JP2009236179A - Flow passage regulation member and liquid discharge device - Google Patents

Flow passage regulation member and liquid discharge device Download PDF

Info

Publication number
JP2009236179A
JP2009236179A JP2008081172A JP2008081172A JP2009236179A JP 2009236179 A JP2009236179 A JP 2009236179A JP 2008081172 A JP2008081172 A JP 2008081172A JP 2008081172 A JP2008081172 A JP 2008081172A JP 2009236179 A JP2009236179 A JP 2009236179A
Authority
JP
Japan
Prior art keywords
flow path
shaft member
peripheral surface
hole
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081172A
Other languages
Japanese (ja)
Other versions
JP5188234B2 (en
Inventor
Hiroyasu Momikura
宏康 籾蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008081172A priority Critical patent/JP5188234B2/en
Publication of JP2009236179A publication Critical patent/JP2009236179A/en
Application granted granted Critical
Publication of JP5188234B2 publication Critical patent/JP5188234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow passage regulation member which can be used for a relatively long period of time while exhibiting a stable performance. <P>SOLUTION: The flow passage regulation member is provided with a cylinder body having an inner space and a through-hole communicating with the inner space, a shaft member inserted into the inner space and provided with a flow passage communicable with the through-hole. In the flow passage regulation member, a communicating state of the through-hole and the flow passage changes as the shaft member is rotated around a shaft direction and a route of a fluid flowing from the through-hole to the inner space side is regulated in accordance with the communicating state. In a clearance between an inner circumferential surface of the cylinder body and an outer circumferential surface of the shaft member, a side of an end part of a longitudinal direction of the shaft member is larger than that at a center position in the longitudinal direction of the shaft member. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体の経路を切り替える為に使用される流路規定部材およびそれを用いた液体吐出装置に関する。   The present invention relates to a flow path defining member used for switching a fluid path and a liquid ejection apparatus using the same.

従来から、例えば半導体製造プロセス等におけるレジスト塗布工程や、液晶製造工程における液晶滴下工程等、様々な分野において、液体定量装置ならびにポンプ装置が広く使用されている。   Conventionally, liquid metering devices and pump devices have been widely used in various fields such as a resist coating process in a semiconductor manufacturing process or the like, and a liquid crystal dropping process in a liquid crystal manufacturing process.

近年、半導体素子や液晶素子の微細化の進展にともない、液体塗布工程におけるコンタミネーションをより少なく制御することが求められている。また、長時間使用に耐え得る装置、すなわち耐久性が比較的高い装置が求められている。   In recent years, with the progress of miniaturization of semiconductor elements and liquid crystal elements, it is required to control the contamination in the liquid coating process to a smaller extent. There is also a need for a device that can withstand long-term use, that is, a device with relatively high durability.

例えば下記特許文献1には、ステンレス材からなる金属バルブを有して構成された、液体吐出装置が記載されている。
特開2006−275133号公報
For example, Patent Document 1 described below describes a liquid ejection device that includes a metal valve made of stainless steel.
JP 2006-275133 A

しかしながら、ステンレス材等の金属バルブでは、耐摩耗性が比較的低く、このバルブから生じた金属成分が、吐出する液体にコンタミネーションとして混入することもあった。また、磨耗によって液体の吐出量が変化することもあり、液体吐出装置としての寿命は比較的短いものであった。   However, a metal valve made of stainless steel or the like has a relatively low wear resistance, and a metal component generated from the valve may be mixed into the liquid to be discharged as contamination. Further, the discharge amount of the liquid may change due to wear, and the life as a liquid discharge device is relatively short.

上記課題を鑑み、本発明は、 内部空間を有し、前記内部空間と連通した貫通孔を備えた筒状体と、前記内部空間に挿入され、前記貫通孔と連通可能な流路を備えた軸部材と、を有し、前記軸部材が軸方向を中心に回転されることで前記貫通孔と前記流路との連通状態が変化し、前記貫通孔から前記内部空間の側へ流入される流体の経路が、前記連通状態に応じて規定される流路規定部材であって、前記筒状体の内周面と前記軸部材の外周面との間隙は、前記軸部材の長さ方向の端部の側が、前記軸部材の長さ方向の中央位置に比べて大きいことを特徴とする流路規定部材を提供する。   In view of the above problems, the present invention includes a cylindrical body having an internal space and provided with a through hole communicating with the internal space, and a flow path inserted into the internal space and capable of communicating with the through hole. A shaft member, and the shaft member is rotated about the axial direction to change the communication state between the through hole and the flow path, and flows into the inner space from the through hole. The fluid path is a flow path defining member defined according to the communication state, and a gap between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the shaft member is in the length direction of the shaft member. The flow path defining member is characterized in that the end portion side is larger than the center position in the length direction of the shaft member.

なお、前記軸部材の長さ方向の中央位置における前記間隔が6μm以下であることが好ましい。   In addition, it is preferable that the said space | interval in the center position of the length direction of the said shaft member is 6 micrometers or less.

また、前記軸部材および前記筒状体は、ジルコニアを主成分とすることが好ましい。   Moreover, it is preferable that the said shaft member and the said cylindrical body have zirconia as a main component.

また、前記軸部材の外周面に、円周方向に沿って連続した研削条痕を有することが好ましい。   Moreover, it is preferable that the outer peripheral surface of the shaft member has a grinding streak continuous along the circumferential direction.

また、前記軸部材の外周面の、前記軸部材の長さ方向に沿った、JIS B0601−2001に規定される輪郭曲線要素の平均長さRSmが0.005〜0.008mmであることが好ましい。   Moreover, it is preferable that the average length RSm of the contour curve element prescribed | regulated to JIS B0601-2001 along the length direction of the said shaft member of the outer peripheral surface of the said shaft member is 0.005-0.008 mm. .

また、前記軸部材の外周面は、ジルコニアの単斜晶の割合が5mol%以下であることが好ましい。   Moreover, it is preferable that the outer peripheral surface of the shaft member has a zirconia monoclinic crystal ratio of 5 mol% or less.

また、前記軸部材および前記筒状体に含まれるYの割合が2mol%以上かつ6mol%以下であることが好ましい。 Further, it is preferable that the ratio of the Y 2 O 3 contained in the shaft member and the cylindrical body is not less than 2 mol% and less 6 mol%.

本発明は、また、上述の流路規定部材と、前記貫通孔から前記内部空間に向けて液体を供給する液体供給部と、前記流路規定部材によって規定された流路を通って流れた液体を吐出する吐出部と、を備えたことを特徴とする液体吐出装置を、併せて提供する。   The present invention also provides the above-described flow path defining member, a liquid supply unit that supplies liquid from the through hole toward the internal space, and the liquid that has flowed through the flow path defined by the flow path defining member. And a liquid discharge device characterized by comprising a discharge unit for discharging the liquid.

