KR20100121790A - Polymer compound and membrane manufacturing method for mbr processing - Google Patents

Polymer compound and membrane manufacturing method for mbr processing Download PDF

Info

Publication number
KR20100121790A
KR20100121790A KR1020090040655A KR20090040655A KR20100121790A KR 20100121790 A KR20100121790 A KR 20100121790A KR 1020090040655 A KR1020090040655 A KR 1020090040655A KR 20090040655 A KR20090040655 A KR 20090040655A KR 20100121790 A KR20100121790 A KR 20100121790A
Authority
KR
South Korea
Prior art keywords
membrane
weight
parts
polymer
mbr
Prior art date
Application number
KR1020090040655A
Other languages
Korean (ko)
Other versions
KR101079652B1 (en
Inventor
이정빈
Original Assignee
주식회사 원일티엔아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 원일티엔아이 filed Critical 주식회사 원일티엔아이
Priority to KR1020090040655A priority Critical patent/KR101079652B1/en
Publication of KR20100121790A publication Critical patent/KR20100121790A/en
Application granted granted Critical
Publication of KR101079652B1 publication Critical patent/KR101079652B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A polymer compound for manufacturing a separator of an MBR, and a manufacturing method of the separator using thereof are provided to improve the operating efficiency, and to secure the energy reduction effect. CONSTITUTION: A manufacturing method of a separator of an MBR comprises the following steps: forming a raw material with polyvinylidene fluoride, dimethylformamide, polyvinylpyrrolidone, polyethylene glycol, and methyl cellosolve(S1); forming a polymer solution by mixing and stirring the raw material(S2); forming a polymer coating layer by spreading the polymer solution to a non-woven fabric(S3); dipping the non-woven fabric with the polymer coating layer into a coagulation bath with 40~50deg C water, to solidify the polymer coating layer(S4); dipping the polymer coating layer into water to remove a remain solvent(S5); dipping the washed polymer coating layer to an aqueous solution with glycerine(S6); and drying the polymer coating layer(S7).

Description

엠비알(MBR)용 분리막 제조를 위한 고분자화합물 및 이를 이용한 분리막의 제조방법{POLYMER COMPOUND AND MEMBRANE MANUFACTURING METHOD FOR MBR PROCESSING}Polymer compound for the manufacture of membrane for MBI and manufacturing method of membrane using same {POLYMER COMPOUND AND MEMBRANE MANUFACTURING METHOD FOR MBR PROCESSING}

본 발명은 MBR용 분리막 제조용 고분자화합물 및 분리막의 제조방법에 관한 것으로, 더욱 상세하게는 막 오염 저항성을 개선하는 등 분리막 제조에 따른 막 표면특성을 향상시킬 수 있도록 한 MBR용 분리막 제조를 위한 고분자화합물 및 이를 이용한 분리막의 제조방법에 관한 것이다.The present invention relates to a polymer compound for preparing a membrane for MBR and a method for preparing the membrane, and more particularly, to a polymer compound for preparing a membrane for MBR, which can improve membrane surface properties according to membrane preparation, such as improving membrane fouling resistance. And it relates to a method for producing a separator using the same.

일반적으로 정수 및 오폐수를 처리하는 기존 공정들을 대처할만한 많은 공법들 가운데 멤브레인(Membrane)을 이용한 막분리 기술이 적용되고 있고, 최근에는 하폐수나 오폐수의 처리에 정밀여과막이나 한외여과막을 통한 분리막 기술적용이 증가하고 있는데, 이러한 하폐수나 오폐수의 처리에 분리막을 적용하는 대표적인 방식이 막결합형 활성슬러지공법 즉, MBR(Membrane Bio reactor) 공법이다.In general, membrane separation technology using membrane is applied among many methods that can cope with existing processes of treating purified water and wastewater, and recently, separation membrane technology through microfiltration membrane or ultrafiltration membrane is applied to treatment of sewage or wastewater. Increasingly, a representative method of applying a membrane to the treatment of sewage and wastewater is a membrane-bound activated sludge method, that is, a MBR (Membrane Bioreactor) method.

이 MBR 공법은 생물학적 처리공정과 막 분리가 결합된 공정으로서, 분리막이 중요한 역할을 차지하게 되는데, 막 오염이라는 근본적인 문제로 인하여 많은 장점을 가지고 있음에도 불구하고 처리효율의 저하와 운전비용의 상승 등과 같은 문제점들이 도출되고 있어 개선이 요구되고 있는 실정에 있다.This MBR process combines biological treatment and membrane separation, and the membrane plays an important role. Despite the many advantages due to the fundamental problem of membrane contamination, such as lowering of processing efficiency and rising operating cost. Problems are being derived and the situation is in need of improvement.

