JP2009225283A - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
JP2009225283A
JP2009225283A JP2008069472A JP2008069472A JP2009225283A JP 2009225283 A JP2009225283 A JP 2009225283A JP 2008069472 A JP2008069472 A JP 2008069472A JP 2008069472 A JP2008069472 A JP 2008069472A JP 2009225283 A JP2009225283 A JP 2009225283A
Authority
JP
Japan
Prior art keywords
frame structure
antenna
displacement
measuring device
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008069472A
Other languages
English (en)
Other versions
JP4591526B2 (ja
Inventor
Satoshi Sofuku
諭 惣福
Junji Takagi
淳治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008069472A priority Critical patent/JP4591526B2/ja
Priority to US12/272,154 priority patent/US7843385B2/en
Priority to EP08170450.4A priority patent/EP2104180B1/en
Publication of JP2009225283A publication Critical patent/JP2009225283A/ja
Application granted granted Critical
Publication of JP4591526B2 publication Critical patent/JP4591526B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

【課題】 構造的及び熱的に生じるアンテナ指向方向に生じる指向誤差を高精度に補正することができるアンテナ装置を得ることを目的とする。
【解決手段】 レートセンサ13及び角度検出器14の出力をサーボ制御回路10へフィードバックしてAZ/EL角度指令値に対する位置制御を行う。アンテナ架台に設けた複数のフレーム構造体の変位を変位計群15により検出し、この変位計群15による測定データ群と角度検出器14による角度データに基づいてメテロロジー補正部16によりメテロロジー補正量を算出し、メテロロジー補正量器と差補正部17からの器差補正量とを加算し、AZ/EL角度指令値を補正する。
【選択図】 図3

