JP2009215496A - Method of manufacturing composite material including resin molding - Google Patents

Method of manufacturing composite material including resin molding Download PDF

Info

Publication number
JP2009215496A
JP2009215496A JP2008062767A JP2008062767A JP2009215496A JP 2009215496 A JP2009215496 A JP 2009215496A JP 2008062767 A JP2008062767 A JP 2008062767A JP 2008062767 A JP2008062767 A JP 2008062767A JP 2009215496 A JP2009215496 A JP 2009215496A
Authority
JP
Japan
Prior art keywords
resin
molded body
organometallic complex
carbon dioxide
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008062767A
Other languages
Japanese (ja)
Other versions
JP4954126B2 (en
Inventor
Hiroki Ota
寛紀 太田
Atsushi Yusa
敦 遊佐
Tomohito Yamamoto
智史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2008062767A priority Critical patent/JP4954126B2/en
Priority to PCT/JP2009/054729 priority patent/WO2009113607A1/en
Priority to CN2009801085413A priority patent/CN101970719B/en
Priority to KR1020107020353A priority patent/KR20100126377A/en
Priority to US12/921,912 priority patent/US20110020550A1/en
Publication of JP2009215496A publication Critical patent/JP2009215496A/en
Application granted granted Critical
Publication of JP4954126B2 publication Critical patent/JP4954126B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1682Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1685Process conditions with supercritical condition, e.g. chemical fluid deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of permeating and immobilizing a metal complex stably even in a low temperature processing in a batch processing method of a plating pretreatment which permeates the metal complex into a polymer using a high pressure carbon dioxide. <P>SOLUTION: A method of manufacturing a composite material including a resin molding 200 is provided, which method includes: bringing a reduction agent into contact with the resin molding to permeate the reduction agent into the resin molding 200 (S21); and contacting the resin molding 200 with the high pressure carbon dioxide dissolved with the organometal complex to immobilize the organometal complex into the resin molding 200 (S22). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、樹脂成型体を含む複合材料の製造方法に関する。   The present invention relates to a method for producing a composite material including a resin molded body.

従来、ポリマー部材(ポリマー成形品)などの樹脂成型体に安価に金属膜を形成する方法としては、無電解メッキ法が知られている。また、無電解メッキ法では、メッキ膜の密着性を確保するために、六価クロム酸や過マンガン酸等の酸化剤を用いて、無電解メッキの前処理としてポリマー部材表面をエッチングし、ポリマー部材の表面を粗化する必要がある。しかしながら、六価クロム酸や過マンガン酸等の酸化剤は、環境負荷が大きい。   Conventionally, an electroless plating method is known as a method for forming a metal film at low cost on a resin molded body such as a polymer member (polymer molded product). In the electroless plating method, the surface of the polymer member is etched as a pretreatment for electroless plating using an oxidizing agent such as hexavalent chromic acid or permanganic acid in order to ensure the adhesion of the plating film. It is necessary to roughen the surface of the member. However, oxidizing agents such as hexavalent chromic acid and permanganic acid have a large environmental load.

また、このようなエッチング液で浸漬されるポリマー、すなわち、無電解メッキが適用可能なポリマーとしては、ABS等の一部の材質のポリマーに限定されていた。これは、ABSにはブタジエンゴム成分が含まれており、この成分がエッチング液に選択的に浸漬されることでポリマー部材の表面に凹凸を形成することができるのに対して、他のポリマー材料ではこのようなエッチング液に選択的に酸化される成分が少なく、表面に凹凸が形成され難いためである。それゆえ、ABS以外のポリマーであるポリカーボネート等では、無電解メッキを可能にするためにABSやエラストマーを混合したものがメッキグレードとして市販されている。しかしながら、そのようなメッキグレードのポリマー材料においては、主材料のみである場合に比べて耐熱性が低下してしまう等の物性の劣化を避けることができず、耐熱性が要求される成形品などで使用し難かった。   In addition, polymers immersed in such an etching solution, that is, polymers to which electroless plating can be applied are limited to polymers of some materials such as ABS. This is because ABS contains a butadiene rubber component, and this component can be selectively immersed in an etching solution to form irregularities on the surface of the polymer member. This is because there are few components that are selectively oxidized by such an etchant and it is difficult to form irregularities on the surface. Therefore, polycarbonate and the like, which are polymers other than ABS, are commercially available as plating grades in which ABS and elastomer are mixed to enable electroless plating. However, in such plating-grade polymer materials, it is impossible to avoid deterioration of physical properties such as a decrease in heat resistance compared to the case of using only the main material, and molded products that require heat resistance. It was difficult to use with.

このような化学的な前処理方法の代替方法として、従来、超臨界二酸化炭素等の高圧二酸化炭素を用いた表面改質方法が提案されている(例えば特許文献1)。特許文献1では、バッチ処理(高圧容器内での非連続処理)の手法において、高圧二酸化炭素に金属錯体を溶解させ、該金属錯体の溶解した高圧二酸化炭素をポリマー部材に接触させている。これにより、ポリマー部材の表面内部に、金属錯体が浸透する。   As an alternative to such a chemical pretreatment method, a surface modification method using high-pressure carbon dioxide such as supercritical carbon dioxide has been proposed (for example, Patent Document 1). In Patent Document 1, in a batch processing (non-continuous processing in a high-pressure vessel) method, a metal complex is dissolved in high-pressure carbon dioxide, and the high-pressure carbon dioxide in which the metal complex is dissolved is brought into contact with a polymer member. As a result, the metal complex penetrates into the surface of the polymer member.

また、特許文献2では、ポリマー内部に浸透させた金属錯体を熱還元することで、金属錯体がポリマー内部で金属化して固定され、この金属をメッキの触媒核として機能させる手法を開示する。   Patent Document 2 discloses a technique in which a metal complex that has penetrated into the inside of the polymer is thermally reduced so that the metal complex is metalized and fixed inside the polymer, and this metal functions as a catalyst nucleus for plating.

さらに、本発明者らは、高圧二酸化炭素を用いて、金属触媒をポリマー内部に浸透させた後、高圧二酸化炭素を混合させた無電解メッキ液を用いて、ポリマー部材に対して密着性の高い無電解メッキ膜を形成する方法を開示している(特許文献3)。メッキ反応が起こらない低温度で、無電解メッキ液と高圧二酸化炭素との混合液をポリマー内部に浸透させた後、ポリマーの温度をメッキ反応可能な温度まで上昇させる方法である。本発明者らの検討によれば、金属錯体が熱還元されてなる触媒核がポリマー内部に予め浸透していることにより、この触媒核を利用してポリマー内部から無電解メッキ反応が成長し、従来のエッチング法と同等以上の密着強度のメッキ膜が得られると考えられる。   Furthermore, the present inventors use high pressure carbon dioxide to infiltrate the metal catalyst into the interior of the polymer, and then use an electroless plating solution in which high pressure carbon dioxide is mixed. A method of forming an electroless plating film is disclosed (Patent Document 3). This is a method in which a mixed solution of an electroless plating solution and high-pressure carbon dioxide is infiltrated into the polymer at a low temperature at which no plating reaction occurs, and then the temperature of the polymer is increased to a temperature at which plating reaction is possible. According to the study by the present inventors, the catalyst nucleus formed by thermally reducing the metal complex has penetrated into the polymer in advance, so that the electroless plating reaction grows from the inside of the polymer using this catalyst nucleus, It is considered that a plating film having adhesion strength equal to or higher than that of a conventional etching method can be obtained.

特開2001−316832号公報JP 2001-316832 A 特開2007−56287号公報JP 2007-56287 A 特許第3926835号公報Japanese Patent No. 3926835

上記したように、従来の樹脂成型体のメッキ方法では、環境負荷の大きい前処理を行う必要があり、また、選択できるポリマー材料の種類も限定されていた。   As described above, in the conventional method of plating a resin molded body, it is necessary to perform pretreatment with a large environmental load, and the types of polymer materials that can be selected are also limited.

また、特許文献1の超臨界流体等の高圧二酸化炭素を用いたポリマー部材の表面改質方法を用いて、ポリマー部材にメッキ触媒となる金属微粒子をバッチ処理により浸透させた場合には、それを熱還元することにより、ポリマー部材の表部にメッキ触媒となる金属微粒子が存在するポリマー部材が得られる。   In addition, when the polymer member surface modification method using high-pressure carbon dioxide such as supercritical fluid of Patent Document 1 is used to infiltrate the polymer member with metal fine particles as a plating catalyst by batch processing, By performing thermal reduction, a polymer member in which metal fine particles serving as a plating catalyst are present on the surface of the polymer member is obtained.

ところで、発明者らの研究により、こうした超臨界状態等の高圧二酸化炭素を用いた前処理法において、高圧二酸化炭素に溶解させる金属錯体として、フッ素を含有する金属錯体が有効であることが明らかとなってきた。フッ素を含有する金属錯体は、高圧二酸化炭素に対する溶解度が高いため、高圧容器内において錯体を高い濃度とすることができ、高濃度の錯体を浸透させることにより浸透処理時間を短縮とすることができる。以下、それについて詳細に説明する。   By the way, the inventors' research has revealed that a fluorine-containing metal complex is effective as a metal complex dissolved in high-pressure carbon dioxide in the pretreatment method using high-pressure carbon dioxide in such a supercritical state. It has become. Since the fluorine-containing metal complex has high solubility in high-pressure carbon dioxide, the complex can be concentrated in a high-pressure vessel, and the permeation treatment time can be shortened by infiltrating the complex at a high concentration. . This will be described in detail below.

例えば、フッ素を含有しない金属錯体であるアセチルアセトナトパラジウム(II)錯体の高圧液体二酸化炭素(温度40℃、圧力15MPa)に対する溶解度は数十mg/Lであり、溶解度が著しく低い。そのため、この金属錯体をポリマー内部に高濃度で浸透させために30分から1時間あるいはそれ以上の時間が必要であった。また、この金属錯体は熱安定性が高いため、熱還元に長時間を要し、しかも、熱還元温度を200℃以上と高温にしなければならなかった。   For example, the solubility of acetylacetonato palladium (II) complex, which is a metal complex not containing fluorine, in high-pressure liquid carbon dioxide (temperature 40 ° C., pressure 15 MPa) is several tens mg / L, and the solubility is extremely low. Therefore, it took 30 minutes to 1 hour or more in order to allow the metal complex to penetrate into the polymer at a high concentration. In addition, since this metal complex has high thermal stability, it takes a long time for thermal reduction, and the thermal reduction temperature must be as high as 200 ° C. or higher.

それに対し、フッ素を含有する金属錯体であるヘキサフルオロアセチルアセトナトパラジウム(II)錯体の同様な高圧二酸化炭素に対する溶解度は数十g/Lであり、前述の金属錯体と比べて溶解度が二桁高い。そのため、数〜数十分で高圧容器内の金属錯体を高い濃度とすることができ、前述の金属錯体の場合よりも浸透時間を短くできる。   On the other hand, the hexafluoroacetylacetonato palladium (II) complex, which is a metal complex containing fluorine, has a solubility in the same high-pressure carbon dioxide of several tens of g / L, which is two orders of magnitude higher than that of the aforementioned metal complex. . Therefore, the concentration of the metal complex in the high-pressure vessel can be increased by several to several tens of minutes, and the permeation time can be shortened compared to the case of the metal complex described above.

ただし、こうしたフッ素を含有する金属錯体は、高圧二酸化炭素に対する溶解度が著しく高い反面、ポリマー部材に対する親和性が低い。ポリマー内部に浸透した金属錯体が高圧二酸化炭素側へ戻ってしまう。そのため、ポリマー内部に浸透させただけでは、思うように固定化されない。ポリマー内部での金属錯体の濃度は上がり難い。   However, such fluorine-containing metal complexes have extremely high solubility in high-pressure carbon dioxide, but have a low affinity for polymer members. The metal complex that has penetrated into the polymer returns to the high-pressure carbon dioxide side. Therefore, it is not fixed as expected just by penetrating the inside of the polymer. It is difficult to increase the concentration of the metal complex inside the polymer.

そこで、発明者らは独自の研究により、金属錯体をポリマー内部へ浸透した直後に、高温度の高圧二酸化炭素中にて熱還元処理することにより、ポリマー内部での金属錯体の濃度を上げることができた。上記フッ素を含有する金属錯体は熱的に安定性が低いため、150℃程度の温度で完全に熱分解して還元することができる。   Therefore, the inventors have made it possible to increase the concentration of the metal complex inside the polymer by conducting a thermal reduction treatment in high-temperature high-pressure carbon dioxide immediately after penetrating the metal complex into the polymer, through independent research. did it. Since the metal complex containing fluorine has low thermal stability, it can be completely thermally decomposed and reduced at a temperature of about 150 ° C.