본 발명은 상술한 종래의 문제점들을 해소하기 위해 안출된 것으로서, 막 오염 저항성을 개선하는 등 분리막 제조에 따른 막 표면특성을 향상시킬 수 있도록 하고, MBR공정의 흡입/휴지주기를 단축시킬 수 있도록 하는 등 운전효율을 향상시킬 수 있도록 하면서 동력을 절감시키는 등 에너지절감효과를 발휘할 수 있도록 하며, 오폐수나 하폐수의 처리효율을 높일 수 있도록 하는 MBR용 분리막 제조를 위한 고분자화합물 및 이를 이용한 분리막의 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned conventional problems, to improve the membrane surface characteristics according to the membrane production, such as to improve membrane contamination resistance, and to shorten the suction / rest period of the MBR process It is possible to improve energy efficiency while reducing operating power while improving operating efficiency, and to prepare a polymer compound for manufacturing MBR membranes and a method of preparing membranes using the same, which can improve the treatment efficiency of wastewater or sewage. The purpose is to provide.

본 발명은 폴리비닐라이덴 플로라이드(PVDF), 디메틸 포름아미드(DMF), 폴리비닐 피롤리돈(PVP), 폴리에틸렌 글리콜(PEG), 메틸 셀로솔브(MC)가 혼합된 화합물로 구성되어 MBR용 분리막의 제조에 사용되는 MBR용 분리막 제조를 위한 고분자화합물을 특징으로 한다.The present invention is composed of polyvinylidene fluoride (PVDF), dimethyl formamide (DMF), polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG), methyl cellosolve (MC) mixed membrane for MBR Characterized in that the polymer compound for the production of membranes for MBR used in the manufacture of.

이때, 상기 고분자화합물은 폴리비닐라이덴 플로라이드(PVDF) 100~130중량부에 대해서 디메틸 포름아미드(DMF) 700~850중량부, 폴리비닐 피롤리돈(PVP) 110~140중량부, 폴리에틸렌 글리콜(PEG) 110~140중량부, 메틸 셀로솔브(MC) 50~130중량부의 조성으로 이루어지게 하는 것을 특징으로 한다.In this case, the polymer compound is 700 to 850 parts by weight of dimethyl formamide (DMF), 110 to 140 parts by weight of polyvinyl pyrrolidone (PVP) based on 100 to 130 parts by weight of polyvinylidene fluoride (PVDF), polyethylene glycol ( PEG) 110 to 140 parts by weight, methyl cellosolve (MC) is characterized in that it is made of a composition of 50 to 130 parts by weight.

한편, 본 발명은 폴리비닐라이덴 플로라이드(PVDF) 100~130중량부에 대해서 디메틸 포름아미드(DMF) 700~850중량부, 폴리비닐 피롤리돈(PVP) 110~140중량부, 폴리에틸렌 글리콜(PEG) 110~140중량부, 메틸 셀로솔브(MC) 50~130중량부로 원료를 조성 및 구비하는 제1단계와; 상기 조성된 원료들을 혼합 교반하여 고분자용액을 만드는 제2단계와; 상기 고분자용액을 분리막의 지지체로 사용하기 위한 부직포에 도포하여 표면에 고분자코팅층을 형성시키는 제3단계와; 상기 고분자코팅층을 갖는 부직포를 40~50℃ 온도조건의 물이 담긴 응고조 내에 침지시킴에 의해 고분자코팅층을 고형화시켜 막을 형성시키는 제4단계와; 상기 막 형성 이후에 40℃~50℃의 온도조건을 갖는 물에 담가 막 내부에 잔존하는 용매를 제거 및 세정 처리하는 제5단계와; 상기 세정단계 이후에 글리세린이 함유된 수용액에 담가 고형화된 막 내부에 글리세린이 스며들어 보습이 이루어지도록 후처리하는 제6단계와; 상기 후처리 이후 건조시키는 제7단계를 포함하여 제조되는 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막 제조방법을 특징으로 한다.On the other hand, the present invention is 700 to 850 parts by weight of dimethyl formamide (DMF), 110 to 140 parts by weight of polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG) based on 100 to 130 parts by weight of polyvinylidene fluoride (PVDF) 110-140 parts by weight of methyl cellosolve (MC) 50-130 parts by weight of the first step of composition and comprising; Mixing and stirring the prepared raw materials to form a polymer solution; A third step of forming the polymer coating layer on the surface by applying the polymer solution to a nonwoven fabric for use as a support of the separator; A fourth step of forming a film by solidifying the polymer coating layer by immersing the nonwoven fabric having the polymer coating layer in a coagulation bath containing water at a temperature of 40 to 50 ° C .; A fifth step of removing and washing the solvent remaining in the film by immersing in water having a temperature condition of 40 ° C. to 50 ° C. after the film formation; A sixth step of immersing in an aqueous solution containing glycerin after the washing step to post-treat the glycerin in the solidified membrane to moisturize it; After the post-treatment is characterized in that the membrane manufacturing method using a polymer compound for the preparation of the MBR separator prepared by the seventh step of drying.

