JP2003217868A - Mirror with built-in el illumination - Google Patents

Mirror with built-in el illumination

Info

Publication number
JP2003217868A
JP2003217868A JP2002050507A JP2002050507A JP2003217868A JP 2003217868 A JP2003217868 A JP 2003217868A JP 2002050507 A JP2002050507 A JP 2002050507A JP 2002050507 A JP2002050507 A JP 2002050507A JP 2003217868 A JP2003217868 A JP 2003217868A
Authority
JP
Japan
Prior art keywords
mirror
layer
light emitting
substrate
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002050507A
Other languages
Japanese (ja)
Inventor
Tasuke Iwashita
太輔 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002050507A priority Critical patent/JP2003217868A/en
Publication of JP2003217868A publication Critical patent/JP2003217868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mirror with built-in EL illumination convenient in portability and installation for illuminating brightly an object to observe the object easily by the mirror, by building a very thin and non-bulky illuminating EL element in the mirror, in order to eliminate requirement for preparing a new illumination, when the object is observed using the mirror in a dark place. <P>SOLUTION: In this organic or inorganic EL element of a very thin type electroluminescent element, a non-luminescent part is formed in one portion on a transparent substrate, and the element has structure of which the specular electrode portion on a backside or the specular film is seen through from the non-luminescent part, alternatively, structure of which the one portion is made transparent in a usual mirror to be bonded with the EL element on the backside. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は鏡と照明を必要とする
作業において鏡と極薄のEL照明を一体化させ利便性を
向上させるためのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to improve convenience by integrating a mirror and ultra-thin EL lighting in a work requiring a mirror and lighting.

【0002】[0002]

【従来の技術】従来は鏡で観察しようとする対象物が暗
くて良く見えないときは、照明を別に用意する必要があ
った。
2. Description of the Related Art Conventionally, when an object to be observed with a mirror is dark and cannot be seen well, it is necessary to separately provide illumination.

【0003】[0003]

【発明が解決しようとする課題】これにはつぎのような
欠点があった。 (イ)新たに照明を用意するのは無駄な労力を要する。 (ロ)鏡で観察すべき対象が形状的に狭い場所に存在す
るとき照らしにくい場合がある。 (ハ)たいていの場合、照明は中が空洞となっているガ
ラス管でできており、粗雑に扱うと破損する恐れがあ
る。 (ニ)通常の照明器具は大きく形状的にかさばるので常
に携帯しようとすると多くの労力を必要とし、また、照
明を保管または設置しようとすると多くのスペースと労
力を必要とした。
However, this has the following drawbacks. (B) It is useless to prepare new lighting. (B) It may be difficult to illuminate when an object to be observed with a mirror is present in a narrow space geometrically. (C) In most cases, the lighting consists of a hollow glass tube, which can be damaged if handled roughly. (D) Since an ordinary lighting device is large and bulky, it always requires a lot of labor to carry it, and it also takes a lot of space and labor to store or install the lighting.

【0004】[0004]

【課題を解決するための手段】透明基板の裏側の一部に
少なくても陰極、発光層、陽極からなる有機または無機
EL素子を形成し、透明基板裏側を鏡面状電極または鏡
面状膜で覆い、表側から発光層の存在しない部分から裏
側の鏡面状電極部分または鏡面状膜を透かして視認でき
るようにするか、通常の鏡の一部分を透明とし裏側にE
L素子を貼りつけた。本発明は、以上のような構成をと
るEL内臓型鏡である。
Means for Solving the Problems An organic or inorganic EL element consisting of at least a cathode, a light emitting layer and an anode is formed on a part of the back side of a transparent substrate, and the back side of the transparent substrate is covered with a mirror-like electrode or a mirror-like film. , Through the mirror-like electrode portion or the mirror-like film on the back side from the part where the light-emitting layer does not exist to be visible from the front side, or by making a part of an ordinary mirror transparent and E on the back side.
The L element was attached. The present invention is an EL built-in type mirror having the above configuration.

【0005】[0005]

