JP2008137092A - Fluid polishing device - Google Patents

Fluid polishing device Download PDF

Info

Publication number
JP2008137092A
JP2008137092A JP2006323318A JP2006323318A JP2008137092A JP 2008137092 A JP2008137092 A JP 2008137092A JP 2006323318 A JP2006323318 A JP 2006323318A JP 2006323318 A JP2006323318 A JP 2006323318A JP 2008137092 A JP2008137092 A JP 2008137092A
Authority
JP
Japan
Prior art keywords
viscosity liquid
abrasive grains
polishing
low
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006323318A
Other languages
Japanese (ja)
Inventor
Katsuya Yamauchi
克哉 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006323318A priority Critical patent/JP2008137092A/en
Publication of JP2008137092A publication Critical patent/JP2008137092A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To polish minute holes of a fuel injection nozzle by a fluid for polishing accurately and prevent wear of a member of a polishing device and replace abrasive grains for polishing easily. <P>SOLUTION: This fluid polishing device for the minute hole by use of a low viscosity liquid 6 and polishing abrasive grains 5 is provided with: a low viscosity liquid pressure flow passage 11 for feeding the pressurized low viscosity liquid 6 into the minute holes 2 and polishing abrasive grain pressurizing confluent means (a cylinder 13; a polishing abrasive grain supply passage 14, and a check valve 15) for joining the polishing abrasive grains 5 with the low viscosity liquid 6 in the low viscosity liquid pressure flow passage 11 by pressurizing the polishing abrasive grains 5. The polishing abrasive grains can be uniformly dispersed in the low viscosity liquid without using additive such as dispersing agent and viscosity of the polishing fluid is properly controlled to polish accurately and easily. The polishing abrasive grains are mixed in only a partial section to reduce area of a worn section as much as possible. Any desired amount of polishing abrasive grains is supplied securely and simply. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、エンジンの燃料噴射用インジェクタなどの微小孔の研磨に用いられる流体研磨装置に関するものである。   The present invention relates to a fluid polishing apparatus used for polishing fine holes such as an injector for fuel injection of an engine.

エンジンの燃料噴射ノズルの噴口などには、排気ガス性能向上のための噴霧を微細化させるため、径0.2mm以下の微細穴でありながら、流体の抵抗を削減することで大きな流量を得ることが求められる。また、精密油圧制御弁などにも、正確に制御された微細穴(オリフィス)が用いられる。
そこで、流体に研磨砥粒を混合し、ノズル内部より圧送することで、微細穴角部のR面取りを行い、穴径を変化させずに流量を増大(流量係数を増加)させる方法が採られている。そして、使用流体(燃料あるいは作動油)の微細穴からの流量特性のバラツキは、エンジン性能や油圧特性に大きな影響を与えるため、正確に狙った流量に調整する必要がある。
以前は、粘土状の高い粘度の流体に混合していたが、効率化のために使用流体の粘度に近い低粘度流体を用い、その流量を監視しながら加工を行うことで、求められる流量に迅速に到達させることが可能になっている(例えば特許文献1、2参照)。
また、加圧エアーにブラスト材を混合してノズルの憤口を研磨する方法も提案されているが(特許文献3参照)、乾式の研磨では摩擦力が大きすぎて微小孔にブラスト材が詰まりやすいという問題がある。また、加圧エアーを用いた研磨では、流量を正確に管理しつつ微小孔の研磨を調整することが難しい。
In order to refine the spray for improving the exhaust gas performance at the nozzle of the fuel injection nozzle of the engine, a large flow rate can be obtained by reducing the resistance of the fluid while being a fine hole with a diameter of 0.2 mm or less Is required. Also, precisely controlled fine holes (orifices) are used for precision hydraulic control valves and the like.
Therefore, a method is adopted in which the abrasive grains are mixed with the fluid and pumped from the inside of the nozzle to round the corners of the fine holes to increase the flow rate (increase the flow coefficient) without changing the hole diameter. ing. The variation in the flow rate characteristic from the fine hole of the working fluid (fuel or hydraulic fluid) has a great influence on the engine performance and the hydraulic pressure characteristic, so it is necessary to adjust the flow rate accurately.
Previously, it was mixed with clay-like high-viscosity fluid, but for efficiency, a low-viscosity fluid close to the viscosity of the fluid used was used, and processing was performed while monitoring the flow rate to achieve the required flow rate. It can be reached quickly (see, for example, Patent Documents 1 and 2).
In addition, a method has been proposed in which a blasting material is mixed with pressurized air to polish the nozzle mouth (see Patent Document 3). However, in dry polishing, the frictional force is too great and the blasting material is clogged into micro holes. There is a problem that it is easy. Further, in polishing using pressurized air, it is difficult to adjust the polishing of the micropores while accurately managing the flow rate.