본 발명은 막 오염 저항성을 개선할 수 있고 투과유량을 증가시킬 수 있는 등 분리막의 제조에 따른 막 표면특성을 향상시킬 수 있어 폐수의 처리효율을 높일 수 있으며, 이에 의해 MBR공정에서의 흡입/휴지주기를 단축시킬 수 있는 등 운전효 율을 향상시킬 수 있고 이러한 운전효율 향상으로 동력을 절감시킬 수 있어 에너지를 절감할 수 있게 된다.The present invention can improve the membrane surface properties according to the production of the separation membrane, such as to improve the resistance to membrane fouling and increase the permeate flow rate can increase the treatment efficiency of waste water, thereby inhalation / rest in the MBR process Operation efficiency can be improved, such as shortening the cycle, and power can be saved by improving the operation efficiency, thereby saving energy.

본 발명을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시예에 의한 MBR용 분리막 제조를 위한 고분자화합물은 폴리비닐라이덴 플로라이드(PVDF;polyvinylidene fluoride), 디메틸 포름아미드(DMF;dimethyl formamide), 폴리비닐 피롤리돈(PVP;polyvinyl pyrrolidone), 폴리에틸렌 글리콜(PEG;polyethylene glycol), 메틸 셀로솔브(MC;methyl cellosolve)가 혼합된 화합물로 이루어진다.The polymer compound for preparing a membrane for MBR according to an embodiment of the present invention is polyvinylidene fluoride (PVDF), dimethyl formamide (DMF), polyvinyl pyrrolidone (PVP; polyvinyl pyrrolidone), Polyethylene glycol (PEG), methyl cellosolve (MC) is composed of a compound mixed.

이때, 상기 폴리비닐라이덴 플로라이드(PVDF) 100~130중량부에 대해서 디메틸 포름아미드(DMF) 700~850중량부, 폴리비닐 피롤리돈(PVP) 110~140중량부, 폴리에틸렌 글리콜(PEG) 110~140중량부, 메틸 셀로솔브(MC) 50~130중량부의 조성으로 이루어지도록 구성함이 바람직하다.At this time, 700 to 850 parts by weight of dimethyl formamide (DMF), 110 to 140 parts by weight of polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) 110 based on 100 to 130 parts by weight of the polyvinylidene fluoride (PVDF). 140 parts by weight, methyl cellosolve (MC) is preferably composed of 50 to 130 parts by weight of the composition.

상기 폴리비닐라이덴 플로라이드(PVDF)는 메인 고분자(main polymer)로서 MBR(Membrane Bio reactor)용 분리막을 형성시키는 역할을 하게 되며, 130중량부를 초과할 경우 분리막의 지지체가 되는 부직포 위에 막(膜)이 두껍게 형성되고 막 표면의 기공이 잘 형성되지 않아 오히려 분리막 특성을 저하시킬 수 있고 100중량부 미만일 경우 고분자 점도가 떨어져 분리막의 지지체인 부직포에 도포할 시 고르게 분산되지 않고 부직포 내부로 쉽게 침투되어 부직포의 표면에 막 형성이 이루어지 지 않게 된다.The polyvinylidene fluoride (PVDF) serves as a main polymer to form a membrane for membrane bioreactor (MBR), and when it exceeds 130 parts by weight, the polyvinylidene fluoride (PVDF) is formed on the membrane of the nonwoven fabric serving as a support for the membrane. This thick film is formed and pores on the surface of the membrane are not well formed, which may lower the separator properties. If the amount is less than 100 parts by weight, the polymer viscosity is low, so that it is easily dispersed into the nonwoven fabric when applied to the nonwoven fabric, which is a support of the separator. The film is not formed on the surface of the film.

이때, 폴리비닐라이덴 플로라이드(PVDF)는 막 형성을 위한 고분자로서 화학적, 기계적 안정성을 증가시키는 작용을 하게 된다.At this time, polyvinylidene fluoride (PVDF) is a polymer for forming a film serves to increase the chemical and mechanical stability.

상기 디메틸 포름아미드(DMF)는 용매(solvent)로서 고분자를 용해시키는 역할을 하게 되며, 850중량부를 초과할 경우 고분자의 점도가 낮아져서 고분자용액이 지지체인 부직포의 내부로 너무 많이 침투되어 균일한 막 형성이 어렵게 되고 700중량부 미만인 경우 고분자의 용해가 쉽게 이루어지지 않을 뿐더러 점도가 너무 올라가 막 형성을 어렵게 한다.The dimethyl formamide (DMF) plays a role of dissolving the polymer as a solvent (solvent), and if it exceeds 850 parts by weight, the viscosity of the polymer is lowered so that the polymer solution penetrates too much into the inside of the nonwoven fabric as a support to form a uniform film This becomes difficult and less than 700 parts by weight of the polymer is not easily dissolved and the viscosity is too high to make the film difficult.