Description

この発明は、指向方向の補正をするために、指向方向に影響する支持構造の変位又は傾斜の測定を行うことができるアンテナ装置に関するものである。
電波天文学の分野では、近年になってミリ波からサブミリ波へとより高い周波数の電波を観測するという要求が高まってきている。高い周波数の電波天体の観測を行う場合、アンテナの反射鏡面とビームの指向追尾はより高い精度が必要となる。一方では、観測効率を高めるために、アンテナの大口径化が進み、また、昼夜のあらゆる天候で観測を実施できることが望まれている。口径が大きくなることによって、アンテナの自重変形が大きくなり、また、日射による熱変形や風圧による変形が大きくなるため、高い指向追尾精度を得ることが困難となる。このような高い指向追尾精度の要求を満足するためには、アンテナの反射鏡の指向誤差をリアルタイムに測定し、補正する技術が必要となる。アンテナの指向誤差に影響する要因として主反射鏡を支える構造部分の変形があり、この変形を測定する手段として、レーザ及びその光検出器を用いた光学的計測手段と、機械的手法による計測手段とが考えられる。しかし、前者については光学系内の大気揺らぎによる測定誤差の発生が大きく、また光検出画像の処理遅延のため高速な測定が困難であった。一方、機械的手法による計測手段として、アンテナ支持構造の中に熱変形や風による変形の影響を受けないフレーム構造体を設置することにより、アンテナ構造物の指向誤差を求める手段が特開2007−129454号公報に開示されている。
特開2002−129454
特開2007−129454に開示された従来の装置は、アンテナ支持構造の中に熱変形や風による変形の影響を受けないフレーム構造体を設置して指向誤差を測定するものであり、測定された指向誤差によりアンテナ指向方向が補正されるというものであるが、実際には、フレーム構造体により測定した指向誤差や、アンテナ自体の器差誤差などの要因があり、これらの指向誤差に寄与する要因を取り込み、より高精度に指向誤差を補正するための追尾制御系の確立が必要であるという課題があり、特にサブミリ波による天体観測を行うための高精度アンテナ装置では、このような追尾制御系の構築が急務となっていたものである。
この発明は、上記のような課題を解決するためになされたもので、構造的及び熱的に生じるアンテナ指向方向に生じる指向誤差を高精度に補正することができるアンテナ装置を得ることを目的とする。
請求項1の発明に係るアンテナ装置は、アンテナベース部と、このアンテナベースに支持されて方位軸まわりに回転し、2つの支柱を有して主反射鏡を支持するアンテナ架台部と、上記アンテナベース部及び上記アンテナ架台部に各6自由度拘束して設けられた複数のフレーム構造体からなるフレーム構造体群と、このフレーム構造体群の変位を測定する変位計群と、この変位計群による測定データに基づいてアンテナの指向誤差を算出し、算出した指向誤差から方位角に依存して生じる誤差分を除去してメテロロジー補正量を算出するメテロロジー補正部と、アンテナの駆動指令値を上記メテロロジー補正量により補正してアンテナの駆動制御を行う制御回路とを備えたものである。
請求項2の発明に係るアンテナ装置は、アンテナベース部と、このアンテナベースに支持されて方位軸まわりに回転し、2つの支柱を有して主反射鏡を支持するアンテナ架台部と、上記アンテナベース部及び上記アンテナ架台部に各6自由度拘束して設けられた複数のフレーム構造体からなるフレーム構造体群と、このフレーム構造体群の変位を測定する変位計群と、この変位計群による測定データに基づいてアンテナの指向誤差を算出し、算出した指向誤差から方位角に依存して生じる誤差分を除去してメテロロジー補正量を算出するメテロロジー補正部と、方位角に依存して生じる上記アンテナの指向方向誤差である器差誤差を出力する器差補正部と、アンテナの駆動指令値を上記メテロロジー補正量及び上記器差誤差により補正してアンテナの駆動制御を行う制御回路とを備えたものである。
請求項3の発明に係るアンテナ装置は、請求項1の発明に係るアンテナ装置において、上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点にZ軸変位を拘束して設けられ、6自由度拘束された第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有するものである。
請求項4の発明に係るアンテナ装置は、請求項2の発明に係るアンテナ装置において、上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点にZ軸変位を拘束して設けられ、6自由度拘束された第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有するものである。
請求項5の発明に係るアンテナ装置は、請求項3又は請求項4の発明に係るアンテナ装置において、上記第1の測定装置は、上記第1のフレーム構造体上の3点に設けられ、上記アンテナ架台部の基準部材の3点のZ軸方向変位を測定する3つの変位測定器を有するものである。
請求項6の発明に係るアンテナ装置は、請求項3又は請求項4の発明に係るアンテナ装置において、上記第2の測定装置は、上記第2のフレーム構造体上の2点に設けられ、上記第3のフレーム構造体の2点のZ軸方向変位を測定する2つの変位測定器、上記第2のフレーム構造体の1点に設けられ、上記第3のフレーム構造体の1点のY軸方向変位を測定する1つの変位測定器を有するものである。
請求項7の発明に係るアンテナ装置は、請求項3又は請求項4の発明に係るアンテナ装置において、上記第3の測定装置は、上記第3のフレーム構造体上の1点に設けられ、上記主反射鏡の支持基準部材の1点のZ軸方向変位を測定する1つの変位測定器を有するものである。
請求項7の発明に係るアンテナ装置は、アンテナベース部と、このアンテナベースに支持されて方位軸まわりに回転し、2つの支柱を有して主反射鏡を支持するアンテナ架台部と、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体と、この第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置と、上記アンテナ架台部の基準部材上の3点においてバイポッド構造の支持部材により支持して設けられた第2のフレーム構造体と、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体と、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置と、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを備えたものである。
請求項9の発明に係るアンテナ装置は、請求項8の発明に係るアンテナ装置において、上記第3のフレーム構造体は、上記主反射鏡の支持基準部材からのパラレルリンク機構により支持されているものである。
請求項10の発明に係るアンテナ装置は、請求項9の発明に係るアンテナ装置において、上記第3の測定装置は、上記第3のフレーム構造体上の1点に設けられ、上記主反射鏡の支持基準部材の1点のY軸方向変位を測定する1つの変位測定器を有するものである。
請求項11の発明に係るアンテナ装置は、請求項1の発明に係るアンテナ装置において、上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点においてバイポッド構造の支持部材により支持して設けられた第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有するものである。
請求項12の発明に係るアンテナ装置は、請求項2の発明に係るアンテナ装置において、上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点においてバイポッド構造の支持部材により支持して設けられた第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有するものである。
請求項13の発明に係るアンテナ装置は、請求項11又は請求項12の発明に係るアンテナ装置において、上記第3のフレーム構造体は、上記主反射鏡の支持基準部材からのパラレルリンク機構により支持されているものである。
請求項14の発明に係るアンテナ装置は、請求項11又は請求項12の発明に係るアンテナ装置において、上記第3の測定装置は、上記第3のフレーム構造体上の1点に設けられ、上記主反射鏡の支持基準部材の1点のY軸方向変位を測定する1つの変位測定器を有するものである。
請求項1又は請求項2に記載の発明によれば、メテロロジー補正部により変位計群による測定データに基づいてアンテナの指向誤差を算出し、算出した指向誤差から方位角に依存して生じる誤差分を除去してメテロロジー補正量を算出し、制御回路によりアンテナの駆動指令値を上記メテロロジー補正量により補正してアンテナの駆動制御するので、高精度にアンテナ駆動制御を行うことができる。また、器差補正部から出力する方位角に依存して生じる上記アンテナの指向方向誤差である器差誤差によってもアンテナ駆動指令値を補正することにより、さらに高精度化を図ることができる。