【発明の実施の形態】電界発光を利用したEL素子は、
自己発光のため視認性が高く、かつ完全固体素子である
ため、耐衝撃性に優れるなどの特徴を有することから、
各種表示装置における発光素子としての利用が注目され
ている。このEL素子には、発光材料に無機化合物を用
いてなる無機EL素子と有機化合物を用いてなる有機E
L素子とがある。このうち、特に有機EL素子は、印加
電圧を大幅に低くしうる上、小型化が容易であって、消
費電力が小さく、面発光が可能であり、かつ三原色発光
も容易であることから、次世代の発光素子としてその実
用化研究が積極的になされている。有機EL発光素子
は、蛍光性有機化合物を含む薄膜を、陰極と陽極とで挟
んだ構成を有し、前記薄膜に電子および正孔(ホール)
を注入して再結合させることにより励起子(エキシト
ン)を生成させ、このエキシトンが失活する際の光の放
出(蛍光・燐光)を利用して発光させる素子である。こ
こで、エネルギー移動障壁を緩和させ効率よく発光層に
電子・正孔を送りこむため,または、リークの原因とな
る基板表面の凹凸を緩和させるために、電荷注入層、電
荷輸送層、バッファー層、正孔または電子移動阻止層な
どが適宜、積層される。この有機EL素子の特徴は、1
0V以下の低電圧で100〜100000cd/m
度の高輝度の面発光が可能であり、また蛍光物質の種類
を選択することにより青色から赤色まで、または白色の
発光が可能なことである。また発光層自身は1μm以下
にすることも可能であり、透明基板を含めても全体の厚
さで2mm以下にすることが可能である。ここで透明基
板に水分やガスを透過しにくい特殊なプラスチックフィ
ルムなどを用いれば紙のように丸められ割れる心配のな
いフレキシブルな有機EL発光素子の作製も可能である
(例えば特開2000−268954、特開2000−
260560日本経済新聞、2001年6月22日な
ど)。有機EL発光素子の成膜方法には真空蒸着法を用
いたもの(例えば、白色発光有機EL素子の真空蒸着法
を利用した作成方法として特開2001−25069
0)同じく青色発光有機EL素子の作製方法として特開
平5−17765、特開平9−53068などがあ
る。)スピンコート法を用いたもの(例えば、青色発光
有機EL素子のスピンコート法を利用した作製方法とし
て特開平9−111233、特開平10−324870
などがある。)と、印刷技術を応用しハンコにあたる原
版に有機ELを塗布し原版と基板を密着させる方法を用
いたもの(日経産業新聞、2001年5月17日など)
とインクジェット法を用いたもの(特開平10−153
967などがある。)と他にはキャスティング法、ディ
ッピング法、バーコート法、ロールコート法などがあ
る。この有機EL素子の構成については、陽極/有機発
光層/陰極の構成を基本とし、これに正孔注入輸送層や
電子注入層を適宜設けたもの、例えば陽極/正孔注入輸
送層/有機発光層/陰極や、陽極/正孔注入輸送層/有
機発光層/電子注入層/陰極などの構成のものが知られ
ている。無機EL素子を光源とする場合、基本構成は正
孔注入電極、絶縁層、無機EL発光層、絶縁層、電子注
入電極を積層した発光素子である。絶縁層と発光層の界
面から発光層に注入された電子は、高電界によって発光
層の中で加速され発光中心に衝突する。このとき発光中
心が励起し発光するのである。発光層には例えば青色発
光を得る場合、ZnSにTm(ツリウム)を添加したも
の。また、緑色発光を得る場合、ZnSにTb(テルビ
ウム)を添加したものがある。最近、青色発光材料とし
てストロンチウムサルファイドに銅を入れたSrS:C
uで特性の向上が報告された(日刊工業新聞社、TRI
GGER、3月号、21〜23p(1999年))。青
色発光無機EL素子の具体的作製方法として、特開20
00−104059、特開2000−104060など
に開示されている。無機EL素子は透明基板を含めても
全体の厚さで2mm以下にすることが可能である。無機
EL素子は特に青色、緑色発光に関して発光効率という
点で有機EL素子に劣るが、発光寿命、耐熱性という点
で有機EL素子を超える能力を持っている。もちろん、
今後の研究の進展によっては発光効率でも有機EL素子
を超える可能性もあり、その場合は、こちらを光源とし
てもよい。次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。また、請求項で述べた基本構成さえ
成していれば発光に使用する蛍光物質や電荷注入層、電
荷輸送層、バッファー層、絶縁層、電極などの種類や組
み合わせは、より効率的な発光をなすものに適宜変更し
てもよい。 実施例(i):ガラスやプラスチックなどの透明基板の
上をまず、全面SiOでスパッタリングによってコー
トする。次に発光させたい形状に合わせて透明導電膜を
形成する。透明電極の材料は錫もしくはインジウムの酸
化物である。化学式はSnO(錫)、In(イ
ンジウム)である。ITOガラスと呼ばれるものはIn
dium Tin Oxideの略称でインジウムと錫
の酸化物の混合物である。有機EL素子には、このIT
Oがよく用いられる。まず、発光させたい形状に合わせ
てマスクを作成し透明基板にかぶせ、そこへスパッタリ
ング法などを用いて透明導電膜を形成する。また、IT
Oは比較的容易にエッチングできるので全面に成膜した
後、レジストなどでマスクしてエッチングしても良い。
エッチング液としては塩化鉄/塩酸系か硝酸/硫酸系の
ものがある。このITO透明導電膜は陽極として機能す
る。こうして作成したITO(In−Sn−O)透明電
極付き透明基板をイソプロピルアルコール中で5分間超
音波洗浄を行なった後、UVオゾン洗浄を30分間行な
う。洗浄後の透明電極ライン付き透明基板を真空蒸着装
置の基板ホルダーに装着し、発光したい形状に合わせ作
成したマスクを陽極側の基板上にかぶせる。このときリ
ークを防ぐため、次に蒸着する正孔注入層で陽極を完全
に覆えるように一回り大きなマスクを用いる。まず透明
電極ラインが形成されている側の面上に、前記透明電極
を覆うようにして膜厚60nmのN,N’−ビス(N,
N’−ジフェニル−4−アミノフェニル)−N,N−ジ
フェニル−4,4’−ジアミノ−1,1’−ビフェニル
膜(TPD232膜)を成膜する。このTPD232膜
は正孔注入層として機能する。次に発光したい形状に合
わせ作成したマスクをかぶせる。このとき、次に蒸着す
る正孔輸送層で正孔注入層を完全に覆えるように一回り
大きなマスクを用いる。次に、TPD232膜上に膜厚
20nmの4,4’−ビス[N−(1−ナフチル)−N
−フェニルアミノ]ビフェニル膜(NPD膜)を成膜す
る。このNPD膜は正孔輸送層として機能する。次に発
光したい形状に合わせ作成したマスクをかぶせる。この
とき、次に蒸着する白色発光層で正孔輸送層を完全に覆
えるように一回り大きなマスクを用いる。次にNPD膜
上に膜厚40nmのスチリル誘導体DPVBi(図9)
及び青色蛍光性ドーパントとしてPAVB(図10)と
蛍光性化合物(F1、蛍光ピーク波長:595nm)
(図11)を40:1:0.05の重量比で蒸着し成膜
する。この膜は、白色発光層として機能する。次に発光
したい形状に合わせ作成したマスクをかぶせる。このと
き、次に蒸着する電子輸送層で白色発光層を完全に覆え
るように一回り大きなマスクを用いる。次に、この膜上
に膜厚20nmのトリス(8−キノリノール)アルミニ
ウム膜(Alq膜)を成膜する。このAlq膜は、電子
輸送層として機能する。次に発光したい形状に合わせ作
成したマスクをかぶせる。このとき、次に蒸着する電子
注入層で電子輸送層を完全に覆えるように一回り大きな
マスクを用いる。その後、Li(Li:サエスゲッター
社製)とAlqを二元蒸着させ、電子注入層としてAl
q:Li膜を形成する。その後、このAlq:Li膜上
を含め、基板全面に金属Alを蒸着し鏡面状金属陰極を
形成し有機EL素子を形成する。得られる有機EL素子
についての性能は、ITO陽極を正極にAl陰極を負極
として、直流電圧6Vを印加したところ発光輝度319
cd/m、最大発光輝度100000cd/m、発
光効率7.28cd/Aの白色発光が得られる。色度座
標としても(0.33,0.34)であり白色発光と確
認できる。また、この素子を初期輝度1000cd/m
で定電圧駆動すると、寿命は3500時間と極めて長
い。ただし、基板の洗浄度、不純物の混入などにより多
少データが、異なる場合がある。ここで、陰極としてマ
グネシウムと銀をMg:Ag=10:1の割合で共蒸着
した合金を用いても良い。また、一般に使用される鏡は
透明基板に銀を成膜たものが用いられている。そこで、
電子注入層の上に発光したい形状に合わせ作成したマス
クをかぶせ、このとき、次に蒸着するMgAg合金で電
子注入層を完全に覆えるように一回り大きなマスクを用
いる。MgとAgを共蒸着で成膜したあと、このMg:
Ag膜上を含め、基板裏側全面に銀Agを蒸着などによ
って成膜し鏡面状金属陰極を形成し有機EL素子を形成
する。このとき鏡面の働きをするのは銀であるため、鏡
面部分は性能上、通常の鏡と変わりはない。これにより
基板表側より発光領域以外の部分から鏡面状膜が透明基
板を透かして視認できる。以上の方法で作成したEL照
明内臓鏡の代表例は(図2)である。次に積層膜のある
側の基板表面は、さらに、水蒸気を通しにくく、ガスバ
リアー性のすぐれたSiO膜のような無機膜や樹脂膜
などで保護するか、乾燥剤を内包した金属缶をかぶせ紫
外線硬化接着剤で封止するか、ガラスをかぶせて紫外線
硬化接着剤で封止する。熱硬化型接着剤は熱で有機層の
劣化、結晶化を促す恐れがあるためふさわしくない。ま
た、本製品は完成するまで、なるべく真空下、または乾
燥した不活性ガス下で製作を行う。また、白色発光や、
赤、青、緑色発光については他にも公知の有機蛍光化合
物、電荷輸送層、電荷注入層、バッファー層、電子また
は正孔移動阻止層などがあるため、そちらを用いても良
い。図11に赤、青、緑色発光に用いる有機蛍光化合物
の一例を示す。 実施例(ii):実施例(i)と同様に発光させたい形
状に合わせてマスクを作成し透明基板にかぶせ、そこへ
スパッタリング法などを用いて陽極ITO透明導電膜を
形成する。または全面成膜後、発光させたい形状に合わ
せてエッチングする。次に(i)と同様に正孔注入層を
発光させたい形状に合わせて陽極上に成膜する。このと
き次に積層する正孔輸送層が陽極とリークしないような
形状を持ったマスクを使用し成膜する。正孔注入層成膜
後、(i)と同様に順次、発光させたい形状に合わせ、
かつ該当膜の上下層の有機層がリークしないように正孔
輸送層、発光層、電子輸送層、電子注入層を積層する。
各層の種類および膜厚は(i)と同様で良い。そして金
属陰極Al(アルミニウム)を積層膜がある側の透明基
板表面および電子注入層のみに接するようマスクをかぶ
せ蒸着する。また陰極材料はMgAg合金でも良い。そ
の場合、次に蒸着するAg(銀)が電子注入層とリーク
しないよう、かつ、電子注入層の下層側の薄膜に接触し
ないようマスクをかぶせMgAg合金膜を蒸着し、そし
てAg(銀)を積層膜がある側の透明基板表面およびM
gAg合金膜のみに接するようマスクをかぶせ蒸着して
も良い。次に、表面に露出している発光素子の各層が劣
化したりリークしないよう、基板の発光素子がある側を
全面、保護層で覆う。水蒸気を通しにくく、ガスバリア
ー性のすぐれたSiO膜などの無機膜や樹脂膜などで
保護するか、乾燥剤を内包した金属缶をかぶせ紫外線硬
化接着剤で封止するか、ガラスをかぶせて紫外線硬化接
着剤で封止する。熱硬化型接着剤は熱で有機層の劣化、
結晶化を促す恐れがあるためふさわしくない。これによ
り基板表側より発光領域以外の部分から鏡面状膜が透明
基板を透かして視認できる。その他詳細は(i)と同様
である。以上の方法で作成したEL照明内臓鏡の代表例
は(図3)である。 実施例(iii):実施例(i)と同様に陽極ITO電
極を基板上に成膜する。(i)と同様に洗浄後、その上
に発光させたくない領域、逆に言えば鏡面として利用し
たい領域に透明絶縁膜を積層する。絶縁膜としてはSi
などが適している。希望する形状のマスクをかぶ
せ、スパッタリングなどで成膜する。他に適当な無機膜
や樹脂などがあれば、そちらで代用してもよい。次に発
光したい形状に合わせ作成したマスクを絶縁膜側の基板
上にかぶせる。このとき次に蒸着する正孔注入層が露出
している陽極を完全に覆うよう絶縁膜と透明基板に少し
かかるようなマスクにする。正孔注入層の種類および膜
厚は(i)と同様である。正孔注入層成膜後、(i)と
同様に順次、発光させたい形状に合わせ、かつリークす
ることのないよう下層の有機層を完全に覆うようにして
正孔輸送層、発光層、電子輸送層、電子注入層を積層す
る。各層の種類および膜厚は(i)と同様で良い。次に
有機層および絶縁膜を完全に覆うように金属陰極Al
(アルミニウム)を全面に蒸着する。また陰極材料はM
gAg合金でも良い。その場合、有機層のみMgAg合
金膜で覆い、その上にさらに基板全面にAg(銀)で覆
っても良い。これにより基板表側より発光領域以外の部
分から鏡面状膜が透明基板を透かして視認できる。その
他詳細は(i)と同様である。以上の方法で作成したE
L照明内臓鏡の代表例は(図4)である。 実施例(iv):実施例(i)と同様に陽極ITO電極
を成膜する。このとき発光させたい領域にITO膜の端
部が含まれるようにマスクをかけスパッタリングするか
全面ITO成膜後エッチングする。次に発光させたい形
状に合わせて作成したマスクをかぶせ正孔注入層を蒸着
する。このとき、陽極ITOの端部が完全に正孔注入層
で覆えるようなマスクにする。正孔注入層成膜後、
(i)と同様に順次、発光させたい形状に合わせ、かつ
下層の有機層を完全に覆うようにして正孔輸送層、発光
層、電子輸送層、電子注入層を積層する。各層の種類お
よび膜厚は(i)と同様で良い。次に露出している陽極
ITO膜を完全に覆えるように、かつ、有機層が完全に
覆われないように透明絶縁膜を成膜する。絶縁膜の種
類、積層方法は(iii)と同様でよい。次に、その上
に有機層および絶縁膜を完全に覆うように金属陰極Al
(アルミニウム)を全面に蒸着する。また陰極材料はM
gAg合金でも良い。その場合、有機層のみMgAg合
金膜で覆い、その上にさらに基板全面にAg(銀)で覆
ってもよい。これにより基板表側より発光領域以外の部
分から鏡面状膜が透明基板を透かして視認できる。その
他詳細は(i)と同様である。以上の方法で作成したE
L照明内臓鏡の代表例は(図5)である。 実施例(v):実施例(i)と同様に陽極ITO電極を
成膜する。このとき発光させたい領域にのみITO膜を
成膜するようにマスクをかけスパッタリングするか全面
ITO成膜後エッチングする。次に発光させたい形状に
合わせて作成したマスクをかぶせ陽極ITO膜上に正孔
注入層を蒸着する。正孔注入層成膜後、(i)と同様に
順次、発光させたい形状に合わせ、正孔輸送層、発光
層、電子輸送層、電子注入層そして陰極を積層する。各
層の種類および膜厚は(i)と同様で良い。ここまで積
層するにあたっての注意点は、上から成膜する膜が下の
膜を完全に覆うよう順次積層していくか、または、下の
膜より一回り小さな形状で順次積層していくなどして、
ある薄膜の上下の膜がリークしないようにしなければな
らない。次にSiOなど無機膜の、または樹脂などの
絶縁膜を発光素子の部分のみ、陽極、有機層、陰極を完
全に覆うように成膜する。このとき絶縁膜は透明なもの
が望ましい。次に発光素子を形成した側の基板全面に絶
縁膜上も含めAg(銀)などの鏡面状膜を形成する金属
などを蒸着するか、通常の鏡と同様に鏡引き(硝酸銀な
どの塗布・洗浄)を行う。これにより基板表側より発光
領域以外の部分から鏡面状膜が透明基板を透かして視認
できる。その他詳細は(i)と同様である。以上の方法
で作成したEL照明内臓鏡の代表例は(図6)である。 実施例(vi):実施例(v)において、透明絶縁膜を
積層するとき、陰極、発光層などを含む有機層、陽極か
らなる発光素子周囲のみを絶縁膜で覆うのではなく、基
板全面を透明絶縁膜で覆ってもよい。その他の詳細は実
施例(v)と同じである。以上の方法で作成したEL照
明内臓鏡の代表例は(図7)である。 実施例(vii):鏡の裏側の一部に銀などの鏡面膜が
存在しない透明部分をつくる。その裏側の透明部分に、
すでに完成しているEL素子を貼りつける。このとき、
EL素子の発光面は鏡の表側を向くようにして裏側の透
明部分に貼りつける。発光素子そのものに使用される陽
極、発光層、電荷注入層、電荷輸送層、陰極などの種類
や構成は(i)と同様でよく、特に発光素子自体には裏
側から鏡面膜が見えるような操作、作業は必要ない。以
上の方法で作成したEL照明内臓鏡の代表例は(図8)
である。 実施例(viii):(i)と同じようにガラス基板の
上をまず、全面SiOでスパッタリングによってコー
トする。次に発光させたい形状に合わせてITO透明導
電膜を形成し洗浄する。次に発光させたい形状に合わ
せ、かつ、リークを防ぐため、陽極を完全に覆うように
絶縁層であるアルミニウム/チタン酸化物を約260n
mの厚さで原子層エピタクシー(ALE)によって成膜
する。次にマスクを使い発光させたい形状に合わせ、か
つ、絶縁層アルミニウム/チタン酸化物膜を完全に覆う
ように発光層SrS:Cu,I,Ga膜を成膜する。発
光層は600nm〜2μmの厚さでドーピング濃度:
銅,0.05〜5モル%;ヨウ素、0.05〜5モル
%;ガリウム,0.5〜10モル%を用いて調整された
SrSターゲットからのスパッタリングによって成膜す
る。積層中、この基板温度は、75〜500℃の温度に
維持される。これらの発光フィルムは、次いで、550
〜850℃の温度で窒素中でアニーリングする。次ぎに
発光させたい形状に合わせ、かつ、発光層を完全に覆う
ように第2の絶縁層を成膜する。この絶縁層はバリウム
タンタル酸塩(BTO)であり、厚さ300nmであ
る。次ぎにEL素子がある側の基板全面に金属Alなど
を蒸着し鏡面状金属電極を形成し無機EL素子を形成す
る。得られる無機EL素子についての性能は、交流電圧
114V、いき値の40V上で60Hz(L40@60
Hz)で運転して測定した輝度は14.1cd/m
あり発光効率0.119lm/W、色度座標(0.1
6,0.24)、標準化した発光効率は0.496であ
る。ただし、基板の洗浄度、不純物の混入などにより多
少データが異なる場合がある。鏡面状金属電極はAg
(銀)を用いてもよい。これにより基板表側より発光領
域以外の部分から鏡面状膜が透明基板を透かして視認で
きる。以上の方法で作成したEL照明内臓鏡の代表例は
(図2)である。ただし、電源は交流である。無機EL
素子の発光色については、白色、赤色、緑色、青色など
が開発されており、他にも公知の無機EL用発光物質、
絶縁層などがある。適宜をそちらを用いて適正な無機E
L素子を作製してもよい。(図13)に無機EL素子用
蛍光性物質の一例を挙げる。無機EL照明内臓鏡におい
て、発光素子部分が有機薄膜の積層構造から無機薄膜の
積層構造に変わっただけで実施例(i)の構造と大きな
変化はない。ただし電源は普通、交流を用いる。それは
他の実施例にも言えることで実施例(viii)で示し
たような無機EL素子を得るために必要な化学物質と積
層順序さえ、用いれば、実施例(i)〜(vii)で示
したような、基板、電極、発光素子、絶縁層、鏡面膜、
保護層などの位置関係と同一位置関係を有する無機EL
照明内臓鏡を形成することが可能である。ただし、無機
EL照明内臓鏡において電源は普通、交流を使用する。
また高温工程を必要とする場合は基板はガラスなどが望
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION An EL device utilizing electroluminescence is
Since it is self-luminous, it has high visibility, and since it is a completely solid element, it has features such as excellent impact resistance,
Attention has been paid to its use as a light emitting element in various display devices. This EL element includes an inorganic EL element that uses an inorganic compound as a light-emitting material and an organic EL element that uses an organic compound.
There is an L element. Of these, particularly the organic EL elements can reduce the applied voltage significantly, can be easily downsized, consume less power, can emit surface light, and can easily emit three primary colors. As a next-generation light-emitting device, its practical use has been actively researched. The organic EL light emitting device has a structure in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode, and electrons and holes are formed in the thin film.
Is an element that generates excitons (excitons) by injecting and recombining, and emits light by utilizing light emission (fluorescence / phosphorescence) when the excitons are deactivated. Here, a charge injection layer, a charge transport layer, a buffer layer, in order to relax the energy transfer barrier and efficiently send electrons / holes to the light emitting layer, or to reduce the unevenness of the substrate surface which causes a leak, A hole or electron transfer blocking layer or the like is appropriately laminated. The characteristics of this organic EL element are 1
It is possible to achieve high-luminance surface emission of about 100 to 100,000 cd / m 2 at a low voltage of 0 V or less, and it is possible to emit light of blue to red or white by selecting the type of fluorescent substance. Further, the light emitting layer itself can be 1 μm or less, and the total thickness including the transparent substrate can be 2 mm or less. Here, a flexible organic EL light-emitting device can be manufactured without fear of being rolled and broken like paper (for example, Japanese Patent Laid-Open No. 2000-268954; JP 2000-
260560 Nihon Keizai Shimbun, June 22, 2001). A method for forming a film of an organic EL light emitting element uses a vacuum vapor deposition method (for example, as a method for producing a white light emitting organic EL element using the vacuum vapor deposition method, JP-A-2001-25069).
0) Similarly, as methods for producing a blue light emitting organic EL element, there are JP-A-5-17765 and JP-A-9-53068. A method using a spin coating method (for example, as a manufacturing method using a spin coating method for a blue light emitting organic EL device, JP-A-9-111233 and JP-A-10-324870).
