JP2009216743A - 像振れ補正カメラ - Google Patents

像振れ補正カメラ Download PDF

Info

Publication number
JP2009216743A
JP2009216743A JP2008057217A JP2008057217A JP2009216743A JP 2009216743 A JP2009216743 A JP 2009216743A JP 2008057217 A JP2008057217 A JP 2008057217A JP 2008057217 A JP2008057217 A JP 2008057217A JP 2009216743 A JP2009216743 A JP 2009216743A
Authority
JP
Japan
Prior art keywords
shake
output
photographing
height
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008057217A
Other languages
English (en)
Inventor
Tomohide Kakeya
知秀 掛谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008057217A priority Critical patent/JP2009216743A/ja
Publication of JP2009216743A publication Critical patent/JP2009216743A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

【課題】撮影者の姿勢を検知し、撮影条件によらずに並進運動による画像劣化を低減した撮影を実現する。
【解決手段】工程Aでは、交換レンズ1のピッチ方向とヨー方向の振れを角速度として検出し、工程Bで角変位に演算する。一方、工程Cでは光軸を中心とした回転振れを検出し、工程Dで回転振れ量として角変位量θを演算する。工程Dの演算結果により、工程Eでは撮影時の撮像面までの高さrを検出する。この高さrの検出法の1つは、工程Fにおいて回転振れ量の周波数から撮影姿勢を検出し、工程Gで予め入力された撮影者の身長に、工程Hで所定値を乗算することで高さrを求める。他の1つは、工程Iで撮影姿勢に応じた所定値を高さrとして出力する。工程Jでは工程Dと工程Eとの出力から、r×tanθによって並進振れ量を演算する。工程Kでは工程Bによるピッチ方向とヨー方向の角変位量と、工程Jによる並進振れ量を基に手振れ補正手段を駆動する。
【選択図】図10