ただし、熱還元は、金属錯体を浸透するために用いた高圧容器内で行わないと、ポリマー内で金属錯体は固定化されにくい。なぜなら、第一に、金属錯体は二酸化炭素に対して親和性が高いために、還元処理前に二酸化炭素を排気してしまうと、その排気二酸化炭素とともにポリマー内部に浸透していた金属錯体も排出されてしまうからであり、第二に、それが故に、金属錯体を高圧二酸化炭素で浸透させた後に、高圧容器からポリマーを取り出して熱的あるいは化学的な還元処理をする場合には、その処理前に金属錯体がポリマーから抜けてしまうからである。   However, if the thermal reduction is not performed in the high-pressure vessel used to penetrate the metal complex, the metal complex is difficult to be immobilized in the polymer. First, because the metal complex has a high affinity for carbon dioxide, if the carbon dioxide is exhausted before the reduction treatment, the metal complex that has penetrated into the polymer together with the exhausted carbon dioxide is also discharged. Second, if the metal complex is infiltrated with high-pressure carbon dioxide and then the polymer is taken out from the high-pressure vessel and subjected to thermal or chemical reduction treatment, the treatment is performed. This is because the metal complex has already escaped from the polymer.

また、本発明者らは、さらにこの高圧容器を用いたバッチ処理によるメッキ前処理について鋭意検討した結果、下記問題が顕在化することが明らかとなってきた。   Further, as a result of intensive studies on the plating pretreatment by batch processing using this high-pressure vessel, the present inventors have revealed that the following problems become apparent.

第一に、1つの高温容器内で複数のポリマー成形体を一括して処理する場合、ポリマー内部に浸透する前に金属錯体が熱分解してしまうことがあり、メッキの成長性や密着強度の悪い場所や成形品が存在することがあった。つまり、品質にばらつきが生じていた。   First, when a plurality of polymer molded bodies are processed in a single high-temperature container, the metal complex may be thermally decomposed before penetrating into the inside of the polymer. There were sometimes bad places and molded products. That is, the quality has varied.

第二に、低温度で金属錯体と二酸化炭素をポリマー内部に浸透させた後、浴内の温度を上昇させ、ポリマー内部の金属錯体を熱分解および還元させた場合には、上記品質ばらつきは抑制されるものの、高圧容器内の金属錯体は、ポリマー成形体に浸透せずに余剰に滞留しているものも含めてすべてが分解してしまうことになるため、高価な金属錯体を回収できない。なお、浴内の温度を上昇させる替わりに、高圧容器内にアルコール等の還元剤を高圧下で導入することも考えられるが、この場合にも未浸透の余剰の金属錯体を回収することはできない。このように金属錯体は高圧容器に仕込んだうちのごく一部の量しかポリマー内部へ浸透しないものであるが、従来の熱還元法ではその余剰の金属錯体は回収できずに容器内部で熱分解もしくは還元されてしまうので、大きなロスとなる。よって不経済となり工業化する上で大きな障害となった。   Second, if the metal complex and carbon dioxide are infiltrated into the polymer at a low temperature and then the temperature in the bath is raised to thermally decompose and reduce the metal complex inside the polymer, the above quality variation is suppressed. However, since the metal complex in the high-pressure vessel completely decomposes including the one that stays excessively without penetrating into the polymer molded body, the expensive metal complex cannot be recovered. Instead of increasing the temperature in the bath, it may be possible to introduce a reducing agent such as alcohol into the high-pressure vessel under high pressure, but in this case as well, the unpermeated excess metal complex cannot be recovered. . In this way, only a small portion of the metal complex charged in the high-pressure vessel penetrates into the polymer, but the conventional metal reduction cannot recover the surplus metal complex and thermally decomposes inside the vessel. Or it will be reduced, so it will be a big loss. Therefore, it became uneconomical and a major obstacle to industrialization.

第三に、上記超臨界状態等の高圧二酸化炭素を用いたメッキ前処理に、上記高圧二酸化炭素を用いた無電解メッキ法に適用した場合、下記問題が明らかとなった。すなわち、上記高圧容器内で金属錯体を浸透させ、次いで熱還元し金属化して固定化した方法の場合、樹脂成型体の表面側から金属錯体が還元されて固定化されていくため図4(a)の模式図のように、樹脂成型体の表層ほど金属微粒子もしくは金属錯体の濃度が高くなる。そのため、高圧二酸化炭素を混合させたメッキ液をポリマー内部に浸透させた後にポリマー内部よりメッキ反応させた場合、この表層の触媒活性が高くなり、ポリマー内部よりメッキが成長しにくくなる。そして図4(b)に模式的に示すように、成形品の場所によってメッキ膜の浸透深さが浅くなり、高い密着強度が得られるものの、その値が変動することがあった。   Thirdly, the following problems have been clarified when applied to the electroless plating method using high-pressure carbon dioxide in the plating pretreatment using high-pressure carbon dioxide in the supercritical state or the like. That is, in the case of the method in which the metal complex is infiltrated in the high-pressure vessel and then thermally reduced and metallized and immobilized, the metal complex is reduced and immobilized from the surface side of the resin molded body, so that FIG. ), The concentration of the metal fine particles or the metal complex increases as the surface layer of the resin molded body increases. For this reason, when a plating solution mixed with high-pressure carbon dioxide is allowed to penetrate inside the polymer and then subjected to a plating reaction from the inside of the polymer, the catalytic activity of this surface layer becomes high, and the plating is less likely to grow from inside the polymer. Then, as schematically shown in FIG. 4B, although the penetration depth of the plating film becomes shallow depending on the location of the molded product and high adhesion strength is obtained, the value may fluctuate.

本発明は、上記問題を解決するためになされたものであり、本発明の第一の目的は、高圧二酸化炭素を用いて金属錯体をポリマーに浸透させるメッキ前処理のバッチ処理法において、低温度の処理においても安定に金属錯体をポリマーに浸透、かつ固定化する方法を提供し、かつ余剰の金属錯体を高圧容器内部より回収できる前処理法を提供することにある。また、本発明の第二の目的は、特に高圧二酸化炭素を用いたポリマー内部でメッキ反応させる無電解メッキ法において、密着強度をより向上し、安定化させる手法を提供することにある。   The present invention has been made to solve the above problems, and a first object of the present invention is to provide a low temperature treatment in a batch processing method of plating pretreatment in which a metal complex is infiltrated into a polymer using high-pressure carbon dioxide. It is also intended to provide a method for stably penetrating and immobilizing a metal complex into a polymer even in the above treatment, and to provide a pretreatment method capable of recovering excess metal complex from the inside of a high-pressure vessel. A second object of the present invention is to provide a technique for improving and stabilizing the adhesion strength more particularly in an electroless plating method in which a plating reaction is performed inside a polymer using high-pressure carbon dioxide.

本発明の第1の態様に従えば、樹脂成型体を含む複合材料の製造方法であって、還元剤を上記樹脂成型体に接触させて、上記還元剤を上記樹脂成型体内に浸透させることと、上記還元剤が浸透した上記樹脂成型体に、有機金属錯体が溶解した高圧二酸化炭素を接触させて、上記還元剤により上記有機金属錯体を上記樹脂成型体内に固定化することを含むことを特徴とする樹脂成型体を含む複合材料の製造方法が提供される。   According to a first aspect of the present invention, there is provided a method for producing a composite material including a resin molded body, wherein a reducing agent is brought into contact with the resin molded body, and the reducing agent is permeated into the resin molded body. The resin molded body infiltrated with the reducing agent is contacted with high-pressure carbon dioxide in which the organometallic complex is dissolved, and the organometallic complex is immobilized in the resin molded body by the reducing agent. The manufacturing method of the composite material containing the resin molding to make is provided.

この第1の態様によれば、樹脂成型体内に浸透する有機金属錯体は、予め樹脂成型体内に浸透した還元剤との還元反応により樹脂成型体内に固定化される。したがって、有機金属錯体を樹脂成型体内に固定化するために、温度を有機金属錯体の熱還元温度以上にする必要が無い。すなわち、上記有機金属錯体が溶解した上記高圧二酸化炭素を、上記有機金属錯体の熱還元温度より低い温度雰囲気にて上記樹脂成型体と接触すればよい。これに対して、熱還元反応で有機金属錯体を固定化する場合、樹脂成型体などを熱還元反応となる温度まで加熱したり、常温へ冷却したりしなければならず、これにより前処理プロセスのスループットが制限されていた。また、たとえば射出により成形された樹脂成型体などにあっては、成形時にスキン層と内部とで残留応力に差が生じており、これを加熱冷却をすると、発泡したり、表面が割れたり、内割れが生じたりしてしまうことがある。第1の態様では、これらの課題を解決することができる。   According to this 1st aspect, the organometallic complex which osmose | permeates the resin molding body is fix | immobilized in the resin molding body by the reductive reaction with the reducing agent which osmose | permeated the resin molding body previously. Therefore, in order to fix the organometallic complex in the resin molded body, the temperature does not need to be higher than the thermal reduction temperature of the organometallic complex. That is, the high-pressure carbon dioxide in which the organometallic complex is dissolved may be brought into contact with the resin molded body in a temperature atmosphere lower than the thermal reduction temperature of the organometallic complex. On the other hand, when an organometallic complex is immobilized by a thermal reduction reaction, the resin molded body must be heated to a temperature at which it becomes a thermal reduction reaction, or cooled to room temperature, thereby pretreatment process. Throughput was limited. Also, for example, in resin molded bodies molded by injection, there is a difference in residual stress between the skin layer and the inside during molding, and when this is heated and cooled, it foams, the surface cracks, Internal cracks may occur. In the first aspect, these problems can be solved.

なお、この第1の態様において、還元剤は、たとえばOH基を有する材料であればよく、そのような還元剤としてはアルコール、フェノールなどがある。また、還元剤は、溶媒に溶解されて樹脂成型体に接触してもよい。このような溶媒としては、二酸化炭素であっても、水またはアルコールであってもよい。アルコールを溶媒とした場合、その還元処理はウェット処理になる。そして、還元剤を含む溶媒を上記樹脂成型体に接触させることは、たとえば、高圧二酸化炭素の雰囲気中で接触させたり、超音波洗浄により接触させたりすればよい。   In the first embodiment, the reducing agent may be any material having, for example, an OH group, and examples of such a reducing agent include alcohol and phenol. Moreover, a reducing agent may be dissolved in a solvent and may contact a resin molding. Such a solvent may be carbon dioxide, water or alcohol. When alcohol is used as a solvent, the reduction process is a wet process. And what is necessary is just to make it contact in the atmosphere of a high pressure carbon dioxide, or contact by the ultrasonic cleaning, for example, making the solvent containing a reducing agent contact the said resin molding.

また、この第1の態様は、さらに、上記還元剤が浸透した上記樹脂成型体は、その表層から上記還元剤が除去された後に、上記有機金属錯体が溶解した上記高圧二酸化炭素と接触してもよい。これにより、還元剤は、単に樹脂成型体内に浸透しただけでなく、さらに樹脂成型体の表層から除去した状態で浸透したものとなるので、有機金属錯体は、樹脂成型体の表層より内側の深いところで固定化される。したがって、低温度の処理においても安定に金属錯体をポリマーに浸透、かつ固定化することができる。   In addition, in the first aspect, the resin molded body infiltrated with the reducing agent is brought into contact with the high-pressure carbon dioxide in which the organometallic complex is dissolved after the reducing agent is removed from the surface layer. Also good. As a result, the reducing agent not only penetrates into the resin molded body but also penetrates in a state where it is removed from the surface layer of the resin molded body, so that the organometallic complex is deep inside the surface layer of the resin molded body. By the way, it is fixed. Therefore, the metal complex can be stably penetrated into the polymer and immobilized even at low temperature treatment.

なお、表層とは、たとえば樹脂成型体の表面から深さ50nm以下の範囲内をいい、この範囲内では、還元剤を除去することなく有機金属錯体を接触させ、さらに無電解めっきをした場合に、メッキ膜が形成されてしまう。このメッキ膜は、樹脂成型体との密着性が全体的に低く、且つ、その部位毎の密着度のばらつきが大きい。   The surface layer means, for example, within a range of a depth of 50 nm or less from the surface of the resin molded body. In this range, the organometallic complex is contacted without removing the reducing agent, and further electroless plating is performed. As a result, a plating film is formed. This plating film has low overall adhesion to the resin molded body and a large variation in the degree of adhesion for each part.

また、樹脂成型体の表層から除去したといえるためには、少なくとも表層に浸透している有機金属錯体が減少すればよいが、好ましくは、表層の残存数(濃度)が表層より深い部位の数(濃度)より小さくなったり、あるいは、所定の単位深さ毎の有機金属錯体の数(濃度)が表層より深い部位において最大(ピーク)となったりする程度に、表層に浸透している有機金属錯体を減少させることが望ましい。   Further, in order to be said to have been removed from the surface layer of the molded resin body, at least the organometallic complex penetrating the surface layer may be reduced, but preferably, the number of remaining portions (concentration) of the surface layer is deeper than the surface layer. Organometallic that has penetrated the surface layer to such an extent that it becomes smaller than (concentration) or the number (concentration) of the organometallic complex at a given unit depth reaches the maximum (peak) at a site deeper than the surface layer. It is desirable to reduce the complex.