請求項3乃至請求項7に記載の発明によれば、アンテナベース部に第1のフレーム構造体を、アンテナ架台部に6自由度拘束した第2のフレーム構造体及び第3のフレーム構造体を設け、第1の測定装置により第1のフレーム構造体に対するアンテナ架台部の基準部材の姿勢を、第2の測定装置により第2のフレーム構造体に対する第3のフレーム構造体の姿勢を、第3の測定装置により第3のフレーム構造体に対する主反射鏡の支持基準部材の変位を測定するので、各フレーム構造体に流れる荷重を抑制して各フレーム構造体の内部変形を抑制し、各測定装置による測定を高精度化することができる。
請求項8に記載の発明によれば、バイポッド構造の支持部材により第2のフレーム構造体をアンテナ架台部の基準部材から支持するので、アンテナ架台部の底部の変形による影響を第のフレーム構造体が受けにくく、より高精度にアンテナ指向誤差を測定できる。
請求項9又は請求項10に記載の発明によれば、主反射鏡の支持基準部材からのパラレルリンク機構により第3のフレーム構造体を支持し、また、第3の測定装置による変位測定をY軸方向とすることにより、第3のフレーム構造体のX軸まわりの回転剛性を高めることができる。
請求項11又は請求項12に記載の発明によれば、メテロロジー補正部により変位計群による測定データに基づいてアンテナの指向誤差を算出し、算出した指向誤差から方位角に依存して生じる誤差分を除去してメテロロジー補正量を算出し、制御回路によりアンテナの駆動指令値を上記メテロロジー補正量により補正してアンテナの駆動制御するので、高精度にアンテナ駆動制御を行うことができる。また、器差補正部から出力する方位角に依存して生じる上記アンテナの指向方向誤差である器差誤差によってもアンテナ駆動指令値を補正することにより、さらに高精度化を図ることができる。
請求項13又は請求項14に記載の発明によれば、主反射鏡の支持基準部材からのパラレルリンク機構により第3のフレーム構造体を支持し、また、第3の測定装置による変位測定をY軸方向とすることにより、第3のフレーム構造体のX軸まわりの回転剛性を高めることができる。
実施の形態1
この発明の実施の形態1に係るアンテナ装置を図1から図9に基づき説明する。図1はこの発明の実施の形態1に係るアンテナ装置の断面図であり、図2は図1におけるAA断面図(主反射鏡部分を除く)である。図1において、1は地面に固定設置されたアンテナベース部であり、2はアンテナベース部1により方位軸まわりに回転可能に支持されたアンテナ架台部である。アンテナ架台部2において、3は左右に設けた2つの支柱部であり、4は底部である。5はアンテナの主反射鏡であり、左右の支柱部3により仰角軸まわりに回転可能に支持されている。6は支柱部3上に設けられ、主反射鏡5の仰角軸を支持するハウジング部である。
7はアンテナベース部1内に設けた第1フレーム構造体であり、8はアンテナ架台部2の底部4に設けた第2フレーム構造体であり、9はアンテナ架台部2の支柱部3に設けた第3フレーム構造体である。これらの第1フレーム構造体7、第2フレーム構造体8、及び第3フレーム構造体はトラス構造を有しており、これらへの荷重の流れを抑制することにより剛体として扱えるものとする。即ち、これらのフレーム構造体はアンテナベース部1、アンテナ架台部2に設けられて支持されているが、この支持構造として、過拘束しない支持(キネマティックサポート:kinemateic support)構造とする。また、インバー材料やCFRP材料などの熱膨張率の低い部材を使用することにより、各フレーム構造体の内部熱変形を抑制する。
次に実施の形態1に係るアンテナ装置の動作について説明する。アンテナ架台部2は方位軸まわりに回転し、主反射鏡5はアンテナ架台部2により仰角軸まわりに回転可能に支持されているので、主反射鏡5を方位角及び仰角をそれぞれの駆動範囲内で駆動し位置決めしてアンテナの指向方向を設定することができる。なお、アンテナベース部1にはアンテナ架台部2を方位軸まわりに回転し位置決めする方位角駆動機構が、アンテナ架台部2のハウジング部6には、主反射鏡5を仰角軸まわりに回転し位置決めする仰角駆動機構を設けている。
次に、実施の形態1に関わるアンテナ装置の駆動制御について、図3及び図4に基づいて説明する。図3はこの発明の実施の形態1に係るアンテナ装置の駆動制御系のブロック図であり、図4はメテロロジー補正部の構成を表わすブロック図である。なお、後述の実施の形態2におけるアンテナ装置の駆動制御系及びメトロロジー補正部のブロック図も図3及び図4と同様の構成である。図3において、10は位置制御を行うサーボ制御回路であり、11はサーボ制御回路10からの駆動制御量により駆動するモータ、12はモータ11により駆動するアンテナ装置内の可動部、13は可動部12のAZ軸及びEL軸まわりの回転の角速度を検出するレートセンサ、14は可動部12のAZ角度及びEL角度を検出する角度検出器である。なお、サーボ制御回路10からは方位角(AZ角)及び仰角(EL角)に対するモータ11の駆動制御量が出力され、モータ11は方位角駆動モータと仰角駆動モータとからなり、AZ及びEL駆動制御量に基づき駆動される。15は第1フレーム構造体、第2フレーム構造体及び第3フレーム構造体に設けた変位を測定する複数の測定装置からなる変位計群であり、16は変位計群15による測定データ群と角度検出器14による角度データに基づいてメテロロジー補正量を演算して出力するメテロロジー補正部、17は角度検出器14による角度データに基づいてアンテナ固有の器差補正量を求めて出力する器差補正部である。
図3に示すアンテナ装置の駆動制御系では、レートセンサ13及び角度検出器14の出力をサーボ制御回路10へフィードバックしてAZ/EL角度指令値に対する位置制御を行っている。さらに、メテロロジー補正部16及び器差補正部17により、アンテナ装置の変形等によるアンテナ指向方向誤差分のオフセットを指令値から減算する制御を行っており、オフセット量は、主として機械的に生じている誤差(器差誤差)、熱変形及び風力による変形により生じている誤差(メテロロジー誤差)とからなる。器差補正部17では器差誤差を、メテロロジー補正部16ではメテロロジー誤差を求め、これらを補正量として出力するものである。器差補正部17において求める器差誤差は、機械的に発生するアンテナ指向方向の誤差であり、例えば、アンテナ装置のAZ駆動軸と鉛直方向とのずれ、EL駆動軸と水平方向とのずれや、後述の軸受内輪30の加工面のうねり等の種々の機械的要因によって発生し、再現性を有する。この器差誤差は、設定するAZ角及びEL角ごとにアンテナが指向している方向を実測し、設定したAZ角及びEL角との誤差ΔAZ及びΔELを算出することにより予め求めておくことができ、また、ΔAZ及びΔELをAZ角及びEL角の関数で表わしておくこともできる。
次に、メテロロジー補正部16において求めるメテロロジー誤差は、アンテナ装置において生じる熱変形や風力の影響によってアンテナ装置が変形することによりアンテナ指向方向に生じる誤差である。このメテロロジー誤差は、アンテナベース部1に設けた第1フレーム構造体7、アンテナ架台部2に設けた第2フレーム構造体8及び第3フレーム構造体9の変位量を複数の測定装置からなる変位計群によって測定し、測定データ群から演算により求めることができる。図4において、20は変位計群15による測定データ群からアンテナ指向方向の誤差を推定演算する一次メテロロジー誤差演算部であり、この一次メテロロジー誤差演算部20により、α(X軸回りの回転成分)、β(Y軸回りの回転成分)、γ(Z軸回りの回転成分)を求め、それらに基づくアンテナ指向方向の誤差(ΔAZ及びΔEL)を演算する(演算方法は後述する)。21は重複補正テーブルであり、AZ角に応じて機械的に発生する第1乃至第3フレーム構造体の変位によって演算されるα、β、γを求め、それらに基づくアンテナ指向方向の誤差(ΔAZ及びΔEL)を格納したテーブルであり、この誤差(ΔAZ及びΔEL)は再現性を有する。例えば、後述の軸受内輪29は加工面のうねりや粗さ等の影響によるフレーム構造体の変位成分が、本来検出すべきアンテナ装置の熱・風力変形成分とともに、後述する第1測定装置26等により計測される。このような軸受内輪29の加工面のうねり等の要因に基づく機械的に発生するアンテナ指向方向の誤差(ΔAZ及びΔEL)は、器差補正部17においても、軸受内輪29のうねり成分やアンテナのAZ軸の鉛直度などを含む、AZ回転に伴って機械的に発生する指向方向の誤差である器差誤差としても求められている。したがって、器差補正とメテロロジー補正において、機械的に発生するアンテナ指向方向の誤差が重複しないように、メテロロジー補正部17では、減算器22により、一次メテロロジー誤差演算部20から出力するアンテナ指向誤差(ΔAZ、ΔEL)から重複補正テーブル21から出力するアンテナ指向誤差(ΔAZ、ΔEL)を減算する。重複補正テーブル21は、AZ角度1度ごとにΔAZ及びΔELを格納したテーブルであっても良いし、ΔAZ及びΔELがAZ角度の関数として表せるのであれば、その関数を格納したものであっても良い。また、重複補正テーブル21は、比較的温度が一定で局所的な熱変形が少なく、風が穏やかで風力による変形が小さい時間帯に、アンテナの方位角を1周駆動し、そのときの一次メテロロジー補正部20が出力するΔAZ及びΔELをAZ角度ごとに記録して取得することができる。このように、重複補正テーブル21からの出力を一次メテロロジー補正部20からの出力から減算器22により差し引くことにより、機械的に発生するアンテナ指向方向の誤差分が除去され、メテロロジー補正によって本来補正するアンテナの熱変形と風による変形に基づくアンテナ指向方向の誤差が算出される。