Description

本発明は、撮影時に手振れ等に起因する像振れを補正することが可能な像振れ補正カメラに関するものである。
現在のカメラは露出決定やピント合わせ等の撮影にとって重要な作業は全て自動化され、カメラ操作に未熟な者でも撮影失敗を起こす可能性は少なくなっている。また最近では、カメラに加わる手振れを防ぐシステムも研究されており、撮影者の撮影ミスを誘発する要因は殆どなくなっている。
撮影時のカメラの手振れは、周波数として通常1〜10Hzの振動である。光学防振システムは露光時点において、このような手振れを起こしていても、像振れのない写真を撮影可能とすることを基本的な考えとし、手振れによるカメラの振動を検出し、この検出結果に応じて補正レンズを光軸直交面内で変位させる。
この場合に、カメラ振れが生じても像振れが生じない写真を撮影するためには、第1にカメラの振動を正確に検出し、第2に手振れによる光軸変化を補正することが必要となる。
像振れの補正は特許文献1のように角速度センサ等でカメラ振れを検出し、カメラ振れの検出情報に基づいて撮影光軸を偏心させる補正光学装置を駆動することにより、像振れ補正を行うことが開示されている。
特開平7−218967号公報
しかし、並進運動がカメラに作用すると、角速度センサでは検出できないために、補正もできないという問題がある。手振れ補正とは、撮像面に届く被写体からの光束の相対変位量を、画像が劣化しない程度に低減させる。従って、たとえ露光中に数100μmの並進運動がカメラに働いたとしても、低い撮影倍率では撮像面で許容錯乱円に収まることで、画像劣化には影響することはない。しかし、マクロ撮影のような高い撮影倍率で撮影すると、並進振れによる像振れが画像劣化に影響する。
また、特に立った姿勢で撮影するときは、撮影者の支点、つまり立った姿勢ならば足元を中心とした低周波の回転運動も体の揺れとして発生する。この回転運動は回転角が小さいため、撮像面では並進運動とほぼ同等であり、体の揺れは極めてゆっくりとした運動なので、長時間露光撮影時に影響する。
このように、撮影倍率や露光時間のような撮影条件によっては、角速度センサでは検出できない並進振れが画像劣化に影響するという問題がある。
本発明の目的は、上述の問題点を解消し、並進振れに伴う画像劣化を防止し得る像振れ補正カメラを提供することにある。
上記目的を達成するための本発明に係る像振れ補正カメラは、光軸を中心とする回転振れを検出する回転振れ検出手段を有する撮像装置において、前記回転振れ検出手段の出力から光軸回りの回転振れ量を演算する回転振れ量演算手段と、該回転振れ量演算手段の出力を基に、撮影時の撮影者の撮影姿勢を検知する撮影姿勢検知手段とを有することを特徴とする。
また、本発明に係る像振れ補正カメラは、光軸を中心とする回転振れを検出する回転振れ検出手段と、該回転振れ検出手段の出力から光軸回りの回転振れ量を演算する回転振れ量演算手段と、前記回転振れとは異なる軸を中心とした角速度を検出する振れ検出手段と、該振れ検出手段の出力に基づいて振れを補正する手振れ補正手段と、撮影時の撮像面の高さを検出する撮影高さ検出手段と、前記回転振れ量演算手段の出力と前記撮影高さ検出手段との出力を基に水平方向の並進振れ量を演算する並進振れ量演算手段とを有し、前記手振れ補正手段の駆動には前記振れ検出手段の出力と前記並進振れ量演算手段との演算結果を用いることを特徴とする。
本発明に係る像振れ補正カメラによれば、撮影者の撮影姿勢を検知することができ、撮影条件によらずに並進運動による画像劣化を低減した撮影が実現できる。
本発明を図示の実施例に基づいて詳細に説明する。
図1は交換レンズ1とカメラ本体2とから成るカメラシステムのブロック回路構成図を示している。交換レンズ1はカメラ本体2に装着されており、また、交換レンズ1側のインタフェース回路3と、カメラ本体2側のインタフェース回路4とが接続されている。
交換レンズ1の撮影光学系として、光軸O上にフォーカスレンズ11、ズームレンズ12、像振れ補正レンズ13、絞り14が配列されている。交換レンズ1内にはレンズMPU15が設けられ、像振れ補正レンズ13の補正レンズエンコーダ16の出力、信号処理回路17を介して角速度センサ18の出力、像振れ補正オン/オフ選択用スイッチ19の出力が接続されている。また、レンズMPU15はフォーカス制御回路20を介して駆動用モータ21、ズームエンコーダ22、像振れ補正回路23を介してリニアモータ24、絞り制御回路25を介してステッピングモータ26に接続されている。
フォーカスレンズ11はレンズMPU15からの制御信号によりフォーカス制御回路20、駆動用モータ21を介して駆動される。フォーカス制御回路20には、フォーカスレンズ11の移動に応じたゾーンパターン信号やパルス信号を出力するフォーカスエンコーダも含まれ、被写体距離はこのフォーカスエンコーダにより検知される。
ズームレンズ12は撮影者が図示しないズーム操作リングを操作することにより移動し、ズームエンコーダ22はズームレンズ12の移動に応じたゾーンパターン信号を出力する。撮影像倍率はレンズMPU15がフォーカスエンコーダとズームエンコーダ22からの信号を読み取り、被写体距離と焦点距離の組み合わせにより、予め記憶されている撮影像倍率データを読み出すことによって得られる。
像振れ補正レンズ13は像振れ補正回路23、リニアモータ24を介して駆動される。像振れ補正において、回転振れを検出する角速度センサ18の振れ信号が信号処理回路17で信号処理され、レンズMPU15に入力される。レンズMPU15は補正レンズ駆動目標信号を算出し、この補正レンズ駆動目標信号と補正レンズエンコーダ16から出力される補正レンズ位置信号との差に応じた駆動信号を像振れ補正回路23に出力する。像振れ補正はこのように補正レンズエンコーダ16から出力される補正レンズ位置信号を、像振れ補正回路23にフィードバックすることで行われる。