特許文献1、2で示される方法では、低粘度流体に研磨砥粒を混合したスラリーを微小孔に加圧しながら流量や流速を管理しつつ供給して研磨を行っている。その一例を図4に基づいて説明する。
この例は、油圧による加圧をシリンダ2本を採用して行うものである。
研磨媒体として低粘度の流体(水、シリコンオイル、植物油、鉱物油、合成油など)に、研磨砥粒(アルミナ、炭化珪素、CBN、ダイヤモンドなど)を均一に混入(以下スラリ)し、スラリタンク20に貯蔵される。なお、研磨砥粒は、流体より重いため、分散剤などを混入し、沈殿しないような処理が行われる。スラリタンク20内のスラリは、スラリ温調器21で温度調整がなされる。
In the methods disclosed in Patent Documents 1 and 2, polishing is performed by supplying a slurry obtained by mixing abrasive grains to a low-viscosity fluid while controlling the flow rate and flow rate while pressing the fine holes. One example will be described with reference to FIG.
In this example, hydraulic pressurization is performed using two cylinders.
Abrasive grains (alumina, silicon carbide, CBN, diamond, etc.) are uniformly mixed (slurry) into a low-viscosity fluid (water, silicon oil, vegetable oil, mineral oil, synthetic oil, etc.) as a polishing medium, and then a slurry tank. 20 stored. In addition, since the abrasive grains are heavier than the fluid, a treatment is performed in which a dispersing agent or the like is mixed and does not precipitate. The temperature of the slurry in the slurry tank 20 is adjusted by a slurry temperature controller 21.

ポンプでスラリを直接加圧すると研磨砥粒の摩擦により摩耗するため、油圧ユニット30では、シリンダ動作用バルブ31…31で方向制御、サーボバルブ32で一定の圧力に制御して油圧シリンダ33、33を加圧し、スラリシリンダ22、22に圧力を伝える。シリンダの変位量はシリンダ変位計34で検知される。サーボバルブ32の圧力制御は、スラリ圧力センサ28の信号をフィードバックし行われる。なお、油圧シリンダの代わりに電動シリンダを採用することも可能である。   When the slurry is directly pressurized by the pump, it is worn by the friction of the abrasive grains. Therefore, in the hydraulic unit 30, the hydraulic cylinders 33, 33 are controlled by the cylinder operation valves 31. And pressure is transmitted to the slurry cylinders 22 and 22. The displacement amount of the cylinder is detected by a cylinder displacement meter 34. The pressure control of the servo valve 32 is performed by feeding back the signal from the slurry pressure sensor 28. It is also possible to employ an electric cylinder instead of the hydraulic cylinder.

スラリ温調器21で温度制御されたスラリは、スラリバルブ23、24で方向制御され、スラリシリンダ22から押し出されてスラリフィルタ26を介して被削物であるノズル29に供給される。この際に、スラリ流量が流量計25で測定され、温調器用センサ27でスラリの温度が測定される。
上記スラリを高圧でノズル29の内側から通過させることで、研磨砥粒がノズル噴口のエッジ部および内径を少しずつ除去する。
スラリの流体としての特性を、実際に使用する流体(燃料や作動油)と比較することで把握し、スラリ流量の増加を、スラリ流量計25あるいはシリンダ変位計34を用いてリアルタイムで監視し、任意の設定流量で加工を完了させる。
なお、被削材エッジ部の研磨品質、完成後の流量ばらつきと加工時間は、砥粒およびメディアの粘度の均一性に大きく影響される。
特表平11−510437号公報 特開2005−177916号公報 特開2003−28032号公報
The direction of the slurry whose temperature is controlled by the slurry temperature controller 21 is controlled by the slurry valves 23 and 24, is pushed out from the slurry cylinder 22, and is supplied to the nozzle 29, which is a workpiece, through the slurry filter 26. At this time, the slurry flow rate is measured by the flow meter 25, and the temperature of the slurry is measured by the temperature controller sensor 27.
By passing the slurry from the inside of the nozzle 29 at a high pressure, the abrasive grains remove the edge part and the inner diameter of the nozzle nozzle little by little.
The characteristics of the slurry as a fluid are grasped by comparing with the fluid (fuel or hydraulic oil) actually used, and the increase in the slurry flow rate is monitored in real time using the slurry flow meter 25 or the cylinder displacement meter 34, Complete machining at any set flow rate.
The polishing quality of the work material edge, the flow rate variation after completion, and the processing time are greatly affected by the uniformity of the viscosity of the abrasive grains and the media.
Japanese National Patent Publication No. 11-510437 JP 2005-177916 A JP 2003-28032 A