メテロロジー補正部16と器差補正部17とにより求められた各補正量は、加算器18により加算され、加算結果は、減算器19により角度指令値(AZ角及びEL角)から減算されることにより、機械的に生じるアンテナ指向方向の誤差分や、熱・風力によるアンテナ装置の変形によるアンテナ指向方向の誤差部が除去されて、より高精度にアンテナ指向方向の駆動制御を行うことができる。
次に、フレーム構造体及び変位計群15の構成及びメテロロジー補正量の演算方法について説明する。図5はこの発明の実施の形態1に係る第1フレーム構造体7の構成を示す構成図である。図5に示すように、第1フレーム構造体7は、リング状部材23とトラス部材24とにより構成されたフレーム構造体である。このフレーム構造体は、図5中の点線で示すトラス部材によって剛性を増すように補強することもできる。第1フレーム構造体7はアンテナベース部1の地面への設置部分に近い位置に設置するものであり、具体的には、弾性部材である板ばね25を3箇所に配置して設置する。板ばね25は、それぞれ長手方向がZ方向、短手方向がZ軸を中心とする円周方向(この円周上に板ばねが配置される)になるように設けるものであり、3つの板ばね25によって第1フレーム構造体7を6自由度のみ拘束する。リング状部材23上には、第1測定装置20を設ける。第1測定装置20は、3つの接触式又は非接触式の変位測定器により構成し、各々の測定器はZ軸方向の変位を測定するものである。
図6は、第1測定装置26による変位測定部分を拡大した断面図であり、27はアンテナベース部1のフランジ、28はフランジ27に固定された軸受外輪、29は可動側であるアンテナ架台部2に連結する軸受内輪である。軸受外輪28と軸受内輪29との間にはローラーが配置されており、軸受内輪29は軸受外輪28に対して滑らかに方位軸まわりに回転できる。第1測定装置26は軸受内輪29の下面のZ軸変位を3箇所で測定することにより、軸受内輪29のZ軸方向変位、X軸まわりの回転変位θx、Y軸回りの回転変位θyを測定することができる。この軸受内輪29はアンテナ架台部2の基準部材となり、第1測定装置26によって、この基準部材の姿勢を計測することができ、軸受のうねりやアンテナ架台部2の底部4の変位や傾きを測定することができる。なお、第1測定装置26の測定機器を増やすことにより、その他の変位(X軸方向変位、Y軸方向変位、Z軸まわりの回転変位)を測定することができる。
図7は、アンテナ架台部2内のフレーム構造体の模式図である。アンテナ架台部2の底部4には第2フレーム構造体8が、アンテナ架台部2の支柱部3には第3フレーム構造体9が収納されている。30はアンテナ架台部2の基準部材である軸受内輪29に設けられ、第2フレーム構造体8をリンク結合して、Z方向変位を拘束する3つの支持部材である。この支持部材30は、理想的には軸受内輪29に設けるのが良いが、軸受内輪29に剛性の高いフランジを固定してその上に設ける構成でも良く、このときには、軸受内輪29とフランジが基準部材となると考えれば良い。31はアンテナ架台部2の底部4の枠体に設けられ、第2フレーム構造体8をリンク結合して、Y方向変位を拘束する2つの支持部材であり、32はアンテナ架台部2の底部4の枠体に設けられ、第2フレーム構造体8をリンク結合して、X方向変位を拘束する1つの支持部材である。これらの支持部材30、31、32により、第2フレーム構造体は、アンテナ架台部2の基準部材および底部4の枠体に対して、6自由度のみ拘束して支持されている。
この第2フレーム構造体8の拘束方法によれば、アンテナ架台部2の底部4の枠体の変形を受けて、Z軸まわりの回転変位θzが発生するので、これを測定する必要がある。図7において、33は地面又はアンテナベース部1に固定され、Z軸方向に伸びる方位軸ポールであり、34は方位軸ポール33に対するアンテナ架台部2の回転角度を検出する角度検出器(例えばロータリエンコーダやレゾルバなど)である。角度検出器34はアンテナ架台部2の底部4の中央部において、上記基準部材に固定して設けられており、アンテナ架台部2の底部4の枠体の変形による影響を受けにくい。したがって、第2フレーム構造体8に接触式又は非接触式の変位測定器35を設け、角度検出器34の外周部分に設けたフランジ36の変位を測定して角度換算すれば、第2フレーム構造体8のZ軸まわりの回転変位θzを測定することができる。
図7において、37は主反射鏡5を支持するハウジング6の座部であり、主反射鏡5の支持基準部材である。また、38はアンテナ架台部2の支柱部3に設けられ、第3フレーム構造体9をリンク結合して、X方向変位を拘束する3つの支持部材であり、39はアンテナ架台部2の支柱部3の枠体に設けられ、第3フレーム構造体9をリンク結合して、Y方向変位を拘束する1つの支持部材であり、40は座部37に設けられ、第2フレーム構造体8をリンク結合して、Z方向変位を拘束する1つの支持部材である。また、41は座部37に設けられ、YZ平面内で斜めに第3フレーム構造体9をリンク結合して、X軸まわりの回転変位を拘束する1つの支持部材である。これらの支持部材38、39、40、41により、第3フレーム構造体9は、アンテナ架台部2の支柱部3およびハウジング6の座部37に対して、6自由度のみ拘束して支持されている。
この第3フレーム構造体9の支持方法によれば、第3フレーム構造体9は支柱部3のX軸方向の変位の影響を受けるが、この変位はアンテナ指向方向にほとんど寄与しないので、この変位成分は測定する必要がない。42は第3フレーム構造体9の第2フレーム構造体8に対する姿勢を検出する第2測定装置である。第2測定装置42は、第2フレーム構造体8上に設けられ、第3フレーム構造体9の底部におけるY軸方向の両端部のZ軸方向変位をそれぞれ測定する2つの接触式又は非接触式の変位測定器と、第2フレーム構造体8上に設けられ、第3フレーム構造体9の底部のY軸方向変位を測定する1つの接触式又は非接触式の変位測定器とから構成し、これらの構成を左右の支柱部3に設ける。ここで、これらの第2測定装置42によっては、完全な意味での第3フレーム構造体9の姿勢、即ち、X、Y、Z軸まわりの回転変位のすべてを求めることができないが、後述のように第2測定装置42により、アンテナ指向誤差に影響する第3フレーム構造体の姿勢を測定することが可能である。
また、図7において、43は主反射鏡5の支持基準部材であるハウジング6の座部37の変位を測定する第3測定装置である。第3測定装置43は、第3フレーム構造体9の上部におけるY軸上の端部に設けられ、座部37のZ軸方向変位を測定する1つの接触式又は非接触式の変位測定器により構成し、左右の支柱部3内に設ける。なお、第3測定装置は、第3フレーム構造体9に対する座部37の相対的な変位を測定するものである。また配置については、支持部材40と支持部材41による第3フレーム構造体9上の支持点が、第3フレーム構造体9の上部におけるY軸方向の一端部にあたり、他の一端部に第3測定装置を設ける。
上記の第1測定装置26、変位測定器35、第2測定装置42、及び第3測定装置43により図3に示す変位計群が構成されており、これらの測定データ群に基づいて、アンテナ指向方向のX、Y、Z軸まわりの回転変位を算出する原理を図8によって説明する。地面に固定された座標系として、地面と方位軸の交点を原点とし、鉛直上向きをZ方向とする座標系(X、Y、Z)を用いる。また、アンテナ架台部2における左右の支柱部3の上部(厳密にはハウジング6)と仮想的に剛結合する線分上の中点(方位軸と仰角軸との交点ともいえる)を原点とし、鉛直上向きをZ方向とし、この線分とともに変位する座標系(X、Y、Z)を用いる。なお、左右の支柱部3上部を結ぶ仰角軸方向をX方向とし、X方向はX方向と平行であるとする。Y方向、Y方向はそれぞれ座標系内の他の2方向と直交する。また、アンテナ架台部2は方位軸まわりに回転するものであり、この方位角をθAZとする。図9は、座標系(X、Y、Z)を座標系(X、Y、Z)に投影した模式図であり、方位角θAZは、図9に示すように、Z軸正方向から座標系(X、Y、Z)の原点を見て、時計回りの向きを正の回転として定義するものとする。また、主反射鏡5の仰角θELを天頂方向90度、水平方向0度として定義する。