また、絞り14はレンズMPU15からの制御信号により、絞り制御回路25及びステッピングモータ26を介して駆動される。
光軸Oの延長上のカメラ本体2内には、クイックリターン主ミラー31、その裏側に配置されたサブミラー32、フォーカルプレーンシャッタ33、CCDやMOSから成る撮像素子による撮像部34が構成されている。クイックリターン主ミラー31の反射方向にはペンタプリズム35が設けられ、被写体像はペンタプリズム35により測光手段36、光学ファインダ37に分岐されるようになっている。また、クイックリターン主ミラー31のハーフミラー面を透過した光束のサブミラー32による反射方向に測距手段38が設けられている。
撮像部34の出力はCDS回路(二重相関サンプリング回路)39、ゲインコントロール回路40、A/D変換器41を経て映像信号処理回路42に接続されている。映像信号処理回路42はカメラMPU43、バッファメモリ44、液晶ディスプレイ45、メモリカード46に接続されている。カメラMPU43には操作部47の出力、測距手段38の出力が接続されている。また、カメラMPU43の出力はシャッタ駆動回路48を介してフォーカルプレーンシャッタ33、タイミングジェネレータ49を介して撮像部34に接続されている。
被写体からの撮影光束は交換レンズ1内の撮影光学系を通りカメラ本体2に至り、撮影準備中は中央部分がハーフミラーとなっているクイックリターン主ミラー31により一部が反射され、ペンタプリズム35において正立像となる。撮影者はこの正立像を光学ファインダ37において被写体像として確認することができる。ここで、カメラ本体2に交換レンズ1が装着されている状態で、後述する像振れ補正装置の初期化動作を行うと、光学ファインダ37を通してその初期化動作による像変動を撮影者は視認することになる。
測光手段36は図示しないピント板面上の照度を測定して、その測定結果をカメラMPU43に入力し、カメラMPU43は露光時間、絞り量などの撮影条件を決定する。測光手段36内の測光センサは、複数のエリアに分割されており、エリアごとの測光結果を得ることができる。
クイックリターン主ミラー31の裏面に配置されたサブミラー32は、クイックリターン主ミラー31のハーフミラー面を通過した光束を測距手段38に入射させる。測距手段38は入射した光束を光電変換及び信号処理して測距データを作成し、カメラMPU43に入力する。
タイミングジェネレータ49は撮像部34の蓄積動作、読み出し動作及びリセット動作などを制御する。CDS回路39は撮像部34の蓄積電荷ノイズを低減し、ゲインコントロール回路40は撮像信号を増幅し、A/D変換器41は増幅された撮像信号をアナログからデジタルの画像データに変換する。
映像信号処理回路42はA/D変換器41でデジタル化された画像データに、フィルタ処理、色変換処理及びガンマ処理などを行う。映像信号処理回路42で信号処理された画像信号はバッファメモリ44に格納され、液晶ディスプレイ45に表示されたり、着脱可能なメモリカード46に記録される。
操作部47は図2に示すカメラ本体2の上面から背面に設けたカメラメインスイッチ、撮影モードの設定、記録画像ファイルサイズの設定のスイッチやダイヤル51、撮影時のレリーズスイッチ52から成るスイッチ類である。また、液晶ディスプレイ45はディスプレイ53に相当している。
カメラMPU43はカメラ本体2の上述の動作を制御する他に、画像信号の特定領域の高周波成分を抽出して、合焦の評価値を算出する機能を持つ評価値算出手段を有する。また、カメラMPU43はカメラ本体2側のインタフェース回路4及び交換レンズ1側のインタフェース回路3を介して、レンズMPU15と相互に通信する。この通信では、交換レンズ1にフォーカス駆動命令を送信したり、カメラ本体2や交換レンズ1の内部の動作状態や光学情報などのデータを送受信する。
撮影動作に入ると、クイックリターン主ミラー31及びサブミラー32はペンタプリズム35側に退避し、フォーカルプレーンシャッタ33がシャッタ駆動回路48により駆動され、撮影光束は撮影光学画像として画像入力され撮像部34の面上に結像する。この撮影光学画像は撮像部34によって光電変換され撮像信号となる。
図3はカメラ本体2と回転振れの関係の説明図である。手振れのうち矢印で示す光軸回りの回転運動を回転振れという。
図4は体の揺れに対するカメラ撮像面の位置変位の説明図である。支点Fとは、立って撮影していれば足元、膝をついて撮影していれば膝部分のことである。撮影者は振り子のように、支点Fを中心とした回転運動を行うが、この運動は体に対して横方向の角度θで表す揺れが主であり、前後の揺れは左右の揺れに比べれば小さい。また、揺れの大きさは撮影者に依存し、熟練者のほうが小さい。
図5は回転振れを検出するジャイロセンサを用いて、カメラを構えたときのカメラ本体2の左右の揺れを測定した結果のグラフ図である。立ってカメラを構えたときは、150mdeg揺れているが、肘を付いて構えた場合は高々50mdegの揺れである。つまり、立って構えるとゆっくりと大きく揺れ、肘を付けて構えると小刻みな小さな揺れとなる。膝を付いて構えた場合はその中間である。
図6は図5のデータをFFT(フーリエ演算)した結果のグラフ図である。撮影者の体の揺れの周波数に着目すると、おおまかに立ち姿勢では0.25Hz以下、膝付きでは0.5〜1Hz、肘付きでは2Hz程度であることが分かる。つまり、体の揺れの周波数は撮影時の姿勢に依存し、肘や膝を付いたほうが体は安定する。
このことを利用して、回転振れを検出するジャイロセンサを用いて体の揺れを測定し、その周波数から撮影時の姿勢を予測することが可能である。図7は撮影姿勢検知手段のフローチャート図である。ステップS11で検出軸が光軸方向に対して平行になるように設置されたジャイロセンサを用いて、回転振れを検出する。ジャイロセンサの出力は角速度なので、ステップS12で積分演算により角変位量を求める。この演算結果を踏まえて、ステップS13の回転振れ周波数演算により回転振れの周波数を求め、演算結果に応じて撮影姿勢を判断する。