つまり、樹脂成型体の表層から還元剤を敢えて除去することにより、樹脂成型体の内部のみで選択的に金属錯体の還元反応がおき、固定化される。樹脂成型体の表層における還元剤濃度は低いため金属錯体が還元されにくいが、還元剤濃度の高い内部では金属錯体が還元されやすくなる。結果、樹脂の表層よりも内部の金属錯体の分散濃度が高まる。そのため、後述するように高圧二酸化炭素を用いた無電解メッキ法により樹脂内部でメッキ反応を行った際、樹脂の表層ではメッキ膜が成長しにくく、内部より確実にメッキ膜が成長しやすくなる。そのため、メッキの密着性およびその安定性が高まる。   That is, by reducing the reducing agent from the surface layer of the resin molding, the metal complex is selectively reduced and immobilized only within the resin molding. The metal complex is difficult to be reduced because the reducing agent concentration in the surface layer of the resin molding is low, but the metal complex is likely to be reduced inside the reducing agent concentration is high. As a result, the dispersion concentration of the internal metal complex is higher than the surface layer of the resin. Therefore, when a plating reaction is performed inside the resin by an electroless plating method using high-pressure carbon dioxide as will be described later, the plating film hardly grows on the surface layer of the resin, and the plating film easily grows reliably from the inside. For this reason, the adhesion and stability of the plating are enhanced.

なお、樹脂成型体の表層から還元剤を除去する処理は、たとえば、還元剤を浸透させた樹脂成型体を所定時間内で水で洗浄したり、還元剤を浸透させた樹脂成型体にエアーを所定時間内で吹き付けたりすればよい。これにより、樹脂成型体の表層から還元剤を除去することができる。樹脂成型体に浸透させた還元剤の一部を除去することができる。特に、還元剤がアルコールなどである場合には、アルコールなどは揮発し易いので、所定時間内で大気中に放置するだけで、樹脂成型体の表層から還元剤を除去することができる。   In addition, the process of removing the reducing agent from the surface layer of the resin molded body may be performed by, for example, washing the resin molded body infiltrated with the reducing agent with water within a predetermined time or supplying air to the resin molded body infiltrated with the reducing agent. What is necessary is just to spray within predetermined time. Thereby, a reducing agent can be removed from the surface layer of a resin molding. Part of the reducing agent that has permeated the resin molding can be removed. In particular, when the reducing agent is alcohol or the like, the alcohol or the like is easily volatilized, so that the reducing agent can be removed from the surface layer of the resin molded body by simply leaving it in the air within a predetermined time.

また、この第1の態様は、さらに、上記有機金属錯体が固定化された上記樹脂成型体上に、高圧二酸化炭素を含む無電解メッキ法によりメッキ膜を形成してもよい。この場合、樹脂成型体の表層より内側の深いところに固定化された有機金属錯体からメッキを成長させ、樹脂成型体に高い密着度で密着するメッキ膜を形成することができる。しかも、樹脂成型体の表層における有機金属錯体が無いあるいは少ないので、表層からメッキ膜が成長しなくなり、メッキ膜の密着度は高い値において安定する。   In the first embodiment, a plating film may be further formed on the resin molded body on which the organometallic complex is fixed by an electroless plating method containing high-pressure carbon dioxide. In this case, plating can be grown from the organometallic complex fixed deep inside the surface layer of the resin molded body, and a plating film that adheres to the resin molded body with a high degree of adhesion can be formed. In addition, since there is no or little organometallic complex in the surface layer of the resin molding, the plating film does not grow from the surface layer, and the adhesion of the plating film is stabilized at a high value.

これに対して、たとえば、単に、有機金属錯体を付与した樹脂成型体に対して、高圧二酸化炭素を含む無電解メッキ法によりメッキ膜を形成しようとした場合には、樹脂成型体の温度は表面から内側に向かって温度勾配をもったまま表面側から上昇し、且つ、樹脂成型体には内側より表面側ほど高濃度に有機金属錯体が付与されているので、メッキ膜はその表層に高濃度で存在している有機金属錯体から成長してしまうこととなり、メッキ膜の樹脂成型体に対する密着度は高くできなかった。また、表層内においても、その中の表面側の部位からメッキ膜が成長している箇所と、内側の部位からメッキ膜が成長している箇所とが混在し、メッキ膜の密着度が低い箇所が発生し、しかも、この密着度は不安定になる。   On the other hand, for example, when a plating film is simply formed by electroless plating containing high-pressure carbon dioxide on a resin molded body provided with an organometallic complex, the temperature of the resin molded body As the temperature rises from the surface side with a temperature gradient from the inside to the inside, and since the organometallic complex is applied to the resin molding from the inside to the surface side, the plating film has a high concentration on the surface layer. Thus, the adhesion degree of the plating film to the resin molded body could not be increased. Also, in the surface layer, a place where the plating film grows from the surface side part and a part where the plating film grows from the inside part are mixed, and the adhesion degree of the plating film is low Moreover, this degree of adhesion becomes unstable.

また、この第1の態様は、さらに、上記有機金属錯体を固定化した後であって且つ上記メッキ膜の形成前に、上記樹脂成型体を上記有機金属錯体の熱還元温度より高い温度にて加熱してもよい。このように有機金属錯体を樹脂成型体の表層より内側の深い部位に固定化した後に、有機金属錯体の熱還元温度より高い温度に加熱すると、有機金属錯体は表面側へ移動し、樹脂成型体の表層より内側の深い部位における有機金属錯体の濃度を高めることができる。したがって、加熱による前処理(アニール処理)をしない直前の段落の場合に比べて、樹脂成型体の表層より内側の深い部位における触媒核が増量され、その分、メッキ膜の樹脂成型体に対する密着度をさらに高くすることができる。また、所定の深さに有機金属錯体が高濃度で存在することになるので、メッキ膜はこの所定の深さから安定的に成長するようになり、メッキ膜の密着度の安定性がさらに高まる。   In addition, the first aspect further includes the step of fixing the resin molded body at a temperature higher than the thermal reduction temperature of the organometallic complex after immobilizing the organometallic complex and before forming the plating film. You may heat. After immobilizing the organometallic complex in a deep part inside the surface layer of the resin molded body in this way, when heated to a temperature higher than the thermal reduction temperature of the organometallic complex, the organometallic complex moves to the surface side, and the resin molded body It is possible to increase the concentration of the organometallic complex in a deep part inside the surface layer of the layer. Therefore, the amount of catalyst nuclei in the deep part inside the surface layer of the resin molded body is increased compared with the case of the immediately preceding paragraph where pretreatment by heating (annealing treatment) is not performed, and accordingly, the degree of adhesion of the plating film to the resin molded body. Can be further increased. In addition, since the organometallic complex is present at a high concentration at a predetermined depth, the plating film is stably grown from the predetermined depth, and the stability of the adhesion of the plating film is further enhanced. .

また、この第1の態様において、上記有機金属錯体は、上記樹脂成型体とともに高圧容器内に収容されることにより上記樹脂成型体に固定化され、且つ、上記樹脂成型体を上記有機金属錯体の熱還元温度より高い温度に加熱する処理は、上記高圧容器から上記有機金属錯体を回収した後にするようにしてもよい。これにより、有機金属錯体は、樹脂成型体と接触する際に熱還元反応せず、しかも、接触処理後に高圧二酸化炭素から分離して回収することができる。回収した有機金属錯体は、再利用することができる。   Moreover, in this 1st aspect, the said organometallic complex is fixed to the said resin molding by being accommodated in a high-pressure container with the said resin molding, and the said resin molding is made of the said organometallic complex. The treatment for heating to a temperature higher than the thermal reduction temperature may be performed after the organometallic complex is recovered from the high-pressure vessel. As a result, the organometallic complex does not undergo a thermal reduction reaction when coming into contact with the resin molding, and can be separated and recovered from the high-pressure carbon dioxide after the contact treatment. The recovered organometallic complex can be reused.

また、この第1の態様において、上記有機金属錯体は、フッ素を含んでもよい。フッ素を含む有機金属錯体は二酸化炭素によく溶解するので、高圧二酸化炭素に高濃度で溶解して樹脂成型体に接触させることができる。しかも、フッ素を含む有機金属錯体は樹脂成型体に入り込み難い特性を有するものであるが、樹脂成型体には予め還元剤を浸透させてあるので、高濃度の有機金属錯体が樹脂成型体内に浸透して効率よく樹脂成型体内に有機金属錯体を固定化することができる。   In the first aspect, the organometallic complex may contain fluorine. Since the organometallic complex containing fluorine dissolves well in carbon dioxide, it can be dissolved in high-pressure carbon dioxide at a high concentration and brought into contact with the resin molding. In addition, the organometallic complex containing fluorine has the property that it is difficult to enter the resin molding, but since the reducing agent has been previously infiltrated into the resin molding, a high concentration of the organometallic complex penetrates into the resin molding. Thus, the organometallic complex can be efficiently immobilized in the resin molded body.

また、この第1の態様において、上記有機金属錯体は、メッキ用触媒として機能する金属元素であるPd、Pt、Ni、CuおよびAgのうちの、少なくとも1種類の金属元素を含んでもよい。これにより、樹脂成型体の表層より内側の深い部位に、メッキ用触媒を固定化することができる。   In the first aspect, the organometallic complex may contain at least one metal element of Pd, Pt, Ni, Cu, and Ag, which are metal elements that function as a plating catalyst. Thereby, the catalyst for plating can be fixed in the deep part inside the surface layer of the resin molding.

また、この第1の態様において、上記高圧二酸化炭素は、超臨界状態であってもよい。   In the first aspect, the high-pressure carbon dioxide may be in a supercritical state.

ところで、本発明に用いることのできる還元剤の種類は任意であるが、たとえばジメチルアミンボラン、水素化ホウ素ナトリウム、次亜燐酸ナトリウム等の還元剤を用いることができる。こうした固体の還元剤の場合、水やアルコール等の溶媒に溶解させた溶液を調合し、熱可塑性樹脂を該溶液に浸漬させることで還元剤を樹脂内部に浸透させることができる。熱可塑性樹脂への浸透性を高めるため、超音波を溶液に印加したり、溶液を加温したり、還元剤の種類によってpHを調整してもよい。例えば、水素化ホウ素ナトリウムを用いた場合、溶液をアルカリ性に調整し、次亜燐酸ナトリウムを用いた場合、中性から酸性に調整することが望ましい。水溶液を用いた場合、表面張力を低減し浸透力を高めるため、エタノール等表面張力の低い溶媒を混合したり、ラウリル硫酸ナトリウム等添加剤を溶解させてもよい。   By the way, although the kind of reducing agent which can be used for this invention is arbitrary, reducing agents, such as a dimethylamine borane, sodium borohydride, sodium hypophosphite, can be used, for example. In the case of such a solid reducing agent, a reducing agent can be infiltrated into the resin by preparing a solution dissolved in a solvent such as water or alcohol and immersing the thermoplastic resin in the solution. In order to increase the permeability to the thermoplastic resin, ultrasonic waves may be applied to the solution, the solution may be heated, or the pH may be adjusted depending on the type of the reducing agent. For example, when sodium borohydride is used, the solution is preferably adjusted to be alkaline, and when sodium hypophosphite is used, it is desirable to adjust from neutral to acidic. When an aqueous solution is used, a solvent having a low surface tension such as ethanol may be mixed or an additive such as sodium lauryl sulfate may be dissolved in order to reduce the surface tension and increase the penetrating power.

また、還元作用のあるヒドロキシル基を有するアルコールやポリアルキルグリコール、フェノール等を還元剤として用いることができる。特にエタノールは表面張力が低く樹脂内部に浸透しやすいので好適である。アルコールの種類は任意であるが、メチルアルコール、エチルアルコール、イソプロピルアルコール、ブタノール、エチレングリコール等を用いることができる。ポリエチレングリコール等、高分子量のポリアルキルグリコールを用いることにより樹脂内部から還元剤が抜けきって、効果が消失してしまうのを抑制することができる。さらに、これら還元剤は2種類以上組み合わせて用いても良い。   Further, alcohol having a hydroxyl group having a reducing action, polyalkyl glycol, phenol and the like can be used as a reducing agent. In particular, ethanol is suitable because it has a low surface tension and easily penetrates into the resin. Although the kind of alcohol is arbitrary, methyl alcohol, ethyl alcohol, isopropyl alcohol, butanol, ethylene glycol, etc. can be used. By using a high molecular weight polyalkyl glycol such as polyethylene glycol, it is possible to prevent the reducing agent from being completely removed from the inside of the resin and the effect disappearing. Furthermore, these reducing agents may be used in combination of two or more.

また、本発明においては、これら還元剤および還元剤の溶解した溶液を高圧流体と混合させることにより、より還元剤の浸透性を向上させることができる。特に高圧二酸化炭素や超臨界状態の二酸化炭素(以下、超臨界二酸化炭素)を用いることで樹脂表面を膨潤させ還元剤を樹脂内部に深く浸透させることができる。   Moreover, in this invention, the permeability | transmittance of a reducing agent can be improved more by mixing the solution which these reducing agents and the reducing agent melt | dissolved with the high pressure fluid. In particular, by using high-pressure carbon dioxide or supercritical carbon dioxide (hereinafter referred to as supercritical carbon dioxide), the resin surface can be swollen and the reducing agent can penetrate deeply into the resin.

