JP2013113421A - Flow path specifying member and fluid quantitative delivery apparatus - Google Patents

Flow path specifying member and fluid quantitative delivery apparatus Download PDF

Info

Publication number
JP2013113421A
JP2013113421A JP2011262891A JP2011262891A JP2013113421A JP 2013113421 A JP2013113421 A JP 2013113421A JP 2011262891 A JP2011262891 A JP 2011262891A JP 2011262891 A JP2011262891 A JP 2011262891A JP 2013113421 A JP2013113421 A JP 2013113421A
Authority
JP
Japan
Prior art keywords
fluid
flow path
cylindrical member
peripheral surface
hole group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011262891A
Other languages
Japanese (ja)
Inventor
Yoshihiro Okawa
善裕 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011262891A priority Critical patent/JP2013113421A/en
Publication of JP2013113421A publication Critical patent/JP2013113421A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Self-Closing Valves And Venting Or Aerating Valves (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain quantitative discharge by specifying with high accuracy the amount of a fluid supplied to a groove part, to a fixed amount corresponding to the shape of the groove part.SOLUTION: A flow path specifying member 20 including a cylindrical member 4 and a member 2 of round column shape is switched into a first connection state in which a first through-hole group 4α is connected to a groove part 2b, a second connection state in which a second through-hole group 4β is connected to the groove part 2b, and a blocked state in which the groove part 2b is blocked with an inner peripheral surface 4e of the cylindrical member 4 between the first and second connection states by rotating the member 2 of round column shape in the neighborhood of a center axis 10. The fluid filled in the groove part 2b in the first state is discharged from the second through-hole group in the second state, thus discharging the fluid in the amount corresponding to the groove part 2b.

Description

本発明は、流体の経路を規定する部材、およびそれを用いた、流体の量を規定して定量で送出する流体定量送出装置に関する。   The present invention relates to a member that defines a fluid path, and a fluid quantitative delivery device that uses the member to regulate the amount of fluid and deliver the fluid quantitatively.

従来から、例えば半導体製造プロセス等におけるレジスト塗布工程等、様々な分野において、レジスト等の流体の流路を規定する部材や、所定量の流体を定量ずる送出する装置が求められている。   2. Description of the Related Art Conventionally, in various fields such as a resist coating process in a semiconductor manufacturing process or the like, there is a demand for a member that defines a flow path of a fluid such as a resist and a device that sends out a predetermined amount of fluid.

例えば特許文献1には、ステンレス材からなる金属バルブを有して構成された、液体を定量して吐出する装置が開示されている。特許文献1に開示された装置では、流路内にバルブを配置し、流路を流れる液体の流速と、バルブの開閉タイミングとによって、バルブの下流側へ吐出する流体の量を規定している。   For example, Patent Document 1 discloses a device that has a metal valve made of a stainless steel material and quantifies and discharges a liquid. In the apparatus disclosed in Patent Document 1, a valve is disposed in the flow path, and the amount of fluid discharged to the downstream side of the valve is defined by the flow rate of the liquid flowing through the flow path and the opening / closing timing of the valve. .

特開2006−275133号公報JP 2006-275133 A

しかしながら、ステンレス材等の金属バルブでは、耐摩耗性が比較的低く、このバルブから生じた金属成分が、吐出する液体にコンタミネーションとして混入することもあった。また、磨耗によって液体の吐出量が変化することもあり、液体吐出装置としての寿命は比較的短いものであった。また、流体の流速等が、例えば流体に圧力をかけるためのポンプの劣化による圧力変動や、流路内のコンタミネーション付着等に起因した流路内の変動等に応じて変化しやすく、バルブの開閉タイミングを制御しても、十分高い精度で液体を定量して吐出することができないといった課題があった。   However, a metal valve made of stainless steel or the like has a relatively low wear resistance, and a metal component generated from the valve may be mixed into the liquid to be discharged as contamination. Further, the discharge amount of the liquid may change due to wear, and the life as a liquid discharge device is relatively short. In addition, the flow rate of the fluid is likely to change depending on, for example, pressure fluctuation due to deterioration of the pump for applying pressure to the fluid, fluctuation in the flow path due to contamination in the flow path, etc. Even if the opening / closing timing is controlled, there is a problem that the liquid cannot be quantified and discharged with sufficiently high accuracy.

本発明は、かかる課題を解決することを目的とする。   The present invention aims to solve this problem.

本発明は、流体の流路を規定する部材であって、円筒状部材と、該円筒状部材の内側に挿入された、外周面に溝部が設けられた円柱状部材とを有し、前記円筒状部材は、外周面と内周面との間を貫通した貫通孔を複数備え、前記円柱状部材を中心軸周りに回転することで、複数の前記貫通孔のうちの一部の前記貫通孔からなる第1貫通孔群と前記溝部とが接続される第1の接続状態と、前記第1貫通孔群とは異なる複数の前記貫通孔からなる第2貫通孔群と前記溝部とが接続される第2の接続状態と、前記第1の接続状態と前記第2の接続状態との間における、前記溝部が前記円筒状部材の内周面で塞がれている閉塞状態とが切り替えられることを特徴とする流路規定部材を提供する。   The present invention is a member that defines a fluid flow path, and includes a cylindrical member, and a columnar member that is inserted inside the cylindrical member and has a groove on an outer peripheral surface thereof. The shape member includes a plurality of through holes penetrating between the outer peripheral surface and the inner peripheral surface, and rotating the columnar member around a central axis allows a part of the plurality of through holes to be formed. A first connection state in which the first through-hole group made of and the groove portion are connected, and a second through-hole group made up of a plurality of the through-holes different from the first through-hole group and the groove portion are connected. And a closed state in which the groove is closed by the inner peripheral surface of the cylindrical member between the first connected state and the second connected state. A flow path defining member is provided.

本発明はまた、前記流路規定部材の前記円柱状部材を中心軸周りに回転させて、前記第1の接続状態とした後に前記閉塞状態を経て前記第2の接続状態に切り替える回転手段と、前記第1の接続状態において、前記第1貫通孔群を構成する前記貫通孔の少なくとも1つから前記溝部に流体を流入させつつ前記第1貫通孔群の他の前記貫通孔から前記流体をオーバーフローさせる流体供給手段と、前記第2の接続状態において、前記第2貫通孔群を構成する前記貫通孔の少なくとも1つを介して前記溝部に気体を流入させて、流入させた該気体の圧力によって前記溝部内の前記流体を前記第2貫通孔群の他の前記貫通孔から
排出させる流体排出手段とを備えることを特徴とする流体定量送出装置を、併せて提供する。
The present invention also includes a rotating unit that rotates the columnar member of the flow path defining member around a central axis to switch to the second connection state through the closed state after the first connection state; In the first connection state, the fluid overflows from the other through-holes of the first through-hole group while fluid flows into the groove from at least one of the through-holes constituting the first through-hole group. A fluid supply means for causing the gas to flow into the groove portion through at least one of the through holes constituting the second through hole group in the second connection state, and by the pressure of the introduced gas A fluid fixed quantity delivery device characterized by comprising fluid discharging means for discharging the fluid in the groove from the other through holes of the second through hole group is also provided.