本発明の流路規定部材は、耐摩耗性が比較的高いので、液体に混入するコンタミネーションも比較的少なく、また、比較的長い時間、安定した性能で使用することができる。また、軸部材の回転抵抗が比較的小さく、かつ、軸部材と外郭部材との間隙からの液体の漏れ出し量は、比較的少なくされている。   Since the flow path defining member of the present invention has a relatively high wear resistance, the contamination mixed into the liquid is relatively small, and can be used with a stable performance for a relatively long time. Further, the rotational resistance of the shaft member is relatively small, and the amount of liquid leakage from the gap between the shaft member and the outer member is relatively small.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明の流路規定部材の一実施形態である、流路切替バルブ10について説明する概略断面図である。図1の流路切替バルブ10は、液体供給装置1に備えられている。液体供給装置1は、第1液体供給手段2、第2液体供給手段4、吐出ノズル6、流路切替バルブ10を備えて構成されている。各手段は、図示しないパイプ等の液体供給路を介して、各々が接続されている。第1液体供給手段2は、図示しない薬液タンクおよび圧力供給機構を供え、第1の薬液を流路切替バルブ10へと供給する。第2液体供給手段4も同様に、図示しない薬液タンクおよび圧力供給機構を供え、第2の薬液を流路切替バルブ10へと供給する。   FIG. 1 is a schematic cross-sectional view illustrating a flow path switching valve 10 which is an embodiment of a flow path defining member of the present invention. The flow path switching valve 10 in FIG. 1 is provided in the liquid supply apparatus 1. The liquid supply apparatus 1 includes a first liquid supply unit 2, a second liquid supply unit 4, a discharge nozzle 6, and a flow path switching valve 10. Each means is connected to each other via a liquid supply path such as a pipe (not shown). The first liquid supply means 2 includes a chemical liquid tank and a pressure supply mechanism (not shown), and supplies the first chemical liquid to the flow path switching valve 10. Similarly, the second liquid supply means 4 also includes a chemical liquid tank and a pressure supply mechanism (not shown), and supplies the second chemical liquid to the flow path switching valve 10.

流路切替バルブ10は略円筒状の枠体20に挿入されている。枠体20には、複数の薬液流通孔(第1流通孔22a、第2流通孔22b、および第3流通孔22c)が、それぞれ設けられている。各薬液流通孔(第1流通孔22a、第2流通孔22b、および第3流通孔22c)には、流路接続コネクタがそれぞれ設けられている。各薬液流通孔は、第1液体供給手段2、第2液体供給手段4、および吐出ノズル6と、パイプ等の液体供給路を介して各々接続されている。   The flow path switching valve 10 is inserted into a substantially cylindrical frame 20. The frame body 20 is provided with a plurality of chemical solution flow holes (first flow holes 22a, second flow holes 22b, and third flow holes 22c). Each chemical solution flow hole (first flow hole 22a, second flow hole 22b, and third flow hole 22c) is provided with a flow path connector. Each chemical fluid circulation hole is connected to the first liquid supply means 2, the second liquid supply means 4, and the discharge nozzle 6 via a liquid supply path such as a pipe.

流路切替バルブ10は、側面に複数の貫通孔(第1流入孔16a、第2流入孔16b、第1流出孔18a、および第2流出孔18b)を有する略筒状の外郭部材12と、外郭部材12に囲まれた内部空間に挿入された軸部材14と、を有して構成されている。   The flow path switching valve 10 includes a substantially cylindrical outer member 12 having a plurality of through holes (a first inflow hole 16a, a second inflow hole 16b, a first outflow hole 18a, and a second outflow hole 18b) on a side surface, And a shaft member 14 inserted into an internal space surrounded by the outer shell member 12.

図2は、軸部材の概略斜視図である。軸部材14には、軸部材14の中心軸を通過するように設けられた、それぞれが直交する方向に延びた2本の貫通孔14aと14bとを備えている。流路切替バルブ10では、軸部材14が軸方向を中心に回転されることで、第1の状態と第2の状態とに切り替えられる。第1の状態では、図1に実線で示すように、第1流通孔22aと第1流入孔16aと貫通孔14aと第1流出孔18aとが連通した状態とされる。この第1の状態では、第1流通孔22aから供給された第1の薬液が、第3流通孔22cを通って吐出ノズル6へと送られる。第2の状態では、図1に破線で示すように、第2流通孔22bと第2流入孔16bと貫通孔14bと第2流出孔18bとが連通した状態とされる。この第2の状態では、第2流通孔22bから供給された第2の薬液が、連通された上記経路と、枠体20の内面に設けられた流出路23および第3流出孔22cを通って、吐出ノズル6へと送られる。液体供給装置1では、このように、流路切替バルブ10を第1の状態と第2の状態とに切り替えることで、吐出ノズル6から吐出する薬液の種類を、第1の薬液と第2の薬液とで切り替えることができる。   FIG. 2 is a schematic perspective view of the shaft member. The shaft member 14 includes two through holes 14 a and 14 b provided so as to pass through the central axis of the shaft member 14 and extending in directions orthogonal to each other. In the flow path switching valve 10, the shaft member 14 is switched between the first state and the second state by rotating about the axial direction. In the first state, as shown by a solid line in FIG. 1, the first flow hole 22a, the first inflow hole 16a, the through hole 14a, and the first outflow hole 18a are in communication with each other. In the first state, the first chemical liquid supplied from the first flow hole 22a is sent to the discharge nozzle 6 through the third flow hole 22c. In the second state, as shown by a broken line in FIG. 1, the second flow hole 22b, the second inflow hole 16b, the through hole 14b, and the second outflow hole 18b are in communication with each other. In this second state, the second chemical liquid supplied from the second flow hole 22b passes through the above-described path, the outflow path 23 provided on the inner surface of the frame 20, and the third outflow hole 22c. To the discharge nozzle 6. In the liquid supply apparatus 1, the kind of the chemical liquid discharged from the discharge nozzle 6 is changed between the first chemical liquid and the second chemical liquid by switching the flow path switching valve 10 between the first state and the second state. It can be switched with chemicals.

流路切替バルブ10は、軸部材14および外郭部材12の双方が、ジルコニアによって形成されている。ジルコニアは耐磨耗性が比較的高く、軸部材14の外周面と外郭部材12の内周面との間で、2つの部材が摺動した場合の磨耗の程度が比較的少ない。軸部材および外郭部材は、少なくともいずれか一方がジルコニアを主成分とする材料で構成されていればよい。ジルコニアを主成分とするとは、例えばジルコニアを60質量%以上含んでなることをいう。   In the flow path switching valve 10, both the shaft member 14 and the outer member 12 are formed of zirconia. Zirconia has a relatively high wear resistance, and the degree of wear when the two members slide between the outer peripheral surface of the shaft member 14 and the inner peripheral surface of the outer shell member 12 is relatively small. At least one of the shaft member and the outer member only needs to be made of a material mainly composed of zirconia. “Containing zirconia as a main component” means, for example, that it contains 60% by mass or more of zirconia.