また、本発明において用いることのできる樹脂材料は特に限定されず、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂を用いることができる。熱可塑性樹脂の場合、通常、非晶質、結晶性を問わず、その種類は任意である。具体的には、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1などのポリオレフィン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリルニトリルなどのポリビニル、ポリオキシメチレン、ポリエチレンオキシドなどのポリエーテル、その他、ポリエステル、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリスルホン、ポリカーボネート、ポリ乳酸などの高分子材料を用いることができる。さらに、ポリエチレンテレフタレート等の芳香族ポリエステル、ポリテレフタルアミド等の芳香族アミド、ポリ4フッ化エチレン等のフッ素系高分子を用いることができる。熱硬化性樹脂の場合、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリウレタン、シリコーン樹脂等を用いることができる。光硬化性樹脂の場合、感光性エポキシ樹脂、感光性アクリル樹脂、感光性ポリイミド等を用いることができる。これら樹脂材料に、ガラス繊維、炭素繊維、無機化合物、セラミック等のフィラーを含有したものを用いてもよい。   In addition, the resin material that can be used in the present invention is not particularly limited, and a thermoplastic resin, a thermosetting resin, and a photocurable resin can be used. In the case of a thermoplastic resin, the kind is usually arbitrary regardless of whether it is amorphous or crystalline. Specifically, for example, polyolefins such as low density polyethylene, high density polyethylene, polypropylene, poly-4-methylpentene-1, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile and other polyvinyls, polyoxymethylene, polyethylene oxide, etc. Other polymer materials such as polyether, polyester, polyamide, polyimide, polymethyl methacrylate, polysulfone, polycarbonate, and polylactic acid can be used. Furthermore, aromatic polyesters such as polyethylene terephthalate, aromatic amides such as polyterephthalamide, and fluorine-based polymers such as polytetrafluoroethylene can be used. In the case of a thermosetting resin, epoxy resin, phenol resin, polyimide, polyurethane, silicone resin, or the like can be used. In the case of a photocurable resin, a photosensitive epoxy resin, a photosensitive acrylic resin, a photosensitive polyimide, or the like can be used. You may use for these resin materials what contained fillers, such as glass fiber, carbon fiber, an inorganic compound, and a ceramic.

また、本実施の形態において用いることのできる有機金属錯体としては、高圧二酸化炭素にある程度の溶解度を有し、メッキ用触媒となる金属元素Pd、Pt、Ni、Cu、Agをいずれかの少なくとも1種類は含有する材料が好ましい。例えば、ビス(シクロペンタジエニル)ニッケル、ビス(アセチルアセトナト)パラジウム(II)、ジメチル(シクロオクタジエニル)プラチナ(II)、ヘキサフルオロアセチルアセトナトパラジウム(II)、ヘキサフルオロアセチルアセトナトヒドレート銅(II)、ヘキサフルオロアセチルアセトナトプラチナ(II)、ヘキサフルオロアセチルアセトナト(トリメチルホスフィン)銀(I)、ジメチル(ヘプタフルオロオクタネジオネート)銀(AgFOD)等を用いることができる。特にフッソを配位子に有する金属錯体は高圧二酸化炭素に相溶しやすいので好適である。   In addition, as the organometallic complex that can be used in the present embodiment, at least one of the metal elements Pd, Pt, Ni, Cu, and Ag that has a certain degree of solubility in high-pressure carbon dioxide and serves as a plating catalyst. The kind is preferably a contained material. For example, bis (cyclopentadienyl) nickel, bis (acetylacetonato) palladium (II), dimethyl (cyclooctadienyl) platinum (II), hexafluoroacetylacetonatopalladium (II), hexafluoroacetylacetonatohydrate Copper (II), hexafluoroacetylacetonatoplatinum (II), hexafluoroacetylacetonato (trimethylphosphine) silver (I), dimethyl (heptafluorooctaneconate) silver (AgFOD), or the like can be used. In particular, a metal complex having fluorine as a ligand is suitable because it is easily compatible with high-pressure carbon dioxide.

本発明では、第一に、高圧二酸化炭素を用いて金属錯体をポリマーに浸透させるメッキ前処理のバッチ処理法において、低温度の処理においても安定に金属錯体をポリマーに浸透、かつ固定化することができ、かつ余剰の金属錯体を高圧容器内部より回収できる。また、本発明では、第二に、メッキ膜の密着強度をより向上し、安定化できる。   In the present invention, first, in a batch treatment method of plating pretreatment in which a metal complex is infiltrated into a polymer using high-pressure carbon dioxide, the metal complex is stably infiltrated into and fixed to the polymer even in a low-temperature treatment. And surplus metal complex can be recovered from inside the high-pressure vessel. In the present invention, secondly, the adhesion strength of the plating film can be further improved and stabilized.

以下、本発明の樹脂成型体を含む複合材料の製造方法の実施例について具体的に説明するが、本発明は以下の実施例に限定されない。   Hereinafter, although the Example of the manufacturing method of the composite material containing the resin molding of this invention is described concretely, this invention is not limited to a following example.

本実施例では、メッキ前処理において、還元剤を含む溶媒および有機金属錯体を高圧流体に溶解させ、これを樹脂材料に接触させるために所定の高圧装置を用いた。本実施例では、高圧流体として二酸化炭素を使用した。初めに、本実施例で使用した高圧装置について説明する。   In this example, in the plating pretreatment, a predetermined high-pressure apparatus was used to dissolve the solvent containing the reducing agent and the organometallic complex in the high-pressure fluid and bring them into contact with the resin material. In this example, carbon dioxide was used as the high-pressure fluid. First, the high-pressure apparatus used in this example will be described.

図1は、本実施の形態が適用されるメッキ前処理および無電解メッキを実施するための高圧装置100を説明する概略図である。図1に示すように、高圧装置100は、主に、樹脂材料(樹脂成型体)200を収容する第一高圧容器6と、第一高圧容器6に供給する二酸化炭素を収容する液体二酸化炭素ボンベ1と、二酸化炭素を昇圧するシリンジポンプ3と、図示しないカトーリッジヒーターで温調可能で、有機金属錯体を収容する第二高圧容器(高圧容器)13と、高圧二酸化炭素に溶解した有機金属錯体を分離回収するための分離回収機9、回収した有機金属錯体を入れる回収槽11とを有する。また、高圧装置100の各構成要素間には、図1に示すように、高圧二酸化炭素の圧力や流動を制御するためのバルブ2、4、5、8、10、12、14と、圧力計15、16が適宜所定の箇所に設置されている。   FIG. 1 is a schematic diagram illustrating a high-pressure apparatus 100 for performing plating pretreatment and electroless plating to which the present embodiment is applied. As shown in FIG. 1, the high-pressure apparatus 100 mainly includes a first high-pressure vessel 6 that contains a resin material (resin molded body) 200 and a liquid carbon dioxide cylinder that contains carbon dioxide supplied to the first high-pressure vessel 6. 1, a syringe pump 3 that pressurizes carbon dioxide, a second high-pressure vessel (high-pressure vessel) 13 that can be temperature-controlled by a cartridge heater (not shown), and that contains an organometallic complex, and an organometallic complex dissolved in high-pressure carbon dioxide And a separation / recovery machine 9 for separating and recovering the liquid, and a recovery tank 11 for storing the recovered organometallic complex. Moreover, between each component of the high pressure apparatus 100, as shown in FIG. 1, valves 2, 4, 5, 8, 10, 12, and 14 for controlling the pressure and flow of high pressure carbon dioxide, and a pressure gauge 15 and 16 are appropriately installed at predetermined positions.

なお、第一高圧容器6は、図示しない冷却回路を流動する冷却水によって冷却可能である。また、第一高圧容器6には、還元剤を含む溶媒と高圧二酸化炭素との混合媒体と、有機金属錯体と高圧二酸化炭素との混合媒体とが供給可能である。また、第一高圧容器6には無電解メッキ液を満たすことができる。   The first high-pressure vessel 6 can be cooled by cooling water that flows in a cooling circuit (not shown). The first high-pressure vessel 6 can be supplied with a mixed medium of a solvent containing a reducing agent and high-pressure carbon dioxide, and a mixed medium of an organometallic complex and high-pressure carbon dioxide. The first high pressure vessel 6 can be filled with an electroless plating solution.

本実施例では、還元剤を含む溶媒として、エチレングリコールとエタノールの混合溶媒を用い、樹脂材料200として、ガラス繊維が10%混合されたポリアミド6(PA6)の縦70mm、横15mm、厚み1mmの基板を用い、有機金属錯体としては、メッキ用触媒Pdを含有するヘキサフルオロアセチルアセトナトパラジウム(II)を用いた。また、メッキ膜として、高圧二酸化炭素を用いた無電解メッキによりニッケルリン膜を形成し、更にその上に電解メッキによりニッケル膜を積層した。   In this example, a mixed solvent of ethylene glycol and ethanol is used as a solvent containing a reducing agent, and the resin material 200 is polyamide 6 (PA6) mixed with 10% glass fiber, 70 mm long, 15 mm wide, and 1 mm thick. A substrate was used, and hexafluoroacetylacetonato palladium (II) containing a plating catalyst Pd was used as the organometallic complex. Further, as a plating film, a nickel phosphorous film was formed by electroless plating using high-pressure carbon dioxide, and a nickel film was further laminated thereon by electrolytic plating.

本実施例では、図2に示す手順で樹脂材料200の表面にメッキ膜を形成した。   In this example, a plating film was formed on the surface of the resin material 200 by the procedure shown in FIG.

まず、エタノール100mlとエチレングリコール100mlの混合液を調製し、この混合液を該樹脂材料200とともに、内容積が300mlの第一高圧容器6に仕込んだ。第一高圧容器6は、密閉状態で80℃に温調した。次に、液体二酸化炭素ボンベ1より供給した液体二酸化炭素をシリンジポンプ(ISCO社製 260D)3にて加圧し、圧力計15が15MPaになるように昇圧し、超臨界二酸化炭素にした。更に、逆止弁4を介し、手動ニードルバルブ5を開き、第一高圧容器6の内部を15MPaに昇圧し、超臨界二酸化炭素を充満させた。昇圧後、手動ニードルバルブ5を閉鎖した。第一高圧容器6の内部を60分間圧力保持したまま、超臨界二酸化炭素を樹脂材料200に接触させ、エタノールおよびエチレングリコールを樹脂材料200内に浸透させた(図2中の工程S21)。   First, a mixed solution of 100 ml of ethanol and 100 ml of ethylene glycol was prepared, and this mixed solution was charged together with the resin material 200 into the first high pressure vessel 6 having an internal volume of 300 ml. The first high-pressure vessel 6 was temperature-controlled at 80 ° C. in a sealed state. Next, the liquid carbon dioxide supplied from the liquid carbon dioxide cylinder 1 was pressurized with a syringe pump (260D manufactured by ISCO), and the pressure gauge 15 was pressurized to 15 MPa to obtain supercritical carbon dioxide. Furthermore, the manual needle valve 5 was opened via the check valve 4, the inside of the first high-pressure vessel 6 was increased to 15 MPa, and supercritical carbon dioxide was filled. After the pressure increase, the manual needle valve 5 was closed. While maintaining the pressure inside the first high-pressure vessel 6 for 60 minutes, supercritical carbon dioxide was brought into contact with the resin material 200, and ethanol and ethylene glycol were permeated into the resin material 200 (step S21 in FIG. 2).

なお、本実施例では、この還元剤を含む溶媒を樹脂材料200に付与する工程を超臨界条件で行ったが、この工程での第一高圧容器6の温度、圧力はこれに限定されない。ただし、第一高圧容器6のシールが困難になることから、温度、圧力はそれぞれ200℃以下、30MPa以下であることが望ましい。また、本実施例では第一高圧容器6の内部で撹拌をしなかったが、撹拌機17などを用いて撹拌しても構わない。また、本実施例では第一高圧容器6の圧力保持時間を60分間にしたが、還元剤を含む溶媒が樹脂材料200に浸透する時間であればよく、還元剤を含む溶媒や樹脂材料200の種類、第一高圧容器6内の温度、圧力等で最適時間は変わってくる。   In this embodiment, the step of applying the solvent containing the reducing agent to the resin material 200 is performed under supercritical conditions. However, the temperature and pressure of the first high-pressure vessel 6 in this step are not limited thereto. However, since the sealing of the first high-pressure vessel 6 becomes difficult, the temperature and pressure are preferably 200 ° C. or lower and 30 MPa or lower, respectively. In the present embodiment, stirring is not performed inside the first high-pressure vessel 6, but stirring may be performed using the stirrer 17 or the like. In the present embodiment, the pressure holding time of the first high-pressure vessel 6 is set to 60 minutes, but it is sufficient that the solvent containing the reducing agent penetrates into the resin material 200. The optimum time varies depending on the type, the temperature in the first high-pressure vessel 6 and the pressure.