しかし、上記のように流体に研磨砥粒を混入しただけでは、砥粒は短時間に沈殿する。スラリ内に研磨砥粒を均一に分散させるためには、分散剤などの分散性を向上させる添加剤を流体に混入させる必要がある。しかし添加剤による粘度変化や粘度のばらつきは、加工特性に大きな影響を与えるため、これを正確に制御することが必要であり、作業負担が増大する。また、スラリは、シリンダにより圧送されるが、硬い研磨砥粒はシリンダやバルブ、流量計等の構成部品を磨耗させるため、その寿命が短くなる。
さらに、微細穴形状(径、長さ)によって、スラリ内の研磨砥粒の充填密度および大きさには適正値が存在する。しかしスラリ全体に研磨砥粒が分散しているため、その変更にはスラリ全体を交換する必要があるが、小さな砥粒を完全に除去することは難しく、交換後に異なる研磨砥粒が混入するという問題がある。
However, if the abrasive grains are simply mixed in the fluid as described above, the abrasive grains precipitate in a short time. In order to uniformly disperse the abrasive grains in the slurry, it is necessary to mix an additive for improving dispersibility such as a dispersant into the fluid. However, the change in viscosity and the variation in viscosity due to the additive greatly affect the processing characteristics. Therefore, it is necessary to accurately control this, and the work load increases. Slurry is pumped by a cylinder, but hard abrasive grains wear components such as cylinders, valves, flow meters, etc., so their life is shortened.
Furthermore, there are appropriate values for the packing density and size of the abrasive grains in the slurry, depending on the shape of the fine holes (diameter and length). However, since the abrasive grains are dispersed throughout the slurry, it is necessary to replace the entire slurry for the change, but it is difficult to completely remove the small abrasive grains, and different abrasive grains are mixed after the replacement. There's a problem.

本発明は、上記事情を背景としてなされたものであり、分散剤を要することなく研磨砥粒の分散性を向上させるとともに、構成部品摩耗の減少と、砥粒交換の確実さと簡便さを向上をさせる流体研磨装置を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and improves the dispersibility of abrasive grains without the need for a dispersant, and reduces component wear and improves the certainty and simplicity of abrasive grain replacement. An object of the present invention is to provide a fluid polishing apparatus.

すなわち、本発明の流体研磨装置のうち、請求項1記載の発明は、低粘性液体と研磨砥粒とを用いた微小孔の流体研磨装置において、加圧された前記低粘性液体を前記微小孔に送給する低粘性液体圧力流路と、前記低粘性液体圧力流路内の前記低粘性液体に研磨砥粒を加圧して合流させる研磨砥粒加圧合流手段とを備えることを特徴とする。   That is, among the fluid polishing apparatuses according to the present invention, the invention according to claim 1 is a microporous fluid polishing apparatus using a low-viscosity liquid and abrasive grains. A low-viscosity liquid pressure channel that is fed to the low-viscosity liquid pressure channel, and abrasive-abrasive pressure merging means that pressurizes and merges the abrasive particles with the low-viscosity liquid in the low-viscosity liquid pressure channel. .

請求項2記載の流体研磨装置の発明は、請求項1記載の発明において、前記研磨砥粒加圧合流手段は、低粘性液体に沈積した研磨砥粒を低粘性液体への加圧により圧送する圧送装置であることを特徴とする。   A fluid polishing apparatus according to a second aspect of the invention is the invention according to the first aspect, wherein the polishing abrasive pressure confluence means pumps the abrasive grains deposited in the low-viscosity liquid by pressurizing the low-viscosity liquid. It is a pressure feeding device.

請求項3記載の流体研磨装置の発明は、請求項1または2に記載の発明において、前記研磨砥粒加圧合流手段はモーノポンプである、またはモーノポンプを含むものであることを特徴とする。   According to a third aspect of the present invention, there is provided the fluid polishing apparatus according to the first or second aspect, wherein the polishing abrasive pressure pressurizing / merging means is a mono pump or includes a mono pump.

請求項4記載の流体研磨装置の発明は、請求項1〜3のいずれかに記載の発明において、前記低粘性液流体は、微小孔で実際に使用する液状流体であることを特徴とする。   A fluid polishing apparatus according to a fourth aspect of the invention is characterized in that, in the invention according to any one of the first to third aspects, the low-viscosity liquid fluid is a liquid fluid that is actually used in micropores.

請求項5記載の流体研磨装置の発明は、請求項1〜4のいずれかに記載の発明において、前記合流点の上流側で、前記低粘性液体圧力流路と、前記研磨砥粒加圧合流手段の合流流路とにそれぞれチェック弁が設けられていることを特徴とする。   The invention of a fluid polishing apparatus according to claim 5 is the invention according to any one of claims 1 to 4, wherein the low-viscosity liquid pressure flow path and the abrasive abrasive pressure confluence are formed upstream of the confluence. A check valve is provided in each merging channel of the means.

本発明によれば、低粘性液体圧力流路において、加圧された低粘性液体に研磨砥粒が加圧されつつ合流されることで、合流地点以降で研磨砥粒が良好に分散した研磨用流体が得られる。該研磨用流体は、加圧された状態で微小孔に送給されて研磨に用いられる。主となる低粘性液体と、研磨砥粒とは、合流地点で混合されるため、それぞれの上流側では、液体の種別や研磨砥粒の種別を容易に変更することができる。また、研磨砥粒の流動も、主に上記合流地点以降となるので、各種部材の摩耗を避けて部材の損傷を極力小さくすることができる。低粘性流体の加圧は、研磨砥粒を含まないため、摩耗を招くことなく油圧、電動シリンダ等を用いて行うことができる。   According to the present invention, in the low-viscosity liquid pressure channel, the abrasive grains are joined to the pressurized low-viscosity liquid while being pressurized, so that the abrasive grains are dispersed well after the joining point. A fluid is obtained. The polishing fluid is fed into the micropores under pressure and used for polishing. Since the main low-viscosity liquid and the abrasive grains are mixed at the joining point, the type of liquid and the type of abrasive grains can be easily changed on the upstream side of each. Further, since the abrasive grains flow mainly after the above-mentioned joining point, it is possible to avoid wear of various members and minimize damage to the members. Pressurization of the low-viscosity fluid does not include abrasive grains, and therefore can be performed using hydraulic pressure, an electric cylinder, or the like without causing wear.