図3は、流路切替バブル10の概略を示す断面図である。図3では、軸部材14の形状、特に回転軸を中心とした径の変化については、誇張して示している。流路切替バルブ10では、外郭部材12の内周面と軸部材14の外周面との間隙(クリアランス)は、外郭部材12の長さ方向の端部のクリアランスBに比べて、外郭部材12の長さ方向の中央部のクリアランスAの方が、より小さくされている。例えば、クリアランスBの大きさを5μm、クリアランスAの大きさを3μmとされている。   FIG. 3 is a cross-sectional view showing an outline of the flow path switching bubble 10. In FIG. 3, the shape of the shaft member 14, particularly the change in diameter around the rotation axis, is exaggerated. In the flow path switching valve 10, the clearance (clearance) between the inner peripheral surface of the outer member 12 and the outer peripheral surface of the shaft member 14 is larger than the clearance B at the end in the length direction of the outer member 12. The clearance A at the center in the length direction is made smaller. For example, the clearance B is 5 μm, and the clearance A is 3 μm.

外郭部材12の内周面と軸部材14の外周面との間隙が大きいほど、軸部材14の回転抵抗はより小さくなる。すなわち、比較的小さな力で、スムーズに回転させることが可能となる。また、外郭部材12の内周面と軸部材14の外周面との間隙が小さいほど、流路を切り替える対象液体のシール性は、より高くなる。すなわち、この間隙が狭いほど、この間隙から漏れ出す薬液の量は比較的少なくなる。   The larger the gap between the inner peripheral surface of the outer member 12 and the outer peripheral surface of the shaft member 14, the smaller the rotational resistance of the shaft member 14. That is, it can be smoothly rotated with a relatively small force. Further, the smaller the gap between the inner peripheral surface of the outer shell member 12 and the outer peripheral surface of the shaft member 14, the higher the sealing performance of the target liquid for switching the flow path. In other words, the narrower the gap, the smaller the amount of chemical liquid that leaks from the gap.

本実施形態の流路切替バルブ10では、中央部分のクリアランスAを比較的小さくし、薬液のシール性を充分高くするとともに、長さ方向の端部近傍のクリアランスBを比較的大きくして、軸部材14を回転させる際の抵抗(回転抵抗)を比較的小さくしている。   In the flow path switching valve 10 of the present embodiment, the clearance A in the central portion is made relatively small, the sealing performance of the chemical solution is made sufficiently high, and the clearance B in the vicinity of the end in the length direction is made relatively large so that the shaft The resistance (rotational resistance) when rotating the member 14 is relatively small.

なお、薬液のシール性を比較的高くして、軸体14と外郭部材12との間隙からの薬液の漏れ量を比較的少なくするには、中央部分のクリアランスAは6μm以下であることが好ましい。本発明の流路切替バルブによれば、液体を封止するためのシール機構(リーク防止用のシールテープや、リーク防止用の樹脂材)を用いることなく、ジルコニアからなる軸体14と外郭部材12と、の2つの部材のみをもって、薬液の漏れ出しが比較的少ない流路切替機構を構成することができる。   In order to improve the sealing performance of the chemical solution and reduce the amount of chemical solution leaked from the gap between the shaft body 14 and the outer member 12, the clearance A at the central portion is preferably 6 μm or less. . According to the flow path switching valve of the present invention, the shaft 14 and the outer member made of zirconia can be used without using a sealing mechanism for sealing liquid (a sealing tape for preventing leakage or a resin material for preventing leakage). The flow path switching mechanism with a relatively small leakage of the chemical solution can be configured with only the two members.

本実施形態の軸部材14は、軸部材14を例えば中心軸周りに回転させつつ、外周面に研削用部材を当接させて行う、いわゆる円筒外面ホーニング加工によって外周面が研削加工されて形成されている。一般的なセラミックス材料は、例えば金属等と比較すると破壊靱性値が比較的小さいが、ジルコニアはそのセラミックスの中でも比較的破壊靱性値が大きい。このため、ジルコニアは、研削加工した際、研削後の表面の欠陥(ボイド等)が比較的少なく、表面が鏡面になり易い傾向を有している。また、一方、ジルコニアは、セラミックスの中で比較的破壊靱性値が大きい為、研削面に、塑性流動型の研削状痕を生じやすい。すなわち、研削加工によって形成された軸部材14の外周面には、軸部材14の周方向に沿って比較的長く、細かい凹部および凸部が存在している。   The shaft member 14 of the present embodiment is formed by grinding the outer peripheral surface by so-called cylindrical outer surface honing, which is performed by rotating the shaft member 14 around the central axis and bringing the grinding member into contact with the outer peripheral surface. ing. A general ceramic material has a relatively small fracture toughness value compared to, for example, a metal or the like, but zirconia has a relatively large fracture toughness value among the ceramics. For this reason, when zirconia is ground, there are relatively few surface defects (voids and the like) after grinding, and the surface tends to be a mirror surface. On the other hand, since zirconia has a relatively large fracture toughness value among ceramics, it tends to cause plastic flow type grinding marks on the ground surface. That is, on the outer peripheral surface of the shaft member 14 formed by grinding, relatively long and fine concave portions and convex portions exist along the circumferential direction of the shaft member 14.

また、本実施形態の流路切替バルブ10では、外郭部材12の内周面も、いわゆるホーニング内周加工によって形成されている。この内周面にも、周方向に沿って比較的長く延びた研削状痕が生じている。   Further, in the flow path switching valve 10 of the present embodiment, the inner peripheral surface of the outer member 12 is also formed by so-called honing inner peripheral processing. Also on this inner peripheral surface, a grinding trace extending relatively long along the circumferential direction is generated.