이때, 디메틸 포름아미드(DMF)는 물과의 섞임성이 우수해 막 표면의 기공형성을 유리하게 하는 작용을 하게 된다.At this time, dimethyl formamide (DMF) is excellent in the admixture with water to act to favor the pore formation on the membrane surface.

상기 폴리비닐 피롤리돈(PVP)은 기공형성제(pore forming agent)로 사용되는 것으로서 막에 친수성을 부여하면서 기공을 형성시키는 역할을 하게 되며, 140중량부를 초과하는 경우 고분자용액의 점도를 크게 향상시키므로 막 두께를 증가시키고 막 표면의 기공이 잘 형성되지 않게 되며 110중량부 미만인 경우 막에 친수성을 부여시키는 역할이 미미하게 되고 기공을 형성시키는 역할도 미미하게 된다.The polyvinyl pyrrolidone (PVP) is used as a pore forming agent, and serves to form pores while imparting hydrophilicity to the membrane. When the polyvinyl pyrrolidone (PVP) exceeds 140 parts by weight, the viscosity of the polymer solution is greatly improved. As a result, the thickness of the membrane is increased and pores on the surface of the membrane are not well formed, and when less than 110 parts by weight, the role of imparting hydrophilicity to the membrane is insignificant and the role of forming pores is also negligible.

이때, 폴리비닐 피롤리돈(PVP)은 친수성이 매우 뛰어나 용매에 잘 용해되므로 분산성을 좋게 할 수 있다.At this time, the polyvinyl pyrrolidone (PVP) is very excellent in hydrophilicity and solubilized in a solvent can improve the dispersibility.

상기 폴리에틸렌 글리콜(PEG)은 기공형성제(pore forming agent)로 사용되는 것으로서 막 표면의 기공을 형성시키는 역할을 하게 되며, 140중량부를 초과할 경우 막의 기계적 물성이 약화되어 강도가 약해지고 110중량부 미만인 경우 기공을 형성시키는 역할이 미미하게 된다.The polyethylene glycol (PEG) is used as a pore forming agent (pore forming agent) and serves to form pores on the surface of the membrane, if it exceeds 140 parts by weight, the mechanical properties of the membrane is weakened, the strength is weak and less than 110 parts by weight In this case, the role of forming pores is insignificant.

상기 메틸 셀로솔브(MC)는 비용매(non-solvent)로서 고분자용액에 불안정성을 부여시켜 큰 기공을 형성시키는 역할을 하게 되며, 130중량부를 초과할 경우 고분자용액의 불안정성이 너무 높아져 막 형성이 용이하게 이루어지지 않게 되고 50중량부 미만인 경우 고분자용액에 불안정성을 부여할 수 없어 큰 기공을 형성시키는 역할이 미미하게 된다.The methyl cellosolve (MC) acts as a non-solvent to impart instability to the polymer solution to form large pores, and when it exceeds 130 parts by weight, the polymer solution is too high and the membrane instability is too high to facilitate film formation. If the amount is less than 50 parts by weight, the instability of the polymer solution cannot be imparted to form a large pore.

한편, 상술한 바와 같은 본 발명에 의한 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막의 제조방법을 설명하면 다음과 같다.On the other hand, when describing a method for producing a membrane using a polymer compound for producing a membrane for MBR according to the present invention as described above.

도 1을 참조하여, 본 발명의 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막의 제조방법은 폴리비닐라이덴 플로라이드(PVDF) 100~130중량부에 대해서 디메틸 포름아미드(DMF) 700~850중량부, 폴리비닐 피롤리돈(PVP) 110~140중량부, 폴리에틸렌 글리콜(PEG) 110~140중량부, 메틸 셀로솔브(MC) 50~130중량부의 조성으로 원료를 구비한다(S1).Referring to Figure 1, the manufacturing method of the membrane using the polymer compound for the preparation of the membrane for MBR of the present invention 700 to 850 parts by weight of dimethyl formamide (DMF) based on 100 to 130 parts by weight of polyvinylidene fluoride (PVDF) And a raw material having a composition of 110 to 140 parts by weight of polyvinyl pyrrolidone (PVP), 110 to 140 parts by weight of polyethylene glycol (PEG) and 50 to 130 parts by weight of methyl cellosolve (MC) (S1).

원료가 조성되어 구비되면, 조성된 원료들을 혼합 교반하여 분리막 제조에 도포할 고분자용액을 만들도록 한다(S2).When the raw material is prepared and provided, the mixed raw materials are mixed and stirred to make a polymer solution to be applied to manufacture the separator (S2).