また、研磨砥粒加圧合流手段は、低粘性液体圧力流路に研磨砥粒を加圧して供給できるものであればよく、例えば、少量の低粘性液体を加えて研磨砥粒を沈積した状態で油圧、電動シリンダなどの圧送装置によって供給して合流させるものであってもよい。沈積した状態の研磨砥粒は流動が抑制されてシリンダなどの摩耗を小さくする。また、研磨砥粒加圧合流手段としては、一般に知られているモーノポンプを用いることができる。該モーノポンプに研磨砥粒と少量の低粘性液体とを加えて送給することで、低粘性液体圧力流路に、研磨砥粒を加圧した状態で混合することができる。また、前記した圧送装置とモーノポンプとを組み合わせ、例えば圧送装置の下流側にモーノポンプを配置して、研磨砥粒を少量の低粘性液体に分散させた状態で加圧された低粘性液体に合流させても良い。   The abrasive grain pressurizing / merging means may be any means capable of pressurizing and supplying the abrasive grains to the low-viscosity liquid pressure channel, for example, a state in which the abrasive grains are deposited by adding a small amount of low-viscosity liquid. And may be supplied and joined by a pressure feeding device such as a hydraulic or electric cylinder. The deposited abrasive grains are restrained from flowing to reduce wear of the cylinder and the like. Further, as a polishing abrasive pressure confluence means, a generally known MONO pump can be used. By adding and supplying abrasive grains and a small amount of low-viscosity liquid to the MONO pump, the abrasive grains can be mixed in a low-viscosity liquid pressure channel in a pressurized state. In addition, the above-described pumping device and the mono pump are combined, for example, a mono pump is arranged on the downstream side of the pumping device, and the abrasive grains are dispersed in a small amount of the low-viscosity liquid and joined to the pressurized low-viscosity liquid. May be.

なお、低粘性液体圧力流路では研磨砥粒が混合された後、直ちに微小孔に研磨砥粒が分散した低粘性液体を供給してもよく、また混合された研磨砥粒が低粘性液体中により均等に分散するように、所定長さの砥粒混合区間を確保してもよい。該区間の距離は、研磨砥粒の分散状態や圧力に基づいて適宜設定することができる。また、該砥粒混合区間に、研磨砥粒の均一分散を促進するために、ファン、スクリュウコンベヤなどの撹拌装置を設けることも可能である。   In the low-viscosity liquid pressure channel, after the abrasive grains are mixed, the low-viscosity liquid in which the abrasive grains are dispersed in the micropores may be supplied immediately, and the mixed abrasive grains are contained in the low-viscosity liquid. A predetermined length of the abrasive grain mixing section may be secured so as to disperse evenly. The distance of the section can be appropriately set based on the dispersion state and pressure of the abrasive grains. In addition, a stirring device such as a fan or a screw conveyor can be provided in the abrasive grain mixing section in order to promote uniform dispersion of the abrasive grains.

以上説明したように、本発明の流体研磨装置は、低粘性液体と研磨砥粒とを用いた微小孔の流体研磨装置において、加圧された前記低粘性液体を前記微小孔に送給する低粘性液体圧力流路と、前記低粘性液体圧力流路内の前記低粘性液体に研磨砥粒を加圧して合流させる研磨砥粒加圧合流手段とを備えるので、分散剤などの添加剤を用いずに低粘性液体中に研磨砥粒を均一に分散させることができる。この結果、流体の特性は使用流体単体相当となり流体粘度のばらつきが低減され、正確な研磨を容易に行うことができる。さらに、実際に使われる流体(燃料)をそのまま研磨装置用流体として使用でき、流体としての性能が同じになることで、性能の安定化が図られる。
また、油圧供給用シリンダなどには、研磨砥粒が混入されないため、シリンダやバルブの磨耗を防ぐことができる。また、研磨砥粒交換時に洗浄する部位が少なく、異種の研磨砥粒の混入を防ぐことができる、任意の研磨砥粒、量を確実に簡単に供給することができる効果がある。
As described above, the fluid polishing apparatus according to the present invention is a microporous fluid polishing apparatus that uses a low-viscosity liquid and abrasive grains, and is a low-pressure liquid feeder that supplies the pressurized low-viscosity liquid to the micropores. Since there are provided a viscous liquid pressure flow path and polishing abrasive pressure confluence means for pressurizing and joining the abrasive grains to the low viscosity liquid in the low viscosity liquid pressure flow path, an additive such as a dispersant is used. In addition, the abrasive grains can be uniformly dispersed in the low-viscosity liquid. As a result, the characteristics of the fluid are equivalent to the fluid used alone, the variation in fluid viscosity is reduced, and accurate polishing can be easily performed. Furthermore, the fluid (fuel) actually used can be used as it is as the fluid for the polishing apparatus, and the performance as the fluid becomes the same, so that the performance can be stabilized.
Further, since abrasive grains are not mixed in the hydraulic pressure supply cylinder or the like, it is possible to prevent wear of the cylinder and the valve. In addition, there are few parts to be cleaned at the time of polishing abrasive grain replacement, and there is an effect that it is possible to reliably and easily supply arbitrary polishing abrasive grains and amount that can prevent mixing of different kinds of abrasive grains.