図4は、流路切替バルブ10について説明する概略断面図であり、外郭部材12の長さ方向の中央部近傍を、より拡大して示している。本実施形態の流路切替バルブ10では、軸部材14の外周面および外郭部材12の内周面に、それぞれ研削状痕が形成されている。このため、軸部材14の外周面と外郭部材12の内周面とが近づくような力がかかっても、研削状痕の凸部が先に当接し、研削状痕の凹部全体が密着することはない。このため、微視的に見れば、軸部材14の外周面と外郭部材12の内周面との間に適度なクリアランスが保たれ、軸部材14の回転抵抗が比較的低い状態に保たれる。また、軸部材14の外周面と外郭部材12の内周面とに、それぞれ研削状痕が形成されているので、軸部材14の外周面の表面積と、外郭部材12の内周面の表面積とは、いずれも比較的大きくなっている。すなわち、軸部材14と外郭部材12との間隙(クリアランス)においては、軸部材14と外郭部材12との距離に比べて、薬液が接触する表面積が比較的大きくなっている。このため、この間隙に進入した薬液に発生する表面張力は比較的大きく、この間隙からの薬液の漏れ出しは、比較的少ない。   FIG. 4 is a schematic cross-sectional view illustrating the flow path switching valve 10 and shows the vicinity of the central portion of the outer member 12 in the length direction in an enlarged manner. In the flow path switching valve 10 of the present embodiment, ground marks are formed on the outer peripheral surface of the shaft member 14 and the inner peripheral surface of the outer member 12, respectively. For this reason, even if the force that the outer peripheral surface of the shaft member 14 and the inner peripheral surface of the outer shell member 12 approach is applied, the convex portion of the grinding trace first comes into contact with the entire concave portion of the grinding trace. There is no. Therefore, when viewed microscopically, an appropriate clearance is maintained between the outer peripheral surface of the shaft member 14 and the inner peripheral surface of the outer member 12, and the rotational resistance of the shaft member 14 is kept relatively low. . In addition, since grinding marks are formed on the outer peripheral surface of the shaft member 14 and the inner peripheral surface of the outer member 12, respectively, the surface area of the outer peripheral surface of the shaft member 14 and the surface area of the inner peripheral surface of the outer member 12 Are relatively large. That is, in the gap (clearance) between the shaft member 14 and the outer member 12, the surface area with which the chemical solution contacts is relatively large compared to the distance between the shaft member 14 and the outer member 12. For this reason, the surface tension generated in the chemical liquid entering the gap is relatively large, and the leakage of the chemical liquid from the gap is relatively small.

なお、軸部材14の外周面の輪郭曲線要素の平均長さRSmを0.005mm以上とすれば、液体の封止性を比較的高くすることができる。また、軸部材14の外周面の輪郭曲線要素の平均長さRSmを0.008mm以下とすれば、外郭部材12と軸部材14とが当接することで生じるコンタミネーションの量を、比較的少なくすることができる。この場合、吐出ノズル6から吐出される薬液に混入されるコンタミネーションの量を、比較的少なくすることができる。   If the average length RSm of the contour curve element on the outer peripheral surface of the shaft member 14 is set to 0.005 mm or more, the liquid sealing property can be made relatively high. Further, if the average length RSm of the contour curve element on the outer peripheral surface of the shaft member 14 is set to 0.008 mm or less, the amount of contamination caused by the contact between the outer member 12 and the shaft member 14 is relatively reduced. be able to. In this case, the amount of contamination mixed into the chemical liquid discharged from the discharge nozzle 6 can be relatively reduced.

ここで、輪郭曲線要素の平均長さ(RSm)は、JIS B0601−2001に準拠した値である。輪郭曲線要素の平均長さ(RSm)の測定には、例えば、株式会社小坂研究所 表面粗さ測定器 サーフコーダSE−2300を用いて、基準長さ0.4mmでカットオフ値を0.08mmとすればよい。なお、輪郭曲線要素の平均長さ(RSm)は、JIS B0601−2001に準拠した値であればよく、上記測定器を用いた値でなくとも構わない。   Here, the average length (RSm) of the contour curve element is a value based on JIS B0601-2001. For the measurement of the average length (RSm) of the contour curve element, for example, using Kosaka Laboratory Co., Ltd. surface roughness measuring device Surfcorder SE-2300, the cut-off value is 0.08 mm with a reference length of 0.4 mm. And it is sufficient. In addition, the average length (RSm) of the contour curve element may be a value based on JIS B0601-2001, and may not be a value using the measuring device.

なお、軸部材の外周面および外郭部材の内周面に、研削状痕が形成されているか否かは、上記輪郭曲線要素の平均長さ(RSm)が0.004mm未満であるか否かによって判断することができる。   Note that whether or not grinding-shaped marks are formed on the outer peripheral surface of the shaft member and the inner peripheral surface of the outer shell member depends on whether the average length (RSm) of the contour curve element is less than 0.004 mm. Judgment can be made.

図5は、輪郭曲線要素の平均長さ(RSm)について説明する図である。輪郭曲線要素の平均長さ(RSm)とは、基準長さにおける輪郭曲線要素Xsの平均を表している。表面粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分において隣り合う一対の山と谷の横方向の和を求め、算術平均値をミリメートルで表したものをいう。本実施形態において、輪郭曲線要素の平均長さ(RSm)は、外郭部材12の長さ方向(軸部材14の長さ方向)に沿った輪郭線から求められた値である。   FIG. 5 is a diagram for explaining the average length (RSm) of the contour curve elements. The average length (RSm) of the contour curve element represents the average of the contour curve elements Xs at the reference length. Only the reference length is extracted from the surface roughness curve in the direction of the average line, and the sum of the pair of adjacent peaks and valleys in the extracted portion in the horizontal direction is obtained, and the arithmetic average value is expressed in millimeters. In the present embodiment, the average length (RSm) of the contour curve element is a value obtained from the contour line along the length direction of the outer member 12 (the length direction of the shaft member 14).

また、本実施形態の流路切替バルブ10では、軸部材14の外周面の単斜晶率が5mol%以下となっている。単斜晶率の測定方法としては、軸部材14の外周面のX線回折により結晶構造を解析することで算出することができる。X線回折による結晶構造の解析には、例えば、スペクトリス株式会社製PW3050を用い、測定条件2Θ=26°〜36°の範囲で、X線出力40Kvの50mAで測定すればよい。   Moreover, in the flow path switching valve 10 of this embodiment, the monoclinic crystal ratio of the outer peripheral surface of the shaft member 14 is 5 mol% or less. The monoclinic crystal ratio can be calculated by analyzing the crystal structure by X-ray diffraction of the outer peripheral surface of the shaft member 14. For the analysis of the crystal structure by X-ray diffraction, for example, PW3050 manufactured by Spectris Co., Ltd. may be used, and measurement may be performed at 50 mA with an X-ray output of 40 Kv in the range of 2Θ = 26 ° to 36 °.

例えばジルコニアは、加工ストレスにより、表面の結晶相が相変態することが知られている。例えば、正方晶が応力を受けることで相変態し、単斜晶に変化するわけであるが、それに伴い体積膨張を引き起こし、表面に劣化した層が形成されることがある。あるいは加工によって破壊変質層が形成されることがある。加工によって破壊変質層が形成されている表面では、表面のジルコニア結晶が比較的脱粒しやすい。   For example, zirconia is known to undergo a phase transformation of the surface crystal phase due to processing stress. For example, a tetragonal crystal undergoes a phase transformation due to stress and changes to a monoclinic crystal, but this causes volume expansion, and a deteriorated layer may be formed on the surface. Or a fracture alteration layer may be formed by processing. On the surface on which the fracture-affected layer is formed by processing, the zirconia crystals on the surface are relatively easy to degranulate.