本発明の流路規定部材は、円柱状部材を中心軸周りに回転することで、複数の貫通孔のうちの一部の貫通孔からなる第1貫通孔群と溝部とが接続される第1の接続状態と、第1貫通孔群とは異なる複数の貫通孔からなる第2貫通孔群と溝部とが接続される第2の接続状態と、第1の接続状態と第2の接続状態との間における、溝部が円筒状部材の内周面で塞がれている閉塞状態とが切り替えられることで、第1の状態において溝部に供給された流体を、第2の状態において第2貫通孔群から排出させることができる。溝部に供給される流体の量は、溝部の形状に応じた一定量とすることができ、第1の状態から閉塞状態を経て第2の状態へと変化させることで、第2貫通孔群から流体を、高精度に量を規定して定量で排出することができる。   In the flow path defining member of the present invention, the first through-hole group composed of a part of the plurality of through-holes and the groove portion are connected by rotating the columnar member around the central axis. The second connection state in which the second through-hole group consisting of a plurality of through holes different from the first through-hole group and the groove portion are connected, the first connection state, and the second connection state Is switched between the closed state in which the groove portion is closed by the inner peripheral surface of the cylindrical member, so that the fluid supplied to the groove portion in the first state is changed to the second through-hole in the second state. Can be drained from a group. The amount of fluid supplied to the groove portion can be a constant amount according to the shape of the groove portion, and from the second through hole group by changing from the first state to the second state through the closed state. The fluid can be discharged in a predetermined amount with a high accuracy.

また、本発明の流体定量送出装置は、回転手段が、流路規定部材の円柱状部材を中心軸周りに回転させて、第1の接続状態とした後に閉塞状態を経て第2の接続状態に切り替える。流体供給手段が、第1の接続状態において、第1貫通孔群を構成する貫通孔の少なくとも1つから溝部に流体を流入させつつ第1貫通孔群の他の貫通孔から流体をオーバーフローさせ、流体排出手段が、第2の接続状態において、第2貫通孔群を構成する貫通孔の少なくとも1つを介して溝部に気体を流入させて、流入させた気体の圧力によって溝部内の流体を第2貫通孔群の他の前記貫通孔から排出させることで、流体を、高精度に量を規定して定量で送出することができる。   Further, in the fluid fixed amount delivery device of the present invention, the rotating means rotates the columnar member of the flow path defining member around the central axis to make the first connection state, and then enters the second connection state through the closed state. Switch. In the first connection state, the fluid supply means overflows the fluid from the other through holes of the first through hole group while allowing the fluid to flow into the groove portion from at least one of the through holes constituting the first through hole group, In the second connection state, the fluid discharge means causes the gas to flow into the groove portion through at least one of the through holes constituting the second through hole group, and the fluid in the groove portion is made to flow by the pressure of the gas that has flowed in. By discharging from the other through-holes of the two through-hole groups, it is possible to regulate the amount of fluid with high accuracy and send it out in a fixed amount.

本発明の流路規定部材の一実施形態である流路規定部材20について説明する図であり、(a)は流路規定部材20の正面図と側面図、(b)は流路規定部材20を構成する円筒状部材4の正面図と側面図、(c)は流路規定部材20を構成する円柱状部材2の正面図と側面図である。It is a figure explaining the flow-path definition member 20 which is one Embodiment of the flow-path definition member of this invention, (a) is a front view and side view of the flow-path definition member 20, (b) is the flow-path definition member 20. FIG. 2C is a front view and a side view of the cylindrical member 4 constituting the flow path, and FIG. (a)〜(c)は、図1に示す流路規定部材20における各種状態を示しており、(a)は第1の接続状態、(b)は閉塞状態、(c)は第2の接続状態である。(A)-(c) has shown the various states in the flow-path definition member 20 shown in FIG. 1, (a) is the 1st connection state, (b) is the obstruction | occlusion state, (c) is the 2nd Connected state. 本発明の流体定量送出装置の実施形態の一例である、流路規定部材20を備えて構成される装置1について説明する概略構成図である。It is a schematic block diagram explaining the apparatus 1 comprised with the flow-path definition member 20 which is an example of embodiment of the fluid fixed amount delivery apparatus of this invention. 流路規定部材20について説明する概略断面図であり、円筒状部材4の内周面4eと、円柱状部材2の外周面2aとの間隙について説明する図であり、It is a schematic sectional view explaining the flow path defining member 20, and is a diagram explaining a gap between the inner peripheral surface 4 e of the cylindrical member 4 and the outer peripheral surface 2 a of the columnar member 2, 図5は、円筒状部材4の内周面4eと円柱状部材2の外周面2aとを拡大して示す断面図である。FIG. 5 is an enlarged sectional view showing the inner peripheral surface 4 e of the cylindrical member 4 and the outer peripheral surface 2 a of the columnar member 2.

本発明の流路規定部材の実施形態の一例、および本発明の流体定量送出装置の実施形態の一例について、図面を参照して説明する。図1は、本発明の流路規定部材の実施形態の一例である流路規定部材20について説明する図であり、(a)は流路規定部材20の正面図と側面図、(b)は流路規定部材20を構成する円筒状部材4の正面図と側面図、(c)は流路規定部材20を構成する円柱状部材2の正面図と側面図である。   An example of an embodiment of a flow path defining member of the present invention and an example of an embodiment of a fluid quantitative delivery device of the present invention will be described with reference to the drawings. 1A and 1B are diagrams illustrating a flow path defining member 20 that is an example of an embodiment of a flow path defining member of the present invention. FIG. 1A is a front view and a side view of the flow path defining member 20, and FIG. FIG. 7C is a front view and a side view of the cylindrical member 4 constituting the flow path defining member 20, and FIG. 7C is a front view and a side view of the columnar member 2 constituting the flow path defining member 20.

流路規定部材20は、流体の流路を規定する部材であって、円筒状部材4と、円筒状部材4の内側に挿入された円柱状部材2とを有している。円柱状部材2は、外周面2aに溝部2bが設けられている。円筒状部材4は、外周面4fと内周面4eとの間を貫通した4つの貫通孔4a〜4eを備えている。   The flow path defining member 20 is a member that defines a fluid flow path, and includes a cylindrical member 4 and a columnar member 2 inserted inside the cylindrical member 4. The columnar member 2 is provided with a groove 2b on the outer peripheral surface 2a. The cylindrical member 4 includes four through holes 4a to 4e penetrating between the outer peripheral surface 4f and the inner peripheral surface 4e.