図6における考察より、例えばステップS13で姿勢を区別するための閾値a、bを、a=0.3Hz、b=2Hzとすると、回転振れの周波数fから撮影姿勢を判断することができる。もし、回転振れの周波数f=0.25Hzであると、ステップS14で周波数fと閾値a、bが比較され、f≦aであるので、立ち姿勢と判断され出力される(ステップS15)。同様に、f=1Hzであると、ステップS14でa<f≦bであるので、膝付き姿勢と判断され出力される(ステップS16)。同様に、周波数f=5Hzであると、ステップS14でb<fであるので肘付き姿勢と判断される(ステップS17)。
図8は所定時間内に符号反転する回数を計数することで、回転振れ周波数を演算するフローチャート図である。ステップS21で所定時間を計測するために、タイマをスタートする。これは、周波数を演算し始める初回のみ必要である。この所定時間内に回転振れ角変位が何回符号反転するかによって周波数を求める。なお、所定時間とは何秒間でもよいし、或るタイミングから或るタイミングまでの期間という設定でも支障はない。
先ず、ステップS22で所定時間が経過したかどうかを判断する。つまり、予め設定した期間がステップS21でタイマスタートしてから経過したかどうか、或いはタイマをストップすると、予め設定した条件を満たしているかどうか等を判断する。所定時間が経過していないと判断されればステップS23に進む。前回の回転振れ周波数の演算時にステップS24で保持しておいた前回の回転振れ角変位と、図7のフローチャート図においてステップS11、S12で演算した今回の回転振れ角変位の符号を比較する。
同時に、次回の回転振れ周波数演算時に前回の回転振れ角変位と今回の回転振れ角変位の符号を比較するために、ステップS24で今回の回転振れ角変位を保持する。ステップS23で符号を比較した結果、符号が反転されたとステップS25で判断されればステップS26に進み、符号反転カウンタを計数アップすることで、回転振れ角変位信号が符号反転した回数を計数する。ステップS25で符号反転がなかったと判断されれば、何らの処理も行わない。
ステップS22で、所定時間が経過したと判断されるとステップS27に進み、周波数=(符号反転カウンタの計数値)/(所定時間)によって回転振れの周波数を演算する。既に所定時間が経過しているので、ステップS28でタイマをクリアし、また符号反転カウンタの計数値も周波数演算に反映されたので、ステップS29で符号反転カウンタもクリアする。
図9は符号反転する間隔から回転振れ周波数を演算するフローチャート図である。ステップS31で前回の回転振れ周波数演算時にステップS32で保持しておいた前回の回転振れ角変位と、図7のフローチャート図においてステップS11、S12で演算した今回の回転振れ角変位の符号を比較する。同時に、次回の回転振れ周波数演算時に、前回の回転振れ角変位と今回の回転振れ角変位の符号を比較するために、ステップS32で今回の回転振れ角変位を保持する。ステップS31で符号を比較した結果、符号が反転されたとステップS33で判断されれば、ステップS34に進み、反転なしと判断されれば特に何らの処理もせず、回転振れ角変位信号の符号反転を待つ。
符号の判定があると、ステップS34では符号反転済みフラグがセットされているかどうかを見て、以前も回転振れ角変位信号に符号反転があったかどうかを判断する。つまり、以前の符号反転と今回の符号反転の2回の符号反転に要した時間を計測して、回転振れ周波数を演算する。符号反転済みフラグがセットされていなかった場合はステップS37に進み、初めての符号反転なのでタイマをスタートし、次回の符号反転までの時間を計測する。
また、ステップS38で符号反転済みフラグをセットしておく。ステップS34で回転振れ角変位信号の符号反転済みフラグがセットされていた場合はステップS35に進み、その時点でのタイマ値により2回の符号反転にかかった時間とする。1周期はこのタイマ値の2倍であり、回転振れ周波数は1/(2・タイマ値)により求められる。ステップS36でタイマはクリアする。なお、ここでは2回の符号反転にかかった時間を計測することで回転振れ周波数を求めたが、その回数が2回以上でもよいことは云うまでもない。
図10は実施例2の演算説明図である。工程Aでは、交換レンズ1のピッチ方向とヨー方向の振れを検出する。工程Aでは角速度として出力されるので、その出力結果を工程Bで角変位に演算する。一方、工程Cでは光軸を中心とした回転振れを検出し、この出力を工程Dでは回転振れ量として角変位量θを演算する。更に、工程Dの演算結果により工程Eでは図4に示す撮影時の撮像面までの高さrを検出する。
この高さrの検出法には次の2つがある。1つは、工程Fにおいて回転振れ量の周波数から撮影姿勢を検出し、工程Gで予め入力された撮影者の身長に、工程Hで所定値を乗算することで高さrを求める方法である。もう1つは、工程Iで撮影姿勢に応じた所定値を高さrとして出力する方法である。
工程Jでは工程Dと工程Eとの出力からr×tanθによって並進振れ量を演算する。工程Kでは工程Bの演算結果であるピッチ方向とヨー方向の角変位量と、工程Jの演算結果である並進振れ量を基に手振れ補正手段を駆動する。
図11は実施例2における回転振れ検出から並進振れ補正にいたるまでのフローチャート図である。ヨー方向、ピッチ方向の手振れも補正する必要があるので、ステップS41で振れをジャイロセンサにより検知し、ステップS42でステップS41の出力を積分し、ヨー、ピッチ方向の手振れによる角変位情報を得る。同時に、回転振れも検知し積分する。