軸部材14の外周面の単斜晶率を5mol%以下とすれば、外周面の表面の破壊変質層を比較的低く抑えることができる。軸部材の外周面の単斜晶率を5mol%以下とすることで、表面のジルコニア結晶の脱粒を比較的少なくすることができる。軸部材の外周面の単斜晶率を5mol%以下とすれば、流路切替部材を流れる流路に混入するコンタミを、比較的低く抑えることができる。   If the monoclinic crystal ratio of the outer peripheral surface of the shaft member 14 is 5 mol% or less, the fracture-affected layer on the outer peripheral surface can be kept relatively low. By setting the monoclinic crystal ratio of the outer peripheral surface of the shaft member to 5 mol% or less, it is possible to relatively reduce the degranulation of zirconia crystals on the surface. If the monoclinic crystal ratio of the outer peripheral surface of the shaft member is 5 mol% or less, the contamination mixed into the flow path flowing through the flow path switching member can be kept relatively low.

なお、流路切替バルブ10では、外郭部材12および軸部材14のいずれも、YOを焼結助剤とする部分安定化ジルコニアである。また、外郭部材12および軸部材14のいずれも、YOの含有量が2〜6mol%の範囲となっている。YOの含有量が2〜6mol%の範囲とすると、正方晶から単斜晶への相変態し難くなり、摺接面は比較的高い耐摩耗性や耐食性を発揮することができる。YO含有ジルコニアからなる流路切替バルブ10は、耐摩耗性が比較的高く、薬液へのコンタミネーションの混入量も比較的少なくされる。なお、耐摩耗性や耐食性を、より高くするには、YOの含有量を2〜4mol%の範囲とすることが、より好ましい。 In the flow path switching valve 10, both the outer shell member 12 and the shaft member 14 are partially stabilized zirconia using Y 2 O 3 as a sintering aid. Further, both the outer member 12 and the shaft member 14 have a Y 2 O 3 content in the range of 2 to 6 mol%. When the content of Y 2 O 3 is in the range of 2 to 6 mol%, it is difficult for phase transformation from tetragonal to monoclinic, and the sliding contact surface can exhibit relatively high wear resistance and corrosion resistance. The flow path switching valve 10 made of zirconia containing Y 2 O 3 has relatively high wear resistance, and the amount of contamination mixed into the chemical solution is also relatively small. In order to further increase the wear resistance and corrosion resistance, it is more preferable to set the content of Y 2 O 3 in the range of 2 to 4 mol%.

図6は、本発明の流路規定部品の他の実施形態(第2の実施形態)について説明する概略図である。図6に示すポンプ部材60は、固定弁体66と第1の可動弁体67a、第2の可動弁体67bからなり、可動弁体67a、67bが別個に往復運動することにより、略一定量の液体を入路ポート68から出路ポート69に送液する。具体的には、まず図6(a)のように、可動弁体67aと可動弁体67bとの間隙に入路ポート68が位置している状態から、図6(b)に示すように可動弁体67bが移動し、可動弁体67aと可動弁体67bとの間隙の容量が所定の大きさとされる。図6(b)に示す状態では、可動弁体67aと可動弁体67bとの間隙に、流路ポート68から所定容量の流体が流入して蓄積されている。次に、図6(c)に示すように、可動弁体67aと可動弁体67bとの間隙の大きさが維持された状態で、この間隙が出力ポート69に対応する位置にくるまで、可動弁体67aと可動弁体67bとが一体的に移動する。次に、図6(d)に示すように、可動弁体67aが移動して、可動弁体67aと可動弁体67bとの間隙の容量が小さくされ、この間隙の流体が流路ポート69から流出される。   FIG. 6 is a schematic diagram for explaining another embodiment (second embodiment) of the flow path defining component of the present invention. The pump member 60 shown in FIG. 6 includes a fixed valve body 66, a first movable valve body 67a, and a second movable valve body 67b, and the movable valve bodies 67a and 67b reciprocate separately, so that a substantially constant amount is obtained. Liquid from the inlet port 68 to the outlet port 69. Specifically, first, as shown in FIG. 6 (a), from the state where the entrance port 68 is positioned in the gap between the movable valve body 67a and the movable valve body 67b, it is movable as shown in FIG. 6 (b). The valve body 67b moves, and the capacity of the gap between the movable valve body 67a and the movable valve body 67b is set to a predetermined size. In the state shown in FIG. 6B, a predetermined volume of fluid flows from the flow path port 68 and accumulates in the gap between the movable valve body 67a and the movable valve body 67b. Next, as shown in FIG. 6 (c), the movable valve body 67a and the movable valve body 67b are movable until the gap reaches a position corresponding to the output port 69 in a state where the size of the gap is maintained. The valve body 67a and the movable valve body 67b move integrally. Next, as shown in FIG. 6 (d), the movable valve body 67 a moves to reduce the capacity of the gap between the movable valve body 67 a and the movable valve body 67 b, and the fluid in this gap flows from the flow path port 69. Leaked.

また、図7は、本発明に係る流路規定部材の他の実施形態(第3の実施形態)について説明する概略図である。図7に示す流路規定部材70は、一方の端部が閉塞された、筒状の外郭部材72の内部空間に、一方の端部にカット部74aが設けられた軸体74が挿入されて配置されている。流路規定部材70では、図7(a)〜(e)に示すように、軸体74が外郭部材72の内部で、軸体74の長さ方向に沿って往復運動しつつ回転する。流路規定部材70では、この軸体74の往復・回転運動にともなう、カット部74aの往復・回転運動によって、外郭部材72の一方の側の側面に設けられた流入孔72aから流入された流体が、外郭部材72の他方の側の側面に設けられた流出孔72bから流出される。流路規定部材70では、軸体74が一往復(および一回転)される間に、流入孔72aから流出して流出孔72bから流出される流体の量が、カット部74aと外郭部材72の内周面とで囲まれた空間に対応する大きさに規定される。本発明の流路規定部材の形状や構成は、特に限定されない。   FIG. 7 is a schematic view for explaining another embodiment (third embodiment) of the flow path defining member according to the present invention. In the flow path defining member 70 shown in FIG. 7, a shaft 74 having a cut portion 74a provided at one end thereof is inserted into the internal space of the cylindrical outer member 72 whose one end is closed. Has been placed. In the flow path defining member 70, as shown in FIGS. 7A to 7E, the shaft body 74 rotates inside the outer member 72 while reciprocating along the length direction of the shaft body 74. In the flow path defining member 70, the fluid that has flowed in from the inflow hole 72 a provided on the side surface on one side of the outer member 72 by the reciprocating / rotating motion of the cut portion 74 a accompanying the reciprocating / rotating motion of the shaft body 74. Flows out from an outflow hole 72b provided on the other side surface of the outer shell member 72. In the flow path defining member 70, the amount of fluid flowing out from the inflow hole 72a and out of the outflow hole 72b while the shaft body 74 is reciprocated (and rotated once) is reduced between the cut portion 74a and the outer member 72. The size is defined to correspond to the space surrounded by the inner peripheral surface. The shape and configuration of the flow path defining member of the present invention are not particularly limited.