次に、手動ニードルバルブ7を開き、更に背圧弁8を開き、第一高圧容器6を大気開放した。次に、第一高圧容器6から樹脂材料200およびエタノールとエチレングリコールの混合液を取り出し、樹脂材料200を水洗し、樹脂材料200の表面についたエタノールとエチレングリコールが蒸発するまで大気中にて常温で乾燥させた。これにより、樹脂材料200内に浸透した還元剤のうち、樹脂材料200の表層(最表面の部位)の還元剤を樹脂材料200から除去することができる。   Next, the manual needle valve 7 was opened, the back pressure valve 8 was further opened, and the first high-pressure vessel 6 was opened to the atmosphere. Next, the resin material 200 and the mixed solution of ethanol and ethylene glycol are taken out from the first high-pressure vessel 6, the resin material 200 is washed with water, and the normal temperature is reached in the atmosphere until the ethanol and ethylene glycol on the surface of the resin material 200 evaporate. And dried. Thereby, among the reducing agents that have penetrated into the resin material 200, the reducing agent on the surface layer (outermost surface portion) of the resin material 200 can be removed from the resin material 200.

次に、乾燥後の前記樹脂材料200を第一高圧容器6に仕込んで密閉するとともに、有機金属錯体100mgを内容積が100mlの第二高圧容器13に仕込んで密閉し、50℃に温調した。次に、液体二酸化炭素ボンベ1より供給した液体二酸化炭素をシリンジポンプ3にて加圧し、圧力計15が15MPaになるように昇圧し、超臨界二酸化炭素にした。次に、逆止弁4を介し、手動ニードルバルブ14を開き、第二高圧容器13内部を15MPaに昇圧し、有機金属錯体を超臨界二酸化炭素に溶解させた。次に、手動ニードルバルブ15を開き、有機金属錯体を含む超臨界二酸化炭素を樹脂材料200に45分間接触させ、樹脂材料200に有機金属錯体を浸透させた(図2中の工程S22)。   Next, the dried resin material 200 was charged into the first high-pressure vessel 6 and sealed, and 100 mg of the organometallic complex was charged into the second high-pressure vessel 13 having an internal volume of 100 ml and sealed, and the temperature was adjusted to 50 ° C. . Next, the liquid carbon dioxide supplied from the liquid carbon dioxide cylinder 1 was pressurized with the syringe pump 3, and the pressure was increased so that the pressure gauge 15 became 15 MPa, thereby obtaining supercritical carbon dioxide. Next, the manual needle valve 14 was opened via the check valve 4, the inside of the second high-pressure vessel 13 was pressurized to 15 MPa, and the organometallic complex was dissolved in supercritical carbon dioxide. Next, the manual needle valve 15 was opened, supercritical carbon dioxide containing an organometallic complex was brought into contact with the resin material 200 for 45 minutes, and the organometallic complex was infiltrated into the resin material 200 (step S22 in FIG. 2).

なお、第一高圧容器6において高圧二酸化炭素と有機金属錯体とは攪拌機17等を用いて均一相にするのが望ましい。そのため、本実施例では、常時、攪拌機17により第一高圧容器6内の混合溶媒を攪拌した。   In the first high-pressure vessel 6, it is desirable that the high-pressure carbon dioxide and the organometallic complex are made into a uniform phase using a stirrer 17 or the like. Therefore, in this example, the mixed solvent in the first high-pressure vessel 6 was constantly stirred by the stirrer 17.

また、第一高圧容器6の温度、圧力は、超臨界条件を満たし、かつ、有機金属錯体が熱還元しない温度であることが望ましい。これにより、超臨界状態であると表面張力が下がり、有機金属錯体が樹脂材料200へ浸透しやすくなる。また、有機金属錯体が熱還元されない温度雰囲気であることにより、樹脂材料200内に浸透せずに第一高圧容器6内に残留する有機金属錯体が分解しなくなり、その後に回収、再利用が可能となる。また、樹脂材料200の表面付近にのみ有機金属錯体および還元された金属微粒子の濃度が高くなることを防いで、従来よりも深い所まで浸透することができるので、後述するように、メッキ膜の密着力向上が期待できる。二酸化炭素を使用する場合、超臨界条件となる、温度、圧力はそれぞれ31℃、7.1MPa以上である。第一高圧容器6の図示外のシールによる密閉性を確保するために、それぞれは200℃、30MPa以下であることが望ましい。   Moreover, it is desirable that the temperature and pressure of the first high-pressure vessel 6 satisfy the supercritical conditions and are temperatures at which the organometallic complex is not thermally reduced. Thereby, in the supercritical state, the surface tension decreases, and the organometallic complex easily penetrates into the resin material 200. In addition, since the organometallic complex is in a temperature atmosphere that is not thermally reduced, the organometallic complex that does not penetrate into the resin material 200 and remains in the first high-pressure vessel 6 is not decomposed, and can be recovered and reused thereafter. It becomes. Further, the concentration of the organometallic complex and the reduced metal fine particles can be prevented only from increasing near the surface of the resin material 200 and can penetrate deeper than the conventional one. Improvement in adhesion can be expected. When carbon dioxide is used, the temperature and pressure, which are supercritical conditions, are 31 ° C. and 7.1 MPa or more, respectively. In order to ensure the airtightness of the first high-pressure vessel 6 by a seal (not shown), it is desirable that each be 200 ° C. and 30 MPa or less.

また、本発明において、高圧二酸化炭素に金属錯体を溶解させ、樹脂材料200に接触させる第一高圧容器6の内部温度は、金属錯体の熱分解温度をあらかじめ示差走査熱量計(DSC)により測定し、大気もしくは窒素雰囲気における金属錯体の熱分解開始温度よりも10℃以上低い温度に制御することが望ましい。また、金属錯体の耐熱温度が高い場合においても、あらかじめ樹脂材料200に浸透させた還元剤が変質、昇華、沸騰等しない温度雰囲気にて高圧処理することが望ましい。本実施例では、有機金属錯体にヘキサフルオロアセチルアセトナトパラジウム(II)を用い、本錯体の窒素雰囲気における熱分解開始温度は約73℃以上であるので、処理温度は63℃以下の50度であった。   In the present invention, the internal temperature of the first high-pressure vessel 6 in which the metal complex is dissolved in high-pressure carbon dioxide and brought into contact with the resin material 200 is determined by measuring the thermal decomposition temperature of the metal complex in advance with a differential scanning calorimeter (DSC). It is desirable to control the temperature to be 10 ° C. or more lower than the thermal decomposition start temperature of the metal complex in the air or nitrogen atmosphere. Even when the heat resistance temperature of the metal complex is high, it is desirable to perform the high-pressure treatment in a temperature atmosphere in which the reducing agent that has previously permeated the resin material 200 does not change, sublimate, boil, or the like. In this example, hexafluoroacetylacetonato palladium (II) is used as the organometallic complex, and the thermal decomposition start temperature in the nitrogen atmosphere of this complex is about 73 ° C. or higher, so the treatment temperature is 50 ° C. of 63 ° C. or lower. there were.

また、有機金属錯体を超臨界二酸化炭素に溶解させ、樹脂材料200に接触させている時間は、有機金属錯体が樹脂材料200に浸透する時間であればよく、有機金属錯体や樹脂材料200の種類、や第一高圧容器6内の温度、圧力等で最適時間は変わってくる。   In addition, the time during which the organometallic complex is dissolved in supercritical carbon dioxide and is in contact with the resin material 200 may be any time as long as the organometallic complex penetrates into the resin material 200. The optimum time varies depending on the temperature and pressure in the first high-pressure vessel 6.

有機金属錯体を樹脂材料200に浸透させた後、手動ニードルバルブ7を開き、更に背圧弁8を開いて分離回収機器9を通して、第一高圧容器6を大気開放し、樹脂材料200を取り出した。回収槽11には、二酸化炭素と分離された有機金属錯体が回収された。金属錯体の回収量は後述の表1に示す。   After infiltrating the organometallic complex into the resin material 200, the manual needle valve 7 was opened, the back pressure valve 8 was opened, the first high-pressure vessel 6 was opened to the atmosphere through the separation and recovery device 9, and the resin material 200 was taken out. In the recovery tank 11, the organometallic complex separated from carbon dioxide was recovered. The recovered amount of the metal complex is shown in Table 1 described later.

ところで、本発明の樹脂材料200のメッキ前処理方法では、有機金属錯体を樹脂材料200に浸透させた時に、樹脂材料200内で有機金属錯体が還元剤を含む溶媒によってメッキ用触媒核となる金属微粒子に還元される。そのため、本発明では、次に、高圧二酸化炭素で処理を行った後、樹脂材料200内の金属錯体を追加還元および表面内部に偏析させるため、還元処理や熱処理を行うことが望ましい。実際、本発明者らは、樹脂材料200に有機金属錯体を浸透させた後、第一高圧容器6から取り出した樹脂材料200を加熱したところ、メッキ膜の密着性がさらに向上することを確認した。   By the way, in the plating pretreatment method of the resin material 200 of the present invention, when the organometallic complex is infiltrated into the resin material 200, the metal that becomes the catalyst core for plating by the solvent containing the reducing agent in the resin material 200. Reduced to fine particles. For this reason, in the present invention, after the treatment with high-pressure carbon dioxide, a reduction treatment or a heat treatment is preferably performed in order to further reduce the metal complex in the resin material 200 and segregate inside the surface. In fact, the present inventors have confirmed that the adhesion of the plating film is further improved when the resin material 200 taken out from the first high-pressure vessel 6 is heated after infiltrating the organometallic complex into the resin material 200. .

この熱処理により密着性の向上する原因は定かでないが、次のようなメカニズムであると考えられる。高圧二酸化炭素を用い無電解メッキ膜を熱可塑性樹脂等の樹脂200の内部より成長させるメッキの場合、メッキが樹脂200内に浸透する深さは50〜200nm以下が適当であり、より望ましくは50〜100nm程度であることが判明している。それ以上のメッキの浸透深さになると、樹脂200の最表面の膨潤および応力が大きくなり樹脂200の強度が劣化すると考えられる。そのため、金属錯体および金属微粒子の浸透深さは、樹脂200の表面より50〜200nmの深さが適当である。しかしながら、実際に浸透処理を実施すると、金属錯体および金属微粒子は、1μm以上の深さに浸透してしまう場合がある。   The cause of the improvement in adhesion by this heat treatment is not clear, but is considered to be the following mechanism. In the case of plating in which an electroless plating film is grown from the inside of the resin 200 such as a thermoplastic resin using high-pressure carbon dioxide, the depth at which the plating penetrates into the resin 200 is suitably 50 to 200 nm or less, more preferably 50 It has been found to be about ˜100 nm. When the penetration depth of plating exceeds that, it is considered that the swelling and stress on the outermost surface of the resin 200 increase and the strength of the resin 200 deteriorates. Therefore, the depth of penetration of the metal complex and the metal fine particles is appropriately 50 to 200 nm from the surface of the resin 200. However, when the permeation treatment is actually performed, the metal complex and the metal fine particles may permeate to a depth of 1 μm or more.

そして、このような状況において熱処理を行うことにより、樹脂200に深く浸透しかつ樹脂200に相溶しない金属微粒子が樹脂200の表面近傍内部の適当な深さ領域に集中し、それが樹脂200内部のメッキ反応性向上に寄与すると考えられる。あるいは、還元剤と反応せず、かつ高圧二酸化炭素の減圧排気時に表面により排気されず樹脂200内部に深く浸透した金属錯体が、残存しているとも考えられる。いずれにせよ、熱還元処理により、これら金属錯体が表面にブリードアウトしようとするため、表面近傍内部の適当な深さ領域に金属微粒子が集中するものと考えられる。   Then, by performing the heat treatment in such a situation, the metal fine particles that penetrate deeply into the resin 200 and are not compatible with the resin 200 are concentrated in an appropriate depth region in the vicinity of the surface of the resin 200, which is inside the resin 200. This is thought to contribute to improving the plating reactivity. Alternatively, it is considered that a metal complex that does not react with the reducing agent and is not exhausted by the surface when the high-pressure carbon dioxide is exhausted under reduced pressure and penetrates deeply into the resin 200 remains. In any case, it is considered that the metal fine particles concentrate in an appropriate depth region in the vicinity of the surface because these metal complexes try to bleed out to the surface by the thermal reduction treatment.

このため、本実施例では、有機金属錯体を樹脂材料200に浸透させた後、次に、触媒が浸透した熱可塑性樹脂200を、大気雰囲気中にて150℃の温度で1時間にわたり熱処理した。上記のようにして、本実施例における樹脂材料200のメッキ前処理を行なった。   For this reason, in this example, after the organometallic complex was infiltrated into the resin material 200, the thermoplastic resin 200 infiltrated with the catalyst was then heat-treated in an air atmosphere at a temperature of 150 ° C. for 1 hour. As described above, the plating pretreatment of the resin material 200 in this example was performed.

次に、メッキ前処理を終えた樹脂材料200に無電解メッキ膜を形成した(図2の工程S23)。本実施例では、無電解メッキ液の原液として、硫酸ニッケルの金属塩と還元剤や錯化剤が含まれる奥野製薬社製ニコロンDKを用いた。また、本実施例では無電解メッキ液に水とアルコールを混合させた。アルコールの種類は任意であり、メタノール、エタノール、n−プロパノール、イソプロパノール、ブタノール、ヘプタノール、エチレングリコール等を用いることができるが、本実施例ではエタノールを用いた。   Next, an electroless plating film was formed on the resin material 200 that had been subjected to the plating pretreatment (step S23 in FIG. 2). In this example, Nicolon DK manufactured by Okuno Pharmaceutical Co., Ltd. containing a metal salt of nickel sulfate, a reducing agent, and a complexing agent was used as a stock solution for the electroless plating solution. In this example, water and alcohol were mixed in the electroless plating solution. The type of alcohol is arbitrary, and methanol, ethanol, n-propanol, isopropanol, butanol, heptanol, ethylene glycol, and the like can be used. In this example, ethanol was used.