ステップS43で撮影者の体の揺れの支点Fから撮像部34までの高さを求めるが、体の支点Fから撮像部34までの距離を求めることができれば十分である。ステップS44では、ステップS42で求めた回転振れ角変位と、ステップS43で求めた撮影者の支点Fから撮像部34までの高さを用いて、水平方向の並進振れを演算する。特に、長秒露光撮影時において、振れ残りが発生してしまう主な原因は、体の揺れに起因する水平方向のゆっくりとした大きな並進振れであるため、ジャイロセンサで検出できず補正ができない。この並進振れは、図4に示すように体の支点Fを中心とした回転振れに起因するため、その変位量は回転振れ角変位量と回転振れの半径に依存する。
従って、回転振れ角変位量と、体の支点から撮像部34までの高さの情報とがあれば、水平方向の並進振れ変位量を演算することができる。ステップS45で、ステップS42で求めたヨー、ピッチ方向の振れと、ステップS44で求めた水平方向の並進振れに応じて、手振れ補正手段を駆動する。手振れ補正手段は手振れ補正用の光学系や撮像部34を、手振れを相殺するように機械的に駆動する方法でもよいし、画像処理で補正する方法でもよく、他の方法であっても支障はない。
撮影姿勢検知手段により検知された撮影時の姿勢に応じて、予め設定した値を出力する。例えば、姿勢検知手段の出力結果が、立ち姿勢の場合は160cm、膝付きの場合は120cm、肘付きの場合は35cmをそれぞれ出力する。また、各出力値はROMやRAMに記憶しておいてもよいし、他の手段により予め設定してもよい。
身長入力手段によって撮影者が予め自分の身長を入力しておき、更に撮影姿勢検知手段の出力に応じた所定値を、撮影者によって入力された身長に乗算したものを出力する。つまり、撮影姿勢が立ちの場合は0.9、膝付きの場合は0.65、肘付きの場合は0.2と設定しておき、撮影者が170cmと身長を入力した時に、撮影姿勢検知手段の出力が膝付きの場合は170・0.65=110.5cmを出力する。
身長の入力法としては、図2に示すようにカメラ本体2のボタンやダイヤル51を用いて入力する方法が好ましい。身長の入力は例えばボタンやダイヤル51によって、背面の液晶ディスプレイ53の値を見ながら調整するという方法がある。
並進振れ量演算手段は、撮影高さ検出手段の出力をr、回転振れ量演算手段の出力をθとすると、r・tanθにより演算し出力する。図4に示すように、体の支点Fを中心とした回転振れに起因する水平方向の並進振れは、図中のxであるが、角度θがごく小さい場合はx=r・tanθと近似できる。
回転振れ検出手段を駆動するかどうかは、撮影条件によって決定する。或いは、撮影条件によって決定する所定値を並進振れ量演算手段の出力に乗算する。撮影手段とは、具体的には撮影倍率、露光時間の何れか一方、或いは両方である。並進振れは低い撮影倍率の場合は撮像面上では画質に影響しない程度の変位量になるため無視できるが、高い撮影倍率では実際の振れ量と撮像面上の変位量が近付くために無視できなくなる。また、体の支点Fを中心とした回転振れに起因する水平方向の並進振れはゆっくりとした低周波の運動なので、長時間露光撮影時に影響する。
逆に云うと、高倍率、高速シャッタ秒時の撮影時は、並進振れは画質に影響しないので、補正する必要もなく、並進振れを検知する必要もない。このことを踏まえて、高倍率、高速シャッタ秒時の撮影時は、水平方向の並進振れ量演算用の回転振れを検出するジャイロセンサを駆動しない。或いは、並進振れ量演算手段の出力に所定値を乗算し、並進振れが画質に影響しない撮影条件での撮影時は所定値を小さい値に設定し、振れ補正手段駆動に対する並進振れの影響度を小さくする。
低周波の体の揺れを検出するには数秒程度の時間を要する。被写体に確実に狙いを定めて撮影する場合は、露光開始までに数秒の時間を確保することも可能であるが、その前に露光を開始することも十分にあり得る。
振れ補正動作開始から露光開始までが所定時間に満たなかった場合は、所定時間に応じた所定値を並進振れ量演算手段の出力に乗算する。図12のフローチャート図は回転振れ周波数演算処理部が演算に必要な時間が足りなかったために、撮影姿勢検知手段が姿勢を出力できなかった場合の処理である。
ステップS51で振れ補正動作開始信号が入力されると、ステップS52で振れ補正動作開始からの時間を計測するためのタイマをスタートする。ステップS53で露光開始信号が入力されたかどうかを判定し、露光開始するまでは何も処理を行わずに待機する。露光開始の信号が入力されると、ステップS54に進み、予め設定された所定時間が振れ補正動作開始より経過したかどうかを判定する。この所定時間とは、撮影姿勢検知手段によって各撮影姿勢を検知するために最低限必要な時間である。
図6に示す各姿勢に対する回転振れの周波数から、例えば立ち姿勢では4秒以上、膝付きでは1〜2秒、肘付きでは0.5以下程度の時間が、姿勢検知に必要な概略の時間である。図12のステップS54では、或る1つの所定時間とタイマ値を比較しているが、当然2つ以上の所定時間と比較してもよい。
もし、所定時間に4秒を設定したとすると、タイマ値が5秒であった場合はステップS55に進み、立ち姿勢を検知するのに十分な時間が経過していると判断され、所定値を例えば1と設定する。タイマ値が3秒であった場合はステップS56に進み、立ち姿勢を検知するのに十分な時間は経過しなかった判断され、所定値を例えば0.25と設定する。これは、回転振れ周波数の演算に十分な時間がなかったため、撮影姿勢検知手段の出力は信頼性が低下するので、振れ補正への影響度を低くするためである。所定値を0とすることで、並進振れ情報を振れ補正に全く反映させないということもできる。
振れ補正動作開始から露光開始までが所定時間に満たなかった場合は、撮影高さ検出手段によって露光開始までに判明している撮影高さに応じた並進振れ量を並進振れ量演算手段によって演算する。図6の考察から、各姿勢における1周期は立ち姿勢が4秒以上、膝付きが2秒程度、肘付きが0.5秒程度である。つまり、撮影姿勢検知手段によって撮影姿勢が確定するのは、肘付き、膝付き、立ち姿勢の順番である。
