JP2011001576A - Plating-pretreatment method for polymeric base material - Google Patents

Plating-pretreatment method for polymeric base material Download PDF

Info

Publication number
JP2011001576A
JP2011001576A JP2009143938A JP2009143938A JP2011001576A JP 2011001576 A JP2011001576 A JP 2011001576A JP 2009143938 A JP2009143938 A JP 2009143938A JP 2009143938 A JP2009143938 A JP 2009143938A JP 2011001576 A JP2011001576 A JP 2011001576A
Authority
JP
Japan
Prior art keywords
organometallic complex
pressure
polymer substrate
carbon dioxide
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009143938A
Other languages
Japanese (ja)
Inventor
Tetsuya Ano
哲也 阿野
Atsushi Yusa
敦 遊佐
Hiroki Ota
寛紀 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009143938A priority Critical patent/JP2011001576A/en
Publication of JP2011001576A publication Critical patent/JP2011001576A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a plating film with excellent adhesiveness at low cost when executing the electroless plating treatment on a polymeric base material.SOLUTION: A plating-pretreatment method for a polymeric base material includes: an impregnating step of impregnating an organometallic complex in a polymeric base material 21 by bringing the polymeric base material 21 and a pressurized fluid containing an organometallic complex into contact with each other at the temperature below the reduction temperature of the organometallic complex; a diluting step of diluting the pressurized fluid in a high-pressure vessel 3 by fluidizing high-pressure carbon dioxide containing no organometallic complex at the temperature below the reduction of the organometallic complex in the high-pressure vessel 3; and a reducing step of reducing the organometallic complex impregnated in the polymeric base material 21 while high-pressure carbon dioxide is contained in the high-pressure vessel 3.

Description

本発明は、無電解めっき処理により高分子基材にめっき膜を形成するためのめっき前処理方法に関する。   The present invention relates to a plating pretreatment method for forming a plating film on a polymer substrate by electroless plating treatment.

従来、高分子基材の表面にめっき膜を形成する方法として、無電解めっき法が知られている。この無電解めっき法は、触媒的な化学反応を利用して金属イオンを還元することにより、被めっき物上にめっき膜を形成する方法であるため、被めっき物それ自体が還元剤の還元作用に対して触媒活性を示す場合を除いて、触媒活性がある金属物質を被めっき物の表面内部に安定、且つ均一に付着させておくことが、最終的に得られるめっき膜の密着性を確保するために必要となる。そのため、被めっき物が樹脂材料からなる高分子基材である場合、無電解めっき処理の前に六価クロム酸や過マンガン酸などの環境負荷の大きな酸化剤を含有するエッチング液を用いて高分子基材の表面を粗化するエッチング処理を行って、高分子基材の表面に凹凸を形成し、該凹凸に触媒核となる金属物質を付与している。また、このようなエッチング液で浸漬される高分子基材、すなわち、無電解めっきが適用可能な高分子基材としては、ABS系樹脂を含有する高分子基材に限定されている。これは、ABS系樹脂がエッチング液に選択的に浸食されるブタジエンゴム成分を含んでいるのに対して、他の樹脂ではこのようなエッチング液に選択的に浸食される成分が少なく、表面に凹凸が形成され難いためである。それゆえ、ABS系樹脂以外のポリカーボネート樹脂などを樹脂成分として含む高分子基材を無電解めっき処理するにあたっては、無電解めっきを可能にするためにABS系樹脂やエラストマーを含むめっきグレード品が使用されている。しかしながら、そのようなめっきグレード品では、主材料の耐熱性などの物性の劣化を避けることができない。   Conventionally, an electroless plating method is known as a method of forming a plating film on the surface of a polymer substrate. This electroless plating method uses a catalytic chemical reaction to reduce metal ions to form a plating film on the object to be plated, so that the object to be plated itself has a reducing agent reducing action. Except for the case where the catalytic activity is exhibited, it is ensured that the metal material having catalytic activity is stably and uniformly adhered to the inside of the surface of the object to be plated, thereby ensuring the adhesion of the finally obtained plated film. It is necessary to do. Therefore, when the object to be plated is a polymer substrate made of a resin material, an etching solution containing an oxidant having a large environmental load such as hexavalent chromic acid or permanganic acid is used before electroless plating. An etching process for roughening the surface of the molecular substrate is performed to form irregularities on the surface of the polymer substrate, and a metal substance serving as a catalyst nucleus is imparted to the irregularities. Moreover, the polymer substrate immersed in such an etching solution, that is, a polymer substrate to which electroless plating can be applied is limited to a polymer substrate containing an ABS resin. This is because the ABS-based resin contains a butadiene rubber component that is selectively eroded by the etching solution, while other resins have few components that are selectively eroded by such an etching solution, and the surface of the resin is not easily eroded. This is because unevenness is difficult to be formed. Therefore, when performing electroless plating on polymer substrates containing polycarbonate resin other than ABS resin as a resin component, plating grade products containing ABS resin and elastomer are used to enable electroless plating. Has been. However, in such a plating grade product, deterioration of physical properties such as heat resistance of the main material cannot be avoided.