円柱状部材2は、溝部2bが中心軸10に沿って設けられている。円筒状部材4は、第
1貫通孔群4αを構成する貫通孔4aと貫通孔4bとが、中心軸10に沿って配列しており、第2貫通孔群4βを構成する貫通孔4cと4dとが、第1貫通孔群4αとは周方向で異なる位置に、中心軸10に沿って配列している。本実施形態の流路規定部材20では、第1貫通孔群4αと第2貫通孔群4βとが、中心軸10に対してそれぞれ線対称となる位置に配置されている。
In the cylindrical member 2, the groove 2 b is provided along the central axis 10. In the cylindrical member 4, the through holes 4a and 4b constituting the first through hole group 4α are arranged along the central axis 10, and the through holes 4c and 4d constituting the second through hole group 4β are arranged. Are arranged along the central axis 10 at positions different from the first through-hole group 4α in the circumferential direction. In the flow path defining member 20 of the present embodiment, the first through-hole group 4α and the second through-hole group 4β are arranged at positions that are line-symmetric with respect to the central axis 10, respectively.

図2(a)〜(c)は、図1に示す流路規定部材20の各種状態を示している。流路規定部材20は、例えば図中の矢印Rで示すように、円柱状部材2を中心軸10周りに回転させることで、4つの貫通孔のうち貫通孔4aと貫通孔4bからなる第1貫通孔群4αと溝部2bとが接続される第1の接続状態と、貫通孔4cと貫通孔4dとからなる第2貫通孔群4βと溝部2bとが接続される第2の接続状態と、第1の接続状態と第2の接続状態との間における、溝部2bが円筒状部材4の内周面4eで塞がれている閉塞状態とが切り替えられる。図2(a)は第1の接続状態、図2(b)は閉塞状態、図2(c)は第2の接続状態をそれぞれ示している。   2A to 2C show various states of the flow path defining member 20 shown in FIG. For example, as shown by an arrow R in the drawing, the flow path defining member 20 rotates the columnar member 2 around the central axis 10 so that the first of the four through holes is composed of the through hole 4a and the through hole 4b. A first connection state in which the through-hole group 4α and the groove 2b are connected; a second connection state in which the second through-hole group 4β including the through-hole 4c and the through-hole 4d and the groove 2b are connected; The closed state in which the groove 2b is closed by the inner peripheral surface 4e of the cylindrical member 4 between the first connected state and the second connected state is switched. 2A shows the first connection state, FIG. 2B shows the closed state, and FIG. 2C shows the second connection state.

図3は、本発明の流体定量送出装置の実施形態の一例である、流路規定部材20を備えて構成される流体定量送出装置1について説明する概略構成図である。図3に示す実施形態を例に、流路規定部材20および装置1についてより詳細に説明する。   FIG. 3 is a schematic configuration diagram illustrating the fluid fixed amount delivery device 1 that includes the flow path defining member 20 and is an example of an embodiment of the fluid fixed amount delivery device of the present invention. Taking the embodiment shown in FIG. 3 as an example, the flow path defining member 20 and the apparatus 1 will be described in more detail.

装置1は、流路規定部材20と、流路規定部材20の円柱状部材2を中心軸10周りに回転させて、第1の接続状態と、閉塞状態と、第2の接続状態とを順次切り替える回転手段12と、第1の接続状態において貫通孔4aから溝部2bに流体Fを流入させつつ、貫通孔4bから流体Fをオーバーフローさせる流体供給手段14と、第2の接続状態において、第2貫通孔群を構成する貫通孔4cを介して溝部2bに気体Gを流入させて、流入させた気体Gの圧力によって、溝部内2bの流体Fを貫通孔4dから排出させる流体排出手段16とを備えている。   The apparatus 1 rotates the flow path defining member 20 and the columnar member 2 of the flow path defining member 20 around the central axis 10 to sequentially perform a first connection state, a closed state, and a second connection state. Rotating means 12 for switching, fluid supply means 14 for causing the fluid F to flow into the groove 2b from the through hole 4a in the first connection state and overflowing the fluid F from the through hole 4b, and second in the second connection state Fluid discharge means 16 for causing the gas G to flow into the groove 2b through the through-hole 4c constituting the through-hole group and discharging the fluid F in the groove 2b from the through-hole 4d by the pressure of the gas G that has flowed in. I have.

本例の流体定量送出装置1は、例えば図示しない半導体製造システムに用いられるレジスト塗布装置に備えられており、流体排出手段16によって排出された流体Fは、半導体製造システムが備えるレジスト吐出ノズル19に送られる。本例では、流体Fとして、半導体製造工程に用いられるレジスト液を用いている。   The fluid fixed amount delivery device 1 of this example is provided in a resist coating device used in a semiconductor manufacturing system (not shown), for example, and the fluid F discharged by the fluid discharge means 16 is supplied to a resist discharge nozzle 19 provided in the semiconductor manufacturing system. Sent. In this example, a resist solution used in the semiconductor manufacturing process is used as the fluid F.

流体供給手段14は、図示しない薬液タンクと、いわゆる公知のコンプレッサーを備えた圧縮空気供給機構とを備えてている。流体供給手段14は、薬液タンクに貯留されている流体Fに対し、圧縮空気供給機構によって圧力を印加し、この印加した圧力によって流体Fを流路規定部材20へ供給する。流路規定部材20と流体供給手段14とは、貫通孔4aに接続した配管6a、および貫通孔4bに接続した配管6bを介して接続されている。流体供給手段14は、図2(a)に示す第1の状態において、配管6aを介して貫通孔4aから溝部2bに流体Fを流入させつつ、貫通孔4bから流体Fをオーバーフローさせる。本実施形態では、貫通孔4bからオーバーフローした流体Fは、配管6bを介して流体供給手段14の薬液タンクに還流される。   The fluid supply means 14 includes a chemical tank (not shown) and a compressed air supply mechanism including a so-called known compressor. The fluid supply means 14 applies pressure to the fluid F stored in the chemical tank by the compressed air supply mechanism, and supplies the fluid F to the flow path defining member 20 by the applied pressure. The flow path defining member 20 and the fluid supply means 14 are connected via a pipe 6a connected to the through hole 4a and a pipe 6b connected to the through hole 4b. In the first state shown in FIG. 2A, the fluid supply means 14 causes the fluid F to overflow from the through hole 4b while allowing the fluid F to flow from the through hole 4a into the groove 2b via the pipe 6a. In the present embodiment, the fluid F overflowed from the through hole 4b is returned to the chemical tank of the fluid supply means 14 through the pipe 6b.