例えば、立ち姿勢で撮影した場合に、手振れ補正手段の駆動開始から露光開始まで3秒であれば、撮影姿勢検知手段は立ち姿勢であることを出力できないが、少なくとも膝付きであることは出力できる。そこで、撮影姿勢検知手段は膝付きであることを出力しておいて、撮影高さ検出手段は膝付きに応じた撮影高さを求める。この場合に、必ず実際の撮影高さより低く検出されるので、過補正にはならずに並進振れの影響を低減することができる。
図13は実施例3における画像の振れ残りについての説明図である。振れ残りとは、本来ならば振れを検出し補正しているので、手振れによる画質の劣化は肉眼には認識できない程度に低減されているはずである。それが、制御上の問題で補正しきれなかったり、検出できない方向の振れが画質に影響してしまったりするなどの原因から、図13に示すように振れた画像が撮れてしまい、矢印で示す振れ残り量が生ずることがある。
並進振れ量演算手段は撮影者の体格や撮影技術等に依存するので、演算結果が必ずしも手振れ補正に最適に反映されるとは限らず、演算結果に調整値を乗算することで最適化することが求められる。
図14は並進振れ量演算手段の最適化の一例のフローチャート図である。調整値決定のための撮影は、所定の撮影倍率、所定の露光時間でなくてはならず、更に各撮影条件は並進振れが画質に影響する程度でなくてはならない。
先ず、ステップS61でとりあえず適当な調整値を決定し、その調整値を並進振れ量演算手段の出力に乗算し、手振れ補正手段に反映させた状態で1枚撮影する。ステップS62で撮影された画像の振れ残り量を検出し保持しておく。ステップS63で調整値をインクリメントし、同様に並進振れ量演算手段の出力に乗算し、手振れ補正手段に反映させた状態で1枚撮影する。このインクリメントする刻みはどの程度でも支障はない。
ステップS64では、ステップS63で撮影した画像の振れ残り量を検出する。ステップS65では、調整値の最適化が終了したかどうかを判定しているが、この時点では終了していないのでステップS66に進む。ステップS66では、ステップS63で撮影した画像と、ステップS61で撮影した画像との振れ残り量を比較し、画質が向上したかを判断する。
このとき、比較する画像に関して、双方の露光間の並進振れ量に差があると、単純に画質を比較できない。そこで、単位並進振れ量当りの振れ残りを比較する。画質が向上、つまり振れ残り量が減少したと判断されればステップS67に進み、前回と同じ方向に調整値を変更し、再度撮影する。例えば、ステップS63で調整値をインクリメントしたところ、振れ残り量が減少すれば更に調整値をインクリメントし、更なる画質の向上つまり振れ残り量の減少を狙うことになる。ステップS68では、ステップS67で撮影した画像の振れ残り量を検出する。このように、振れ残り量が減少し続ける限りはステップS67、S68を繰り返す。このとき、調整値をデクリメントすると振れ残り量が減少した場合はデクリメントを続ける。
この過程で、画質が悪化した場合はステップS66からステップS69に進む。ステップS69では、前回の調整値の変更で振れ残り量が減少したかどうかを判定し、ここでも単位並進振れ量当りの振れ残りを比較する。この場合は、前回までは画質が向上し続けていたので、ステップS70に進む。ステップS70では、画質が向上から悪化に転じたことで、調整値のピークに達したと判断され、調整終了フラグがセットされる。
この状態でステップS65に戻り、調整終了フラグが立っているので、調整値の最適化は終了となる。仮に、ステップS63で調整値をインクリメントした時に画質が悪化した場合は、各ステップSを経てステップ工程Aに進む。ステップ工程Aでは前回と逆のデクリメントを行い、1枚撮影する。ステップ工程Bでその画像の振れ残り量を検出し、振れ残り量が減少し続ける限り調整値のデクリメントをし続ける。
以上の調整値の決定は、生産工程で行ってもよいし、カメラに設定モードを設けておいて、この設定モード内で行うこともできる。また、図14のフローチャート図の実行を自動で行ってもよいし、手動で行っても支障はない。
生産工程で行う場合は、図14のフローチャート図がそのまま当てはまり、工具によって一定の並進振れ下で撮影するのであれば、ステップS66やS69では単純に振れ残り量のみを比較してもよい。
設定モードで調整値を決定する場合は、図2のボタンやダイヤル51によって設定モードを選択し、モード選択中に数枚撮影する。撮影された画像を用いて図14に示した処理を行い、調整値が決定されると、例えば警告音を発したり、背面液晶ディスプレイ53に終了したという旨を表示したりすることで終了してもよい。
実施例1のカメラシステムのブロック回路構成図である。 カメラ本体の背面図である。 カメラと回転振れの関係の説明図である。 体の揺れに対するカメラ撮像面の位置変位の説明図である。 各姿勢における回転振れの時間変化のグラフ図である。 回転振れのFFTのグラフ図である。 撮影姿勢検知手段のフローチャート図である。 所定時間内に符号反転する回数を計数することで回転振れ周波数を演算するフローチャート図である。 符号反転する間隔から回転振れ周波数を演算するフローチャート図である。 実施例2の演算説明図である。 回転振れ検出から並進振れ補正にいたるまでのフローチャート図である。 振れ補正動作開始から露光開始までに要した時間に対する回転振れ周波数演算のフローチャート図である。 実施例3の振れ残りがある画像の説明図である。 並進振れ量演算手段の最適化のフローチャート図である。
符号の説明
1 交換レンズ
2 カメラ本体
11 フォーカスレンズ
12 ズームレンズ
13 像振れ補正レンズ
14 絞り
15 レンズMPU
16 補正レンズエンコーダ
18 角速度センサ
23 像振れ補正回路
34 撮像部
38 測距手段
42 映像信号処理回路
43 カメラMPU
45、53 液晶ディスプレイ
47 操作部