上記のような問題を解決すべく、無電解めっき処理の前に、超臨界状態の二酸化炭素を用いて、めっき触媒となる金属を含む触媒成分を高分子基材に浸透させる表面改質方法が提案されている。例えば、成形された樹脂成形体と、めっき触媒となる金属単体または金属を含む化合物を超臨界二酸化炭素に溶解させた加圧流体とを高圧容器内で接触させることにより、めっき触媒が導入された樹脂成形体を得るめっき前処理方法が提案されている(特許文献1)。しかしながら、上記のような金属単体などは超臨界二酸化炭素への溶解性に劣るため、めっき膜形成のために十分な量のめっき触媒を高分子基材に導入することができず、安定にめっき膜を形成することが難しい。そのため、例えば、有機金属錯体を超臨界状態または亜臨界状態の高圧二酸化炭素に溶解させた加圧流体と高分子繊維基材とを高圧容器内で接触させ、接触により高分子繊維基材に導入された有機金属錯体をめっき触媒に還元するめっき前処理方法が提案されている(特許文献2)。   In order to solve the above problems, there is a surface modification method in which a catalyst component containing a metal serving as a plating catalyst is infiltrated into a polymer base material using carbon dioxide in a supercritical state before electroless plating treatment. Proposed. For example, the plating catalyst is introduced by bringing a molded resin molded body into contact with a pressurized fluid obtained by dissolving a metal simple substance or a metal-containing compound as a plating catalyst in supercritical carbon dioxide in a high-pressure vessel. A plating pretreatment method for obtaining a resin molded body has been proposed (Patent Document 1). However, since the above metals alone have poor solubility in supercritical carbon dioxide, a sufficient amount of plating catalyst for forming a plating film cannot be introduced into the polymer substrate, and stable plating is performed. It is difficult to form a film. For this reason, for example, a pressurized fluid in which an organometallic complex is dissolved in high-pressure carbon dioxide in a supercritical state or a subcritical state is brought into contact with the polymer fiber substrate in a high-pressure vessel and introduced into the polymer fiber substrate by contact. A plating pretreatment method has been proposed in which the organometallic complex is reduced to a plating catalyst (Patent Document 2).