以下に、本発明の一実施形態を図1〜図3に基づいて説明する。
研磨対象は、図1に示すディーゼルエンジン用の燃料噴射ノズル1の噴口の微小孔2であり、流体研磨によって微小孔2角部のR面取りを行う。
流体研磨装置10は、図2に示すように、油圧シリンダやポンプ(図示しない)によって加圧された清浄な低粘性液体をノズル1に対し送給する低粘性液体加圧流路11を備えている。低粘性液体は、好適には燃料噴射ノズル1に実際に使用される軽油を使用するのが望ましい。
低粘性液体加圧流路11には、チェック弁12が介設されており、該チェック弁12の下流側で、研磨砥粒供給路14が合流している。研磨砥粒供給路14の上流側は、チェック弁15を介して圧送装置としてシリンダ(油圧または電動)13に接続されている。これらシリンダ13、研磨砥粒供給路14、チェック弁15とによって本発明の研磨砥粒加圧合流手段が構成されている。
Below, one Embodiment of this invention is described based on FIGS. 1-3.
The object to be polished is the microhole 2 of the injection hole of the fuel injection nozzle 1 for a diesel engine shown in FIG. 1, and the chamfering of the corners of the microhole 2 is performed by fluid polishing.
As shown in FIG. 2, the fluid polishing apparatus 10 includes a low-viscosity liquid pressurizing channel 11 that supplies a clean low-viscosity liquid pressurized by a hydraulic cylinder or a pump (not shown) to the nozzle 1. . As the low-viscosity liquid, it is preferable to use light oil that is actually used in the fuel injection nozzle 1.
A check valve 12 is interposed in the low-viscosity liquid pressurizing flow path 11, and a polishing abrasive supply path 14 is joined downstream of the check valve 12. The upstream side of the abrasive grain supply path 14 is connected to a cylinder (hydraulic or electric) 13 as a pressure feeding device via a check valve 15. The cylinder 13, the abrasive grain supply path 14, and the check valve 15 constitute the abrasive grain pressurizing and merging means of the present invention.

合流後の低粘性液体加圧流路11は、コリオリ式流量計16を介して研磨対象となる燃料噴射ノズル1の燃料導入部1aに接続されている。コリオリ式流量計16は、図2(b)に示すように既知のものを用いることができる。
燃料噴射ノズル1の微小孔2の出口側には排液路17が接続されており、該排液路17はフィルタあるいは遠心分離器18に接続され、フィルタあるいは遠心分離器18の通液側に排液路17aが接続され、濾過物側に砥粒還流路17bが接続されている。排液路17aは、貯液槽19に接続され、砥粒還流路17bは、前記シリンダ13に接続されている。
The low-viscosity liquid pressurizing flow path 11 after joining is connected to the fuel introduction part 1a of the fuel injection nozzle 1 to be polished via a Coriolis flow meter 16. As the Coriolis type flow meter 16, a known one can be used as shown in FIG.
A drainage path 17 is connected to the outlet side of the microhole 2 of the fuel injection nozzle 1, and the drainage path 17 is connected to a filter or a centrifuge 18, and is connected to a liquid passing side of the filter or centrifuge 18. A drainage path 17a is connected, and an abrasive reflux path 17b is connected to the filtrate side. The drainage path 17 a is connected to the liquid storage tank 19, and the abrasive grain reflux path 17 b is connected to the cylinder 13.

次に、上記流体研磨装置10の動作について説明する。
適宜材料の研磨砥粒5は、シリンダ13内で低粘性液体6a中に沈殿させて保管され、常に重力方向に供給される。シリンダ13では、上澄みの低粘性液体6aを介して研磨砥粒5に加圧する。該研磨砥粒5は、該シリンダ13で加圧されつつ研磨砥粒供給路14を通して低粘性液体加圧流路11に供給される。この際に、研磨砥粒供給路14に設けられたチェック弁15で逆流が防止される。なお、上記低粘性液体6aは、後述する加圧された低粘性液体6と同材質のものが望ましい。
Next, the operation of the fluid polishing apparatus 10 will be described.
The abrasive grains 5 of appropriate materials are stored in the cylinder 13 by being precipitated in the low-viscosity liquid 6a, and are always supplied in the direction of gravity. In the cylinder 13, the abrasive grains 5 are pressurized through the supernatant low-viscosity liquid 6 a. The abrasive grains 5 are supplied to the low-viscosity liquid pressurizing flow path 11 through the abrasive grain supply path 14 while being pressurized by the cylinder 13. At this time, backflow is prevented by the check valve 15 provided in the abrasive grain supply path 14. The low-viscosity liquid 6a is preferably made of the same material as the pressurized low-viscosity liquid 6 described later.