Claims (11)

  1. 光軸を中心とする回転振れを検出する回転振れ検出手段を有する撮像装置において、前記回転振れ検出手段の出力から光軸回りの回転振れ量を演算する回転振れ量演算手段と、該回転振れ量演算手段の出力を基に、撮影時の撮影者の撮影姿勢を検知する撮影姿勢検知手段とを有することを特徴とする像振れ補正カメラ。
  2. 前記撮影姿勢検知手段は、前記回転振れ量演算手段の出力を基に回転振れの周波数を演算する回転振れ周波数演算手段を有し、前記回転振れの周波数を基に立ち姿勢、膝付き姿勢、肘付き姿勢を判断することを特徴とする請求項1に記載の像振れ補正カメラ。
  3. 前記回転振れ周波数演算手段は、所定時間内に前記回転振れ量演算手段の出力が符号反転した回数又は間隔に応じて前記回転振れ周波数を検出することを特徴とする請求項2に記載の像振れ補正カメラ。
  4. 光軸を中心とする回転振れを検出する回転振れ検出手段と、該回転振れ検出手段の出力から光軸回りの回転振れ量を演算する回転振れ量演算手段と、前記回転振れとは異なる軸を中心とした角速度を検出する振れ検出手段と、該振れ検出手段の出力に基づいて振れを補正する手振れ補正手段と、撮影時の撮像面の高さを検出する撮影高さ検出手段と、前記回転振れ量演算手段の出力と前記撮影高さ検出手段との出力を基に水平方向の並進振れ量を演算する並進振れ量演算手段とを有し、前記手振れ補正手段の駆動には前記振れ検出手段の出力と前記並進振れ量演算手段との演算結果を用いることを特徴とする像振れ補正カメラ。
  5. 前記撮影高さ検出手段は、撮影者の撮影姿勢を検知する撮影姿勢検知手段の出力に応じて予め設定した所定値を出力することを特徴とする請求項4に記載の像振れ補正カメラ。
  6. 前記撮影高さ検出手段は、身長入力手段によって撮影者が身長を入力し、前記撮影姿勢検知手段の出力に応じて身長に所定値を乗算することで前記撮像面の高さを演算することを特徴とする請求項5に記載の像振れ補正カメラ。
  7. 振れ補正動作の開始から露光開始までが所定時間に満たなかった場合は、前記撮影姿勢検知手段によって露光開始までに判明している前記撮影姿勢に応じた前記撮像面の高さを前記撮影高さ検出手段によって検出し、その出力に応じて前記並進振れ量を前記並進振れ量演算手段によって演算することを特徴とする請求項5に記載の像振れ補正カメラ。
  8. 前記並進振れ量演算手段は、前記撮影高さ検出手段の出力をr、前記回転振れ量演算手段の出力をθとすると、r・tanθから前記並進振れ量を演算することを特徴とする請求項4に記載の像振れ補正カメラ。
  9. 振れ補正動作の開始から露光開始までが所定時間に満たなかった場合は、前記所定時間に応じた所定値を前記並進振れ量演算手段の出力に乗算することを特徴とする請求項4に記載の像振れ補正カメラ。
  10. 前記並進振れ量演算手段の出力結果を前記手振れ補正手段の駆動に用いた状態で少なくとも1枚の撮影を行い、更に各画像の撮影時に前記回転振れ量演算手段の出力に乗算する調整値を変更し、撮影された画像の振れ残り量と前記回転振れ量演算手段の出力を比較することで、前記振れ残り量を減少する前記調整値を決定し、前記並進振れ量演算手段を最適化することを特徴とする請求項4〜9の何れか1つの請求項に記載の像振れ補正カメラ。
  11. 前記調整値を決定するための設定モードを撮影者が選択する調整値決定手段を有し、前記調整値の決定は前記設定モードが選択された時に撮影された画像を用いて、前記調整値決定手段により行うことを特徴とする請求項10に記載の像振れ補正カメラ。
JP2008057217A 2008-03-07 2008-03-07 像振れ補正カメラ Pending JP2009216743A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057217A JP2009216743A (ja) 2008-03-07 2008-03-07 像振れ補正カメラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057217A JP2009216743A (ja) 2008-03-07 2008-03-07 像振れ補正カメラ