超臨界二酸化炭素などの高圧二酸化炭素は気体としての浸透性と液体としての溶媒特性を併せもつ流体であり、また有機金属錯体は金属単体よりも高圧二酸化炭素に対して優れた溶解性を有するため、該有機金属錯体を高圧二酸化炭素に溶解させた加圧流体を使用することにより、加圧流体の浸透に伴って、これに溶解している有機金属錯体が高分子基材に浸透する。これにより、エッチング処理を行うことなく有機金属錯体を高分子基材に導入することができる。従って、上記方法によれば、環境負荷の大きな六価クロム酸などの酸化剤を使用する必要がなく、またエッチング液に浸食される成分の少ない樹脂材料からなる高分子基材に対しても、無電解めっき処理によりめっき膜を形成できる。   High-pressure carbon dioxide such as supercritical carbon dioxide is a fluid that has both permeability as a gas and solvent properties as a liquid, and organometallic complexes are more soluble in high-pressure carbon dioxide than single metals. By using a pressurized fluid in which the organometallic complex is dissolved in high-pressure carbon dioxide, the organometallic complex dissolved in the pressurized fluid penetrates into the polymer substrate as the pressurized fluid penetrates. Thereby, the organometallic complex can be introduced into the polymer substrate without performing an etching treatment. Therefore, according to the above method, it is not necessary to use an oxidizing agent such as hexavalent chromic acid having a large environmental load, and also for a polymer base material made of a resin material with few components eroded by the etching solution, A plating film can be formed by electroless plating.

特開2001−316832号公報JP 2001-316832 A

特開2007−56287号公報JP 2007-56287 A

ところで、無電解めっき処理において、有機金属錯体は金属物質に比べて触媒活性が低い。そのため、特許文献2に記載されているように高分子基材に浸透させた有機金属錯体をめっき触媒として利用するにあたっては、有機金属錯体を活性化する必要がある。具体的には、特許文献2では、有機金属錯体の還元温度以上に加熱した高圧容器内で、加圧流体と高分子繊維基材とを接触させたり、あるいは高圧容器内に還元剤を供給することにより、有機金属錯体を金属物質に還元している。このようにして還元された金属物質は高圧二酸化炭素に対する溶解性が低いため、高分子基材の内部に金属物質を固定化することができる。   By the way, in the electroless plating treatment, the organometallic complex has lower catalytic activity than the metal substance. Therefore, as described in Patent Document 2, when using an organometallic complex infiltrated into a polymer substrate as a plating catalyst, it is necessary to activate the organometallic complex. Specifically, in Patent Document 2, a pressurized fluid and a polymer fiber substrate are brought into contact with each other in a high-pressure vessel heated to a temperature higher than the reduction temperature of the organometallic complex, or a reducing agent is supplied into the high-pressure vessel. Thus, the organometallic complex is reduced to a metal substance. Since the metal material thus reduced has low solubility in high-pressure carbon dioxide, the metal material can be immobilized inside the polymer substrate.

しかしながら、上記のような高圧容器内に有機金属錯体を含有する加圧流体が含まれた状態で還元処理が行われると、高分子基材に浸透していない遊離の有機金属錯体も還元されて金属物質になる。そのため、高価な有機金属錯体を回収することができず、高コストになるという問題がある。また、加圧流体中の有機金属錯体が還元されて金属物質になると、該金属物質は高圧二酸化炭素への溶解性に劣るため、高分子基材の内部に金属物質を浸透させることが難しく、めっき反応に必要な量のめっき触媒を高分子基材の内部に確保することができない。さらに、上記の活性化工程によれば、加圧流体中の遊離の有機金属錯体が還元されて生成される金属物質が高分子基材の最表面に多量に付着する。そのため、このような最表面に金属物質が多量に付着した高分子基材に無電解めっき処理が行われた場合、アンカー効果の少ない高分子基材の最表面からめっき膜が成長し、密着性に優れためっき膜を形成できないという問題がある。   However, when the reduction treatment is performed in a state where the pressurized fluid containing the organometallic complex is contained in the high-pressure vessel as described above, the free organometallic complex that has not penetrated the polymer substrate is also reduced. Become a metallic substance. Therefore, there is a problem that an expensive organometallic complex cannot be recovered and the cost is increased. Further, when the organometallic complex in the pressurized fluid is reduced to become a metal substance, the metal substance is poor in solubility in high-pressure carbon dioxide, so it is difficult to penetrate the metal substance into the polymer substrate, An amount of the plating catalyst necessary for the plating reaction cannot be secured inside the polymer substrate. Furthermore, according to the above activation step, a large amount of a metal substance produced by reduction of the free organometallic complex in the pressurized fluid adheres to the outermost surface of the polymer substrate. Therefore, when an electroless plating process is performed on such a polymer substrate with a large amount of metal material attached to the outermost surface, the plating film grows from the outermost surface of the polymer substrate with less anchor effect, and adhesion There is a problem that an excellent plating film cannot be formed.