ジルコニアからなる流路規定部材は、例えば下記のような方法で製造することができる。例えば、ジルコニア粉末をCIPなどの成形方法にて、0.8〜1.5ton/cmの成形圧にて成形し、所望の形状に切削加工した後、1350〜1600℃にて焼成し、所望の形状に研削加工すればよい。この際、いわゆるホーニング加工を実施することで、軸部材と外郭部材とのクリアランスを、中央部に比べて端部の方がより広くすることができる。また、焼結後にHIP(熱間部水圧成形)を行うことで、表面に発生するボイドを比較的小さくし、且つ、強度・硬度を比較的高くすることができる。 The flow path defining member made of zirconia can be manufactured, for example, by the following method. For example, zirconia powder is molded by a molding method such as CIP at a molding pressure of 0.8 to 1.5 ton / cm 2 , cut into a desired shape, and then fired at 1350 to 1600 ° C. What is necessary is just to grind to the shape. At this time, by performing so-called honing, the clearance between the shaft member and the outer member can be made wider at the end portion than at the central portion. Further, by performing HIP (hot part hydraulic forming) after sintering, voids generated on the surface can be made relatively small, and the strength and hardness can be made relatively high.

尚、必要に応じて、仕上げ加工としてELID研削、テープ研磨などで仕上げてもよい。例えば、鋳鉄ボンドにて、60Vか90Vの20〜90%の範囲で電圧をかけて研削加工を行えばよい。また、例えば、砥粒の入ったテープにて研磨加工を行えばよい。   In addition, you may finish by ELID grinding, tape grinding | polishing etc. as finishing as needed. For example, a grinding process may be performed by applying a voltage in a range of 20 to 90% of 60V or 90V with a cast iron bond. Further, for example, polishing may be performed with a tape containing abrasive grains.

セラミックスの研削加工においては、例えば、ダイヤモンド砥粒などの研削部材がセラミックスに当たって、その接触応力によりクラックを発生させ、砥粒の通過とともに切り屑として掘り起こし加工が進行する。このときに発生する加工面の微視的な破壊は、応力の大小等に左右されるものである。研削加工の条件を制御することで、摺接面の表面形状や単斜晶率の割合を制御することができる。   In the grinding of ceramics, for example, a grinding member such as diamond abrasive grains hits the ceramics to generate a crack due to the contact stress, and as the abrasive grains pass, the machining progresses by digging up as chips. The microscopic destruction of the processed surface that occurs at this time depends on the magnitude of the stress. By controlling the grinding conditions, the surface shape of the sliding contact surface and the ratio of the monoclinic crystal ratio can be controlled.

実験1;図1に示す構成の流路規定部材を用い、第1流通孔から第3流通孔へと連続して第1の薬液を流した際の、軸部材と外郭部材の間隙からの薬液漏れの発生の有無、および、吐出ノズルから吐出される薬液に含まれるコンタミの有無、の双方について確認した。   Experiment 1: Using the flow path defining member having the configuration shown in FIG. 1, the chemical solution from the gap between the shaft member and the outer member when the first chemical solution was continuously flowed from the first flow hole to the third flow hole Both the presence / absence of leakage and the presence / absence of contamination contained in the chemical discharged from the discharge nozzle were confirmed.

流路規定部材は、外郭部材を、軸方向の長さ;約20mm、内径;約5mm、外径;約10mm、とした。また、軸部材を、外径;約5mm、軸方向の長さ;約25mm、とした。実験例として、軸部材の外面のRSmの大きさ、および外郭部材と軸部材とのクリアランス(軸方向の中央部分のクリアランス)が各々異なる、複数の実験例サンプルNo.1〜No.10を作製し、各実験例サンプルNo.1〜No.10各々について、薬液漏れの発生の有無、および吐出薬液に含まれるコンタミネーションの有無について調査した。   As the flow path defining member, the outer member has an axial length: about 20 mm, an inner diameter: about 5 mm, and an outer diameter: about 10 mm. The shaft member had an outer diameter of about 5 mm and an axial length of about 25 mm. As an experimental example, a plurality of experimental sample Nos. 1 and 2 in which the size of RSm on the outer surface of the shaft member and the clearance between the outer member and the shaft member (clearance at the central portion in the axial direction) are different. 1-No. 10 was prepared, and each experimental example sample No. 1-No. For each of the ten samples, the presence or absence of occurrence of chemical leakage and the presence or absence of contamination contained in the discharged chemical were investigated.

この際、薬液として粘度2000ppsの液体を用い、この液体を、第1液体供給手段であるポンプ装置によって液圧100kPaに加圧して流路規定部材に供給し、流路規定部材を12時間連続して通過させた。下記表1に、各実験例サンプルを用いた際の、薬液漏れ発生の有無、および吐出薬液に含まれるコンタミネーションの有無、のそれぞれの結果を示している。   At this time, a liquid having a viscosity of 2000 pps is used as the chemical liquid, and this liquid is pressurized to a liquid pressure of 100 kPa by the pump device as the first liquid supply means and supplied to the flow path defining member. And let it pass. Table 1 below shows the results of the presence or absence of occurrence of chemical leakage and the presence or absence of contamination contained in the discharged chemical when each experimental example sample is used.

ここで薬液漏れが発生しているとは30分当たりの漏れ量が0.25g以上の状態のことをいう。また、コンタミネーションが含まれているとは、1μm以上のコンタミネーションが1個以上であったことをいう。   Here, the occurrence of chemical leakage means that the amount of leakage per 30 minutes is 0.25 g or more. Further, “contamination is included” means that there is one or more contamination of 1 μm or more.

Figure 2009236179
Figure 2009236179

表1から分かるように、RSmが0.08mm以下の実験サンプルでは、いずれもコンタミネーションが発生しなかった。また、RSmが0.005〜0.015mmの実験サンプルでは、薬液の漏れが発生しない。また、RSmが0.005mm〜0.008mmでは、コンタミネーションの発生および薬液の漏れの双方を、抑制することができた。   As can be seen from Table 1, no contamination occurred in any of the experimental samples whose RSm was 0.08 mm or less. Moreover, in the experimental sample with RSm of 0.005 to 0.015 mm, no chemical leakage occurs. Further, when the RSm is 0.005 mm to 0.008 mm, both the occurrence of contamination and the leakage of the chemical solution can be suppressed.