メッキ膜形成工程では、まず、樹脂材料200と前記Ni−P無電解メッキ液を、図1の第一高圧容器6内に仕込んで密閉した。第一高圧容器6およびNi−P無電解メッキ液の温度は、メッキの反応温度(70℃〜85℃)以下である50℃に調整した。この条件化では、該樹脂材料200はメッキの反応温度以下の低温(メッキ反応の起こらない温度)の無電解メッキ液と接触しているため、該樹脂材料200の表面にメッキ膜は成長しない。   In the plating film forming step, first, the resin material 200 and the Ni—P electroless plating solution were charged into the first high-pressure vessel 6 of FIG. 1 and sealed. The temperature of the first high-pressure vessel 6 and the Ni—P electroless plating solution was adjusted to 50 ° C. which is lower than the plating reaction temperature (70 ° C. to 85 ° C.). Under this condition, since the resin material 200 is in contact with an electroless plating solution at a temperature lower than the plating reaction temperature (a temperature at which no plating reaction occurs), the plating film does not grow on the surface of the resin material 200.

次に、メッキ反応が起こらない低温度に温調されている第一高圧容器6内に、高圧二酸化炭素を導入した。なお、本実施例では、高圧二酸化炭素として超臨界二酸化炭素を用いた。具体的には、液体二酸化炭素ボンベ1より供給した液体二酸化炭素をシリンジポンプ(ISCO社製 260D)3にて加圧し、圧力計15が15MPaになるように昇圧し、超臨界二酸化炭素にした。更に逆止弁4を介し、手動ニードルバルブ5を開き、第一高圧容器6内部を15MPaに昇圧し、超臨界二酸化炭素を充満させ、超臨界二酸化炭素を樹脂材料200に接触させた。   Next, high-pressure carbon dioxide was introduced into the first high-pressure vessel 6 that was temperature-controlled so that no plating reaction occurred. In this example, supercritical carbon dioxide was used as high-pressure carbon dioxide. Specifically, the liquid carbon dioxide supplied from the liquid carbon dioxide cylinder 1 was pressurized with a syringe pump (260D manufactured by ISCO), and the pressure gauge 15 was pressurized to 15 MPa to obtain supercritical carbon dioxide. Further, the manual needle valve 5 was opened through the check valve 4, the inside of the first high-pressure vessel 6 was pressurized to 15 MPa, the supercritical carbon dioxide was filled, and the supercritical carbon dioxide was brought into contact with the resin material 200.

この際、導入された超臨界二酸化炭素により、樹脂材料200の表面は膨潤する。また、超臨界二酸化炭素の混合したメッキ液は表面張力が低くなるので、無電解メッキ液が超臨界二酸化炭素とともに樹脂材料200に効率よく浸透する。その結果、樹脂材料200の内部に存在する金属微粒子まで無電解メッキ液が到達することになる。なお、この例では無電解メッキ液にアルコールを含ませているので、無電解メッキ液の表面張力が一層低下しており、無電解メッキ液が樹脂材料200の内部へより浸透し易くなっている。また、この例では、超臨界二酸化炭素導入後に撹拌を行わなかったが、超臨界二酸化炭素とメッキ液との相溶性を上げるために撹拌機17等により撹拌しても構わない。   At this time, the surface of the resin material 200 swells due to the introduced supercritical carbon dioxide. In addition, since the plating solution mixed with supercritical carbon dioxide has a low surface tension, the electroless plating solution efficiently penetrates into the resin material 200 together with the supercritical carbon dioxide. As a result, the electroless plating solution reaches the metal fine particles existing inside the resin material 200. In this example, since the electroless plating solution contains alcohol, the surface tension of the electroless plating solution is further lowered, and the electroless plating solution is more easily penetrated into the resin material 200. . In this example, stirring was not performed after the introduction of supercritical carbon dioxide, but stirring may be performed with a stirrer 17 or the like in order to increase the compatibility between the supercritical carbon dioxide and the plating solution.

次に、第一高圧容器6の温度を85℃に昇温する。これにより、第一高圧容器6内でメッキ反応が起きる。樹脂材料200の表面には、無電解メッキ反応が起き、メッキ膜が形成された。この際、この例のメッキ膜の形成方法では、前述のように樹脂材料200の内部に存在する金属微粒子まで無電解メッキ液が浸透しているので、樹脂材料200の表面だけでなく、その内部に存在する金属微粒子を触媒核としてメッキ膜が成長した。すなわち、この例のメッキ膜の形成方法では、樹脂材料200内部の自由体積内にもメッキ膜が成長することとなり、メッキ膜は樹脂材料200の内部に食い込んだ状態で高い密着性で形成される。   Next, the temperature of the first high-pressure vessel 6 is raised to 85 ° C. Thereby, a plating reaction occurs in the first high-pressure vessel 6. An electroless plating reaction occurred on the surface of the resin material 200, and a plating film was formed. At this time, in the plating film forming method of this example, since the electroless plating solution penetrates to the metal fine particles existing inside the resin material 200 as described above, not only the surface of the resin material 200 but also the inside thereof. The plating film grew using the metal fine particles present in the catalyst as catalyst nuclei. That is, in the plating film forming method of this example, the plating film grows also in the free volume inside the resin material 200, and the plating film is formed with high adhesion in a state of biting into the resin material 200. .

メッキ終了後、手動ニードルバルブ7を開き、更に背圧弁8を開いて、第一高圧容器6内の二酸化炭素を排気した。次いで、第一高圧容器6を開けて、樹脂材料200を第一高圧容器6から取り出した。次に、第一高圧容器6から取り出した樹脂材料200の内部から二酸化炭素および無電解メッキ液を脱気させるために、樹脂材料200をしばらく乾燥した。   After the completion of plating, the manual needle valve 7 was opened, the back pressure valve 8 was further opened, and the carbon dioxide in the first high-pressure vessel 6 was exhausted. Next, the first high-pressure vessel 6 was opened, and the resin material 200 was taken out from the first high-pressure vessel 6. Next, in order to degas the carbon dioxide and the electroless plating solution from the inside of the resin material 200 taken out from the first high-pressure vessel 6, the resin material 200 was dried for a while.

次に、樹脂材料200に対して、常圧で無電解メッキと電解メッキを行った(図2の工程S24)。まず、前記樹脂材料200の酸化されたメッキ膜表面を塩酸で活性化した。その後、大気中で従来の無電解ニッケル−リン液を用いて、常圧で無電解メッキを施し、厚さ1μmのメッキ膜を積層した。さらに、無電解メッキ法により形成されたメッキ膜を電極として、大気中で従来の電解メッキ法により、膜厚40μmのニッケル膜を積層した。以上の方法により、全表面が金属膜により覆われた樹脂材料200を得た。   Next, electroless plating and electrolytic plating were performed on the resin material 200 at normal pressure (step S24 in FIG. 2). First, the oxidized plating film surface of the resin material 200 was activated with hydrochloric acid. Thereafter, electroless plating was performed at normal pressure using a conventional electroless nickel-phosphorous solution in the atmosphere, and a 1 μm thick plating film was laminated. Furthermore, a nickel film having a thickness of 40 μm was laminated in the atmosphere by a conventional electrolytic plating method using a plating film formed by an electroless plating method as an electrode. By the above method, the resin material 200 in which the entire surface was covered with the metal film was obtained.

比較例1.
本比較例では、図3に示す手順で樹脂材料200の表面にメッキ膜を形成した。すなわち、本比較例では、還元剤を含む溶媒を樹脂材料200に接触させ、浸透させる工程(図2の工程S21)を行わなかった。それ以外は、実施例1と同様にして樹脂材料200の表面にメッキ膜を形成した。
Comparative Example 1
In this comparative example, a plating film was formed on the surface of the resin material 200 by the procedure shown in FIG. That is, in this comparative example, the step of bringing the solvent containing the reducing agent into contact with the resin material 200 and allowing it to permeate (step S21 in FIG. 2) was not performed. Otherwise, a plating film was formed on the surface of the resin material 200 in the same manner as in Example 1.

しかしながら、高圧二酸化炭素下で無電解メッキを行う工程(図3の工程S32)で、樹脂材料200にメッキ膜がほとんど形成されなかった。これは、金属錯体が樹脂に対する相溶性が低いため、一旦樹脂内に浸透したものの、高圧二酸化炭素の排気時に同時に排出されてしまい、樹脂200内部に殆ど残存しなかったためと考えられる。   However, almost no plating film was formed on the resin material 200 in the step of performing electroless plating under high-pressure carbon dioxide (step S32 in FIG. 3). This is presumably because the metal complex has low compatibility with the resin and once penetrated into the resin, but was discharged at the same time as the high-pressure carbon dioxide was exhausted, and hardly remained in the resin 200.

比較例2.
本比較例では、メッキ用触媒を含有する有機金属錯体を溶解させた超臨界二酸化炭素を、樹脂材料200に接触させ、浸透させる時の第一高圧容器6の温度を150℃にした。それ以外は、比較例1と同様の処理により樹脂材料200の表面にメッキ膜を形成した。これにより、全表面が金属膜で覆われた樹脂材料200を得た。
Comparative Example 2
In this comparative example, the temperature of the first high-pressure vessel 6 was made 150 ° C. when supercritical carbon dioxide in which an organometallic complex containing a plating catalyst was dissolved was brought into contact with and infiltrated with the resin material 200. Other than that, a plating film was formed on the surface of the resin material 200 by the same treatment as in Comparative Example 1. As a result, a resin material 200 whose entire surface was covered with a metal film was obtained.

本実施例では、実施例1と同様に図2に示す手順で樹脂材料200にメッキ膜を形成した。ただし、メッキ用触媒を含有する有機金属錯体を溶解させた超臨界二酸化炭素を樹脂材料200に接触させ、浸透させる処理(図2の工程S22)を行った後に、実施例1のように熱処理することなく、大気中にて常温で1時間乾燥させた。また、その後、メッキ膜を形成した(図2の工程S23〜S24)。これにより、全表面が金属膜で覆われた樹脂材料200を得た。   In the present example, a plating film was formed on the resin material 200 by the procedure shown in FIG. However, after the supercritical carbon dioxide in which the organometallic complex containing the plating catalyst is dissolved is brought into contact with the resin material 200 and infiltrated (step S22 in FIG. 2), heat treatment is performed as in the first embodiment. Without drying, it was dried at room temperature for 1 hour in the air. Thereafter, a plating film was formed (steps S23 to S24 in FIG. 2). As a result, a resin material 200 whose entire surface was covered with a metal film was obtained.

本実施例では、実施例1と同様に図2に示す手順で樹脂材料200にメッキ膜を形成した。ただし、還元剤を含む溶媒を樹脂材料に接触させ、浸透させる工程(図2の工程S21)を、図1に示す高圧装置を使用せずに、大気中で行った。具体的には、エタノール100mlとエチレングリコール100mlの混合液を入れた図示外の密閉容器に樹脂材料200を入れ、常圧下、80℃で60分間超音波をかけ、その後取り出して、表面のエタノールとエチレングリコールが蒸発するまで乾燥させた。それ以外は、実施例1と同様にして樹脂材料200にメッキ膜を形成した(図2の工程S22〜S24)。これにより、全表面が金属膜で覆われた樹脂材料200を得た。   In the present example, a plating film was formed on the resin material 200 by the procedure shown in FIG. However, the step of bringing the solvent containing the reducing agent into contact with the resin material and allowing the solvent to penetrate (step S21 in FIG. 2) was performed in the atmosphere without using the high-pressure apparatus shown in FIG. Specifically, the resin material 200 is put in a sealed container (not shown) containing a mixed solution of 100 ml of ethanol and 100 ml of ethylene glycol, subjected to ultrasonic waves at 80 ° C. for 60 minutes under normal pressure, and then taken out to remove ethanol on the surface. Dry until the ethylene glycol has evaporated. Other than that, the plating film was formed in the resin material 200 like Example 1 (process S22-S24 of FIG. 2). As a result, a resin material 200 whose entire surface was covered with a metal film was obtained.

なお、本実施例では、常圧下、80℃で60分間超音波をかけたが、還元剤が樹脂材料200に浸透すればよく、この圧力、温度、時間、超音波の有無などは、これに限定されない。   In this example, ultrasonic waves were applied for 60 minutes at 80 ° C. under normal pressure. However, the reducing agent only has to penetrate into the resin material 200, and the pressure, temperature, time, presence / absence of ultrasonic waves, etc. It is not limited.