図8において、各変位測定器は丸印により記載され、丸印中の識別番号により識別されているもとし、測定した変位dは、添え字に識別番号を付してd、d、・・・、d13と表現する。第1測定装置26において、識別番号1と3の変位測定器は、Y方向と平行な線上にあって、X軸に対象な位置関係にある。また識別番号2の変位測定器は、Z面内にある。識別番号1,2、3の変位測定器は、方位軸を中心とする半径Rの円周上に等間隔に配置しているものとする。変位測定器35は識別番号4と5の変位測定器により構成し、第2測定装置42は識別番号6、7、8、10、11、12の変位測定器により構成し、第3測定装置43は識別番号9及び13の変位測定器により構成する。また、A乃至Dは演算に必要な箇所の寸法を表しており、Aは第2フレーム構造体8のX方向の寸法を、Bは識別番号4と5の変位測定器間の寸法、Cは識別番号6と7の変位測定器間、識別番号10と11の変位測定器間の寸法を、Dは第3フレーム構造体9のZ方向の寸法を表している。
本発明に係る測定原理によれば、アンテナ架台部2等の変形により生じる座標系(X、Y、Z)のX軸の回転変位成分α、Y軸の回転変位成分β、Z軸の回転変位成分γを算出することができ、さらに、これを方位角変位ΔAZ、仰角変位ΔELに変換することができるものである。
まず、アンテナ架台部2の基準部材(図6、図7に示す軸受内輪29)の傾きを算出する。X軸まわりの傾きをRotX、Y軸まわりの傾きをRotYと表記すると、これらの傾きは、識別番号1乃至3の変位測定器により測定したd、d、dから次式のように求められる。
Figure 2009225283
このRotX、RotYによる回転変位成分α、β、γへの寄与α、β、γは、次式により求めることができる。
Figure 2009225283
次に、アンテナ架台部2の底部4と支柱部3の変形について考える。識別番号4と5の変位測定器により測定したd、dから、アンテナ架台部2の底部4の枠体の変形による回転変位成分γへの寄与γY1を次の式により求めることができる。
Figure 2009225283
識別番号6、7、9、10、11、13の変位測定器により測定したd、d、d、d10、d11、d13から、左右の支柱部3の高さの差が求められ、回転変位成分βに寄与し、その寄与量βは次式により求められる。
Figure 2009225283
また、識別番号6、7、8、10、11、12の変位測定器により測定したd、d、d、d10、d11、d12から、左右の支柱部3それぞれのY方向への変位を求めることができ、これらの差分に基づいて、回転変位成分γへの寄与γY2を次式により求めることができる。
Figure 2009225283
また、識別番号9及び識別番号13の変位測定器により測定したd及びd13から、仰角軸を支持するハウジング6の座部37の傾き(回転変位成分αに寄与)が求められる。ここで、左右のハウジング6については、通常は一方に駆動位置決め装置を設け、他方は回転フリーとすることから、駆動位置決め装置側でのハウジング6の傾きのみが、回転変位成分αに寄与する。いま、駆動位置決め装置を識別番号9の変位測定器により測定されるハウジング6側に設けたとして、そのハウジング6の傾きから回転変位成分αへの寄与αを次の式により求める。
Figure 2009225283
以上により算出されるα、β、γ、α、β、γY1、γY2に基づく単純和により、回転変位成分α、β、γを次式により求めることができる。
Figure 2009225283
次に回転変位成分α、β、γから、アンテナ指向誤差ΔAZ及びΔELを求める。回転変位成分αはΔELに直接付加され、βは主反射鏡5の仰角θELに応じてΔAZに付加され、γは符号が逆になりΔAZに付加されるので、ΔAZ、ΔELは次の式により求めることができる。
Figure 2009225283
以上のとおり、本発明によって、各変位測定器によって測定した変位に基づいて、アンテナ指向方向の誤差を算出することができ、図3及び図4に示した追尾制御系におけるメテロロジー補正部16により、フレーム構造体において機械的に発生する変位量を除き熱変形及び風力による変形によるアンテナ指向方向の誤差分(メテロロジー補正量)を算出して、より高精度にアンテナ指向方向の位置制御を行うことができる。また、第1フレーム構造体7を弾性部材により支持し、第2フレーム構造体8、第3フレーム構造体9はそれぞれ6自由度拘束し過拘束とならず、これらの構造体に流れる荷重を抑制して各構造体が内部変形するのを防ぐことができ、各変位測定器による変位測定の精度を高めることができる。
実施の形態2
この発明の実施の形態2に係るアンテナ装置を図10乃至図12を用いて説明する。実施の形態2に係るアンテナ装置は、実施の形態1に係るアンテナ装置と比較して、第2フレーム構造体8及び第3フレーム構造体9の支持方法、及び第3測定装置(実施の形態1における第3測定装置43)による測定方法が異なるものである。一方、図1及び図2に示されるアンテナ装置の断面、図3に示すアンテナ装置の駆動制御系、図4に示すメテロロジー補正部の構成、図5に示す第1フレーム構造体7の構成、及び図6に示す第1測定装置による変位測定部分の構成は、実施の形態2に係るアンテナ装置においても実施の形態1に係るアンテナ装置と同等である。したがって、実施の形態2において特に説明する場合を除き、実施の形態2に係るアンテナ装置の構成、動作及び作用効果は、図1乃至図6を用いて実施の形態1において説明したアンテナ装置の構成、動作及び作用効果と同一又は相当するものとする。
実施の形態2に係る第1フレーム構造体7及び第1測定装置26の構成は実施の形態1において図5及び図6を用いて説明したものと同一であり説明を省略する。図10はこの発明の実施の形態2に係るアンテナ架台部内のフレーム構造体の模式図であり、図11はこの発明の実施の形態2に係る第2フレーム構造体を支持する支持部材の外観図であり、図12は測定の原理を説明する模式図である。アンテナ架台部2の底部4には第2フレーム構造体8が、アンテナ架台部2の支柱部3には第3フレーム構造体9が収納されている。図10において、44はアンテナ架台部2の基準部材である軸受内輪29に設けられ、第2フレーム構造体8をリンク結合して、Z方向変位を拘束する3つの支持部材である。この支持部材44は、理想的には軸受内輪29に設けるのが良いが、軸受内輪29に剛性の高いフランジを固定してその上に設ける構成でも良く、このときには、軸受内輪29とフランジが基準部材となると考えれば良い。ここで、支持部材44には図12に示すようなバイポッド構造を用いる。バイポッド構造は6自由度のうち、Z方向とθ方向のみを拘束し、R軸回りの回転を拘束しない支持機構であり、これを用いることにより、第2フレーム構造体8の傾きを、軸受内輪29と一致させることができる。アンテナを方位軸まわりに回転可能に支持する軸受(軸受外輪28、軸受内輪29及びローラーからなる軸受)は、アンテナ架台部2の支持方法にもよるが、アキシャル:Z軸(高さ)方向に変動して軸受内輪29が傾く。仮に、板ばね12のような部材により第2フレーム構造体8を支持したとすると、3箇所の支持点でそれぞれR軸まわりの回転が拘束されて過拘束となり第2フレーム構造体8を歪めてしまう結果となり、第2フレーム構造体8の傾きが軸受内輪29と一致しなくなる。そこで、第2フレーム構造体8を軸受内輪29から支持する3点には、図11に示すバイポッド構造の支持部材44を用いる。3箇所に設けた支持部材44により、第2フレーム構造体はアンテナ架台部2の基準部材に対して6自由度のみ拘束して支持されている。
この第2フレーム構造体8の拘束方法によれば、アンテナ架台部2の底部4の枠体の変形は、理想的には第2フレーム構造体8の変位に影響しないものとすることができるが、軸受内輪38の傾きによる変位は発生する可能性があり、第2フレーム構造体8のZ軸まわりの回転変位θzを測定するものとする。図7において、45は地面又はアンテナベース部1に固定され、Z軸方向に伸びる方位軸ポールであり、46は方位軸ポール45に対するアンテナ架台部2の回転角度を検出する角度検出器(例えばロータリエンコーダやレゾルバなど)である。角度検出器46はアンテナ架台部2の底部4の中央部において、上記基準部材に固定して設けられており、アンテナ架台部2の底部4の枠体の変形による影響を受けにくい。したがって、第2フレーム構造体8に接触式又は非接触式の変位測定器47を設け、角度検出器46の外周部分に設けたフランジ48の変位を測定して角度換算すれば、第2フレーム構造体8のZ軸まわりの回転変位θzを測定することができる。
図10において、49は主反射鏡5を支持するハウジング6の座部であり、主反射鏡5の支持基準部材である。また、50はアンテナ架台部2の支柱部3に設けられ、第3フレーム構造体9をリンク結合して、X方向変位を拘束する3つの支持部材であり、51はアンテナ架台部2の支柱部3の枠体に設けられ、第3フレーム構造体9をリンク結合して、Y方向変位を拘束する1つの支持部材であり、52は座部49に設けられ、第2フレーム構造体8をリンク結合して、Z方向変位を拘束する2つの支持部材である。2つの支持部材52はパラレルリンク機構であり、この機構によってZ方向変位とX軸まわりの回転変位が拘束されることにより、第3フレーム構造体9は、常に座部49と平行の位置関係を保たれる。また、第3フレーム構造体9が支持部材52によって支持されることにより、実施の形態1において第3フレーム構造体9が支持部材40と41によって支持されることに比較して、第3フレーム構造体9のX軸まわりの回転(α回転)剛性を高くすることができる。これらの支持部材50、51、52により、第3フレーム構造体9は、アンテナ架台部2の支柱部3およびハウジング6の座部49に対して、6自由度のみ拘束して支持されている。