実験2;
上記実験例1と同様の条件で測定した複数の実験サンプルについて、薬液の漏れ量を測定した。この実験例2では、軸体と外郭部材とのクリアランスの大きさが異なる複数の実験例サンプルNo.11〜14について、薬液として粘度2000ppsの液体を用い、この液体を、第1液体供給手段であるポンプ装置によって液圧100kPaに加圧して流路規定部材に供給し、流路規定部材を12時間連続して通過させた。下記表2に、各実験例サンプルのクリアランスの大きさと、各サンプルを用いた際の薬液の漏れ出し量を示している。なお、各実験サンプルについて、薬液の漏れ出し量を3回繰り返し測定した。表2に示す薬液漏れだし量の数値は、漏れ出し量の測定値3回分を平均した値である。また、図8には、表2に示す本実験例2の結果を、グラフとして示している。
Experiment 2;
About the some experimental sample measured on the conditions similar to the said Experimental example 1, the leakage amount of the chemical | medical solution was measured. In this Experimental Example 2, a plurality of Experimental Sample Nos. With different clearance sizes between the shaft body and the outer member. About 11-14, the liquid with a viscosity of 2000 pps is used as a chemical | medical solution, this liquid is pressurized to the liquid pressure of 100 kPa with the pump apparatus which is a 1st liquid supply means, is supplied to a flow-path definition member, and a flow-path prescription | regulation member is supplied for 12 hours. Passed continuously. Table 2 below shows the clearance size of each experimental sample and the amount of chemical leakage when each sample is used. In addition, about each experimental sample, the leakage amount of the chemical | medical solution was measured repeatedly 3 times. The numerical value of the amount of leaking chemical solution shown in Table 2 is a value obtained by averaging three measured values of the leakage amount. Further, in FIG. 8, the result of this experimental example 2 shown in Table 2 is shown as a graph.

Figure 2009236179
Figure 2009236179

表2および図8に示すグラフからわかるように、クリアランスの大きさを6μm以下とすると、流路規定部材からの薬液の漏れ量を、比較的少なく抑えることが可能であることがわかる。   As can be seen from the graphs shown in Table 2 and FIG. 8, when the clearance is 6 μm or less, it is found that the amount of leakage of the chemical solution from the flow path defining member can be suppressed to a relatively small value.

以上、本発明の流路規定部材および液滴吐出装置について説明したが、本発明の流路規定部材および液滴吐出装置は、上記実施例に限定されるものでなく、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。   The flow path defining member and the droplet discharge device of the present invention have been described above. However, the flow path defining member and the droplet discharge device of the present invention are not limited to the above-described embodiments, and depart from the gist of the present invention. Of course, various improvements and modifications may be made without departing from the scope.

本発明の流路規定部材の一実施形態を備えて構成される、本発明の液体吐出装置の一実施形態について説明する概略図である。It is the schematic explaining one Embodiment of the liquid discharge apparatus of this invention comprised including one Embodiment of the flow-path definition member of this invention. 本発明の流路規定部材が備える軸部材の一実施形態の概略斜視図である。It is a schematic perspective view of one Embodiment of the shaft member with which the flow-path definition member of this invention is provided. 本発明の流路規定部材の一実施形態の概略断面図である。It is a schematic sectional drawing of one Embodiment of the flow-path definition member of this invention. 本発明の流路規定部材について説明する概略図であり、外郭部材の中央部近傍を拡大して示す図である。It is the schematic explaining the flow-path definition member of this invention, and is a figure which expands and shows the center part vicinity of an outer shell member. 輪郭曲線要素の平均長さ(RSm)について説明する図である。It is a figure explaining average length (RSm) of a contour curve element. (a)〜(d)は、本発明の流路規定部品の他の実施形態について説明する概略図である。(A)-(d) is the schematic explaining other embodiment of the flow-path definition component of this invention. (a)〜(e)は、本発明の流路規定部品の他の実施形態について説明する概略図である。(A)-(e) is the schematic explaining other embodiment of the flow-path definition component of this invention. 本発明の流路規定部材の一例を含む複数のサンプルを用いて行った、実験例の結果の一例であり、各サンプル毎の薬液漏れだし量を示すグラフである。It is a graph which shows an example of the result of the experiment example performed using the some sample containing an example of the flow-path definition member of this invention, and shows the chemical | medical solution leak amount for every sample.

符号の説明Explanation of symbols

1 液体供給装置
2 第1液体供給手段
4 第2液体供給手段
6 吐出ノズル
10 流路切替バルブ
12 外郭部材
14 軸部材
16a 第1流入孔
16b 第2流入孔
18a 第1流出孔
18b 第2流出孔
20 枠体
22a 第1流通孔
22b 第2流通孔
22c 第3流通孔
23 流出路
60 ポンプ部材
66 固定弁体
67a 第1の可動弁体
67b 第2の可動弁体
68 入路ポート
69 出路ポート
DESCRIPTION OF SYMBOLS 1 Liquid supply apparatus 2 1st liquid supply means 4 2nd liquid supply means 6 Discharge nozzle 10 Flow path switching valve 12 Outer member 14 Shaft member 16a 1st inflow hole 16b 2nd inflow hole 18a 1st outflow hole 18b 2nd outflow hole 20 Frame body 22a 1st flow hole 22b 2nd flow hole 22c 3rd flow hole 23 Outflow path 60 Pump member 66 Fixed valve body 67a 1st movable valve body 67b 2nd movable valve body 68 Inlet port 69 Outlet port

Claims (8)