流体排出手段16は、いわゆる公知のコンプレッサーを備えた、図示しない圧縮空気供給機構を供え、圧縮した気体Gを流路規定部材20へ供給する。流路規定部材20と流体排出手段16とは、貫通孔4cに接続した配管6c介して接続されており、図2(c)に示す第2の状態において、配管6cを介して貫通孔4cから溝部12に気体Gを流入させて、流入させた気体Gの圧力によって、溝部内2bの流体Fを貫通孔4dから排出させる。貫通孔6dは、貫通孔4dに接続した配管6dを介して吐出ノズル19と接続されている。配管6a、6b、6c、6dは、貫通孔4a、4b、4c、4dのそれぞれと、高いシール性を保つよう接合部材(不図示)によって接合されている。接合部材としては、金
属製のろう材、耐熱製の樹脂などが挙げられる。
The fluid discharge means 16 includes a compressed air supply mechanism (not shown) provided with a so-called known compressor, and supplies the compressed gas G to the flow path defining member 20. The flow path defining member 20 and the fluid discharge means 16 are connected via a pipe 6c connected to the through hole 4c. In the second state shown in FIG. The gas G is caused to flow into the groove portion 12, and the fluid F in the groove portion 2b is discharged from the through hole 4d by the pressure of the gas G that has flowed in. The through hole 6d is connected to the discharge nozzle 19 through a pipe 6d connected to the through hole 4d. The pipes 6a, 6b, 6c, and 6d are joined to the through holes 4a, 4b, 4c, and 4d by a joining member (not shown) so as to maintain high sealing performance. Examples of the joining member include a metal brazing material and a heat-resistant resin.

流体定量送出装置1では、回転手段12によって円柱状部材2を中心軸10周りに回転(R)せて、第1の接続状態と、閉塞状態と、第2の接続状態とを切り替えることで、溝部2bの体積と回転数に応じた所定量の流体Fを、吐出ノズル19に向けて送出することができる。   In the fluid fixed amount delivery device 1, the columnar member 2 is rotated (R) around the central axis 10 by the rotating means 12 to switch between the first connection state, the closed state, and the second connection state. A predetermined amount of fluid F corresponding to the volume of the groove 2 b and the number of rotations can be delivered toward the discharge nozzle 19.

流体定量送出装置1の各部は、このレジスト塗布装置が備える制御部と接続されており、流体供給手段14において流体Fに印加する圧力の大きさや、流体排出手段16において気体Gに印加する圧力の大きさ、回転手段12による円筒状部材2の回転速度や回転タイミング等が、この図示しない制御部によって制御されている。   Each part of the fluid fixed amount delivery device 1 is connected to a control unit provided in the resist coating device, and the magnitude of the pressure applied to the fluid F in the fluid supply means 14 and the pressure applied to the gas G in the fluid discharge means 16 are as follows. The size, the rotation speed and the rotation timing of the cylindrical member 2 by the rotating means 12 are controlled by this control unit (not shown).

流体定量送出装置1において、所定量の流体Fを吐出ノズル19に向けて送出する際は、まず、図2(a)に示す第1の接続状態となり、貫通孔4aから溝部2bに流体Fが流入し、貫通孔4bから流体Fがオーバーフローする。   When a predetermined amount of fluid F is sent to the discharge nozzle 19 in the fluid fixed amount delivery device 1, first, the first connection state shown in FIG. 2A is established, and the fluid F flows from the through hole 4a to the groove 2b. The fluid F overflows from the through hole 4b.

次に、回転手段12によって円柱状部材2が回転され、図2(b)に示す閉塞状態となる。閉塞状態では、溝部2bが円筒状部材4の内周面4eによって閉塞され、第1の接続状態を経て溝部2b内に充填された流体Fは、筒状部材4の内周面4eと溝部2bで形成される空間に溜まった状態を維持しながら、円柱状部材2の回転に伴って移動する。流路規定部材20において、円柱状部材2の溝部2bと筒状部材4の内周面4eとでできる空間の体積は一定であり、溝部2bの体積と同量の流体Fが、回転に伴って移動する。   Next, the columnar member 2 is rotated by the rotating means 12, and the closed state shown in FIG. In the closed state, the groove 2b is closed by the inner peripheral surface 4e of the cylindrical member 4, and the fluid F filled in the groove 2b through the first connection state is the inner peripheral surface 4e of the cylindrical member 4 and the groove 2b. It moves with the rotation of the cylindrical member 2 while maintaining the state accumulated in the space formed by. In the flow path defining member 20, the volume of the space formed by the groove 2b of the cylindrical member 2 and the inner peripheral surface 4e of the cylindrical member 4 is constant, and the same amount of fluid F as the volume of the groove 2b is generated along with the rotation. Move.

次に、回転手段12によって円柱状部材2がさらに度回転され、図2(c)に示す第2の接続状態となる。第2の接続状態では、第2貫通孔群を構成する貫通孔4cを介して溝部2bに気体Gが流入し、流入した気体Gの圧力によって、溝部内2b内の流体Fが貫通孔4dから排出される。本例では、回転手段12によって円柱状部材2が180度回転する間に、第1の接続状態から閉塞状態を経て第2の接続状態に至る一連の状態を経ることで、第2の接続状態において溝部12bと同じ体積の流体Fを吐出ノズル19に向けて送出することができる。装置1の回転手段12の動作を制御して、円柱状部材2の回転回数を所定回転数に調整することで、溝部12bの体積と回転数とに応じた所定量(所定体積)の流体Fを、吐出ノズル19に送出することができる。   Next, the cylindrical member 2 is further rotated by the rotating means 12 to be in the second connection state shown in FIG. In the second connection state, the gas G flows into the groove 2b through the through-hole 4c constituting the second through-hole group, and the fluid F in the groove 2b flows from the through-hole 4d by the pressure of the gas G that flows in. Discharged. In this example, while the columnar member 2 is rotated 180 degrees by the rotating means 12, the second connection state is obtained by going through a series of states from the first connection state to the second connection state through the closed state. The fluid F having the same volume as that of the groove 12b can be delivered toward the discharge nozzle 19. By controlling the operation of the rotating means 12 of the apparatus 1 and adjusting the number of rotations of the columnar member 2 to a predetermined number of rotations, a predetermined amount (predetermined volume) of fluid F according to the volume and the number of rotations of the groove 12b. Can be delivered to the discharge nozzle 19.

流路規定部材20について、さらに説明する。図4および図5は、流路規定部材20について説明する概略断面図である。図4では、円筒状部材4の内周面4eと、円柱状部材2の外周面2aとの間隙について説明する図であり、中心軸10方向に沿った円柱状部材2の径の変化を、実際より誇張して示している。図5は、円筒状部材4の内周面4eと円柱状部材2の外周面2aとを拡大して示している。   The flow path defining member 20 will be further described. 4 and 5 are schematic cross-sectional views illustrating the flow path defining member 20. In FIG. 4, it is a figure explaining the clearance gap between the inner peripheral surface 4e of the cylindrical member 4, and the outer peripheral surface 2a of the columnar member 2, and the change of the diameter of the columnar member 2 along the direction of the central axis 10 is shown. Shown exaggerated than the actual. FIG. 5 shows an enlarged view of the inner peripheral surface 4 e of the cylindrical member 4 and the outer peripheral surface 2 a of the columnar member 2.