and so on. ) And a method of applying organic EL to the original plate corresponding to the stamp by applying printing technology and bringing the original plate and the substrate into close contact (Nikkei Sangyo Shimbun, May 17, 2001, etc.)
And an inkjet method (Japanese Patent Laid-Open No. 10-153).
967 etc. ) And others include casting method, dipping method, bar coating method, roll coating method and the like. The structure of this organic EL device is based on the structure of anode / organic light emitting layer / cathode, and a hole injecting / transporting layer or electron injecting layer is appropriately provided thereon, for example, anode / hole injecting / transporting layer / organic light emitting. Layers / cathodes and anodes / hole injecting / transporting layers / organic light emitting layers / electron injecting layers / cathodes are known. When an inorganic EL element is used as a light source, the basic configuration is a light emitting element in which a hole injection electrode, an insulating layer, an inorganic EL light emitting layer, an insulating layer, and an electron injection electrode are laminated. The electrons injected from the interface between the insulating layer and the light emitting layer into the light emitting layer are accelerated in the light emitting layer by the high electric field and collide with the emission center. At this time, the emission center is excited and emits light. For example, in the case of obtaining blue light emission, the light emitting layer is ZnS to which Tm (thulium) is added. To obtain green light emission, there is ZnS to which Tb (terbium) is added. Recently, SrS: C containing copper in strontium sulfide as a blue light emitting material
The improvement of the characteristics was reported by u (Nikkan Kogyo Shimbun, TRI
GGER, March issue, 21-23p (1999)). As a specific method for producing a blue light emitting inorganic EL device, Japanese Patent Laid-Open No.
No. 00-104059, Japanese Patent Laid-Open No. 2000-104060, and the like. The total thickness of the inorganic EL element including the transparent substrate can be 2 mm or less. The inorganic EL element is inferior to the organic EL element in terms of luminous efficiency particularly in terms of blue and green light emission, but has an ability exceeding that of the organic EL element in terms of luminous lifetime and heat resistance. of course,
Depending on the progress of research in the future, the luminous efficiency may exceed that of the organic EL element. In that case, this may be used as the light source. Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the types and combinations of the fluorescent substance, the charge injection layer, the charge transport layer, the buffer layer, the insulating layer, the electrode, etc., which are used for light emission, can achieve more efficient light emission as long as the basic configuration described in the claims is formed. You may change to what you want. Example (i): A transparent substrate such as glass or plastic is first coated on the entire surface with SiO 2 by sputtering. Next, a transparent conductive film is formed according to the shape to be emitted. The material of the transparent electrode is tin or indium oxide. The chemical formulas are SnO 2 (tin) and In 2 O 3 (indium). What is called ITO glass is In
It is an abbreviation for "Din Tin Oxide" and is a mixture of oxides of indium and tin. For organic EL elements, this IT
O is often used. First, a mask is formed according to the shape to be emitted, and the mask is covered with a transparent substrate, and a transparent conductive film is formed thereon by a sputtering method or the like. Also IT
Since O can be etched relatively easily, it may be etched by forming a film on the entire surface and then masking it with a resist or the like.
The etching solution may be an iron chloride / hydrochloric acid type or a nitric acid / sulfuric acid type. This ITO transparent conductive film functions as an anode. The transparent substrate with the ITO (In-Sn-O) transparent electrode thus prepared is subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning is performed for 30 minutes. The transparent substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum vapor deposition apparatus, and the mask prepared according to the shape to emit light is covered on the substrate on the anode side. At this time, in order to prevent leakage, a mask having a size larger than that of the hole injection layer to be vapor-deposited next is used to completely cover the anode. First, N, N'-bis (N, N'-bis (N,
An N′-diphenyl-4-aminophenyl) -N, N-diphenyl-4,4′-diamino-1,1′-biphenyl film (TPD232 film) is formed. This TPD232 film functions as a hole injection layer. Next, cover with a mask created according to the shape you want to emit light. At this time, a slightly larger mask is used so that the hole transport layer to be deposited next can completely cover the hole injection layer. Then, 4,4′-bis [N- (1-naphthyl) -N having a film thickness of 20 nm was formed on the TPD232 film.
-Phenylamino] biphenyl film (NPD film) is formed. This NPD film functions as a hole transport layer. Next, cover with a mask created according to the shape you want to emit light. At this time, a slightly larger mask is used so that the hole transport layer can be completely covered with the white light emitting layer to be deposited next. Next, a 40 nm-thick styryl derivative DPVBi (FIG. 9) was formed on the NPD film.
And PAVB (FIG. 10) as a blue fluorescent dopant and a fluorescent compound (F1, fluorescence peak wavelength: 595 nm)
(FIG. 11) is vapor-deposited at a weight ratio of 40: 1: 0.05 to form a film. This film functions as a white light emitting layer. Next, cover with a mask created according to the shape you want to emit light. At this time, a mask having a slightly larger size is used so that the white light emitting layer can be completely covered with the electron transport layer to be deposited next. Next, a 20-nm-thick tris (8-quinolinol) aluminum film (Alq film) is formed on this film. This Alq film functions as an electron transport layer. Next, cover with a mask created according to the shape you want to emit light. At this time, a slightly larger mask is used so that the electron injection layer to be deposited next may completely cover the electron transport layer. After that, Li (Li: manufactured by SAES Getter Co., Ltd.) and Alq are binary-deposited to form Al as an electron injection layer.
q: A Li film is formed. After that, metal Al is vapor-deposited on the entire surface of the substrate including on the Alq: Li film to form a mirror-like metal cathode to form an organic EL element. Regarding the performance of the obtained organic EL device, when the ITO anode was used as the positive electrode and the Al cathode was used as the negative electrode and a DC voltage of 6 V was applied, the emission luminance was 319.
cd / m 2, the maximum emission luminance 100000cd / m 2, white light emission of the light-emitting efficiency 7.28cd / A is obtained. The chromaticity coordinates are also (0.33, 0.34), and white emission can be confirmed. In addition, this element has an initial luminance of 1000 cd / m
When driven at a constant voltage at 2 , the life is extremely long at 3500 hours. However, the data may be slightly different depending on the degree of cleaning of the substrate and the mixing of impurities. Here, an alloy obtained by co-evaporating magnesium and silver at a ratio of Mg: Ag = 10: 1 may be used as the cathode. A commonly used mirror is a transparent substrate on which silver is deposited. Therefore,
The electron injection layer is covered with a mask formed according to the desired shape of light emission, and at this time, a slightly larger mask is used so as to completely cover the electron injection layer with the MgAg alloy to be deposited next. After forming a film of Mg and Ag by co-evaporation, this Mg:
Silver Ag is deposited on the entire back surface of the substrate including the Ag film by vapor deposition or the like to form a mirror-like metal cathode to form an organic EL element. At this time, since silver acts as a mirror surface, the mirror surface portion is the same as an ordinary mirror in terms of performance. As a result, the mirror-like film can be seen through the transparent substrate from a portion other than the light emitting region from the front side of the substrate. A typical example of the EL illumination built-in mirror produced by the above method is (FIG. 2). Next, the substrate surface on the side where the laminated film is present is protected by an inorganic film such as a SiO 2 film having excellent gas barrier property, a resin film, or the like, which is more difficult for water vapor to pass through, or a metal can containing a desiccant is used. Cover with UV curable adhesive or cover with glass and seal with UV curable adhesive. Thermosetting adhesives are not suitable because they may accelerate the deterioration and crystallization of the organic layer due to heat. In addition, this product is manufactured under vacuum or in a dry inert gas until it is completed. In addition, white light emission,
Other known organic fluorescent compounds, charge transport layers, charge injection layers, buffer layers, electron or hole transfer blocking layers, and the like may be used for red, blue, and green light emission. FIG. 11 shows an example of an organic fluorescent compound used for red, blue and green light emission. Example (ii): As in the case of Example (i), a mask is formed in accordance with the shape to be emitted and is covered with a transparent substrate, and an anode ITO transparent conductive film is formed thereon by a sputtering method or the like. Alternatively, after film formation on the entire surface, etching is performed according to the shape to be emitted. Next, as in the case of (i), the hole injection layer is formed on the anode in accordance with the desired shape of light emission. At this time, a film is formed using a mask having a shape such that the hole transport layer to be laminated next does not leak with the anode. After forming the hole injection layer, in the same manner as in (i), according to the shape to be emitted,
In addition, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are stacked so that the organic layers above and below the relevant film do not leak.
The type and film thickness of each layer may be the same as in (i). Then, a metal cathode Al (aluminum) is vapor-deposited by covering it with a mask so as to contact only the transparent substrate surface on the side where the laminated film is present and the electron injection layer. Further, the cathode material may be a MgAg alloy. In that case, a AgAg alloy film is vapor-deposited with a mask so that Ag (silver) to be vapor-deposited next does not leak to the electron injection layer and does not come into contact with the thin film on the lower layer side of the electron injection layer, and Ag (silver) is deposited. The transparent substrate surface on the side with the laminated film and M