本実施例では、実施例3と同じ方法により、樹脂材料表面にメッキ膜を形成した。ただし、エタノール100mlとエチレングリコール100mlの混合液の代わりに、エタノール100mlと水100mlに次亜燐酸ナトリウム500mgを溶解させた溶液を使用した。これにより、全表面が金属膜で覆われた樹脂材料200を得た。   In this example, a plating film was formed on the surface of the resin material by the same method as in Example 3. However, instead of a mixed solution of 100 ml of ethanol and 100 ml of ethylene glycol, a solution in which 500 mg of sodium hypophosphite was dissolved in 100 ml of ethanol and 100 ml of water was used. As a result, a resin material 200 whose entire surface was covered with a metal film was obtained.

本実施例では、実施例3と同様に図2に示す手順で樹脂材料200の表面にメッキ膜を形成した。ただし、エタノール100mlとエチレングリコール100mlの混合液の代わりに、2−メトキシエタノール90mlと水90mlと次亜燐酸20mlの混合液を使用した。それ以外は実施例3と同様にして、全表面が金属膜で覆われた樹脂材料200を得た。   In this example, a plating film was formed on the surface of the resin material 200 by the procedure shown in FIG. However, instead of a mixed solution of 100 ml of ethanol and 100 ml of ethylene glycol, a mixed solution of 90 ml of 2-methoxyethanol, 90 ml of water and 20 ml of hypophosphorous acid was used. Other than that was carried out similarly to Example 3, and obtained the resin material 200 with which the whole surface was covered with the metal film.

本実施例では、実施例1と同様に図2に示す手順で、樹脂材料200にメッキ膜を形成した。ただし、還元剤を含む溶媒を樹脂材料200に接触させ、浸透させる工程(図2の工程S21)において、還元剤としてエタノールを使用した。そして、80℃に温調した第二高圧容器2に10ml入れ、手動ニードルバルブ5は開かずに閉じたまま、手動ニードルバルブ14を開き、超臨界二酸化炭素とエタノールを混合したガス状態にした。その後、手動ニードルバルブ12を開き、前記混合ガスを樹脂材料200の入った第一高圧容器6に入れて、樹脂材料200に接触させた。それ以外は、実施例1と同様にして樹脂材料200にメッキ膜を形成した(図2の工程S22〜S24)。これにより、全表面が金属膜で覆われた樹脂材料200を得た。   In this example, a plating film was formed on the resin material 200 by the procedure shown in FIG. However, ethanol was used as the reducing agent in the step of bringing the solvent containing the reducing agent into contact with the resin material 200 and allowing it to penetrate (step S21 in FIG. 2). And 10 ml was put into the 2nd high pressure vessel 2 temperature-controlled at 80 degreeC, the manual needle valve 14 was opened with the manual needle valve 5 closed without opening, and it was set as the gas state which mixed supercritical carbon dioxide and ethanol. Thereafter, the manual needle valve 12 was opened, and the mixed gas was put into the first high-pressure vessel 6 containing the resin material 200 and brought into contact with the resin material 200. Other than that, the plating film was formed in the resin material 200 like Example 1 (process S22-S24 of FIG. 2). As a result, a resin material 200 whose entire surface was covered with a metal film was obtained.

以上の実施例1〜6および比較例1〜2のメッキ膜の品質を評価した。品質評価項目としては、環境試験および密着力評価を行った。環境試験の条件は、温度80℃、湿度80%で100h、それぞれ10枚ずつ行った。また、密着力評価は、引っ張り試験機(島津製作所社製 AGS−J 100N)でそれぞれ10枚ずつ、引っ張り強度を測定した(JISH8630)。これらの結果に加え、メッキ膜の外観評価と、回収できた有機金属錯体の量とを、表1に示す。引っ張り強度は、測定した10枚の最小値、最大値、平均値を示す。なお、従来のエッチング法を用いたABS樹脂を用いたメッキの引っ張り強度の目標値は10N/cm以上である。   The quality of the plating films of Examples 1 to 6 and Comparative Examples 1 and 2 was evaluated. As a quality evaluation item, an environmental test and an adhesion evaluation were performed. The conditions of the environmental test were 10 sheets each for 100 hours at a temperature of 80 ° C. and a humidity of 80%. Further, the adhesion strength was evaluated by measuring the tensile strength of 10 sheets each using a tensile testing machine (AGS-J 100N manufactured by Shimadzu Corporation) (JIS 8630). In addition to these results, Table 1 shows the appearance evaluation of the plating film and the amount of the recovered organometallic complex. The tensile strength indicates the measured minimum, maximum, and average values of 10 sheets. In addition, the target value of the tensile strength of the plating using the ABS resin using the conventional etching method is 10 N / cm or more.

Figure 2009215496
Figure 2009215496

表1から、実施例1〜6で形成したメッキ膜は、実使用上全く問題のない十分な密着力があることが分かった。一方、還元剤を含む溶媒を樹脂材料200に接触させて浸透させる工程(図2の工程S21)を行わなかった比較例1では、メッキ膜が上手く形成されなかったことから、実施例1〜6では樹脂材料200内に浸透させた還元剤によって、樹脂材料200内に有機金属錯体がメッキ用触媒核となる金属微粒子に還元されて固定化されていることが分かる。   From Table 1, it was found that the plating films formed in Examples 1 to 6 have sufficient adhesion without any problem in actual use. On the other hand, in Comparative Example 1 in which the step of allowing the solvent containing the reducing agent to come into contact with the resin material 200 (step S21 in FIG. 2) was not performed, the plating film was not successfully formed. Then, it can be seen that the organometallic complex is reduced and fixed in the resin material 200 to the metal fine particles serving as the catalyst core for plating by the reducing agent permeated into the resin material 200.

また、従来法である比較例2に比べ、実施例1〜6の方が引っ張り強度のばらつきが小さく、平均値も高くなっている。さらに、比較例2では有機金属錯体の回収が全くできなかったのに比べ、実施例1〜6では有機金属錯体の回収ができた。   Moreover, compared with the comparative example 2 which is a conventional method, the fluctuation | variation of tensile strength is smaller in Examples 1-6, and the average value is also high. Furthermore, in Comparative Example 2, the organometallic complex could not be recovered at all, but in Examples 1 to 6, the organometallic complex could be recovered.

これは、比較例2では、熱還元により、第一高圧容器6内で樹脂材料200内に有機金属錯体を浸透させて固定化させているため、図4(A)に示すように、樹脂材料200の最表面ほど金属微粒子もしくは金属錯体51の濃度が高くなっており、そのために、高圧二酸化炭素を混合させたメッキ液を樹脂材料200内部に浸透させた後に樹脂材料200内部よりメッキ反応させた場合、図4(B)に示すように、最表面の触媒活性が高くなり、樹脂材料200内部よりメッキ成長しにくくなっているためであると考えられる。なお、図4において、51は、金属微粒子もしくは金属錯体であり、52は、メッキ膜である。   In Comparative Example 2, since the organometallic complex is infiltrated and fixed in the resin material 200 in the first high-pressure vessel 6 by thermal reduction, as shown in FIG. The concentration of the metal fine particles or the metal complex 51 is higher at the outermost surface of 200. For this reason, a plating solution mixed with high-pressure carbon dioxide is permeated into the resin material 200, and then the plating reaction is performed from the inside of the resin material 200. In this case, as shown in FIG. 4 (B), it is considered that the catalytic activity on the outermost surface is high, and the plating growth is difficult from the inside of the resin material 200. In FIG. 4, 51 is a metal fine particle or metal complex, and 52 is a plating film.

一方、本発明の実施例1〜6の場合、有機金属錯体51が熱還元しない温度において、第一高圧容器6内で有機金属錯体51を樹脂材料200内へ浸透させ、図5(A)に示すように、予め浸透させておいた還元剤61により還元して金属化して固定化させているため、図5(B)に示すように、従来法よりも表面から離れた深い所において金属微粒子もしくは金属錯体51の濃度が高くなり、そのため、高圧二酸化炭素を混合させたメッキ液を樹脂材料200内部に浸透させた後に樹脂材料200内部よりメッキ反応させた場合、図5(C)に示すように、従来法よりも樹脂材料200の内部からメッキ膜52が成長するようになっており、そのため密着強度が向上し、ばらつきが小さくなっているものと考えられる。   On the other hand, in the case of Examples 1 to 6 of the present invention, the organometallic complex 51 is permeated into the resin material 200 in the first high-pressure vessel 6 at a temperature at which the organometallic complex 51 is not thermally reduced. As shown in FIG. 5 (B), the metal fine particles are deeper away from the surface than the conventional method because they are reduced and metalized and fixed by the reducing agent 61 previously permeated. Alternatively, the concentration of the metal complex 51 becomes high, and therefore, when a plating solution mixed with high-pressure carbon dioxide is permeated into the resin material 200 and then subjected to a plating reaction from the inside of the resin material 200, as shown in FIG. In addition, it is considered that the plating film 52 grows from the inside of the resin material 200 as compared with the conventional method, so that the adhesion strength is improved and the variation is reduced.

また、表1から、メッキ用触媒を含有する有機金属錯体を溶解させた超臨界二酸化炭素を樹脂材料200に接触させ、浸透させる処理を行った後、実施例1では大気雰囲気中にて150℃の温度で1時間、触媒の浸透した熱可塑性樹脂に熱処理を行い、一方、実施例2では熱処理は行わず、大気中にて常温で1時間乾燥させたが、熱処理を行った実施例1の方が、密着力が高いことが分かる。この事から、メッキ用触媒を含有する有機金属錯体を溶解させた超臨界二酸化炭素を樹脂材料200に接触させ、浸透させる処理を行った後に、追加で還元処理(実施例1では熱還元)を行うと、密着力向上の効果があることが分かる。   Further, from Table 1, after the supercritical carbon dioxide in which the organometallic complex containing the plating catalyst is dissolved is brought into contact with the resin material 200 and infiltrated, 150 ° C. is performed in the atmosphere in Example 1. The thermoplastic resin infiltrated with the catalyst was subjected to heat treatment for 1 hour at a temperature of 5 ° C. On the other hand, in Example 2, the heat treatment was not performed, and the thermoplastic resin was dried in the atmosphere at room temperature for 1 hour. It can be seen that the adhesion is higher. From this, after the supercritical carbon dioxide in which the organometallic complex containing the catalyst for plating is dissolved is brought into contact with the resin material 200 and infiltrated, an additional reduction treatment (thermal reduction in Example 1) is performed. When it does, it turns out that there exists an effect of an adhesive force improvement.

図6は、樹脂材料200内での金属微粒子の濃度分布を定性的に示す分布図である。図6(A)は、比較例2における金属微粒子の濃度分布であり、表層において金属微粒子の濃度分布が最大となっている。この場合、メッキ液は、表層で高密度に存在し且つ活性化された金属微粒子を触媒核として成長し、図4(B)のようなメッキ膜が形成される。これに対して、図6(B)は、表層から還元剤を除去した上で金属錯体を付与した場合の金属微粒子の濃度分布であり、表層より深い部位で金属微粒子の濃度分布が最大となっている。この場合、メッキ液は、表層より奥に入り込んで金属微粒子から成長し、図5(C)のようなメッキ膜が形成される。   FIG. 6 is a distribution diagram qualitatively showing the concentration distribution of the metal fine particles in the resin material 200. FIG. 6A shows the concentration distribution of the metal fine particles in Comparative Example 2, and the concentration distribution of the metal fine particles is the maximum in the surface layer. In this case, the plating solution grows on the surface layer with high density and activated metal fine particles as catalyst nuclei, and a plating film as shown in FIG. 4B is formed. On the other hand, FIG. 6B shows the concentration distribution of the metal fine particles when the metal complex is added after removing the reducing agent from the surface layer, and the concentration distribution of the metal fine particles is maximized at a site deeper than the surface layer. ing. In this case, the plating solution penetrates from the surface layer and grows from the metal fine particles, and a plating film as shown in FIG. 5C is formed.

また、図6(C)は、表層から還元剤を除去した上で金属錯体を付与し、さらに加熱処理をした場合の金属微粒子の濃度分布であり、図6(B)と同様に表層より深い部位で金属微粒子の濃度分布が最大となっている。しかも、図6(B)と比べて、深い部位での金属微粒子が減り、且つ、先の最大濃度となる深さ部分において、金属微粒子が増加している。このため、図6(C)でのメッキ膜は、図6(B)の場合と比べて、適当な深さに存在するより多くの金属微粒子から成長することとなり、メッキ膜の密着度が増すことになる。   FIG. 6C shows the concentration distribution of the metal fine particles when the metal complex is added after removing the reducing agent from the surface layer and further heat-treated, and is deeper than the surface layer as in FIG. 6B. The concentration distribution of the metal fine particles is maximized at the site. In addition, as compared with FIG. 6B, the metal fine particles in the deep portion are reduced, and the metal fine particles are increased in the depth portion where the maximum concentration is reached. For this reason, the plating film in FIG. 6C grows from more metal fine particles present at an appropriate depth than in the case of FIG. 6B, and the adhesion of the plating film increases. It will be.

本発明の樹脂成型体を含む複合材料の製造方法では、密着性が高く、しかも、その高い密着性において安定したメッキ膜を、樹脂成型体に形成することができる。したがって、高圧二酸化炭素を用いたメッキ膜をバッチ処理で形成する際に、生産安定性、メッキ品質向上、低ランニングコスト化などを図るために好適に利用することができる。   In the method for producing a composite material including the resin molded body of the present invention, a plating film having high adhesion and stable in the high adhesion can be formed on the resin molded body. Therefore, when a plating film using high-pressure carbon dioxide is formed by batch processing, it can be suitably used for production stability, improved plating quality, lower running costs, and the like.