図4に示すように、円筒状部材4の内周面4eと、円柱状部材2の外周面2aの溝部2b以外の部位との間隙は、中心軸10に沿った端部の側が、軸方向に沿った中央部に比べて大きく、例えば、端部側の間隙Bが5μm、中央部での間隙Aが3μmとなっている。筒状部材4の内周面4eと円柱状部材2の外周面2aとの間隙が大きいほど、円柱状部材2の回転抵抗はより小さくなる。すなわち、比較的小さな力で、スムーズに回転させることが可能となる。一方、筒状部材4の内周面4eと円柱状部材2の外周面2aとの間隙が小さいほど、流体Fのシール性はより高くなる。すなわち、この間隙が狭いほど、この間隙から漏れ出す流体の量は比較的少なくなる。流路規定部材20では、中央部のクリアランスを比較的小さくし、流体Fのシール性を充分高くするとともに、軸方向の端部側のクリアランスを比較的大きくして、円柱状部材2を回転させる際の抵抗(回転抵抗)を比較的小さくしている。   As shown in FIG. 4, the gap between the inner peripheral surface 4e of the cylindrical member 4 and the portion other than the groove 2b of the outer peripheral surface 2a of the columnar member 2 is such that the end side along the central axis 10 is in the axial direction. For example, the gap B on the end side is 5 μm, and the gap A at the center is 3 μm. The larger the gap between the inner peripheral surface 4e of the cylindrical member 4 and the outer peripheral surface 2a of the cylindrical member 2, the smaller the rotational resistance of the cylindrical member 2. That is, it can be smoothly rotated with a relatively small force. On the other hand, the smaller the gap between the inner peripheral surface 4e of the cylindrical member 4 and the outer peripheral surface 2a of the cylindrical member 2, the higher the sealing performance of the fluid F. That is, the narrower the gap, the smaller the amount of fluid that leaks from the gap. In the flow path defining member 20, the cylindrical member 2 is rotated by making the clearance at the central portion relatively small, sufficiently sealing the fluid F, and making the clearance at the end portion in the axial direction relatively large. The resistance (rotational resistance) at the time is relatively small.

シール性を比較的高くして、円柱状部材2と筒状部材4の間隙からの流体Fの漏れ量を比較的少なくするため、溝部2b以外の部位における、円柱状部材2と筒状部材4との間隙が6μm以下であることが好ましい。本例の流路規定部材20によれば、流体を封止するためのシール機構(リーク防止用のシールテープや、リーク防止用の樹脂材)を用いることなく円柱状部材2と筒状部材4と、の2つの部材のみをもって、流体Fの漏れ出しが比較的少ない流路規定部材20を構成している。   In order to make the sealing performance relatively high and relatively reduce the leakage amount of the fluid F from the gap between the cylindrical member 2 and the cylindrical member 4, the cylindrical member 2 and the cylindrical member 4 in a portion other than the groove 2b. Is preferably 6 μm or less. According to the flow path defining member 20 of this example, the cylindrical member 2 and the cylindrical member 4 are not used without using a sealing mechanism (sealing tape for preventing leakage or a resin material for preventing leakage) for sealing the fluid. The flow path defining member 20 with relatively few leakages of the fluid F is constituted by only these two members.

流路規定部材20は、円柱状部材2および筒状部材4の両方が、ジルコニアまたはジルコニア強化アルミナ(ZTA)によって形成されていることが好ましい。ジルコニアおよびZTAは、耐磨耗性が比較的高く、円柱状部材2の外周面2aと筒状部材4の内周面4eとの間で、2つの部材が摺接した場合の磨耗の程度が比較的少ない。流路規定部材20は耐摩耗性が高く、長期にわたって安定した一定量の流体を送出することができる。円柱状部材2および筒状部材4は、少なくともいずれか一方がジルコニアまたはジルコニア強化アルミナを主成分とする材料で構成されていればよい。ジルコニアを主成分とするとは、例えばジルコニアを60質量%以上含んでなることをいう。   In the flow path defining member 20, both the columnar member 2 and the cylindrical member 4 are preferably formed of zirconia or zirconia reinforced alumina (ZTA). Zirconia and ZTA have relatively high wear resistance, and the degree of wear when the two members are in sliding contact between the outer peripheral surface 2a of the cylindrical member 2 and the inner peripheral surface 4e of the cylindrical member 4 is high. Relatively few. The flow path defining member 20 has high wear resistance and can deliver a constant amount of fluid that is stable over a long period of time. At least one of the columnar member 2 and the cylindrical member 4 only needs to be made of a material mainly composed of zirconia or zirconia reinforced alumina. “Containing zirconia as a main component” means, for example, that it contains 60% by mass or more of zirconia.

図5に示すように、円柱状部材2の外周面2aは、円周方向に沿って連続した研削条痕を有し、筒状部材4の内周面4eも同様に研削条痕を有している。このような研削状痕は、例えば円柱状部材2の場合であれば、円柱状部材2を例えば中心軸周りに回転させつつ、外周面2aに研削用部材を当接させて行う、いわゆる外周面ホーニング加工によって外周面2aが研削加工されて研削条痕が形成される。円筒状部材4の研削条痕は、円筒状部材4の内周面4eに研削用部材を当接させて行う、いわゆる内周面ホーニング加工によって形成される。   As shown in FIG. 5, the outer peripheral surface 2a of the cylindrical member 2 has a grinding streak continuous along the circumferential direction, and the inner peripheral surface 4e of the cylindrical member 4 has a grinding streak as well. ing. For example, in the case of the cylindrical member 2, such a grinding trace is a so-called outer peripheral surface that is obtained by rotating the cylindrical member 2 around the central axis and bringing the grinding member into contact with the outer peripheral surface 2 a. The outer peripheral surface 2a is ground by a honing process to form a grinding streak. The grinding striations of the cylindrical member 4 are formed by a so-called inner peripheral surface honing process in which a grinding member is brought into contact with the inner peripheral surface 4e of the cylindrical member 4.