一方、低粘性液体加圧流路11では、油圧シリンダやポンプによって加圧された清浄な低粘性液体6が送給され、上記した研磨砥粒供給路14との合流部において、該低粘性液体6に研磨砥粒5が混合される。この結果、加圧された低粘性液体6中に研磨砥粒5が速やかに分散する。研磨砥粒5を含む低粘性液体6は研磨用流体として、低粘性液体加圧流路11を通して下流側に送給され、コリオリ式流量計16で流量が計測されながら、燃料噴射ノズル1に供給される。燃料噴射ノズル1に供給された研磨用流体は、燃料導入部1aに導入された後、微細穴2角部のR面取りを行いながら微細穴2を通過して微細穴2の研磨も行う。   On the other hand, in the low-viscosity liquid pressurizing flow path 11, a clean low-viscosity liquid 6 pressurized by a hydraulic cylinder or a pump is fed, and the low-viscosity liquid 6 is joined at the junction with the abrasive grain supply path 14 described above. The abrasive grains 5 are mixed with the above. As a result, the abrasive grains 5 are quickly dispersed in the pressurized low viscosity liquid 6. The low-viscosity liquid 6 containing the abrasive grains 5 is fed to the downstream side as a polishing fluid through the low-viscosity liquid pressurizing channel 11 and supplied to the fuel injection nozzle 1 while the flow rate is measured by the Coriolis flow meter 16. The After the polishing fluid supplied to the fuel injection nozzle 1 is introduced into the fuel introduction part 1a, the fine hole 2 is also polished by passing through the fine hole 2 while chamfering the corners of the fine hole two corners.

研磨を行った研磨用流体は、排液路17を通ってフィルタあるいは遠心分離器18に至り、ここで濾過をされて低粘性液体のみが貯液槽19に貯液された後、低粘性液体を加圧する油圧シリンダやポンプに還流される。一方、前記フィルタあるいは遠心分離器18で濾過された濾過物である研磨砥粒5は、砥粒還流路17bを通して再度前記シリンダ13に供給される。上記のように研磨に用いた研磨用流体をフィルタなどによって低粘性液体と、研磨砥粒とに分離して再利用することができる。
前記コリオリ式流量計16で測定された流量が設定流量に達すると、上記低粘性液体加圧流路11による低粘性液体の挿入およびシリンダ13による研磨砥粒の供給を停止して、研磨を終了する。上記によれば、分散剤を含まない研磨用流体で研磨を行うことができ、研磨用流体の粘度のばらつきなどによる研磨の不均一、不正確さを防止することができる。
The polished polishing fluid passes through the drainage path 17 to the filter or the centrifugal separator 18 where it is filtered and only the low-viscosity liquid is stored in the liquid storage tank 19 and then the low-viscosity liquid. It is returned to the hydraulic cylinder and pump that pressurizes the pressure. On the other hand, the abrasive grains 5 which are the filtrate filtered by the filter or the centrifugal separator 18 are supplied again to the cylinder 13 through the abrasive reflux path 17b. As described above, the polishing fluid used for polishing can be separated into a low-viscosity liquid and abrasive grains by a filter or the like and reused.
When the flow rate measured by the Coriolis flow meter 16 reaches a set flow rate, the insertion of the low-viscosity liquid by the low-viscosity liquid pressurizing flow path 11 and the supply of the abrasive grains by the cylinder 13 are stopped to finish the polishing. . According to the above, polishing can be performed with a polishing fluid that does not contain a dispersant, and unevenness and inaccuracy of polishing due to variations in the viscosity of the polishing fluid can be prevented.

また、研磨対象の変更により研磨砥粒の種別を変更する場合は、シリンダ13に収容された研磨砥粒を交換して、合流地点の下流側で低粘性液体加圧流路11の洗浄、交換等を行えばよい。合流地点の上流側において低粘性液体加圧流路11の洗浄、交換等は必要ない。また、研磨砥粒の流動は、合流地点の下流側で大きく生じ流路の摩耗が生じるため、合流地点の下流側の低粘性液体加圧流路11を適宜取り替えるなどの保守を行えば足り、合流地点の上流側での流路や圧送装置などの摩耗を回避することができる。   Further, when changing the type of abrasive grains by changing the polishing target, the abrasive grains accommodated in the cylinder 13 are replaced, and the low-viscosity liquid pressurizing channel 11 is washed and replaced on the downstream side of the joining point. Can be done. There is no need to clean, replace, etc. the low-viscosity liquid pressurizing flow path 11 on the upstream side of the junction. Further, the flow of the abrasive grains greatly occurs on the downstream side of the merging point and wear of the flow path. Therefore, it is sufficient to perform maintenance such as appropriately replacing the low-viscosity liquid pressurizing channel 11 on the downstream side of the merging point. It is possible to avoid wear of the flow path and the pumping device on the upstream side of the point.

さらに、上記実施形態では、低粘性液体加圧流路における合流地点下流側で研磨砥粒の分散状態を良好に保ったままで高圧で圧送する方法の一つとして、上記合流地点の下流側にファンなどの撹拌装置を設けることができる。
また、上記実施形態では、研磨砥粒加圧合流手段として、シリンダなどの圧送装置を用いたが、これに変えて図3に示すモーノポンプ40などを用いることができる。
モーノポンプ40は既知のものであり、雌ねじ形状のステータ43内に、偏心させた雄ねじ形状のロータ44を配して、該ロータ44を回転させながらステータ43内で流体を圧送することができる。
Furthermore, in the above-described embodiment, as one of the methods of pumping at a high pressure while maintaining the dispersed state of the abrasive grains on the downstream side of the joining point in the low-viscosity liquid pressurizing flow path, a fan or the like is provided on the downstream side of the joining point. The stirring device can be provided.
Moreover, in the said embodiment, although pumping apparatuses, such as a cylinder, were used as an abrasive grain pressurization joining means, it can change to this and can use the MONO pump 40 etc. which are shown in FIG.
The MONO pump 40 is known, and an eccentric male screw-shaped rotor 44 is arranged in a female screw-shaped stator 43, and fluid can be pumped in the stator 43 while rotating the rotor 44.

少量の低粘性流体と研磨砥粒とは、供給口41を通して供給室42に収容した後、ステータ43内に導入されて送られる。このモーノポンプ40で圧送されることで、低粘性液体と研磨砥粒とは、均等に混合された状態で下流側へと送られ、前記合流地点で加圧された低粘性液体に合流される。
また、このモーノポンプは、上記シリンダ13と組み合わせて用いることもでき、シリンダ13の下流側の研磨砥粒供給路に設けて少量の低粘性液体と研磨砥粒とを均等に混合しつつ加圧して低粘性液体加圧流路11に合流させることもできる。
A small amount of low-viscosity fluid and abrasive grains are accommodated in the supply chamber 42 through the supply port 41 and then introduced into the stator 43 and sent. By being pumped by this MONO pump 40, the low-viscosity liquid and the abrasive grains are sent to the downstream side in an evenly mixed state and merged with the low-viscosity liquid pressurized at the merging point.
This MONO pump can also be used in combination with the cylinder 13 and is provided in the abrasive grain supply path downstream of the cylinder 13 to pressurize while mixing a small amount of low-viscosity liquid and abrasive grains evenly. It can also be made to merge with the low-viscosity liquid pressurization flow path 11.

以上、本発明について、上記実施形態に基づいて説明をしたが、本発明は上記実施形態の内容に限定をされるものではなく、本発明の範囲を逸脱しない範囲で適宜の変更が可能である。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the content of the said embodiment, In the range which does not deviate from the scope of the present invention, an appropriate change is possible. .

本発明の流体研磨装置の研磨対象となる燃料噴射ノズルを示す断面図である。It is sectional drawing which shows the fuel-injection nozzle used as the grinding | polishing object of the fluid grinding | polishing apparatus of this invention. 本発明の流体研磨装置の一実施形態を示す全体図である。1 is an overall view showing an embodiment of a fluid polishing apparatus of the present invention. 同じく、流体研磨装置の一実施形態に用いられるモーノポンプの構造を示す断面図である。Similarly, it is sectional drawing which shows the structure of the MONO pump used for one Embodiment of a fluid polishing apparatus. 従来の流体研磨装置の構成を示す全体図である。It is a general view which shows the structure of the conventional fluid polishing apparatus.

符号の説明Explanation of symbols

1 燃料噴射ノズル
2 微小孔
5 研磨砥粒
6 低粘性液体
10 流体研磨装置
11 低粘性液体加圧流路
12 チェック弁
13 シリンダ
15 チェック弁
16 コリオリ式流量計
DESCRIPTION OF SYMBOLS 1 Fuel injection nozzle 2 Micro hole 5 Polishing abrasive grain 6 Low viscosity liquid 10 Fluid polishing apparatus 11 Low viscosity liquid pressurization flow path 12 Check valve 13 Cylinder 15 Check valve 16 Coriolis type flow meter

Claims (5)