図1は、本実施例で使用する高圧装置の概略構成を示す。FIG. 1 shows a schematic configuration of a high-pressure apparatus used in this embodiment. 図2は、実施例でのメッキ膜形成までのフローチャートを示す。FIG. 2 shows a flowchart up to the formation of the plating film in the embodiment. 図3は、比較例でのメッキ膜形成までのフローチャートを示す。FIG. 3 shows a flowchart up to the formation of the plating film in the comparative example. 図4は、比較例での金属微粒子の浸透状態と、メッキ膜の形成状態とを示す。FIG. 4 shows the penetration state of the metal fine particles and the formation state of the plating film in the comparative example. 図5は、実施例での金属微粒子の浸透状態と、メッキ膜の形成状態とを示す。FIG. 5 shows the penetration state of the metal fine particles and the formation state of the plating film in the example. 図6は、実施例と比較例での金属微粒子の濃度分布を模式的に示す。FIG. 6 schematically shows the concentration distribution of the metal fine particles in the example and the comparative example.

符号の説明Explanation of symbols

1 二酸化炭素ボンベ
3 シリンジポンプ
6 第一高圧容器
9 分離回収機
11 回収槽
13 第二高圧容器(高圧容器)
51 金属微粒子
52 メッキ膜
61 還元剤
100 高圧装置
200 樹脂材料(樹脂成型体)
DESCRIPTION OF SYMBOLS 1 Carbon dioxide cylinder 3 Syringe pump 6 1st high pressure vessel 9 Separation recovery machine 11 Recovery tank 13 2nd high pressure vessel (high pressure vessel)
51 Metal Fine Particle 52 Plating Film 61 Reducing Agent 100 High Pressure Device 200 Resin Material (Resin Molded Body)

Claims (12)

樹脂成型体を含む複合材料の製造方法であって、
還元剤を上記樹脂成型体に接触させて、上記還元剤を上記樹脂成型体内に浸透させることと、
上記還元剤が浸透した上記樹脂成型体に、有機金属錯体が溶解した高圧二酸化炭素を接触させて、上記還元剤により上記有機金属錯体を上記樹脂成型体内に固定化することを含むことを特徴とする樹脂成型体を含む複合材料の製造方法。
A method for producing a composite material including a resin molded body,
Bringing a reducing agent into contact with the molded resin body and allowing the reducing agent to penetrate into the molded resin body;
The method comprises contacting the resin molded body in which the reducing agent has penetrated with high-pressure carbon dioxide in which an organometallic complex is dissolved, and immobilizing the organometallic complex in the resin molded body with the reducing agent. The manufacturing method of the composite material containing the resin molding to perform.
上記還元剤が浸透した上記樹脂成型体は、その表層から上記還元剤が除去された後に、上記有機金属錯体が溶解した上記高圧二酸化炭素と接触する請求項1記載の樹脂成型体を含む複合材料の製造方法。   The composite material containing the resin molded body according to claim 1, wherein the resin molded body infiltrated with the reducing agent comes into contact with the high-pressure carbon dioxide in which the organometallic complex is dissolved after the reducing agent is removed from the surface layer. Manufacturing method. 上記有機金属錯体が溶解した上記高圧二酸化炭素を、上記有機金属錯体の熱還元温度より低い温度雰囲気にて上記樹脂成型体と接触させる請求項1または2記載の樹脂成型体を含む複合材料の製造方法。   The production of a composite material containing a resin molded body according to claim 1 or 2, wherein the high-pressure carbon dioxide in which the organometallic complex is dissolved is brought into contact with the resin molded body in a temperature atmosphere lower than a thermal reduction temperature of the organometallic complex. Method. さらに、上記有機金属錯体が固定化された上記樹脂成型体上に、高圧二酸化炭素を含む無電解メッキ法によりメッキ膜を形成することとを含む請求項1〜3のいずれか1項記載の樹脂成型体を含む複合材料の製造方法。   The resin according to any one of claims 1 to 3, further comprising: forming a plating film on the resin molded body on which the organometallic complex is fixed by an electroless plating method containing high-pressure carbon dioxide. A method for producing a composite material including a molded body. さらに、上記有機金属錯体を固定化した後であって且つ上記メッキ膜の形成前に、上記樹脂成型体を上記有機金属錯体の熱還元温度より高い温度にて加熱することを含む請求項4記載の樹脂成型体を含む複合材料の製造方法。   5. The method according to claim 4, further comprising heating the resin molding after fixing the organometallic complex and before forming the plating film at a temperature higher than a thermal reduction temperature of the organometallic complex. A method for producing a composite material including a resin molded body. 上記有機金属錯体は、上記樹脂成型体とともに高圧容器内に収容されることにより上記樹脂成型体に固定化され、且つ、上記樹脂成型体を上記有機金属錯体の熱還元温度より高い温度に加熱する処理は、上記高圧容器から上記有機金属錯体を回収した後にする請求項5記載の樹脂成型体を含む複合材料の製造方法。   The organometallic complex is fixed to the resin molded body by being housed in a high-pressure container together with the resin molded body, and the resin molded body is heated to a temperature higher than the thermal reduction temperature of the organometallic complex. 6. The method for producing a composite material including a resin molded body according to claim 5, wherein the treatment is performed after recovering the organometallic complex from the high-pressure vessel. 上記還元剤は、溶媒に溶解されて上記樹脂成型体に接触する請求項1〜6のいずれか1項記載の樹脂成型体を含む複合材料の製造方法。   The said reducing agent is a manufacturing method of the composite material containing the resin molding of any one of Claims 1-6 which melt | dissolve in a solvent and contact the said resin molding. 上記溶媒は、高圧二酸化炭素である請求項7記載の樹脂成型体を含む複合材料の製造方法。   The method for producing a composite material including a resin molded body according to claim 7, wherein the solvent is high-pressure carbon dioxide. 上記溶媒は、水またはアルコールである請求項7記載の樹脂成型体を含む複合材料の製造方法。   The said solvent is water or alcohol, The manufacturing method of the composite material containing the resin molding of Claim 7. 上記有機金属錯体は、フッ素を含む請求項1〜9のいずれか1項記載の樹脂成型体を含む複合材料の製造方法。   The said organometallic complex is a manufacturing method of the composite material containing the resin molding of any one of Claims 1-9 containing a fluorine. 上記有機金属錯体は、メッキ用触媒として機能する金属元素であるPd、Pt、Ni、CuおよびAgのうちの、少なくとも1種類の金属元素を含む請求項1〜10のいずれか1項記載の樹脂成型体を含む複合材料の製造方法。   The resin according to any one of claims 1 to 10, wherein the organometallic complex contains at least one metal element of Pd, Pt, Ni, Cu, and Ag, which are metal elements that function as a catalyst for plating. A method for producing a composite material including a molded body. 上記有機金属錯体が溶解する上記高圧二酸化炭素は、超臨界状態である請求項1〜11のいずれか1項記載の樹脂成型体を含む複合材料の製造方法。   The method for producing a composite material including a resin molded body according to any one of claims 1 to 11, wherein the high-pressure carbon dioxide in which the organometallic complex is dissolved is in a supercritical state.
JP2008062767A 2008-03-12 2008-03-12 Method for producing composite material including resin molding Expired - Fee Related JP4954126B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008062767A JP4954126B2 (en) 2008-03-12 2008-03-12 Method for producing composite material including resin molding
PCT/JP2009/054729 WO2009113607A1 (en) 2008-03-12 2009-03-12 Process for producing composite material comprising resin molded product
CN2009801085413A CN101970719B (en) 2008-03-12 2009-03-12 Process for producing composite material comprising resin molded product
KR1020107020353A KR20100126377A (en) 2008-03-12 2009-03-12 Process for producing composite material comprising resin molded product
US12/921,912 US20110020550A1 (en) 2008-03-12 2009-03-12 Process for producing composite material comprising resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062767A JP4954126B2 (en) 2008-03-12 2008-03-12 Method for producing composite material including resin molding

Publications (2)

Publication Number Publication Date
JP2009215496A true JP2009215496A (en) 2009-09-24
JP4954126B2 JP4954126B2 (en) 2012-06-13

Family

ID=41065268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062767A Expired - Fee Related JP4954126B2 (en) 2008-03-12 2008-03-12 Method for producing composite material including resin molding

Country Status (5)

Country Link
US (1) US20110020550A1 (en)
JP (1) JP4954126B2 (en)
KR (1) KR20100126377A (en)
CN (1) CN101970719B (en)
WO (1) WO2009113607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144762A (en) * 2011-01-11 2012-08-02 Yazaki Corp Method for pretreatment before plating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975278B (en) * 2015-07-02 2017-08-25 甘肃郝氏炭纤维有限公司 Carbon fiber surface thermal reduction metallization copper-plating technique
JP6647059B2 (en) * 2016-02-03 2020-02-14 マクセルホールディングス株式会社 Method for producing composite resin material, method for producing plated component, and resin pellet
JP6802023B2 (en) * 2016-09-30 2020-12-16 マクセルホールディングス株式会社 Manufacturing method of plated parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718454A (en) * 1990-12-11 1995-01-20 Internatl Business Mach Corp <Ibm> Conditioning substrate for electroless deposition of metal
JP2007056287A (en) * 2005-08-23 2007-03-08 Univ Of Fukui Plating-pretreatment method for polymeric textile material, plating method, method for forming coating film on high polymeric material, method for producing electroconductive textile material, and method for producing electroconductive material
JP3926835B1 (en) * 2006-09-28 2007-06-06 日立マクセル株式会社 Formation method of plating film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917439A (en) * 1957-01-03 1959-12-15 Liu Hsing Method for metallizing non-conductive material
JPS60106971A (en) * 1983-11-16 1985-06-12 Mitsubishi Rayon Co Ltd Method for plating molded article of polyamide resin
JP2005187693A (en) * 2003-12-26 2005-07-14 Hitachi Maxell Ltd Surface modifying method, plating method, molding apparatus and molded article
US20070264451A1 (en) * 2006-05-11 2007-11-15 Hitachi Maxell, Ltd. Method of manufacturing polymer member and polymer member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718454A (en) * 1990-12-11 1995-01-20 Internatl Business Mach Corp <Ibm> Conditioning substrate for electroless deposition of metal
JP2007056287A (en) * 2005-08-23 2007-03-08 Univ Of Fukui Plating-pretreatment method for polymeric textile material, plating method, method for forming coating film on high polymeric material, method for producing electroconductive textile material, and method for producing electroconductive material
JP3926835B1 (en) * 2006-09-28 2007-06-06 日立マクセル株式会社 Formation method of plating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144762A (en) * 2011-01-11 2012-08-02 Yazaki Corp Method for pretreatment before plating

Also Published As

Publication number Publication date
JP4954126B2 (en) 2012-06-13
US20110020550A1 (en) 2011-01-27
WO2009113607A1 (en) 2009-09-17
KR20100126377A (en) 2010-12-01
CN101970719A (en) 2011-02-09
CN101970719B (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4954126B2 (en) Method for producing composite material including resin molding
KR20150121006A (en) Composite semipermeable membrane and production thereof
KR20120107515A (en) Method of producing formed circuit component
US11148102B2 (en) Thin film composite membrane with nano-sized bubbles having enhanced membrane permeability, preparation methods and uses thereof
US20070264451A1 (en) Method of manufacturing polymer member and polymer member
CN112870995A (en) Composite semipermeable membrane
TW200827482A (en) Pre-treatment solution and method of forming a layer of a coating metal on a plastics surface containing substrate
JPWO2014133133A1 (en) Composite semipermeable membrane
KR101261994B1 (en) Filmy self-supporting thin metal film for hydrogen separation and process for producing the same
JP5215731B2 (en) Plastic surface modification method and surface modified plastic
JP5096273B2 (en) Electroless plating method
JP4092364B1 (en) Method for forming plating film and electroless plating solution
JP2011001577A (en) Method for manufacturing polymer member having plating film
JP5138394B2 (en) Polymer parts
JP4092360B1 (en) Polymer member and manufacturing method thereof
JP2011001576A (en) Plating-pretreatment method for polymeric base material
KR20100121790A (en) Polymer compound and membrane manufacturing method for mbr processing
JP2008174840A5 (en) Polymer parts
WO2001088211A2 (en) Method for the treatment of work pieces with a palladium colloid solution
JP4958141B2 (en) Metal-coated polymer material and method for producing the same
CN112870994A (en) Modification method for improving chlorine resistance of polyacrylonitrile forward osmosis membrane
KR101244695B1 (en) The fabrication method of filtration membrane coated with metal nanoparticle using supercritical fluid
JP2008255169A (en) Method for forming plating film, polymer member, and its manufacturing method
JP5083005B2 (en) Resin substrate having a precious metal fixed on the surface layer, its manufacturing method, circuit board, and its manufacturing method
CN114225712B (en) Seawater desalination membrane and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees