1990-02-21 1991-11-01 Fuji Electric Co Ltd Manufacture of membranous electroluminescence element

Also Published As

Publication number Publication date
JPH046275B2 (en) 1992-02-05

Similar Documents

Publication Publication Date Title
US5309070A (en) AC TFEL device having blue light emitting thiogallate phosphor
JPH07335382A (en) Thin film el element
JPS61273894A (en) Thin film el element
JPH05211093A (en) Direct current electroluminescence element
JP2985096B2 (en) Zn lower 2 SiO lower 4: Method of manufacturing AC driven thin film electroluminescent device using Mn thin film as light emitting layer
JPH0123917B2 (en)
JP2002114974A (en) Inorganic electroluminescent material, and inorganic electroluminescent device and image display apparatus using the same
JP2753723B2 (en) Red EL element
JPH01200593A (en) Manufacture of electroluminescence display element
JPH01241793A (en) Thin film el element
JPH04341796A (en) Manufacture of thin film electroluminescent element
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JPH0518238B2 (en)
JPH07192871A (en) Thin film el element
JPH0869881A (en) Manufacture of thin film el element
JPH04366593A (en) Thin film el element and manufacture thereof
JPH0693386B2 (en) Thin film EL device
JPS62145695A (en) Thin film electroluminescence device
JPH03280395A (en) Light emitting film and thin film el element
JPS6132798B2 (en)
JPS6210435B2 (en)
JPS6276281A (en) Manufacturing thin el element
JPH07119405B2 (en) Thin film EL device
JPH07240278A (en) Thin film el element
JPH03187190A (en) Thin film el device and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term