It may be vapor-deposited by covering with a mask so as to contact only the gAg alloy film. Next, the entire surface of the substrate on which the light emitting element is provided is covered with a protective layer so that each layer of the light emitting element exposed on the surface does not deteriorate or leak. It is difficult to pass water vapor and is protected by an inorganic film such as a SiO 2 film that has a good gas barrier property, a resin film, etc., a metal can containing a desiccant is covered, and it is sealed with an ultraviolet curing adhesive or covered with glass. Seal with UV curable adhesive. Thermosetting adhesive deteriorates the organic layer due to heat,
Not suitable because it may promote crystallization. As a result, the mirror-like film can be seen through the transparent substrate from a portion other than the light emitting region from the front side of the substrate. Other details are the same as in (i). A typical example of the EL illumination built-in mirror produced by the above method is (FIG. 3). Example (iii): An anode ITO electrode is formed on a substrate in the same manner as in Example (i). After washing in the same manner as in (i), a transparent insulating film is laminated on a region that is not desired to emit light, that is, a region that is desired to be used as a mirror surface. Si as the insulating film
O 2 and the like are suitable. Cover with a mask of the desired shape and form a film by sputtering. Any other suitable inorganic film or resin may be used instead. Next, a mask formed according to the shape to emit light is placed on the substrate on the insulating film side. At this time, a mask is formed so that the insulating film and the transparent substrate are slightly covered so as to completely cover the anode where the hole injection layer to be vapor-deposited next is exposed. The type and film thickness of the hole injection layer are the same as in (i). After forming the hole injecting layer, the hole transporting layer, the light emitting layer, and the electron are sequentially formed in the same manner as in (i) according to the shape to be emitted and completely covering the lower organic layer so as not to leak. A transport layer and an electron injection layer are laminated. The type and thickness of each layer may be the same as in (i). Next, a metal cathode Al is formed so as to completely cover the organic layer and the insulating film.
(Aluminum) is vapor-deposited on the entire surface. The cathode material is M
It may be a gAg alloy. In that case, only the organic layer may be covered with the MgAg alloy film, and then the entire surface of the substrate may be covered with Ag (silver). As a result, the mirror-like film can be seen through the transparent substrate from a portion other than the light emitting region from the front side of the substrate. Other details are the same as in (i). E created by the above method
A typical example of the L-illumination built-in mirror is (FIG. 4). Example (iv): An anode ITO electrode is formed in the same manner as in Example (i). At this time, the mask is sputtered or the entire surface of the ITO film is etched so that the end portion of the ITO film is included in the region where light emission is desired. Next, a hole injection layer is vapor-deposited by covering with a mask prepared according to the shape to be emitted. At this time, a mask is used so that the end of the anode ITO can be completely covered with the hole injection layer. After forming the hole injection layer,
Similar to (i), a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sequentially laminated so as to match the shape to be emitted and completely cover the lower organic layer. The type and film thickness of each layer may be the same as in (i). Next, a transparent insulating film is formed so as to completely cover the exposed anode ITO film and not completely cover the organic layer. The type of insulating film and the stacking method may be the same as in (iii). Next, a metal cathode Al is formed thereon so as to completely cover the organic layer and the insulating film.
(Aluminum) is vapor-deposited on the entire surface. The cathode material is M
It may be a gAg alloy. In that case, only the organic layer may be covered with the MgAg alloy film, and the entire surface of the substrate may be further covered with Ag (silver). As a result, the mirror-like film can be seen through the transparent substrate from a portion other than the light emitting region from the front side of the substrate. Other details are the same as in (i). E created by the above method
A typical example of the L-illumination built-in mirror is (FIG. 5). Example (v): An anode ITO electrode is formed in the same manner as in Example (i). At this time, the mask is sputtered so that the ITO film is formed only in the region where light emission is desired, or the entire surface of the ITO film is etched and then etched. Next, a hole injection layer is vapor-deposited on the anode ITO film by covering with a mask formed according to the shape to be emitted. After forming the hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode are sequentially laminated in the same manner as in (i) according to the desired shape of light emission. The type and film thickness of each layer may be the same as in (i). The points to note when stacking up to this point are that the film to be formed from above should be sequentially stacked so that it completely covers the film below, or that it should be stacked in a shape that is slightly smaller than the film below. hand,
The films above and below a thin film must be prevented from leaking. Next, an inorganic film such as SiO 2 or an insulating film such as resin is formed so as to completely cover the anode, the organic layer, and the cathode only in the light emitting element portion. At this time, the insulating film is preferably transparent. Next, metal such as Ag (silver) that forms a mirror-like film including the insulating film is vapor-deposited on the entire surface of the substrate on which the light-emitting element is formed, or a mirror-like coating (coating with silver nitrate etc. Wash). As a result, the mirror-like film can be seen through the transparent substrate from a portion other than the light emitting region from the front side of the substrate. Other details are the same as in (i). A typical example of the EL illumination built-in mirror produced by the above method is (FIG. 6). Example (vi): In Example (v), when a transparent insulating film was laminated, the entire surface of the substrate was not covered with an insulating film only around the light emitting element composed of a cathode, an organic layer including a light emitting layer, and an anode. It may be covered with a transparent insulating film. The other details are the same as in Example (v). A typical example of the EL illumination built-in mirror produced by the above method is (FIG. 7). Example (vii): A transparent portion having no mirror surface film such as silver is formed on a part of the back side of the mirror. In the transparent part on the back side,
The EL element already completed is pasted. At this time,
The light emitting surface of the EL element faces the front side of the mirror and is attached to the transparent portion on the back side. The type and structure of the anode, the light emitting layer, the charge injection layer, the charge transport layer, the cathode, etc. used in the light emitting element itself may be the same as those in (i), and especially the operation such that the mirror surface film can be seen from the back side of the light emitting element itself. , No work required. A typical example of an EL illumination built-in mirror created by the above method (Fig. 8)
Is. Example (viii): Similar to (i), the entire surface of the glass substrate is first coated with SiO 2 by sputtering. Next, an ITO transparent conductive film is formed and washed according to the shape to be emitted. Next, in order to match the shape to be emitted, and to prevent leakage, aluminum / titanium oxide, which is an insulating layer, is applied in an amount of about 260 n so as to completely cover the anode.
It is formed by atomic layer epitaxy (ALE) with a thickness of m. Next, using a mask, a light emitting layer SrS: Cu, I, Ga film is formed so as to match the desired shape of light emission and completely cover the insulating layer aluminum / titanium oxide film. The light emitting layer has a thickness of 600 nm to 2 μm and a doping concentration:
Copper, 0.05 to 5 mol%; iodine, 0.05 to 5 mol%; gallium, 0.5 to 10 mol% are formed by sputtering from an SrS target prepared. During lamination, this substrate temperature is maintained at a temperature of 75-500 ° C. These luminescent films are then 550
Anneal in nitrogen at a temperature of ~ 850 ° C. Next, a second insulating layer is formed so as to match the shape to be emitted and to completely cover the light emitting layer. This insulating layer is barium tantalate (BTO) and has a thickness of 300 nm. Next, metal Al or the like is vapor-deposited on the entire surface of the substrate where the EL element is present to form a mirror-like metal electrode to form an inorganic EL element. The performance of the obtained inorganic EL device is 60 Hz (L40 @ 60 at an alternating voltage of 114 V and a threshold value of 40 V).
The luminance measured by driving at 0.1 Hz is 14.1 cd / m 2 , the luminous efficiency is 0.119 lm / W, and the chromaticity coordinate (0.1
6, 0.24), and the standardized luminous efficiency is 0.496. However, the data may be slightly different depending on the degree of cleaning of the substrate, the mixing of impurities, and the like. Specular metal electrode is Ag
(Silver) may be used. As a result, the mirror-like film can be seen through the transparent substrate from a portion other than the light emitting region from the front side of the substrate. A typical example of the EL illumination built-in mirror produced by the above method is (FIG. 2). However, the power source is AC. Inorganic EL
Regarding the emission color of the device, white, red, green, blue, etc. have been developed, and other known inorganic EL light-emitting substances,
There is an insulating layer. Appropriate inorganic E
You may produce an L element. (FIG. 13) shows an example of a fluorescent substance for an inorganic EL element. In the inorganic EL lighting built-in mirror, the light emitting element portion is changed from the laminated structure of the organic thin film to the laminated structure of the inorganic thin film, and there is no great change from the structure of the embodiment (i). However, the power source is usually alternating current. The same applies to other examples, and if the chemical substances and the stacking order necessary for obtaining the inorganic EL device as shown in the example (viii) are used, they are shown in the examples (i) to (vii). Such as substrate, electrode, light emitting device, insulating layer, mirror film,
Inorganic EL having the same positional relationship as the protective layer, etc.
It is possible to form an illumination built-in mirror. However, in the inorganic EL lighting built-in mirror, the power source is usually AC.
If a high temperature process is required, the substrate is preferably glass or the like.

【0006】[0006]

【発明の効果】これには次のような効果がある。 (イ) 照明と鏡が一体型となり、暗くて見にくい対象
物を観察するとき新たに照明を用意する必要がなく便利
である。 (ロ) 特に照明に使用したELは発光層が極めて薄く
また、形状も問わないため、鏡と一体化してもまった
く、かさばらず、携帯や設置が容易である。 (ハ) また、ELは白熱球や蛍光灯と違い中空部分が
存在しないため衝撃に強い。 (ニ) EL照明が鏡面に対しフラットなため見た目が
美しい。 (ホ) EL発光素子は発光形状や発光色を自由に変化
させることができるので、様々な模様や文字の形、また
様々な色などを発光させることができるため見ためが、
楽しい鏡になる。 (ヘ) また、ELは蛍光灯と違い素子中に水銀を含ま
ないため、廃棄するにあたって環境を汚染する心配が少
ない。 本発明は、これらの効果をもたらすものである。本出願
にかかる発明の思想に沿うものであれば、実施形態は本
明細書の実施例やその他の具体的形状に限定されるもの
ではない。
This has the following effects. (B) Since the illumination and the mirror are integrated, it is convenient because there is no need to prepare additional illumination when observing an object that is dark and difficult to see. (B) In particular, the EL used for illumination has an extremely thin light emitting layer and its shape does not matter. Therefore, even if it is integrated with a mirror, it is not bulky at all, and it is easy to carry and install. (C) Unlike the incandescent bulb and the fluorescent lamp, the EL is strong against impact because it has no hollow portion. (D) Because the EL lighting is flat with respect to the mirror surface, it looks beautiful. (E) Since the EL light emitting element can freely change the light emitting shape and the light emitting color, it is easy to see because it can emit various patterns, character shapes, and various colors.
Become a fun mirror. (F) Also, unlike fluorescent lamps, EL does not contain mercury in the element, so there is little concern that the environment will be contaminated when it is discarded. The present invention brings about these effects. The embodiments are not limited to the examples of the present specification and other specific shapes as long as they are in accordance with the idea of the invention according to the present application.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の斜視図である。FIG. 1 is a perspective view of the present invention.

【図2】本発明の断面図である。FIG. 2 is a sectional view of the present invention.

【図3】本発明の断面図である。FIG. 3 is a sectional view of the present invention.

【図4】本発明の断面図である。FIG. 4 is a sectional view of the present invention.

【図5】本発明の断面図である。FIG. 5 is a sectional view of the present invention.

【図6】本発明の断面図である。FIG. 6 is a cross-sectional view of the present invention.

【図7】本発明の断面図である。FIG. 7 is a cross-sectional view of the present invention.

【図8】本発明の断面図である。FIG. 8 is a sectional view of the present invention.

【図9】本発明に利用したスチリル誘導体DPVBiの
構造式である。
FIG. 9 is a structural formula of a styryl derivative DPVBi used in the present invention.

【図10】本発明に利用した青色蛍光性ドーパントPA
VBの構造式である。
FIG. 10: Blue fluorescent dopant PA used in the present invention
It is a structural formula of VB.

【図11】本発明に利用した蛍光性化合物F1の構造式
である。
FIG. 11 is a structural formula of a fluorescent compound F1 used in the present invention.

【図12】低分子系有機蛍光化合物の一例である。FIG. 12 is an example of a low molecular weight organic fluorescent compound.

【図13】無機蛍光化合物の一例である。FIG. 13 is an example of an inorganic fluorescent compound.

【図14】有機ELにおいて各層がリークしない積層方
法の一例である。
FIG. 14 is an example of a stacking method in which each layer does not leak in the organic EL.

【図15】無機ELにおいて各層がリークしない積層方
法の一例である。
FIG. 15 is an example of a stacking method in which each layer does not leak in the inorganic EL.

【図16】有機ELにおいて各層がリークしない積層方
法の一例である。
FIG. 16 is an example of a stacking method in which each layer does not leak in the organic EL.

【図17】無機ELにおいて各層がリークしない積層方
法の一例である。
FIG. 17 is an example of a stacking method in which each layer does not leak in the inorganic EL.

【符号の説明】[Explanation of symbols]

1 透明電極 2 有機膜積層部(発光層、電荷注入層、電荷輸送
層、バッファー層など)または無機膜積層部(発光層、
絶縁層など) 3 電極 4 透明基板 5 絶縁保護膜 6 鏡面状膜 7 保護層 8 発光 9 発光領域 10 鏡面領域 11 電子注入層 12 電子輸送層 13 発光層 14 正孔輸送層 15 絶縁層 16 電源
1 transparent electrode 2 organic film laminated portion (light emitting layer, charge injection layer, charge transport layer, buffer layer, etc.) or inorganic film laminated portion (light emitting layer,
Insulating layer, etc. 3 Electrode 4 Transparent substrate 5 Insulating protective film 6 Mirror-like film 7 Protective layer 8 Light emission 9 Light emitting area 10 Mirror surface area 11 Electron injection layer 12 Electron transport layer 13 Light emitting layer 14 Hole transport layer 15 Insulating layer 16 Power supply