이때, 상기 고분자용액은 400~1000cP의 점도를 유지할 수 있도록 제조함이 바람직한데, 점도가 400cP 미만일 경우 막 제작이 불가능해지거나 지지체인 부직포에 주름을 발생시키는 요인이 되어 제품불량을 초래하게 되고 점도가 1000cP를 초과할 경우 막 두께를 증가시키고 막 표면의 기공형성을 어렵게 한다.At this time, the polymer solution is preferably manufactured to maintain the viscosity of 400 ~ 1000cP, if the viscosity is less than 400cP film production is impossible or cause the wrinkles on the nonwoven fabric of the support causing product defects and viscosity If the thickness exceeds 1000 cP, the film thickness increases and the pore formation on the surface of the film becomes difficult.

부연하면, 상기 고분자용액은 도 2에 나타낸 바와 같이, 용매인 디메틸 포름 아미드(DMF)에 폴리비닐라이덴 플로라이드(PVDF)를 첨가하되 80~90℃의 히팅조건에서 교반하는 제1과정(S21)과, 제1과정 이후에는 폴리비닐 피롤리돈(PVP)을 첨가하되 히팅조건을 제거한 상태에서 교반 혼합하는 제2과정(S22)과, 제2과정이 완료되면 폴리에틸렌 글리콜(PEG)과 메틸 셀로솔브(MC)를 첨가하여 교반 혼합하는 제3과정(S23)을 통해 제조함이 바람직하다.In other words, as shown in FIG. 2, the polymer solution was added with polyvinylidene fluoride (PVDF) to dimethyl formamide (DMF) as a solvent, but stirred under heating conditions at 80 ° C. to 90 ° C. (S21). And, after the first process, polyvinyl pyrrolidone (PVP) is added, but the second step (S22) of stirring and mixing while the heating condition is removed, and when the second process is completed, polyethylene glycol (PEG) and methyl cellosolve It is preferably prepared through the third step (S23) of adding and stirring (MC).

여기서, 폴리에틸렌 글리콜(PEG)은 30~40℃ 조건의 오븐에 보관하여 액체상태로 녹은 상태에서 첨가함이 바람직하다 할 것이다.Here, the polyethylene glycol (PEG) is preferably stored in an oven at 30 ~ 40 ℃ condition added in a molten state.

고분자용액의 제조가 완성되면, 지지체로 사용되는 부직포에 고분자용액을 도포하여 부직포의 표면에 고분자코팅층이 형성되게 한다(S3).When the preparation of the polymer solution is completed, the polymer solution is applied to the nonwoven fabric used as the support so that the polymer coating layer is formed on the surface of the nonwoven fabric (S3).

이때, 고분자용액을 부직포에 도포함에 있어서는 라인분사를 행하는 캐스팅 나이프 도포장치를 이용하여 전체면에 걸쳐 균일한 도포가 수행될 수 있도록 함이 바람직하다.At this time, in applying the polymer solution to the nonwoven fabric, it is preferable to use a casting knife coating device that performs line spraying so that uniform coating can be performed over the entire surface.

상기 부직포는 표면의 직조(織造)구조가 촘촘하게 엮인 구조보다는 조금 느슨하게 엮인 구조의 것을 사용함이 바람직하며, 이는 고분자용액을 부직포의 조직 속으로 일정량 침투되게 함으로써 부직포의 표면에 형성되는 고분자코팅층이 쉽게 박리되거나 손상되는 것을 방지할 수 있도록 하기 위함이다.The nonwoven fabric is preferably a structure that is a little loosely woven structure rather than a tightly woven structure, the polymer coating layer formed on the surface of the nonwoven fabric is easily peeled off by allowing the polymer solution to penetrate a certain amount into the tissue of the nonwoven fabric. This is to prevent damage or damage.

고분자코팅층을 갖는 부직포를 물이 담긴 응고조 내에 침지시킴에 의해 고분자코팅층을 고형화시켜 막이 형성되게 한다(S4).The nonwoven fabric having the polymer coating layer is immersed in a coagulation bath containing water to solidify the polymer coating layer to form a film (S4).

이때, 고분자코팅층의 고형화를 위해 사용되는 응고조 내의 물은 40~50℃ 온도로 유지함이 바람직하며, 도 3은 45℃의 온도를 갖는 물에 침지시킨 상태에서 도 출된 고형화된 막의 표면구조를 보인 전자주사현미경(SEM) 사진으로서 일정 유량의 투과량을 확보할 수 있는 기공이 형성되어 있음을 보여주고 있다.At this time, the water in the coagulation bath used for the solidification of the polymer coating layer is preferably maintained at a temperature of 40 ~ 50 ℃, Figure 3 shows the surface structure of the solidified film derived in the state immersed in water having a temperature of 45 ℃. Electron scanning microscope (SEM) photographs show that pores are formed to ensure a certain amount of transmission.

막 형성 이후에는 40℃~50℃의 온도조건을 갖는 물에 담가 고형화된 막 내부에 잔존하는 용매를 제거 및 세정 처리한다(S5).After the film is formed, the solvent remaining in the solidified film is immersed in water having a temperature condition of 40 ° C. to 50 ° C. and then washed (S5).

세정 이후에는 글리세린이 함유된 수용액에 담가 고형화된 막 내부에 글리세린이 스며들어 보습이 이루어지도록 후처리한다(S6).After washing, the solution is immersed in an aqueous solution containing glycerin and is post-treated to allow the glycerin to penetrate into the solidified membrane to moisturize (S6).

보습효과를 위한 후처리 이후에는 건조(S7)시킨 후, 분리막모듈에 부착함으로써 도 4의 예시에서와 같이 분리막을 모듈화시켜 제작한다.After the post-treatment for moisturizing effect is dried (S7), and then attached to the membrane module to prepare a membrane as shown in the example of FIG.

한편, 상술한 바와 같은 본 발명에 의한 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막의 제조방법에 의해 제조된 분리막을 가지고 MBR공정시스템에 적용시켜 테스트하였다.On the other hand, using the membrane prepared by the method for producing a membrane using the polymer compound for the MBR membrane production according to the present invention as described above was tested by applying to the MBR process system.

부연하면, 본 발명에 의한 MBR용 분리막과 타사제품의 분리막을 같은 반응조에 침지시켜 동일한 운전 조건에서 테스트하였으며, 도 5는 투과유량을 나타낸 비교 그래프이고, 도 6은 운전차압을 나타낸 비교 그래프이다.In other words, the MBR membrane according to the present invention and the membrane of another company was immersed in the same reactor and tested under the same operating conditions, Figure 5 is a comparison graph showing the permeate flow rate, Figure 6 is a comparison graph showing the operating differential pressure.

이때, 반응조 내 활성 슬러지 농도는 5,000 ~ 7,000mg/L이고 MBR공정시스템의 운전조건이 통상 흡입/휴지=7분/3분이나 막 오염을 줄이기 위해 흡입/유지=5분/1분으로 변경하여 운전하였다.At this time, the active sludge concentration in the reaction vessel is 5,000 ~ 7,000mg / L and the operating conditions of the MBR process system is usually changed to intake / rest = 7 minutes / 3 minutes, but to intake / maintenance = 5 minutes / 1 minutes to reduce membrane contamination Drive.

도 5에서 보여주는 바와 같이, 본 발명에 의한 분리막이 전체적인 투과유량에 있어서 타사제품의 분리막에 비해 우수하게 나타나고 있고, 시간이 지남에 따라 막 오염에 의한 투과유량의 감소폭도 현저하게 낮게 나타나는 것을 확인할 수 있 다.As shown in Figure 5, the separation membrane according to the present invention is superior to the separation membrane of the other products in the overall permeate flow rate, it can be seen that the decrease in permeation flow rate due to membrane contamination is also significantly lower over time. have.

또한, 일반적으로 막 오염이 심하게 일어날수록 운전차압이 현저하게 높아지는데, 도 6에서 보여주는 바와 같이 본 발명에 의한 분리막은 차압 증가폭이 타사제품에 비해 현저하게 낮으며 전체적으로 동일기간 운전조건에서 차압이 낮게 나타나는 것을 확인할 수 있다.In addition, as the membrane fouling occurs more severely, the operation differential pressure is significantly increased. As shown in FIG. 6, the separation membrane according to the present invention has a significantly lower increase in the differential pressure than other products and lower the differential pressure under the same operating conditions as a whole. You can see it appear.

이는 본 발명에 의해 제조된 분리막이 기존의 분리막에 비해 막 오염 저항성이 크고 투과유량을 증가시킬 수 있음을 나타내고 있다.This indicates that the membrane prepared by the present invention has a higher membrane fouling resistance than the conventional membrane and can increase the permeate flow rate.

도 1은 본 발명에 있어 분리막 제조방법을 나타낸 흐름도.1 is a flow chart showing a method for producing a separator in the present invention.

도 2는 본 발명의 분리막 제조방법에 있어 고분자용액 제조공정을 나타낸 흐름도.Figure 2 is a flow chart showing a polymer solution manufacturing process in the membrane production method of the present invention.

도 3은 본 발명에 있어 분리막의 막 표면구조에 대한 예시를 보인 SEM사진.Figure 3 is a SEM photograph showing an example of the membrane surface structure of the separator in the present invention.

도 4는 본 발명에 있어 분리막의 모듈 조립상태를 보인 예시도.Figure 4 is an exemplary view showing a module assembly state of the separator in the present invention.

도 5는 본 발명의 분리막에 대한 투과유량을 나타낸 비교 그래프.Figure 5 is a comparison graph showing the permeate flow rate for the separator of the present invention.

도 6은 본 발명의 분리막에 대한 운전차압을 나타낸 비교 그래프.Figure 6 is a comparison graph showing the operation differential pressure for the separator of the present invention.

Claims (5)

MBR용 분리막 제조를 위한 고분자화합물에 있어서,In the polymer compound for manufacturing a membrane for MBR, 폴리비닐라이덴 플로라이드(PVDF), 디메틸 포름아미드(DMF), 폴리비닐 피롤리돈(PVP), 폴리에틸렌 글리콜(PEG), 메틸 셀로솔브(MC)가 혼합된 화합물로 구성되어 MBR용 분리막의 제조에 사용되는 것을 특징으로 하는 MBR용 분리막 제조를 위한 고분자화합물.It is composed of polyvinylidene fluoride (PVDF), dimethyl formamide (DMF), polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG), methyl cellosolve (MC), Polymer compound for the production of membrane for MBR characterized in that it is used. 제 1항에 있어서,The method of claim 1, 상기 고분자화합물은 폴리비닐라이덴 플로라이드(PVDF) 100~130중량부에 대해서 디메틸 포름아미드(DMF) 700~850중량부, 폴리비닐 피롤리돈(PVP) 110~140중량부, 폴리에틸렌 글리콜(PEG) 110~140중량부, 메틸 셀로솔브(MC) 50~130중량부의 조성으로 이루어지는 것을 특징으로 하는 MBR용 분리막 제조를 위한 고분자화합물.The polymer compound is dimethyl formamide (DMF) 700 to 850 parts by weight, polyvinyl pyrrolidone (PVP) 110 to 140 parts by weight, polyethylene glycol (PEG) based on 100 to 130 parts by weight of polyvinylidene fluoride (PVDF) 110 to 140 parts by weight, methyl cellosolve (MC) A high molecular compound for the preparation of membranes for MBR, characterized in that the composition consists of 50 to 130 parts by weight. 폴리비닐라이덴 플로라이드(PVDF) 100~130중량부에 대해서 디메틸 포름아미드(DMF) 700~850중량부, 폴리비닐 피롤리돈(PVP) 110~140중량부, 폴리에틸렌 글리콜(PEG) 110~140중량부, 메틸 셀로솔브(MC) 50~130중량부로 원료를 조성 및 구비하는 제1단계와;700 to 850 parts by weight of dimethyl formamide (DMF), 110 to 140 parts by weight of polyvinyl pyrrolidone (PVP), and 110 to 140 parts by weight of polyethylene glycol (PEG) based on 100 to 130 parts by weight of polyvinylidene fluoride (PVDF) A first step of preparing and preparing a raw material with 50 to 130 parts by weight of methyl cellosolve (MC); 상기 조성된 원료들을 혼합 교반하여 고분자용액을 만드는 제2단계와;Mixing and stirring the prepared raw materials to form a polymer solution; 상기 고분자용액을 분리막의 지지체로 사용하기 위한 부직포에 도포하여 표 면에 고분자코팅층을 형성시키는 제3단계와;A third step of forming the polymer coating layer on the surface by applying the polymer solution to a nonwoven fabric for use as a support of the separator; 상기 고분자코팅층을 갖는 부직포를 40~50℃ 온도조건의 물이 담긴 응고조 내에 침지시킴에 의해 고분자코팅층을 고형화시켜 막을 형성시키는 제4단계와;A fourth step of forming a film by solidifying the polymer coating layer by immersing the nonwoven fabric having the polymer coating layer in a coagulation bath containing water at a temperature of 40 to 50 ° C .; 상기 막 형성 이후에 40℃~50℃의 온도조건을 갖는 물에 담가 막 내부에 잔존하는 용매를 제거 및 세정 처리하는 제5단계와;A fifth step of removing and washing the solvent remaining in the film by immersing in water having a temperature condition of 40 ° C. to 50 ° C. after the film formation; 상기 세정단계 이후에 글리세린이 함유된 수용액에 담가 고형화된 막 내부에 글리세린이 스며들어 보습이 이루어지도록 후처리하는 제6단계와;A sixth step of immersing in an aqueous solution containing glycerin after the washing step to post-treat the glycerin in the solidified membrane to moisturize it; 상기 후처리 이후 건조시키는 제7단계를 포함하여 이루어지는 것을 특징으로 하는 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막 제조방법.Separation membrane production method using a polymer compound for MBR membrane production, characterized in that it comprises a seventh step of drying after the post-treatment. 제 3항에 있어서,The method of claim 3, wherein 상기 제2단계에서는 용매인 디메틸 포름아미드(DMF)에 폴리비닐라이덴 플로라이드(PVDF)를 첨가하되 80~90℃의 히팅조건에서 교반하는 제1과정과;In the second step, polyvinylidene fluoride (PVDF) is added to dimethyl formamide (DMF) as a solvent, but the first step of stirring under heating conditions at 80 to 90 ° C; 상기 제1과정 이후에 폴리비닐 피롤리돈(PVP)을 첨가하되 히팅조건을 제거한 상태에서 교반 혼합하는 제2과정과;A second step of adding polyvinyl pyrrolidone (PVP) after the first step but stirring and stirring while removing heating conditions; 상기 제2과정 이후에 폴리에틸렌 글리콜(PEG)과 메틸 셀로솔브(MC)를 첨가하여 교반 혼합하는 제3과정을 통해 고분자용액을 만드는 것을 특징으로 하는 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막 제조방법.After the second process, polyethylene glycol (PEG) and methyl cellosolve (MC) is added to form a polymer solution through a third process of stirring and mixing to prepare a membrane manufacturing method using a polymer compound for MBR membrane production . 제 3항 또는 제 4항에 있어서,The method according to claim 3 or 4, 상기 고분자용액은 400~1000cP의 점도를 유지할 수 있도록 제조하는 것을 특징으로 하는 MBR용 분리막 제조를 위한 고분자화합물을 이용한 분리막 제조방법.The polymer solution is a membrane production method using a polymer compound for the MBR membrane production, characterized in that the manufacturing to maintain the viscosity of 400 ~ 1000cP.
KR1020090040655A 2009-05-11 2009-05-11 Polymer compound and membrane manufacturing method for membrane bio reactor processing KR101079652B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090040655A KR101079652B1 (en) 2009-05-11 2009-05-11 Polymer compound and membrane manufacturing method for membrane bio reactor processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090040655A KR101079652B1 (en) 2009-05-11 2009-05-11 Polymer compound and membrane manufacturing method for membrane bio reactor processing

Publications (2)

Publication Number Publication Date
KR20100121790A true KR20100121790A (en) 2010-11-19
KR101079652B1 KR101079652B1 (en) 2011-11-03

Family

ID=43406896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090040655A KR101079652B1 (en) 2009-05-11 2009-05-11 Polymer compound and membrane manufacturing method for membrane bio reactor processing

Country Status (1)

Country Link
KR (1) KR101079652B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828166A (en) * 2021-10-13 2021-12-24 无锡市道格环保科技有限公司 Preparation method of organic separation membrane for extracting vegetable protein peptide
CN114130202A (en) * 2021-12-15 2022-03-04 中国科学院长春应用化学研究所 Microporous filter membrane and preparation method thereof
WO2023068433A1 (en) * 2021-10-19 2023-04-27 주식회사 에이런 Pvdf composite separation membrane manufacturing method, and pvdf composite separation membrane manufactured using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828166A (en) * 2021-10-13 2021-12-24 无锡市道格环保科技有限公司 Preparation method of organic separation membrane for extracting vegetable protein peptide
WO2023068433A1 (en) * 2021-10-19 2023-04-27 주식회사 에이런 Pvdf composite separation membrane manufacturing method, and pvdf composite separation membrane manufactured using same
CN114130202A (en) * 2021-12-15 2022-03-04 中国科学院长春应用化学研究所 Microporous filter membrane and preparation method thereof
CN114130202B (en) * 2021-12-15 2023-03-14 中国科学院长春应用化学研究所 Microporous filter membrane and preparation method thereof

Also Published As

Publication number Publication date
KR101079652B1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
CN109847586B (en) High-flux reverse osmosis membrane and preparation method and application thereof
CN100463712C (en) Prepn process of reinforced hybrid organic-inorganic film
CN102580560B (en) Method for preparing nano-material-doped polymer film
Fan et al. Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes
KR101597829B1 (en) Porous Membrane and Method for Manufacturing The Same
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
JP2015529555A (en) Membrane having isoporous separation active layer and method for producing membrane
CN102160969B (en) Method for preparing fluorocarbon polymer microporous film with interpenetrating network bicontinuous pore structure
EP3023138B1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
WO2016115908A1 (en) Polyvinylidene fluoride hollow fibre membrane of in-situ pore-forming agent and preparation method therefor
WO2017050019A1 (en) Method for preparing polyvinyl alcohol gel based meshed polyvinylidene fluoride film
KR101494053B1 (en) Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
CN108295667A (en) A kind of positive osmosis composite membrane and preparation method thereof based on large aperture basement membrane
JP2013510717A5 (en)
CN102068925A (en) Preparation method of polyaniline nano composite film
JP5716283B2 (en) Porous separation flat membrane and method for producing the same
CN105597552A (en) Forward osmosis membrane with high water flux and high salt rejection rate and method for preparing forward osmosis membrane with one-step method
KR20140017316A (en) Method of manufacturing ultrafiltration using metal organic frameworks
EP2626127B1 (en) Polyazole membrane for water purification
KR101079652B1 (en) Polymer compound and membrane manufacturing method for membrane bio reactor processing
EP2647421A2 (en) Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
CN111013400A (en) Method for preparing polyvinylidene fluoride tubular membrane by low-temperature thermal induced phase method
JP2013223861A (en) Composite diaphragm
KR100536643B1 (en) Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
KR101467906B1 (en) Method of manufacturing pervaporation using metal ion complex

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151026

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 8