内部空間を有し、前記内部空間と連通した貫通孔を備えた筒状体と、
前記内部空間に挿入され、前記貫通孔と連通可能な流路を備えた軸部材と、を有し、
前記軸部材が軸方向を中心に回転されることで前記貫通孔と前記流路との連通状態が変化し、前記貫通孔から前記内部空間の側へ流入される流体の経路が、前記連通状態に応じて規定される流路規定部材であって、
前記筒状体の内周面と前記軸部材の外周面との間隙は、前記軸部材の長さ方向の端部の側が、前記軸部材の長さ方向の中央位置に比べて大きいことを特徴とする流路規定部材。
A cylindrical body having an internal space and having a through hole communicating with the internal space;
A shaft member that is inserted into the internal space and has a flow path that can communicate with the through hole;
The communication state between the through hole and the flow path is changed by rotating the shaft member about the axial direction, and the path of the fluid flowing from the through hole toward the inner space is the communication state. A flow path defining member defined according to
The gap between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the shaft member is such that the end side in the length direction of the shaft member is larger than the center position in the length direction of the shaft member. A flow path defining member.
前記軸部材の長さ方向の中央位置における前記間隔が6μm以下であることを特徴とする請求項1に記載の流路規定部材。   2. The flow path defining member according to claim 1, wherein the interval at a central position in the length direction of the shaft member is 6 μm or less. 前記軸部材および前記筒状体は、ジルコニアを主成分とすることを特徴とする請求項1または2記載の流路規定部材。   The flow path defining member according to claim 1, wherein the shaft member and the cylindrical body are mainly composed of zirconia. 前記軸部材の外周面に、円周方向に沿って連続した研削条痕を有することを特徴とする請求項3記載の流路規定部材。   The flow path defining member according to claim 3, further comprising a grinding streak continuous along a circumferential direction on an outer peripheral surface of the shaft member. 前記軸部材の外周面の、前記軸部材の長さ方向に沿った、JIS B0601−2001に規定される輪郭曲線要素の平均長さRSmが0.005〜0.008mmであることを特徴とする請求項3または4に記載の流路規定部材。   The average length RSm of the contour curve element defined in JIS B0601-2001 along the length direction of the shaft member on the outer peripheral surface of the shaft member is 0.005 to 0.008 mm. The flow path defining member according to claim 3 or 4. 前記軸部材の外周面は、ジルコニアの単斜晶の割合が5mol%以下であることを特徴とする請求項3〜5のいずれかに記載の流路規定部材。   6. The flow path defining member according to claim 3, wherein a ratio of monoclinic zirconia is 5 mol% or less on the outer peripheral surface of the shaft member. 前記軸部材および前記筒状体に含まれるYの割合が2mol%以上かつ6mol%以下であることを特徴とする請求項3〜6のいずれかに記載の流路規定部材。 The flow path regulating member according to claim 3, wherein a ratio of Y 2 O 3 contained in the shaft member and the cylindrical body is 2 mol% or more and 6 mol% or less. 請求項1〜7のいずれかの流路規定部材と、
前記貫通孔から前記内部空間に向けて液体を供給する液体供給部と、
前記流路規定部材によって規定された流路を通って流れた液体を吐出する吐出部と、
を備えたことを特徴とする液体吐出装置。
A flow path defining member according to any one of claims 1 to 7,
A liquid supply section for supplying liquid from the through hole toward the internal space;
A discharge section for discharging the liquid flowing through the flow path defined by the flow path defining member;
A liquid ejection apparatus comprising:
JP2008081172A 2008-03-26 2008-03-26 Flow path regulating member and liquid ejection device Active JP5188234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081172A JP5188234B2 (en) 2008-03-26 2008-03-26 Flow path regulating member and liquid ejection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081172A JP5188234B2 (en) 2008-03-26 2008-03-26 Flow path regulating member and liquid ejection device

Publications (2)

Publication Number Publication Date
JP2009236179A true JP2009236179A (en) 2009-10-15
JP5188234B2 JP5188234B2 (en) 2013-04-24

Family

ID=41250385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081172A Active JP5188234B2 (en) 2008-03-26 2008-03-26 Flow path regulating member and liquid ejection device

Country Status (1)

Country Link
JP (1) JP5188234B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235962A (en) * 2010-05-04 2011-11-24 Heraeus Medical Gmbh Dispensing device for cartridge
JP2017067079A (en) * 2015-09-28 2017-04-06 日立オートモティブシステムズ株式会社 Flow control valve and cooling system
JP2019039433A (en) * 2018-10-29 2019-03-14 伸郎 池永 External combustion rotary engine
JPWO2020026777A1 (en) * 2018-07-31 2021-08-19 国立大学法人九州大学 Manufacturing methods for seal members, cocks, reactors and chemical products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044371A (en) * 1990-04-21 1992-01-08 Toyo Jidoki Co Ltd Direction control valve for filler churning/mixing device of packing machine
JPH04351379A (en) * 1991-05-30 1992-12-07 Kyocera Corp Ceramic disc valve
JP2004190182A (en) * 2002-12-11 2004-07-08 Tsudakoma Corp Apparatus for changing over fluid flow path of loom
JP2007132427A (en) * 2005-11-10 2007-05-31 Adeka Corp Valve body, composite valve, fluid supply line having cleaning function using composite valve and fluid vessel with composite valve
JP2007162761A (en) * 2005-12-09 2007-06-28 Matsushita Electric Works Ltd Flow passage control valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044371A (en) * 1990-04-21 1992-01-08 Toyo Jidoki Co Ltd Direction control valve for filler churning/mixing device of packing machine
JPH04351379A (en) * 1991-05-30 1992-12-07 Kyocera Corp Ceramic disc valve
JP2004190182A (en) * 2002-12-11 2004-07-08 Tsudakoma Corp Apparatus for changing over fluid flow path of loom
JP2007132427A (en) * 2005-11-10 2007-05-31 Adeka Corp Valve body, composite valve, fluid supply line having cleaning function using composite valve and fluid vessel with composite valve
JP2007162761A (en) * 2005-12-09 2007-06-28 Matsushita Electric Works Ltd Flow passage control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235962A (en) * 2010-05-04 2011-11-24 Heraeus Medical Gmbh Dispensing device for cartridge
JP2017067079A (en) * 2015-09-28 2017-04-06 日立オートモティブシステムズ株式会社 Flow control valve and cooling system
JPWO2020026777A1 (en) * 2018-07-31 2021-08-19 国立大学法人九州大学 Manufacturing methods for seal members, cocks, reactors and chemical products
JP7386538B2 (en) 2018-07-31 2023-11-27 国立大学法人九州大学 Cooks, reaction equipment, and chemical product manufacturing methods
JP2019039433A (en) * 2018-10-29 2019-03-14 伸郎 池永 External combustion rotary engine

Also Published As

Publication number Publication date
JP5188234B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5188234B2 (en) Flow path regulating member and liquid ejection device
TWI384123B (en) A rotary pump, hydrodynamic mixer with a rotary pump, and also the use of the rotary pump for the processing of fluids
JP2007502939A (en) Volumetric pump with piston and / or liner with vapor deposited polymer surface
CN105234824A (en) Device and method for processing surface texture through micro-abrasive multiphase jetting
CN108457852A (en) Removable piston rod sleeve for fluid pump
JP2008215494A (en) Flow passage switching valve
WO2006119223A3 (en) Protective coatings for pumps
JP6857643B2 (en) Needle valve
JP2016032805A (en) Microfluidic outflow method and microfluidic dispenser
KR20200002054A (en) Abrasive Flow Machine Comprising Pumps for Applying pressure in the Opposite Direction
JP2002355746A (en) Method and device for polishing inner surface of pipe
JPH11230366A (en) Mechanical seal and rotary joint for slurry fluid
TW201929088A (en) Chemical mechanical polishing pad with internal channels
JP2007044631A (en) Method of supplying aqueous two-liquid urethane coating material
WO2021019956A1 (en) Honing tool and honing machining method
JP2013113421A (en) Flow path specifying member and fluid quantitative delivery apparatus
JP2012011500A (en) Polishing apparatus
JP2004278557A (en) Ceramic valve, its manufacturing method, and valve unit
JP2008137092A (en) Fluid polishing device
JP7123184B2 (en) plunger pumps, fluid delivery devices and liquid chromatography
KR20090005431U (en) Syringe Pump
JP4835220B2 (en) Grinding method
JP2001138238A (en) Slurry pump
KR102469357B1 (en) Selective polishing device for irregular internal channels
JP6505474B2 (en) Hand shower gun and water hammer reduction mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150