一般的なセラミック材料は、例えば金属等と比較すると破壊靱性値が比較的小さいが、ジルコニアおよびZTAは、セラミックスの中でも比較的破壊靱性値が大きい。このため、ジルコニアは、研削加工した際に、研削後の表面の欠陥(ボイド等)が比較的少なく、表面が鏡面になり易い傾向を有している。また、一方、ジルコニアおよびジルコニア強化アルミナは、セラミックスの中で比較的破壊靱性値が大きいため、研削面に、塑性流動型の研削条痕を生じやすい。すなわち、研削加工によって形成された円柱状部材2の外周面には、円柱状部材2の周方向に沿って比較的長く、細かい凹部および凸部が存在している。また、筒状部材4の内周面4eも、いわゆる内周面ホーニング加工によって形成されている。この内周面4eにも、周方向に沿って比較的長く延びた研削条痕が生じている。   A general ceramic material has a relatively small fracture toughness value compared to, for example, a metal or the like, but zirconia and ZTA have a relatively large fracture toughness value among ceramics. For this reason, when zirconia is ground, there are relatively few surface defects (such as voids) after grinding, and the surface tends to be a mirror surface. On the other hand, since zirconia and zirconia reinforced alumina have a relatively large fracture toughness value among ceramics, plastic flow type grinding streaks are likely to occur on the ground surface. That is, on the outer peripheral surface of the cylindrical member 2 formed by grinding, relatively long and fine concave portions and convex portions exist along the circumferential direction of the cylindrical member 2. The inner peripheral surface 4e of the cylindrical member 4 is also formed by so-called inner peripheral surface honing. Also on this inner peripheral surface 4e, grinding streaks extending relatively long along the circumferential direction are generated.

流路規定部材20では、円柱状部材2の外周面2aおよび筒状部材4の内周面4eに、それぞれ研削条痕が形成されている。このため、円柱状部材2の外周面2aと筒状部材4の内周面4eとが近づくような力がかかった場合であっても、研削条痕の凸部が先に当接し、研削条痕の凹部全体が密着し難い。このため、微視的に見れば、円柱状部材2の外周面2aと筒状部材4の内周面4eとの間に適度なクリアランスが保たれ、円柱状部材2の回転抵抗が比較的低い状態に保たれる。また、円柱状部材2の外周面2aと筒状部材4の内周面4eとに、それぞれ研削条痕が形成されているので、円柱状部材2の外周面2aの表面積と、筒状部材4の内周面4eの表面積とは、いずれも比較的大きくなっている。すなわち、円柱状部材2と筒状部材4との間隙(クリアランス)においては、円柱状部材2と筒状部材4との距離に比べて、流体Fが接触する表面積が比較的大きくなっている。このため、この間隙に進入した流体Fに発生する表面張力が大きく、この間隙からの流体Fの漏れ出しが抑止されている。   In the flow path defining member 20, grinding striations are formed on the outer peripheral surface 2 a of the columnar member 2 and the inner peripheral surface 4 e of the cylindrical member 4, respectively. For this reason, even when a force is applied so that the outer peripheral surface 2a of the columnar member 2 and the inner peripheral surface 4e of the cylindrical member 4 approach each other, the convex portion of the grinding strip first comes into contact with the grinding strip. The entire concave portion of the trace is difficult to adhere. For this reason, when viewed microscopically, an appropriate clearance is maintained between the outer peripheral surface 2a of the cylindrical member 2 and the inner peripheral surface 4e of the cylindrical member 4, and the rotational resistance of the cylindrical member 2 is relatively low. Kept in a state. Further, since the grinding striations are respectively formed on the outer peripheral surface 2 a of the cylindrical member 2 and the inner peripheral surface 4 e of the cylindrical member 4, the surface area of the outer peripheral surface 2 a of the cylindrical member 2 and the cylindrical member 4. The surface area of the inner peripheral surface 4e is relatively large. That is, in the gap (clearance) between the cylindrical member 2 and the cylindrical member 4, the surface area with which the fluid F contacts is relatively large compared to the distance between the cylindrical member 2 and the cylindrical member 4. For this reason, the surface tension which generate | occur | produces in the fluid F which entered this clearance gap is large, and the leakage of the fluid F from this clearance gap is suppressed.

なお、円柱状部材2の外周面2aの輪郭曲線要素の平均長さRSmを5μm以上とすれば、液体の封止性を比較的高くすることができる。また、円柱状部材2の外周面2aの輪
郭曲線要素の平均長さRSmを8μm以下とすれば、筒状部材4と円柱状部材2とが当接することで生じるコンタミネーションの量を、比較的少なくすることができる。なお、この輪郭曲線要素の平均長さ(RSm)とは、JIS B0601−2001に準拠した値である。輪郭曲線要素の平均長さ(RSm)の測定には、例えば、株式会社小坂研究所 表面粗さ測定器 サーフコーダSE−2300を用いて、基準長さ0.4mmでカットオフ値を0.08mmとすればよい。なお、輪郭曲線要素の平均長さ(RSm)は、JIS
B0601−2001に準拠した値であればよく、上記測定器を用いた値でなくとも構わない。
In addition, if the average length RSm of the contour curve element of the outer peripheral surface 2a of the columnar member 2 is 5 μm or more, the liquid sealing property can be made relatively high. Further, if the average length RSm of the contour curve element of the outer peripheral surface 2a of the cylindrical member 2 is set to 8 μm or less, the amount of contamination caused by the contact between the cylindrical member 4 and the cylindrical member 2 is relatively small. Can be reduced. The average length (RSm) of the contour curve element is a value based on JIS B0601-2001. For the measurement of the average length (RSm) of the contour curve element, for example, using a surface roughness measuring device Surfcorder SE-2300, Kosaka Laboratory Ltd., a cut-off value of 0.08 mm with a reference length of 0.4 mm is used. And it is sufficient. In addition, the average length (RSm) of the contour curve element is JIS
Any value may be used as long as it conforms to B0601-2001, and the value may not be a value using the measuring device.

なお、軸部材の外周面および外郭部材の内周面に、研削条痕が形成されているとは、上記輪郭曲線要素の平均長さ(RSm)が4μm以上であることをいう。   In addition, that the grinding striations are formed on the outer peripheral surface of the shaft member and the inner peripheral surface of the outer member means that the average length (RSm) of the contour curve element is 4 μm or more.

流路規定部材20では、円柱状部材2または円筒状部材4の少なくとも一方がジルコニアまたはジルコニア強化アルミナからなる場合は、ジルコニアの結晶相のうち、単斜晶率が5mol%以下であることが好ましい。単斜晶率の測定方法としては、円柱状部材2の外周面2aのX線回折により結晶構造を解析することで算出することができる。X線回折による結晶構造の解析には、例えば、スペクトリス株式会社製PW3050を用い、測定条件2θ=26°〜36°の範囲で、X線出力40kVの50mAで測定すればよい。   In the flow path defining member 20, when at least one of the columnar member 2 or the cylindrical member 4 is made of zirconia or zirconia reinforced alumina, it is preferable that the monoclinic crystal ratio in the zirconia crystal phase is 5 mol% or less. . The monoclinic crystal ratio can be calculated by analyzing the crystal structure by X-ray diffraction of the outer peripheral surface 2a of the cylindrical member 2. For the analysis of the crystal structure by X-ray diffraction, for example, PW3050 manufactured by Spectris Co., Ltd. may be used, and measurement may be performed at 50 mA with an X-ray output of 40 kV under the measurement condition 2θ = 26 ° to 36 °.