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】超薄型電界発光素子である有機または無機
EL素子と鏡を一体化させたEL照明内臓鏡。
1. An EL illumination built-in mirror in which an organic or inorganic EL element, which is an ultra-thin electroluminescent element, and a mirror are integrated.
【請求項2】ガラスやプラスチックなど透明基板の裏側
の一部に、少なくても陽極、発光層、陰極、などの薄膜
を積層させるか、それに加え発光層の上下に適宜、電荷
注入層、電荷輸送層、バッファー層などを積層した有機
EL素子を形成し、基板裏側を鏡面状陰極または鏡面状
膜で覆って、基板表側より発光領域面以外の部分から鏡
面部分が透けて見えるようにしたEL照明内臓鏡。
2. A thin film such as at least an anode, a light emitting layer, and a cathode is laminated on a part of the back side of a transparent substrate such as glass or plastic, or in addition, a charge injection layer and a charge are appropriately provided above and below the light emitting layer. An organic EL device in which a transport layer, a buffer layer, etc. are laminated is formed, and the back side of the substrate is covered with a mirror-like cathode or a mirror-like film so that the mirror-like portion can be seen through from a portion other than the light emitting region surface from the substrate front side. Lighting built-in mirror.
【請求項3】ガラスなどの透明基板の裏側の一部に、少
なくても電極、絶縁層、発光層、などを積層した無機E
L素子を形成し、基板裏側を鏡面状電極または鏡面状膜
で覆って、基板表側より発光領域面以外の部分から鏡面
部分が透けて見えるようにしたEL照明内臓鏡。
3. An inorganic E in which at least an electrode, an insulating layer, a light emitting layer, etc. are laminated on a part of the back side of a transparent substrate such as glass.
An EL illumination built-in mirror in which an L element is formed and the back side of the substrate is covered with a mirror-like electrode or a mirror-like film so that the mirror-like portion can be seen through from a portion other than the light emitting region surface from the front side of the substrate.
【請求項4】ガラスやプラスチックなど透明基板の裏側
の一部に、少なくても陽極、発光層、陰極、などの薄膜
を積層させるか、それに加え発光層の上下に適宜、電荷
注入層、電荷輸送層、バッファー層などを積層した有機
EL素子を形成するとき、該当層の上下層がリークしな
いように積層していき(図14)、基板裏側を鏡面状陰
極で覆って、基板表側より発光領域面以外の部分から鏡
面部分が透けて見えるようにしたEL照明内蔵鏡(図
2)。
4. A thin film such as at least an anode, a light emitting layer, and a cathode is laminated on a part of the back side of a transparent substrate such as glass or plastic, or in addition, a charge injection layer and a charge are appropriately provided above and below the light emitting layer. When forming an organic EL device in which a transport layer, a buffer layer, etc. are stacked, stack them so that the upper and lower layers of the layers do not leak (Fig. 14), cover the back side of the substrate with a mirror-like cathode, and emit light from the front side of the substrate. A mirror with built-in EL lighting that allows the mirror surface to be seen through from parts other than the area surface (Fig. 2).
【請求項5】ガラスなどの透明基板の裏側の一部に、少
なくても電極、絶縁層、発光層、などを積層した無機E
L素子を形成するとき、該当層の上下層がリークしない
ように積層していき(図15)、基板裏側を鏡面状電極
で覆って、基板表側より発光領域面以外の部分から鏡面
部分が透けて見えるようにしたEL照明内蔵鏡(図
2)。
5. An inorganic E in which at least an electrode, an insulating layer, a light emitting layer, etc. are laminated on a part of the back side of a transparent substrate such as glass.
When forming the L element, the upper and lower layers of the corresponding layers are stacked so as not to leak (FIG. 15), the back side of the substrate is covered with a mirror-like electrode, and the mirror surface portion is transparent from the front surface side of the substrate other than the light emitting region surface. A mirror with built-in EL lighting that was made visible (Fig. 2).
【請求項6】請求項4において該当層の上下層がリーク
しない手段として透明基板上の一部に陽極を形成し、そ
の陽極部分のみを完全に覆うように有機発光層を、また
は、有機発光層の上下に適宜、電荷注入層、電荷輸送
層、バッファー層などを挿入する場合は、下層の膜を完
全に覆うように順次、成膜していき(図16)、その上
に基板全面に鏡面状陰極を形成し、基板表側より発光領
域面以外の部分から鏡面部分が透けて見えるようにした
EL照明内蔵鏡(図3)。
6. The organic light emitting layer according to claim 4, wherein an anode is formed on a part of the transparent substrate as a means for preventing the upper and lower layers of the layer from leaking, and the organic light emitting layer is formed so as to completely cover only the anode portion. When a charge injection layer, a charge transport layer, a buffer layer, etc. are appropriately inserted above and below the layer, the layers are sequentially formed so as to completely cover the lower layer film (FIG. 16), and the entire surface of the substrate is formed thereon. A mirror with built-in EL lighting, in which a mirror-like cathode is formed so that the mirror surface can be seen through from the front surface side of the substrate except the light emitting region surface (FIG. 3).
【請求項7】請求項5において該当層の上下層がリーク
しない手段として透明基板上の一部に透明電極を形成
し、その透明電極部分のみを完全に覆うように無機発光
層を、または、無機発光層の上下に適宜、絶縁層などを
挿入する場合は、下層の膜を完全に覆うように順次、成
膜していき(図17)、その上に基板全面に鏡面状電極
を形成し、基板表側より発光領域面以外の部分から鏡面
部分が透けて見えるようにしたEL照明内蔵鏡(図
3)。
7. A transparent electrode is formed on a part of a transparent substrate as a means for preventing the upper and lower layers of the layer from leaking, and an inorganic light emitting layer is formed so as to completely cover only the transparent electrode part, or When appropriately inserting an insulating layer or the like above and below the inorganic light-emitting layer, the layers are sequentially formed so as to completely cover the lower layer (FIG. 17), and a mirror-like electrode is formed on the entire surface of the substrate. , A mirror with built-in EL lighting that allows the mirror surface portion to be seen through from the front side of the substrate except the light emitting area surface (FIG. 3).
【請求項8】ガラスまたはプラスチックなどの透明基板
の一部に有機EL素子を形成するとき、透明基板の裏側
の一部に陽極を形成し、その陽極上の一部に透明絶縁膜
を形成し、透明絶縁膜で覆われていない陽極が露出した
部分に陽極を完全に覆うように発光層を、または、発光
層の上下に適宜、電荷注入層、電荷輸送層、バッファー
層などを挿入する場合は、まず1層目は露出した陽極を
完全に覆うように、そして順次、下層の膜を完全に覆う
ように成膜していき、その上から基板全面に鏡面状陰極
を形成し、基板表側より発光領域面以外の部分から鏡面
部分が透けて見えるようにしたEL照明内蔵鏡(図
4)。
8. When forming an organic EL device on a part of a transparent substrate such as glass or plastic, an anode is formed on a part of the back side of the transparent substrate and a transparent insulating film is formed on a part of the anode. When inserting a light emitting layer so as to completely cover the anode where the anode is not covered with the transparent insulating film, or if a charge injection layer, a charge transport layer, a buffer layer, etc. are appropriately inserted above and below the light emitting layer. First, the first layer is formed so as to completely cover the exposed anode, and then sequentially so as to completely cover the lower layer film, and then a mirror-like cathode is formed on the entire surface of the substrate from above, and the substrate front side is formed. A mirror with built-in EL lighting that allows the mirror surface to be seen through from the area other than the light emitting area surface (Fig. 4).
【請求項9】ガラスなどの透明基板の一部に無機EL素
子を形成するとき、透明基板の裏側の一部に透明電極を
形成し、その透明電極上の一部に透明絶縁膜を形成し、
透明絶縁膜で覆われていない透明電極が露出した部分に
透明電極を完全に覆うように発光層を、または、発光層
の上下に適宜、絶縁層などを挿入する場合は、まず1層
目は露出した透明電極を完全に覆うように、そして順
次、下層の膜を完全に覆うように成膜していき、その上
から基板全面に鏡面状電極を形成し、基板表側より発光
領域面以外の部分から鏡面部分が透けて見えるようにし
たEL照明内蔵鏡(図4)。
9. When forming an inorganic EL element on a part of a transparent substrate such as glass, a transparent electrode is formed on a part of the back side of the transparent substrate, and a transparent insulating film is formed on a part of the transparent electrode. ,
When inserting the light emitting layer so as to completely cover the transparent electrode in the exposed portion of the transparent electrode not covered with the transparent insulating film, or when appropriately inserting an insulating layer or the like above and below the light emitting layer, the first layer is A film is formed so as to completely cover the exposed transparent electrode and, in turn, so as to completely cover the lower layer film, and a mirror-like electrode is formed on the entire surface of the substrate from above, and the surface of the substrate other than the light emitting area surface is formed from the front side. A mirror with built-in EL lighting that allows the mirror surface to be seen through from the part (Fig. 4).
【請求項10】ガラスまたはプラスチックなどの透明基
板の一部に有機EL素子を形成するとき、透明基板の裏
側の一部に陽極を形成し、その陽極上の一部に発光層
を、または、発光層の上下に適宜、電荷注入層、電荷輸
送層、バッファー層などを挿入する場合は、該当層の上
下層がリークしないように積層していき、有機層で覆わ
れていない陽極が露出した部分に、陽極を完全に覆うよ
うに、しかし、先に積層した有機層の最上部の一部が露
出するように透明絶縁膜を形成し、その上から基板全面
に鏡面状陰極を形成し、基板表側より発光領域面以外の
部分から鏡面部分が透けて見えるようにしたEL照明内
蔵鏡(図5)。
10. When forming an organic EL device on a part of a transparent substrate such as glass or plastic, an anode is formed on a part of the back side of the transparent substrate and a light emitting layer is formed on a part of the anode, or When a charge injection layer, a charge transport layer, a buffer layer, etc. are appropriately inserted above and below the light emitting layer, the layers above and below the layer are stacked so as not to leak, and the anode not covered with the organic layer is exposed. In a part, so as to completely cover the anode, but to form a transparent insulating film so as to expose a part of the uppermost part of the organic layer previously laminated, from above to form a mirror-like cathode on the entire surface of the substrate, A mirror with built-in EL lighting that allows the mirror surface to be seen through from the front side of the substrate except the light emitting area (Fig. 5).
【請求項11】ガラスなどの透明基板の一部に無機EL
素子を形成するとき、透明基板の裏側の一部に透明電極
を形成し、その透明電極上の一部に発光層を、または、
発光層の上下に適宜、絶縁層などを挿入する場合は、該
当層の上下層がリークしないように積層していき、先に
積層した無機層で覆われていない透明電極が露出した部
分に、透明電極を完全に覆うように、しかし、先に積層
した無機層の最上部の一部が露出するように透明絶縁膜
を形成し、その上から基板全面に鏡面状電極を形成し、
基板表側より発光領域面以外の部分から鏡面部分が透け
て見えるようにしたEL照明内蔵鏡(図5)。
11. An inorganic EL is formed on a part of a transparent substrate such as glass.
When forming the element, a transparent electrode is formed on a part of the back side of the transparent substrate, and a light emitting layer is formed on a part of the transparent electrode, or
Appropriately above and below the light emitting layer, when inserting an insulating layer or the like, the layers above and below the layer are laminated so as not to leak, and the transparent electrode not covered by the inorganic layer previously laminated is exposed, A transparent insulating film is formed so as to completely cover the transparent electrode, but to expose a part of the uppermost part of the inorganic layer previously laminated, and a mirror-like electrode is formed on the entire surface of the substrate from above.
A mirror with built-in EL lighting that allows the mirror surface to be seen through from the front side of the substrate except the light emitting area (Fig. 5).
【請求項12】ガラスまたはプラスチックなどの透明基
板の一部に有機EL素子を形成するとき、透明基板の裏
側の一部に少なくとも、陽極、発光層、陰極からなる、
または、発光層の上下に適宜、電荷注入層、電荷輸送
層、バッファー層などを積層した有機EL素子を形成
し、その電極と積層した有機層の周囲を絶縁保護膜で覆
い、その後、基板裏側に、銀やアルミニウムなど鏡面状
となる物質の薄膜を形成し、基板表側より発光領域面以
外の部分から鏡面部分が透けて見えるようにしたEL照
明内蔵型鏡(図6)。
12. When an organic EL element is formed on a part of a transparent substrate such as glass or plastic, it is composed of at least an anode, a light emitting layer and a cathode on a part of the back side of the transparent substrate.
Alternatively, an organic EL element in which a charge injection layer, a charge transport layer, a buffer layer, and the like are appropriately stacked above and below the light emitting layer is formed, and the periphery of the organic layer stacked with the electrode is covered with an insulating protective film, and then the substrate backside A mirror with a built-in EL lighting, in which a thin film of a material having a mirror surface such as silver or aluminum is formed so that the mirror surface can be seen through from the surface other than the light emitting region surface (FIG. 6).
【請求項13】ガラスなどの透明基板の一部に無機EL
素子を形成するとき、透明基板の裏側の一部に少なくと
も、透明電極、発光層、電極からなる、または、発光層
の上下に適宜、絶縁層などを積層した無機EL素子を形
成し、その電極と積層した無機層の周囲を絶縁保護膜で
覆い、その後、基板裏側に、銀やアルミニウムなど鏡面
状となる物質の薄膜を形成し、基板表側より発光領域面
以外の部分から鏡面部分が透けて見えるようにしたEL
照明内蔵型鏡(図6)。
13. An inorganic EL is formed on a part of a transparent substrate such as glass.
When forming an element, an inorganic EL element is formed which is composed of at least a transparent electrode, a light emitting layer, an electrode on a part of the back side of a transparent substrate, or an insulating layer or the like is appropriately laminated above and below the light emitting layer, and the electrode thereof is formed. The surrounding inorganic layer is covered with an insulating protective film, and then a thin film of a substance that becomes a mirror surface such as silver or aluminum is formed on the back side of the substrate, and the mirror surface portion is transparent from the surface side of the substrate other than the light emitting area surface. EL made visible
Built-in illumination mirror (Fig. 6).
【請求項14】ガラスまたはプラスチックなどの透明基
板の一部に有機EL素子を形成するとき、透明基板の裏
側の一部に少なくとも、陽極、発光層、陰極からなる、
または、発光層の上下に適宜、電荷注入層、電荷輸送
層、バッファー層などを積層した有機EL素子を形成
し、その後、電極および積層した有機層を含め基板裏側
全面を透明絶縁保護膜で覆い、その後、透明絶縁保護膜
の上に銀やアルミニウムなど鏡面状となる物質の薄膜を
形成し、基板表側より発光領域面以外の部分から鏡面部
分が透けて見えるようにしたEL照明内蔵型鏡(図
7)。
14. When an organic EL element is formed on a part of a transparent substrate such as glass or plastic, it is composed of at least an anode, a light emitting layer and a cathode on a part of the back side of the transparent substrate.
Alternatively, an organic EL element in which a charge injection layer, a charge transport layer, a buffer layer, and the like are appropriately stacked above and below the light emitting layer is formed, and then the entire back surface of the substrate including the electrode and the stacked organic layer is covered with a transparent insulating protective film. After that, a thin film of a mirror-like material such as silver or aluminum was formed on the transparent insulating protective film, and the mirror surface portion was visible from the surface side of the substrate other than the light emitting area surface so that the mirror surface built-in mirror ( (Fig. 7).
【請求項15】ガラスなどの透明基板の一部に無機EL
素子を形成するとき、透明基板の裏側の一部に少なくと
も、透明電極、発光層、電極からなる、または、発光層
の上下に適宜、絶縁層などを積層した無機EL素子を形
成し、その後、電極および積層した無機層を含め基板裏
側全面を透明絶縁保護膜で覆い、その後、透明絶縁保護
膜の上に銀やアルミニウムなど鏡面状となる物質の薄膜
を形成し、基板表側より発光領域面以外の部分から鏡面
部分が透けて見えるようにしたEL照明内蔵型鏡(図
7)。
15. An inorganic EL is formed on a part of a transparent substrate such as glass.
When forming the element, at least a part of the back side of the transparent substrate, a transparent electrode, a light emitting layer, an electrode, or, to form an inorganic EL element in which an insulating layer or the like is appropriately laminated above and below the light emitting layer, and then, The entire back surface of the substrate including the electrodes and the laminated inorganic layer is covered with a transparent insulating protective film, and then a thin film of a mirror-like substance such as silver or aluminum is formed on the transparent insulating protective film. A mirror with built-in EL lighting that allows the mirror surface to be seen through from the part (Fig. 7).
【請求項16】通常の鏡の一部分を透明にして、その透
明な部分の裏面に超薄型電界発光素子である有機または
無機EL素子を貼りつけたEL照明内蔵型鏡。(図8)
16. An EL illumination built-in mirror in which a part of an ordinary mirror is made transparent, and an organic or inorganic EL element which is an ultra-thin electroluminescent element is attached to the back surface of the transparent portion. (Figure 8)
JP2002050507A 2002-01-22 2002-01-22 Mirror with built-in el illumination Pending JP2003217868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050507A JP2003217868A (en) 2002-01-22 2002-01-22 Mirror with built-in el illumination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050507A JP2003217868A (en) 2002-01-22 2002-01-22 Mirror with built-in el illumination