Publications (1)

Publication Number Publication Date
JP2009216743A true JP2009216743A (ja) 2009-09-24

Family

ID=41188722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057217A Pending JP2009216743A (ja) 2008-03-07 2008-03-07 像振れ補正カメラ

Country Status (1)

Country Link
JP (1) JP2009216743A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375713A (zh) * 2010-08-17 2012-03-14 宏碁股份有限公司 电子装置及图像抗晃动的方法
WO2013145387A1 (ja) * 2012-03-27 2013-10-03 株式会社ニコン 電子機器
JP2013207406A (ja) * 2012-03-27 2013-10-07 Nikon Corp 電子機器
JP2016180780A (ja) * 2015-03-23 2016-10-13 株式会社Jvcケンウッド 揺れ補正装置
CN110741625A (zh) * 2018-07-23 2020-01-31 深圳市大疆创新科技有限公司 运动估计方法及可移动设备
CN112233394A (zh) * 2020-10-12 2021-01-15 泰州物族信息科技有限公司 复合式多信息播报系统及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375713A (zh) * 2010-08-17 2012-03-14 宏碁股份有限公司 电子装置及图像抗晃动的方法
WO2013145387A1 (ja) * 2012-03-27 2013-10-03 株式会社ニコン 電子機器
JP2013207406A (ja) * 2012-03-27 2013-10-07 Nikon Corp 電子機器
JP2016180780A (ja) * 2015-03-23 2016-10-13 株式会社Jvcケンウッド 揺れ補正装置
CN110741625A (zh) * 2018-07-23 2020-01-31 深圳市大疆创新科技有限公司 运动估计方法及可移动设备
CN110741625B (zh) * 2018-07-23 2022-06-21 深圳市大疆创新科技有限公司 运动估计方法及摄影器材
CN112233394A (zh) * 2020-10-12 2021-01-15 泰州物族信息科技有限公司 复合式多信息播报系统及方法

Similar Documents

Publication Publication Date Title
US7424213B2 (en) Camera system, image capturing apparatus, and a method of an image capturing apparatus
JP4769553B2 (ja) 撮像装置
KR100735762B1 (ko) 촬상장치 및 그의 카메라 본체 그리고 교환렌즈
JP6062656B2 (ja) 撮像装置、制御方法、及びプログラム
US7468743B2 (en) Photographing device and method for obtaining photographic image having image vibration correction
JP4963569B2 (ja) 撮像システム及びレンズユニット
US7693406B2 (en) Image capturing apparatus, method of controlling the same, and storage medium
US9398199B2 (en) Image capture apparatus capable of shifting electrical signal when center of gravity is shifted due to an eclipse of pupil area
JP2001042207A (ja) 電子カメラ
JP2009216743A (ja) 像振れ補正カメラ
JP3646124B2 (ja) オートフォーカス装置
JP2002214659A (ja) ぶれ補正機能付きカメラ
JP4905048B2 (ja) 撮像装置、撮像装置の制御方法および制御プログラム
JP2008158028A (ja) 電子スチルカメラ
JP2005140851A (ja) オートフォーカスカメラ
JP7254555B2 (ja) 撮像装置および撮像装置の制御方法
JP6699679B2 (ja) 撮像装置
JP2018194770A (ja) カメラシステム、交換レンズおよびカメラ
JP2018005145A (ja) 撮像装置
JP5187036B2 (ja) 撮像装置
JP2016086210A (ja) 像ぶれ補正装置を有する光学機器、カメラシステム
JP2007248672A (ja) 撮影装置、制御方法および制御プログラム
JP2002372664A (ja) 動体領域判別装置、動体領域判別方法及び合焦装置
JP2024010325A (ja) 評価方法、撮像装置およびプログラム
JP2015187662A (ja) 焦点調節装置および撮像装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630