例えばジルコニアは、加工ストレスによって、表面が相変態することが知られている。例えば、正方晶が応力を受けることで相変態し、単斜晶に変化するわけであるが、それに伴い体積膨張を引き起こし、表面に劣化した層が形成されることがある。あるいは加工によって破壊変質層が形成されることがある。加工によって破壊変質層が形成されている表面では、表面のジルコニア結晶が比較的脱粒しやすい。   For example, zirconia is known to undergo a phase transformation due to processing stress. For example, a tetragonal crystal undergoes a phase transformation due to stress and changes to a monoclinic crystal, but this causes volume expansion, and a deteriorated layer may be formed on the surface. Or a fracture alteration layer may be formed by processing. On the surface on which the fracture-affected layer is formed by processing, the zirconia crystals on the surface are relatively easy to degranulate.

円柱状部材2の外周面2aのジルコニア結晶相の単斜晶率を5mol%以下とすれば、ホーニング加工等の物理的な加工を経て外周面2aの表面に付着する、ジルコニア粒子の脱粒等を比較的低く抑えることができる。円柱状部材2の外周面2aのジルコニア結晶相の単斜晶率を5mol%以下とすることで、表面のジルコニア結晶の脱粒を比較的少なくすることができる。円柱状部材2の外周面2aのジルコニア結晶相の単斜晶率を5mol%以下とすれば、排出される流体Fに混入するコンタミネーションを、比較的低く抑えることができる。   If the monoclinic crystal ratio of the zirconia crystal phase of the outer peripheral surface 2a of the cylindrical member 2 is 5 mol% or less, the zirconia particles that adhere to the surface of the outer peripheral surface 2a through physical processing such as honing processing can be prevented. It can be kept relatively low. By setting the monoclinic crystal ratio of the zirconia crystal phase on the outer peripheral surface 2a of the cylindrical member 2 to 5 mol% or less, the zirconia crystal on the surface can be relatively free from degranulation. If the monoclinic crystal ratio of the zirconia crystal phase on the outer peripheral surface 2a of the cylindrical member 2 is 5 mol% or less, contamination mixed into the discharged fluid F can be suppressed to a relatively low level.

なお、流路規定部材20に含ジルコニアの結晶相が含まれる場合は、円柱状部材2、筒状部材4のいずれも、ジルコニアはYを焼結助剤とする部分安定化ジルコニアが好ましい。この場合、円柱状部材2および筒状部材4のいずれも、Yの含有量が2〜6mol%の範囲が好ましい。Yの含有量を2〜6mol%の範囲とすると、正方晶から単斜晶への相変態し難くなり、摺接面は比較的高い耐摩耗性や耐食性を発揮することができる。Y含有ジルコニアからなる流路規定部材20は、耐摩耗性が比較的高く、流体Fへのコンタミネーションの混入量も比較的少なくなる。なお、耐摩耗性や耐食性を、より高くするには、Yの含有量を2〜4mol%の範囲とすることが、さらに好ましい。 When the flow path regulating member 20 includes a zirconia-containing crystal phase, both the cylindrical member 2 and the cylindrical member 4 are zirconia, which is partially stabilized zirconia using Y 2 O 3 as a sintering aid. preferable. In this case, both the cylindrical member 2 and the cylindrical member 4 preferably have a Y 2 O 3 content of 2 to 6 mol%. When the content of Y 2 O 3 is in the range of 2 to 6 mol%, the phase transformation from tetragonal to monoclinic crystal becomes difficult, and the sliding contact surface can exhibit relatively high wear resistance and corrosion resistance. The flow path defining member 20 made of Y 2 O 3 -containing zirconia has relatively high wear resistance, and the amount of contamination mixed into the fluid F is also relatively small. In order to further increase the wear resistance and corrosion resistance, it is more preferable to set the content of Y 2 O 3 in the range of 2 to 4 mol%.

以上、本発明の実施形態の一例について説明したが、本発明は上記の例に特に限定されない。例えば、本発明の流体定量送出装置は、上述したレジスト塗布装置等に限らず、半導体製造装置や、各種分析装置、医療機器など、様々な装置に用いることができる。流路規定部材で流路を規定する流体の種類についても特に限定されない。例えば、酸性溶液やアルカリ性溶液等の各種薬液や、血液等であってもよい。また、流路規定部材における貫通孔の配置位置や溝部の形状等も、特に限定されない。第1貫通孔群を構成する複数の貫通孔と、第2貫通孔群を構成する複数の貫通孔とを、それぞれ円柱状部材の中心軸に対し
て傾けて配列させるとともに、溝部材も同様に中心軸に対して傾けて配列してもよい。第1貫通孔群や第2貫通孔群の配置位置も特に限定されない。例えば中心軸周りに所定角度ずつ離れた位置に、第1貫通孔群と第2貫通孔群とを交互に配置してもよい。例えば、この所定角度を90°とした場合、第1貫通孔群と第2貫通孔群とは、それぞれ2つずつとなるが、第1貫通孔群と第2貫通孔群の数も限定されない。本発明は上記の実施形態の例に限定されるものでなく、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not specifically limited to said example. For example, the fluid quantitative delivery device of the present invention is not limited to the resist coating device described above, and can be used in various devices such as a semiconductor manufacturing device, various analysis devices, and medical equipment. The type of fluid that defines the flow path with the flow path defining member is not particularly limited. For example, various chemicals such as an acidic solution and an alkaline solution, blood, and the like may be used. Moreover, the arrangement | positioning position of the through-hole in a flow-path definition member, the shape of a groove part, etc. are not specifically limited. The plurality of through-holes constituting the first through-hole group and the plurality of through-holes constituting the second through-hole group are arranged to be inclined with respect to the central axis of the cylindrical member, and the groove member is similarly You may arrange inclining with respect to a central axis. The arrangement positions of the first through hole group and the second through hole group are not particularly limited. For example, the first through-hole groups and the second through-hole groups may be alternately arranged at positions separated by a predetermined angle around the central axis. For example, when the predetermined angle is 90 °, there are two first through-hole groups and two second through-hole groups, but the number of first through-hole groups and second through-hole groups is not limited. . The present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the scope of the present invention.