Publications (1)

Publication Number Publication Date
JP2003217868A true JP2003217868A (en) 2003-07-31

Family

ID=27655511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050507A Pending JP2003217868A (en) 2002-01-22 2002-01-22 Mirror with built-in el illumination

Country Status (1)

Country Link
JP (1) JP2003217868A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070712A1 (en) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. Luminescent ink composition for organic electroluminescent device
US8525407B2 (en) 2009-06-24 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Light source and device having the same
WO2013179483A1 (en) 2012-06-01 2013-12-05 パイオニア株式会社 Illuminated mirror device and illumination control method thereof
WO2014068637A1 (en) * 2012-10-29 2014-05-08 パイオニア株式会社 Light-emitting element having reflecting plate
JP2016122661A (en) * 2016-02-24 2016-07-07 ユー・ディー・シー アイルランド リミテッド Organic electroluminescent device
JP2016122632A (en) * 2014-12-25 2016-07-07 株式会社カネカ Mirror with illumination
US9399428B2 (en) 2012-11-08 2016-07-26 Pioneer Corporation Mirror device
US9590209B2 (en) 2012-11-08 2017-03-07 Pioneer Corporation Mirror device
US9781783B2 (en) 2011-04-15 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, light-emitting system, and display system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070712A1 (en) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. Luminescent ink composition for organic electroluminescent device
JPWO2006070712A1 (en) * 2004-12-28 2008-06-12 出光興産株式会社 Luminescent ink composition for organic electroluminescence device
US8525407B2 (en) 2009-06-24 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Light source and device having the same
US9781783B2 (en) 2011-04-15 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, light-emitting system, and display system
WO2013179483A1 (en) 2012-06-01 2013-12-05 パイオニア株式会社 Illuminated mirror device and illumination control method thereof
KR20150008431A (en) 2012-06-01 2015-01-22 파이오니아 가부시키가이샤 Illuminated mirror device and illumination control method thereof
EP3881723A1 (en) 2012-06-01 2021-09-22 Pioneer Corporation Device
US9664374B2 (en) 2012-06-01 2017-05-30 Pioneer Corporation Illuminated mirror device and method for controlling illumination thereof
WO2014068637A1 (en) * 2012-10-29 2014-05-08 パイオニア株式会社 Light-emitting element having reflecting plate
US9590209B2 (en) 2012-11-08 2017-03-07 Pioneer Corporation Mirror device
US9399428B2 (en) 2012-11-08 2016-07-26 Pioneer Corporation Mirror device
US10090488B2 (en) 2012-11-08 2018-10-02 Pioneer Corporation Mirror device having a light-transmissive substrate
US10109819B2 (en) 2012-11-08 2018-10-23 Pioneer Corporation Light-emitting device
JP2016122632A (en) * 2014-12-25 2016-07-07 株式会社カネカ Mirror with illumination
JP2016122661A (en) * 2016-02-24 2016-07-07 ユー・ディー・シー アイルランド リミテッド Organic electroluminescent device

Similar Documents

Publication Publication Date Title
TW585012B (en) Organic electroluminescence device having current injection layer between light emitting layer and cathode
JP4895742B2 (en) White organic electroluminescence device
WO2001048116A1 (en) White organic electroluminescence element
KR100377575B1 (en) A blue luiminiscence compound for organic electroluminscene device and the organic electroluminscene device using the same
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2003187978A (en) Organic light-emitting device capable of emitting white light and its manufacturing method
JP2004171828A (en) Organic electroluminescent element
JP2005347271A (en) Organic electroluminescent element and manufacturing method for the same
WO2005101911A1 (en) Organic electroluminescent device and organic electroluminescent display
JP2002237386A (en) Organic electroluminescent element
JP2003217868A (en) Mirror with built-in el illumination
JP2007201491A (en) White color organic electroluminescence element
JP2881212B2 (en) EL device
JP2002237381A (en) Organic electroluminescence element
WO2004045254A1 (en) Method for manufacturing organic electroluminescent display device
CN111740020B (en) High-efficiency long-service-life blue light device
EP1365633A4 (en) Organic electroluminescence element
JP2002260858A (en) Light-emitting element and its manufacturing method
JP2004031214A (en) Organic electroluminescent element
JP3537915B2 (en) Organic EL device
JPH07310071A (en) Electroluminescent element
JP2002043059A (en) Organic electroluminescent element
JPH10204426A (en) Organic thin film luminescent element
JPH10112389A (en) Multi-color luminescent device
JP2004227943A (en) Organic electroluminescence element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520