上記観点から、高分子基材に有機金属錯体を浸透させた後、還元処理前に高圧容器から加圧流体を排出して、高圧容器を大気開放する減圧工程を設けることが考えられる。この場合、有機金属錯体の還元処理前に加圧流体が排出されるため、排出した加圧流体から有機金属錯体を回収することができる。しかしながら、有機金属錯体は高圧二酸化炭素に対して溶解度が高い反面、高分子基材に対する親和性が低い。また、有機金属錯体は高圧二酸化炭素が存在する高圧条件下でなければ、高分子基材に浸透させておくことが難しい。そのため、高圧容器から加圧流体を排出する際に、高分子基材の内部に浸透した有機金属錯体が高分子基材から脱け出し、加圧流体とともにめっき反応に必要な量の有機金属錯体も排出されてしまう。その結果、高分子基材の内部の有機金属錯体の量が低下するという問題がある。特に、被めっき物として高分子繊維基材やシート状の樹脂成形体などの薄肉の高分子基材が用いられる場合、その厚さに起因してこれらの高分子基材に浸透させることができる有機金属錯体の量は必然的に少なくなる。また、上記のような薄肉の高分子基材を被めっき物として用いた場合、有機金属錯体を浸透させた後、高圧容器を大気開放させると、加圧流体を排出に伴って、高分子基材の内部に浸透した有機金属錯体がより脱離しやすくなる。従って、これらの薄肉の高分子基材を用いた場合、極めて低い密着力を有するめっき膜しか形成できないという問題がある。   From the above viewpoint, it is conceivable to provide a depressurization step for discharging the pressurized fluid from the high-pressure vessel and opening the high-pressure vessel to the atmosphere after the organometallic complex is infiltrated into the polymer base material and before the reduction treatment. In this case, since the pressurized fluid is discharged before the reduction treatment of the organometallic complex, the organometallic complex can be recovered from the discharged pressurized fluid. However, the organometallic complex has high solubility in high-pressure carbon dioxide, but has low affinity for the polymer substrate. In addition, it is difficult for the organometallic complex to permeate the polymer base material unless it is under high pressure conditions where high pressure carbon dioxide exists. Therefore, when discharging the pressurized fluid from the high-pressure vessel, the organometallic complex that has penetrated into the polymer substrate escapes from the polymer substrate, and together with the pressurized fluid, the amount of organometallic complex required for the plating reaction Will also be discharged. As a result, there is a problem that the amount of the organometallic complex inside the polymer substrate is lowered. In particular, when a thin polymer substrate such as a polymer fiber substrate or a sheet-like resin molded body is used as an object to be plated, it can penetrate into these polymer substrates due to its thickness. The amount of organometallic complex is necessarily reduced. In addition, when a thin polymer substrate as described above is used as an object to be plated, when the high-pressure vessel is opened to the atmosphere after infiltrating the organometallic complex, the polymer substrate is released along with the discharge of the pressurized fluid. Organometallic complexes that have penetrated into the material are more easily detached. Therefore, when these thin polymer base materials are used, there is a problem that only a plating film having extremely low adhesion can be formed.