1 流体定量送出装置
2 円柱状部材
2a 外周面
2b 溝部
4 円筒状部材
4a〜4e 貫通孔
4f 外周面
4e 内周面
4α 第1貫通孔群
4β 第2貫通孔群
10 中心軸
12 回転手段
14 流体供給手段
16 流体排出手段
20 流路規定部材
F 流体
DESCRIPTION OF SYMBOLS 1 Fluid fixed quantity delivery apparatus 2 Cylindrical member 2a Outer peripheral surface 2b Groove part 4 Cylindrical member 4a-4e Through-hole 4f Outer peripheral surface 4e Inner peripheral surface 4 (alpha) 1st through-hole group 4 (beta) 2nd through-hole group 10 Central axis 12 Rotating means 14 Fluid Supply means 16 Fluid discharge means 20 Flow path defining member F Fluid

Claims (5)

流体の流路を規定する部材であって、
円筒状部材と、該円筒状部材の内側に挿入された、外周面に溝部が設けられた円柱状部材とを有し、
前記円筒状部材は、外周面と内周面との間を貫通した貫通孔を複数備え、
前記円柱状部材を中心軸周りに回転することで、
複数の前記貫通孔のうちの一部の前記貫通孔からなる第1貫通孔群と前記溝部とが接続される第1の接続状態と、
前記第1貫通孔群とは異なる複数の前記貫通孔からなる第2貫通孔群と前記溝部とが接続される第2の接続状態と、
前記第1の接続状態と前記第2の接続状態との間における、前記溝部が前記円筒状部材の内周面で塞がれている閉塞状態と
が切り替えられることを特徴とする流路規定部材。
A member for defining a fluid flow path,
A cylindrical member, and a columnar member inserted inside the cylindrical member and provided with a groove on the outer peripheral surface;
The cylindrical member includes a plurality of through holes penetrating between the outer peripheral surface and the inner peripheral surface,
By rotating the cylindrical member around the central axis,
A first connection state in which the first through-hole group consisting of a part of the plurality of through-holes and the groove portion are connected;
A second connection state in which the second through hole group consisting of a plurality of the through holes different from the first through hole group and the groove portion are connected;
A flow path defining member that is switched between a closed state in which the groove is closed by an inner peripheral surface of the cylindrical member between the first connected state and the second connected state. .
前記溝部が、軸方向に沿って設けられており、
前記第1貫通孔群を構成する複数の前記貫通孔が、前記軸方向に沿って配列しており、
前記第2貫通孔群を構成する複数の前記貫通孔が、前記第1貫通孔群とは周方向で異なる位置に、前記軸方向に沿って配列していることを特徴とする請求項1記載の流路規定部材。
The groove is provided along the axial direction;
The plurality of through-holes constituting the first through-hole group are arranged along the axial direction,
The plurality of through-holes constituting the second through-hole group are arranged along the axial direction at positions different from the first through-hole group in the circumferential direction. The flow path regulating member.
前記円筒状部材の内周面と、前記円柱状部材の外周面の前記溝部以外の部位との間隙は、軸方向の中央部に比べて端部の側で大きいことを特徴とする請求項1または2記載の流路規定部材。   The gap between the inner peripheral surface of the cylindrical member and the portion other than the groove portion on the outer peripheral surface of the columnar member is larger on the end side than the central portion in the axial direction. Or the flow path regulating member according to 2. 前記円筒状部材および前記円柱状部材は、ジルコニアを主成分とすることを特徴とする請求項1〜3のいずれかに記載の流路規定部材。   The flow path defining member according to claim 1, wherein the cylindrical member and the columnar member are mainly composed of zirconia. 請求項1〜4のいずれかに記載の流路規定部材と、
前記流路規定部材の前記円柱状部材を中心軸周りに回転させて、前記第1の接続状態とした後に前記閉塞状態を経て前記第2の接続状態に切り替える回転手段と、
前記第1の接続状態において、前記第1貫通孔群を構成する前記貫通孔の少なくとも1つから前記溝部に流体を流入させつつ前記第1貫通孔群の他の前記貫通孔から前記流体をオーバーフローさせる流体供給手段と、
前記第2の接続状態において、前記第2貫通孔群を構成する前記貫通孔の少なくとも1つを介して前記溝部に気体を流入させて、流入させた該気体の圧力によって前記溝部内の前記流体を前記第2貫通孔群の他の前記貫通孔から排出させる流体排出手段と
を備えることを特徴とする流体定量送出装置。
The flow path defining member according to any one of claims 1 to 4,
Rotating means for rotating the columnar member of the flow path defining member around a central axis to switch to the second connection state through the closed state after the first connection state;
In the first connection state, the fluid overflows from the other through-holes of the first through-hole group while fluid flows into the groove from at least one of the through-holes constituting the first through-hole group. Fluid supply means for causing
In the second connection state, a gas is caused to flow into the groove portion through at least one of the through holes constituting the second through hole group, and the fluid in the groove portion is caused by the pressure of the introduced gas. Fluid dispensing means for discharging the fluid from the other through-holes in the second through-hole group.
JP2011262891A 2011-11-30 2011-11-30 Flow path specifying member and fluid quantitative delivery apparatus Pending JP2013113421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262891A JP2013113421A (en) 2011-11-30 2011-11-30 Flow path specifying member and fluid quantitative delivery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262891A JP2013113421A (en) 2011-11-30 2011-11-30 Flow path specifying member and fluid quantitative delivery apparatus

Publications (1)

Publication Number Publication Date
JP2013113421A true JP2013113421A (en) 2013-06-10

Family

ID=48709134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262891A Pending JP2013113421A (en) 2011-11-30 2011-11-30 Flow path specifying member and fluid quantitative delivery apparatus

Country Status (1)

Country Link
JP (1) JP2013113421A (en)

Similar Documents

Publication Publication Date Title
US9146006B2 (en) Metering device, lubricating device and method for dispensing a predetermined amount of lubricant
KR102233300B1 (en) Metering valve and metering method
TWI680808B (en) Apparatus and methods for dispensing small beads of viscous material
TWI533935B (en) A film-like coating nozzle, a coating apparatus, and a coating method
JP5725482B2 (en) Liquid flow control for film deposition.
JP6068271B2 (en) Coating device and coating device
US20050276705A1 (en) Positive displacement pump having piston and/or liner with vapor deposited polymer surface
JP2009273997A (en) Coating device and coating method
CN103917300B (en) Distribute the fluid particularly distribute module of hotmelt, applicator head and nozzle holder
KR101956913B1 (en) Fluid nozzle
JPH1061558A (en) Chemicals supplying device
KR20060015623A (en) Positive displacement pump having piston and/or liner with vapor deposited polymer surface
US8371334B2 (en) Rotary switching valve
JP5188234B2 (en) Flow path regulating member and liquid ejection device
JP5856332B1 (en) Micro fluid discharge method and micro fluid dispenser
JP2008038837A (en) Quantitative chemical feeding pump and chemical application device using the same
JP2013113421A (en) Flow path specifying member and fluid quantitative delivery apparatus
JP2015192992A (en) Nozzle and discharge method of coating liquid
KR20080055639A (en) A porous metering member with a coating
CN104999797A (en) Cock valve, liquid supplying method, liquid supplying device, and coating device
TW201121659A (en) Cylinder and dispensing head unit equipped with the cylinder
US8287179B2 (en) Fluid mixer
JP2020168592A (en) Coating head
JPWO2009151096A1 (en) Liquid chromatograph and gradient liquid feeder
KR20200039685A (en) Liquid pumping device