低粘性液体と研磨砥粒とを用いた微小孔の流体研磨装置において、
加圧された前記低粘性液体を前記微小孔に送給する低粘性液体圧力流路と、前記低粘性液体圧力流路内の前記低粘性液体に研磨砥粒を加圧して合流させる研磨砥粒加圧合流手段とを備えることを特徴とする流体研磨装置。
In a microporous fluid polishing apparatus using a low-viscosity liquid and abrasive grains,
A low-viscosity liquid pressure channel that feeds the pressurized low-viscosity liquid to the micropores, and an abrasive particle that presses and joins the abrasive particles to the low-viscosity liquid in the low-viscosity liquid pressure channel A fluid polishing apparatus comprising pressure joining means.
前記研磨砥粒加圧合流手段は、低粘性液体に沈積した研磨砥粒を低粘性液体への加圧により圧送する圧送装置であることを特徴とする請求項1記載の流体研磨装置。   2. The fluid polishing apparatus according to claim 1, wherein the polishing abrasive pressure confluence means is a pumping device that pumps the abrasive grains deposited in the low viscosity liquid by pressurizing the low viscosity liquid. 前記研磨砥粒加圧合流手段はモーノポンプである、またはモーノポンプを含むものであることを特徴とする請求項1または2に記載の流体研磨装置。   3. The fluid polishing apparatus according to claim 1, wherein the polishing abrasive pressure confluence means is a Mono pump or includes a Mono pump. 4. 前記低粘性液流体は、微小孔で実際に使用する液状流体であることを特徴とする請求項1〜3のいずれかに記載の流体研磨装置。   The fluid polishing apparatus according to claim 1, wherein the low-viscosity liquid fluid is a liquid fluid that is actually used in micropores. 前記合流点の上流側で、前記低粘性液体圧力流路と、前記研磨砥粒加圧合流手段の合流流路とにそれぞれチェック弁が設けられていることを特徴とする請求項1〜4のいずれかに記載の流体研磨装置。   5. The check valve according to claim 1, wherein a check valve is provided on each of the low-viscosity liquid pressure channel and the merging channel of the abrasive abrasive pressure merging unit on the upstream side of the merging point. The fluid polishing apparatus according to any one of the above.
JP2006323318A 2006-11-30 2006-11-30 Fluid polishing device Pending JP2008137092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323318A JP2008137092A (en) 2006-11-30 2006-11-30 Fluid polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323318A JP2008137092A (en) 2006-11-30 2006-11-30 Fluid polishing device

Publications (1)

Publication Number Publication Date
JP2008137092A true JP2008137092A (en) 2008-06-19

Family

ID=39599093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323318A Pending JP2008137092A (en) 2006-11-30 2006-11-30 Fluid polishing device

Country Status (1)

Country Link
JP (1) JP2008137092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286642A (en) * 2013-05-14 2013-09-11 太原理工大学 Fluid magnetic abrasive hole finishing processing device
CN110614588A (en) * 2019-10-16 2019-12-27 浙江工业大学 Rotary polishing device and method for blind hole polishing
CN114734365A (en) * 2022-06-13 2022-07-12 中国航发上海商用航空发动机制造有限责任公司 Surface finishing method of micro inner flow passage, micro inner flow passage workpiece and finishing medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286642A (en) * 2013-05-14 2013-09-11 太原理工大学 Fluid magnetic abrasive hole finishing processing device
CN110614588A (en) * 2019-10-16 2019-12-27 浙江工业大学 Rotary polishing device and method for blind hole polishing
CN110614588B (en) * 2019-10-16 2024-04-09 浙江工业大学 Rotary polishing device and method for polishing blind holes
CN114734365A (en) * 2022-06-13 2022-07-12 中国航发上海商用航空发动机制造有限责任公司 Surface finishing method of micro inner flow passage, micro inner flow passage workpiece and finishing medium
WO2023241408A1 (en) * 2022-06-13 2023-12-21 中国航发上海商用航空发动机制造有限责任公司 Surface finishing method for micro internal flow channel, micro internal flow channel workpiece, and finishing medium

Similar Documents

Publication Publication Date Title
JP4262775B2 (en) Method and apparatus for shaping orifice with abrasive slurry
US20220161387A1 (en) A method and apparatus for finishing a surface of a component
US9138863B2 (en) Particle-delivery in abrasive-jet systems
US8147293B2 (en) Fluid system and method for thin kerf cutting and in-situ recycling
JP5678380B2 (en) Cutting head and cutting nozzle for liquid / abrasive jet cutting device
US6688947B2 (en) Porous, lubricated nozzle for abrasive fluid suspension jet
EP1826411B1 (en) Rotary pump, hydrodynamic mixer with a rotary pump and use of the rotary pump to process fluids
US20210154799A1 (en) Abrasive suspension jet cutting system having reduced system wear and process materials reclamation
JP2013215854A (en) Abrasive water jet nozzle, and abrasive water jet machine
IT201600097457A1 (en) APPARATUS FOR WATER JET CUTTING
JP2008137092A (en) Fluid polishing device
CN107847985A (en) Steam sand blasting system with standing tank pressure
CN201544127U (en) Fluid supply device for grinding and polishing machine
CN103894935B (en) A kind of integrated form spray beam cleaned for mixing jet and jet flow cleaning method
US5538462A (en) Lapping compound supply system for a gear finishing machine
CN104476379B (en) A kind of atomizer crush and grind system
US6132482A (en) Abrasive liquid slurry for polishing and radiusing a microhole
JP2011005590A (en) Polishing device
JP2009226507A (en) Fluid polishing method
US10589234B2 (en) Wet disperser
JPH11197946A (en) Abrasive grain flow electrolytic polishing method and its working device
JPH01305168A (en) Plunger pump for slurry
JP2020075317A (en) Working liquid supply system
CN112605797A (en) Numerically controlled grinder with oil-gas lubricating device and working method thereof
JPS62193799A (en) Water-jet cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091020

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110315