この第3フレーム構造体9の支持方法によれば、第3フレーム構造体9は支柱部3のX軸方向の変位の影響を受けるが、この変位はアンテナ指向方向にほとんど寄与しないので、この変位成分は測定する必要がない。53は第3フレーム構造体9の第2フレーム構造体8に対する姿勢を検出する第2測定装置である。第2測定装置53は、第2フレーム構造体8上に設けられ、第3フレーム構造体9の底部におけるY軸方向の両端部のZ軸方向変位をそれぞれ測定する2つの接触式又は非接触式の変位測定器と、第2フレーム構造体8上に設けられ、第3フレーム構造体9の底部のY軸方向変位を測定する1つの接触式又は非接触式の変位測定器とから構成し、これらの構成を左右の支柱部3に設ける。ここで、これらの第2測定装置53によっては、完全な意味での第3フレーム構造体9の姿勢、即ち、X、Y、Z軸まわりの回転変位のすべてを求めることができないが、後述のように第2測定装置53により、アンテナ指向誤差に影響する第3フレーム構造体の姿勢を測定することが可能である。
また、図10において、54は主反射鏡5の支持基準部材であるハウジング6の座部49の変位を測定する第3測定装置である。第3測定装置54は、第3フレーム構造体9の上部に設けられ、座部49のY軸方向変位を測定する1つの接触式又は非接触式の変位測定器により構成し、左右の支柱部3内に設ける。なお、第3測定装置54は、第3フレーム構造体9に対する、座部49と剛体的に変位するフランジ55の相対的な変位を測定するものである。
上記の第1測定装置26、変位測定器47、第2測定装置53、及び第3測定装置54により図3に示す変位計群が構成されており、これらの測定データ群に基づいて、アンテナ指向方向のX、Y、Z軸まわりの回転変位を算出する原理を図12によって説明する。尚、使用する座標系(X、Y、Z)、座標系(X、Y、Z)、方位角θAZ、及び仰角θELは実施の形態1において図9を用いて説明したとおりであり、説明を省略する。
図12において、各変位測定器は丸印により記載され、丸印中の識別番号により識別されているもとし、測定した変位dは、添え字に識別番号を付してd、d、・・・、d13と表現する。第1測定装置26において、識別番号1と3の変位測定器は、Y方向と平行な線上にあって、X軸に対象な位置関係にある。また識別番号2の変位測定器は、Z面内にある。識別番号1,2、3の変位測定器は、方位軸を中心とする半径Rの円周上に等間隔に配置しているものとする。変位測定器47は識別番号4と5の変位測定器により構成し、第2測定装置53は識別番号6、7、8、10、11、12の変位測定器により構成し、第3測定装置54は識別番号9及び13の変位測定器により構成する。また、A乃至Cは演算に必要な箇所の寸法を表しており、Aは第2フレーム構造体8のX方向の寸法を、Bは識別番号4と5の変位測定器間の寸法、Cは識別番号6と7の変位測定器間、識別番号10と11の変位測定器間の寸法を表わす。また、係数Mは、第3フレーム構造体の単位回転(α回転)に対するY方向変位量の係数であり、主として第3フレーム構造体の高さ(Z方向)と第3フレーム構造体の支持部材52の長さの比によって決まるものである。さらに詳細には、Y方向変位を検出する識別番号8及び11の変位測定器において、α回転したときに出力される値を補正するための係数である。
本発明に係る測定原理によれば、アンテナ架台部2等の変形により生じる座標系(X、Y、Z)のX軸の回転変位成分α、Y軸の回転変位成分β、Z軸の回転変位成分γを算出することができ、さらに、これを方位角変位ΔAZ、仰角変位ΔELに変換することができるものである。
まず、アンテナ架台部2の基準部材(図6、図7に示す軸受内輪29)の傾きを算出する。X軸まわりの傾きをRotX、Y軸まわりの傾きをRotYと表記すると、これらの傾きは、識別番号1乃至3の変位測定器により測定したd、d、dから次式のように求められる。
Figure 2009225283
このRotX、RotYによる回転変位成分α、β、γへの寄与α、β、γは、次式により求めることができる。
Figure 2009225283
次に、アンテナ架台部2の底部4と支柱部3の変形について考える。識別番号4と5の変位測定器により測定したd、dから、アンテナ架台部2の底部4の枠体の変形による回転変位成分γへの寄与γY1を次の式により求めることができる。
Figure 2009225283
識別番号6、7、10、11の変位測定器により測定したd、d、d10、d11から、左右の支柱部3の高さの差が求められ、回転変位成分βに寄与し、その寄与量βは次式により求められる。
Figure 2009225283
また、識別番号6、7、8、9、10、11、12、13の変位測定器により測定したd、d、d、d、d10、d11、d12、d13から、左右の支柱部3それぞれのY方向への変位を求めることができ、これらの差分に基づいて、回転変位成分γへの寄与γY2を次式により求めることができる。
Figure 2009225283
また、識別番号9及び識別番号13の変位測定器により測定したd及びd13から、仰角軸を支持するハウジング6の座部49の傾き(回転変位成分αに寄与)が求められる。ここで、左右のハウジング6については、通常は一方に駆動位置決め装置を設け、他方は回転フリーとすることから、駆動位置決め装置側でのハウジング6の傾きのみが、回転変位成分αに寄与する。いま、駆動位置決め装置を識別番号9の変位測定器により測定されるハウジング6側に設けたとして、そのハウジング6の傾きから回転変位成分αへの寄与αを次の式により求める。
Figure 2009225283
以上により算出されるα、β、γ、α、β、γY1、γY2に基づく単純和により、回転変位成分α、β、γを次式により求めることができる。
Figure 2009225283
次に回転変位成分α、β、γから、アンテナ指向誤差ΔAZ及びΔELを求める。回転変位成分αはΔELに直接付加され、βは主反射鏡5の仰角θELに応じてΔAZに付加され、γは符号が逆になりΔAZに付加されるので、ΔAZ、ΔELは次の式により求めることができる。
Figure 2009225283
ここで、βは1よりも十分小さく、仰角θELはπ/2よりも十分小さいものとする。
以上のとおり、本発明によって、各変位測定器によって測定した変位に基づいて、アンテナ指向方向の誤差を算出することができ、図3及び図4に示した追尾制御系におけるメテロロジー補正部16により、フレーム構造体において機械的に発生する変位量を除き熱変形及び風力による変形によるアンテナ指向方向の誤差分(メテロロジー補正量)を算出して、より高精度にアンテナ指向方向の位置制御を行うことができる。また、第1フレーム構造体7を弾性部材により支持し、第2フレーム構造体8をバイポッド構造の支持部材により支持し、第3フレーム構造体9は座面よりパラレルリンク機構を用いて支持し、それぞれ6自由度拘束することにより、各フレーム構造体の支持が過拘束とならず、これらのフレーム構造体に流れる荷重を抑制して各構造体が内部変形するのを防ぐことができ、各変位測定器による変位測定の精度を高めることができる。
この発明の実施の形態1に係るアンテナ装置の断面図である。 図1におけるAA断面図(主反射鏡部分を除く)である。 この発明の実施の形態1に係るアンテナ装置の駆動制御系のブロック図である。 メテロロジー補正部の構成を表わすブロック図である。 この発明の実施の形態1に係る第1フレーム構造体7の構成を示す構成図である。 第1測定装置による変位測定部分を拡大した断面図である。 アンテナ架台部内のフレーム構造体の模式図である。 第1乃至第3測定装置による測定原理を表わす模式図である。 座標系(X、Y、Z)を座標系(X、Y、Z)に投影した模式図である。 この発明の実施の形態2に係るアンテナ架台部内のフレーム構造体の模式図である。 この発明の実施の形態2に係る第2フレーム構造体を支持する支持部材の外観図である。 第1乃至第3測定装置による測定原理を表わす模式図である。
符号の説明
1 アンテナベース部
2 アンテナ架台部
3 支柱部
4 底部
5 主反射鏡
7 第1のフレーム構造体
8 第2のフレーム構造体
9 第3のフレーム構造体
10 サーボ制御回路
16 メテロロジー補正部
17 器差補正部
26 第1の測定装置
29 軸受内輪(アンテナ架台部の基準部材)
30 支持部材
37 座部(主反射鏡の支持基準部材)
42 第2の測定装置
43 第3の測定装置
44 支持部材(バイポッド構造の支持部材)
49 座部(主反射鏡の支持基準部材)
53 第2の測定装置
54 第3の測定装置
52 支持部材(パラレルリンク機構)

Claims (14)

  1. アンテナベース部と、このアンテナベースに支持されて方位軸まわりに回転し、2つの支柱を有して主反射鏡を支持するアンテナ架台部と、上記アンテナベース部及び上記アンテナ架台部に各6自由度拘束して設けられた複数のフレーム構造体からなるフレーム構造体群と、このフレーム構造体群の変位を測定する変位計群と、この変位計群による測定データに基づいてアンテナの指向誤差を算出し、算出した指向誤差から方位角に依存して生じる誤差分を除去してメテロロジー補正量を算出するメテロロジー補正部と、アンテナの駆動指令値を上記メテロロジー補正量により補正してアンテナの駆動制御を行う制御回路とを備えたことを特徴とするアンテナ装置。
  2. アンテナベース部と、このアンテナベースに支持されて方位軸まわりに回転し、2つの支柱を有して主反射鏡を支持するアンテナ架台部と、上記アンテナベース部及び上記アンテナ架台部に各6自由度拘束して設けられた複数のフレーム構造体からなるフレーム構造体群と、このフレーム構造体群の変位を測定する変位計群と、この変位計群による測定データに基づいてアンテナの指向誤差を算出し、算出した指向誤差から方位角に依存して生じる誤差分を除去してメテロロジー補正量を算出するメテロロジー補正部と、方位角に依存して生じる上記アンテナの指向方向誤差である器差誤差を出力する器差補正部と、アンテナの駆動指令値を上記メテロロジー補正量及び上記器差誤差により補正してアンテナの駆動制御を行う制御回路とを備えたことを特徴とするアンテナ装置。
  3. 上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点にZ軸変位を拘束して設けられ、6自由度拘束された第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有することを特徴とする請求項1に記載のアンテナ装置。
  4. 上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点にZ軸変位を拘束して設けられ、6自由度拘束された第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有することを特徴とする請求項2に記載のアンテナ装置。
  5. 上記第1の測定装置は、上記第1のフレーム構造体上の3点に設けられ、上記アンテナ架台部の基準部材の3点のZ軸方向変位を測定する3つの変位測定器を有することを特徴とする請求項3又は請求項4に記載のアンテナ装置。
  6. 上記第2の測定装置は、上記第2のフレーム構造体上の2点に設けられ、上記第3のフレーム構造体の2点のZ軸方向変位を測定する2つの変位測定器、上記第2のフレーム構造体の1点に設けられ、上記第3のフレーム構造体の1点のY軸方向変位を測定する1つの変位測定器を有することを特徴とする請求項3又は請求項4に記載のアンテナ装置。
  7. 上記第3の測定装置は、上記第3のフレーム構造体上の1点に設けられ、上記主反射鏡の支持基準部材の1点のZ軸方向変位を測定する1つの変位測定器を有することを特徴とする請求項3又は請求項4に記載のアンテナ装置。
  8. アンテナベース部と、このアンテナベースに支持されて方位軸まわりに回転し、2つの支柱を有して主反射鏡を支持するアンテナ架台部と、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体と、この第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置と、上記アンテナ架台部の基準部材上の3点においてバイポッド構造の支持部材により支持して設けられた第2のフレーム構造体と、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体と、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置と、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを備えたことを特徴とするアンテナ装置。
  9. 上記第3のフレーム構造体は、上記主反射鏡の支持基準部材からのパラレルリンク機構により支持されていることを特徴とする請求項8に記載のアンテナ装置。
  10. 上記第3の測定装置は、上記第3のフレーム構造体上の1点に設けられ、上記主反射鏡の支持基準部材の1点のY軸方向変位を測定する1つの変位測定器を有することを特徴とする請求項9に記載のアンテナ装置。
  11. 上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点においてバイポッド構造の支持部材により支持して設けられた第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有することを特徴とする請求項1に記載のアンテナ装置。
  12. 上記フレーム構造体群は、上記アンテナベース部に設けられ、弾性部材によって支持された第1のフレーム構造体、上記アンテナ架台部の基準部材上の3点においてバイポッド構造の支持部材により支持して設けられた第2のフレーム構造体、上記アンテナ架台部の上記支柱に設けられ、6自由度拘束された第3のフレーム構造体とを有し、上記変位計群は、上記第1のフレーム構造体に対する上記アンテナ架台部の基準部材の姿勢を測定する第1の測定装置、上記第2のフレーム構造体に対する上記第3のフレーム構造体の姿勢を測定する第2の測定装置、上記第3のフレーム構造体に対する上記主反射鏡の支持基準部材の変位を測定する第3の測定装置とを有することを特徴とする請求項2に記載のアンテナ装置。
  13. 上記第3のフレーム構造体は、上記主反射鏡の支持基準部材からのパラレルリンク機構により支持されていることを特徴とする請求項11又は請求項12に記載のアンテナ装置。
  14. 上記第3の測定装置は、上記第3のフレーム構造体上の1点に設けられ、上記主反射鏡の支持基準部材の1点のY軸方向変位を測定する1つの変位測定器を有することを特徴とする請求項11又は請求項12に記載のアンテナ装置。
JP2008069472A 2008-03-18 2008-03-18 アンテナ装置 Active JP4591526B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008069472A JP4591526B2 (ja) 2008-03-18 2008-03-18 アンテナ装置
US12/272,154 US7843385B2 (en) 2008-03-18 2008-11-17 Antenna device
EP08170450.4A EP2104180B1 (en) 2008-03-18 2008-12-02 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069472A JP4591526B2 (ja) 2008-03-18 2008-03-18 アンテナ装置

Publications (2)

Publication Number Publication Date
JP2009225283A true JP2009225283A (ja) 2009-10-01
JP4591526B2 JP4591526B2 (ja) 2010-12-01

Family

ID=40886199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069472A Active JP4591526B2 (ja) 2008-03-18 2008-03-18 アンテナ装置

Country Status (3)

Country Link
US (1) US7843385B2 (ja)
EP (1) EP2104180B1 (ja)
JP (1) JP4591526B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079221A (ja) * 2013-10-18 2015-04-23 三菱電機株式会社 光学素子支持装置及び光学素子支持装置の調整方法
JP7057001B1 (ja) * 2021-02-05 2022-04-19 日本電業工作株式会社 アンテナ装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064869B (zh) * 2014-06-13 2016-10-05 北京航天万达高科技有限公司 基于mems惯导的双四元数动中通天线控制方法及系统
FR3055384B1 (fr) * 2016-08-30 2019-11-08 Thales Systeme de montage de deux pieces dans un dispositif de transmission de mouvement
KR102062366B1 (ko) * 2018-06-25 2020-01-03 (주)인텔리안테크놀로지스 이동용 육상 위성 안테나의 탐색 각도를 제어하기 위한 장치 및 그 방법
CN109301452B (zh) * 2018-09-19 2024-02-02 中国科学院遥感与数字地球研究所 S/X/Ka三轴天线
CN110277643B (zh) * 2019-06-14 2021-03-26 庆安集团有限公司 无人机天线系统、无人机和无人机系统
CN111129694B (zh) * 2019-12-06 2021-01-12 宁波大学 一种victs相控阵平板阵列天线的装配结构
US11594803B2 (en) * 2020-04-23 2023-02-28 Cubic Corporation Tactical support structure for tracking spherical satellite antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333011A (ja) * 2001-05-10 2002-11-22 Nsk Ltd 3自由度型軸受とパラレルリンク機構と移動装置
JP2004340372A (ja) * 2003-04-25 2004-12-02 Canon Inc 駆動装置、それを用いた露光装置、デバイスの製造方法
JP2004353848A (ja) * 2003-05-30 2004-12-16 Kawasaki Heavy Ind Ltd 駆動装置
JP2005140185A (ja) * 2003-11-05 2005-06-02 Nikon Corp パラレルリンク機構、ステージ装置及び露光装置
JP2007129454A (ja) * 2005-11-02 2007-05-24 Mitsubishi Electric Corp アンテナ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656575B2 (ja) 2001-07-23 2005-06-08 三菱電機株式会社 衛星追尾用アンテナ制御装置
JP3943877B2 (ja) 2001-08-17 2007-07-11 富士通株式会社 位置決め制御装置及び方法
JP3933111B2 (ja) 2003-08-25 2007-06-20 三菱電機株式会社 望遠鏡装置
US20070032950A1 (en) * 2005-08-05 2007-02-08 Raven Industries, Inc. Modular high-precision navigation system
US7508342B2 (en) 2005-11-18 2009-03-24 The Boeing Company Satellite antenna positioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333011A (ja) * 2001-05-10 2002-11-22 Nsk Ltd 3自由度型軸受とパラレルリンク機構と移動装置
JP2004340372A (ja) * 2003-04-25 2004-12-02 Canon Inc 駆動装置、それを用いた露光装置、デバイスの製造方法
JP2004353848A (ja) * 2003-05-30 2004-12-16 Kawasaki Heavy Ind Ltd 駆動装置
JP2005140185A (ja) * 2003-11-05 2005-06-02 Nikon Corp パラレルリンク機構、ステージ装置及び露光装置
JP2007129454A (ja) * 2005-11-02 2007-05-24 Mitsubishi Electric Corp アンテナ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079221A (ja) * 2013-10-18 2015-04-23 三菱電機株式会社 光学素子支持装置及び光学素子支持装置の調整方法
JP7057001B1 (ja) * 2021-02-05 2022-04-19 日本電業工作株式会社 アンテナ装置

Also Published As

Publication number Publication date
EP2104180A1 (en) 2009-09-23
EP2104180B1 (en) 2017-07-12
US20090237303A1 (en) 2009-09-24
JP4591526B2 (ja) 2010-12-01
US7843385B2 (en) 2010-11-30

Similar Documents

Publication Publication Date Title
JP4591526B2 (ja) アンテナ装置
US7107168B2 (en) System for measuring the effect of bearing errors in an active device
CN115540758B (zh) 坐标测量装置
JP4275663B2 (ja) 望遠鏡システム
US5109349A (en) Actively controlled segmented mirror
CA2744651A1 (en) Space optical system having means for active control of the optics
Vernet et al. Specifications and design of the E-ELT M4 adaptive unit
EP2423728B1 (en) System and method for automatic alignment, stabilization, and focus for an off-axis telescope
JP4186977B2 (ja) アンテナ装置
JP6633393B2 (ja) 機器の照準を定めるための組立体
JP4536096B2 (ja) アンテナ装置
Good et al. Performance verification testing for HET wide-field upgrade tracker in the laboratory
JP3933111B2 (ja) 望遠鏡装置
JP3903836B2 (ja) 並行変位傾斜測定機、及びアンテナ装置
Dunn et al. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design
US7232232B2 (en) Reflector device
JP2005003607A (ja) 変位測定器、並行変位傾斜測定器、及びアンテナ装置
CN112985458A (zh) 在形变加载下进行成像的星敏感器指向测量仪及方法
WO2022202823A1 (ja) メトロロジーシステムおよび主鏡保有装置
Fabricant et al. Optical specifications for the MMT conversion
JP5045419B2 (ja) 望遠鏡装置及び望遠鏡システム
Kurita et al. Ultra-lightweight telescope mount
Podgorski et al. A mounting and alignment approach for Constellation-X mirror segments
Hindman et al. High accuracy spherical near-field measurements on a stationary antenna
JP2017090140A (ja) 計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4591526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250