本発明は上記課題を解決するためになされたものであり、本発明の目的は、有機金属錯体を高圧二酸化炭素に溶解させた加圧流体を用いて表面改質された高分子基材に無電解めっき処理を行う場合に、加圧流体中に含まれるめっき反応に不要な有機金属錯体を回収することができるとともに、密着性に優れためっき膜を形成可能なめっき前処理方法を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is not found in a polymer substrate surface-modified using a pressurized fluid in which an organometallic complex is dissolved in high-pressure carbon dioxide. To provide a plating pretreatment method capable of recovering an organometallic complex unnecessary for a plating reaction contained in a pressurized fluid and forming a plating film having excellent adhesion when performing an electrolytic plating process. It is in.

本発明は、高圧容器内で、高分子基材と、有機金属錯体及び高圧二酸化炭素を含有する加圧流体とを、前記有機金属錯体の還元温度未満で接触させて、前記有機金属錯体を前記高分子基材に浸透させ、
前記高分子基材と前記加圧流体とを接触させた高圧容器に、前記有機金属錯体の還元温度未満で、有機金属錯体を含有しない高圧二酸化炭素を流動させて、前記高圧容器内の前記加圧流体を希釈し、
前記高圧容器内に高圧二酸化炭素が含まれた状態で、前記高分子基材に浸透させた有機金属錯体を還元する、高分子基材のめっき前処理方法である。
In the present invention, in a high-pressure vessel, a polymer substrate and a pressurized fluid containing an organometallic complex and high-pressure carbon dioxide are contacted at a temperature lower than the reduction temperature of the organometallic complex, and the organometallic complex is Infiltrate the polymer substrate,
A high-pressure carbon dioxide containing no organometallic complex is flowed to a high-pressure vessel in which the polymer base material and the pressurized fluid are in contact with each other at a temperature lower than the reduction temperature of the organometallic complex, and the added pressure in the high-pressure vessel is increased. Dilute the pressurized fluid,
It is a pretreatment method for plating a polymer base material, in which the organometallic complex infiltrated into the polymer base material is reduced in a state where high pressure carbon dioxide is contained in the high pressure container.

上記前処理方法によれば、高圧容器内で、高分子基材と有機金属錯体を含有する加圧流体とを、有機金属錯体の還元温度未満で接触させることにより、高分子基材に有機金属錯体を浸透させることができる。そして、該加圧流体が供給された高圧容器内に、有機金属錯体の還元温度未満で、有機金属錯体を含有しない高圧二酸化炭素を流動させることにより、高圧容器内の加圧流体が希釈されるから、排出された加圧流体から高分子基材に浸透していない未還元状態の有機金属錯体を回収することができる。また、上記加圧流体の希釈にあたって、高圧の二酸化炭素が使用されているから、高圧容器を大気開放する場合に比べて、加圧流体の排出に伴う高分子基材に浸透した有機金属錯体の脱離を抑えることができる。さらに、有機金属錯体を含有しない高圧二酸化炭素を高圧容器に流動させることにより、高分子基材の最表面に付着した有機金属錯体の量を低減することができる。そして、上記希釈後に、高圧容器を大気開放することなく、高圧容器内に高圧二酸化炭素が含まれた状態で、高分子基材に浸透させた有機金属錯体が還元されるから、還元時における高分子基材の内部に浸透させた有機金属錯体の脱離も少ない。これにより、高分子基材の内部に高濃度でめっき触媒となる金属物質を固定化することができる。従って、この前処理を行った高分子基材を無電解めっき処理すれば、最表面からのめっき膜の成長が抑えられ、高分子基材の内部から成長した高い密着力を有するめっき膜を形成することができる。   According to the pretreatment method described above, the polymer base material and the pressurized fluid containing the organometallic complex are brought into contact with the polymer base material at a temperature lower than the reduction temperature of the organometallic complex in the high-pressure vessel. The complex can penetrate. The pressurized fluid in the high-pressure vessel is diluted by flowing high-pressure carbon dioxide that does not contain the organometallic complex at a temperature lower than the reduction temperature of the organometallic complex in the high-pressure vessel to which the pressurized fluid is supplied. Thus, the unreduced organometallic complex that has not penetrated into the polymer substrate can be recovered from the discharged pressurized fluid. In addition, since the high-pressure carbon dioxide is used for diluting the pressurized fluid, the organometallic complex that has penetrated into the polymer substrate accompanying the discharge of the pressurized fluid is compared with the case where the high-pressure vessel is opened to the atmosphere. Desorption can be suppressed. Furthermore, the amount of the organometallic complex adhering to the outermost surface of the polymer substrate can be reduced by flowing high-pressure carbon dioxide not containing an organometallic complex into the high-pressure vessel. After the dilution, the organometallic complex that has penetrated the polymer base material is reduced in a state in which the high pressure carbon dioxide is contained in the high pressure container without opening the high pressure container to the atmosphere. There is little desorption of the organometallic complex that has penetrated into the molecular substrate. Thereby, the metal substance which becomes a plating catalyst with high concentration inside the polymer substrate can be fixed. Therefore, if the pre-treated polymer substrate is subjected to electroless plating, the growth of the plating film from the outermost surface is suppressed, and a plating film having high adhesion grown from the inside of the polymer substrate is formed. can do.

上記前処理方法において、前記高分子基材としては、高分子繊維基材またはシート状の樹脂成形体を用いることができる。これらの高分子基材は薄肉であるため、有機金属錯体を高分子基材に多量に浸透させることができないが、本発明によれば、このような高分子基材に対しても密着性に優れためっき膜を形成することができる。   In the pretreatment method, as the polymer substrate, a polymer fiber substrate or a sheet-like resin molded body can be used. Since these polymer substrates are thin, the organometallic complex cannot penetrate a large amount into the polymer substrate. However, according to the present invention, the adhesion to such a polymer substrate is improved. An excellent plating film can be formed.

上記前処理方法において、前記高分子基材と加圧流体との接触前に、前記高分子基材と還元剤とを予め接触させてもよい。上記前処理方法によれば、有機金属錯体が高分子基材に浸透した際に、高分子基材の内部に予め付与した還元剤により有機金属錯体が還元されるから、還元された金属物質を高分子基材の内部に固定化することができる。   In the pretreatment method, the polymer substrate and the reducing agent may be contacted in advance before the polymer substrate and the pressurized fluid are contacted. According to the pretreatment method, when the organometallic complex penetrates into the polymer substrate, the organometallic complex is reduced by the reducing agent previously applied to the interior of the polymer substrate. It can be immobilized inside the polymer substrate.

以上のように、本発明のめっき前処理方法によれば、有機金属錯体を高圧二酸化炭素に溶解させた加圧流体を用いて表面改質された高分子基材に無電解めっき処理を行う場合に、密着性に優れためっき膜を、低コストで形成することができる。   As described above, according to the plating pretreatment method of the present invention, when a surface-modified polymer base material is subjected to electroless plating using a pressurized fluid in which an organometallic complex is dissolved in high-pressure carbon dioxide. Moreover, a plating film having excellent adhesion can be formed at low cost.

図1は、本発明の実施例で用いられる製造装置を示す概略模式図である。FIG. 1 is a schematic diagram showing a manufacturing apparatus used in an embodiment of the present invention. 図2は、本発明の実施例で用いられる巻回体の一例を示す概略模式図である。FIG. 2 is a schematic diagram showing an example of a wound body used in an embodiment of the present invention. 図3は、本発明の実施例で用いられる巻回体の他の一例を示す概略模式図である。FIG. 3 is a schematic diagram showing another example of the wound body used in the embodiment of the present invention. 図4は、本発明の実施例3で形成しためっき膜の断面の走査型電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph of the cross section of the plating film formed in Example 3 of the present invention. 図5は、図4の拡大写真である。FIG. 5 is an enlarged photograph of FIG. 図6は、比較例2で形成しためっき膜の断面の走査型電子顕微鏡写真である。FIG. 6 is a scanning electron micrograph of the cross section of the plating film formed in Comparative Example 2. 図7は、図6の拡大写真である。FIG. 7 is an enlarged photograph of FIG.

以下、本実施の形態の高分子基材のめっき前処理方法について具体的に説明する。   Hereinafter, the pretreatment method for plating the polymer substrate according to the present embodiment will be specifically described.

本実施の形態の高分子基材のめっき前処理方法は、高分子基材を配置した高圧容器内に、有機金属錯体及び高圧二酸化炭素を含有する加圧流体を供給し、高圧容器内で、高分子基材と加圧流体とを有機金属錯体の還元温度未満で接触させて、有機金属錯体を高分子基材に浸透させる浸透工程を有する。めっき触媒となる金属物質は高圧二酸化炭素に対する溶解性が低いが、有機金属錯体は高圧二酸化炭素に対して高い溶解性を有するため、有機金属錯体を高圧二酸化炭素に溶解させた加圧流体を用いることにより、環境負荷の大きな六価クロム酸などの酸化剤を含有するエッチング液を用いたエッチング処理を行うことなく、有機金属錯体を高分子基材に効率的に浸透させることができる。また、高圧二酸化炭素を用いることにより、有機金属錯体を高分子基材の内部に浸透させることができるため、エッチング成分がない樹脂材料からなる高分子基材にも無電解めっき処理によりめっき膜を形成することができる。さらに、高分子基材と加圧流体との接触は、有機金属錯体の還元温度未満で行われるため、有機金属錯体が金属物質に還元されていない未還元の状態で、有機金属錯体を高分子基材に浸透させることができる。これにより、後の有機金属錯体を含有しない高圧二酸化炭素を高圧容器内に有機金属錯体の還元温度未満で流動させることにより、めっき反応に不要な有機金属錯体を回収することができる。   In the pretreatment method for plating a polymer substrate according to the present embodiment, a pressurized fluid containing an organometallic complex and high-pressure carbon dioxide is supplied into a high-pressure vessel in which the polymer substrate is disposed. The polymer substrate and the pressurized fluid are brought into contact with each other at a temperature lower than the reduction temperature of the organometallic complex, and a permeation step is performed to permeate the organometallic complex into the polymer substrate. Although the metal material used as the plating catalyst has low solubility in high-pressure carbon dioxide, the organometallic complex has high solubility in high-pressure carbon dioxide, so use a pressurized fluid in which the organometallic complex is dissolved in high-pressure carbon dioxide. Thus, the organometallic complex can be efficiently infiltrated into the polymer substrate without performing an etching process using an etching solution containing an oxidizing agent such as hexavalent chromic acid having a large environmental load. In addition, by using high-pressure carbon dioxide, the organometallic complex can be infiltrated into the inside of the polymer substrate, so that a polymer film made of a resin material having no etching component can be plated with an electroless plating process. Can be formed. Furthermore, since the contact between the polymer substrate and the pressurized fluid is performed below the reduction temperature of the organometallic complex, the organometallic complex is polymerized in an unreduced state in which the organometallic complex is not reduced to a metal substance. It can penetrate into the substrate. Thereby, the organometallic complex unnecessary for the plating reaction can be recovered by allowing high-pressure carbon dioxide that does not contain the organometallic complex later to flow in the high-pressure vessel below the reduction temperature of the organometallic complex.

有機金属錯体としては、浸透工程において高圧二酸化炭素に溶解性を有し、還元工程においてめっき触媒となる金属物質に還元されるものであれば特に制限されない。具体的には、パラジウム、白金、ニッケル、銅、銀などの金属を含む有機金属錯体が挙げられる。このような有機金属錯体としては、例えば、ビス(シクロペンタジエニル)ニッケル、ビス(アセチルアセトナト)パラジウム(II)、ジメチル(シクロオクタジエニル)プラチナ(II)、ヘキサフルオロアセチルアセトナトパラジウム(II)、ヘキサフルオロアセチルアセトナトヒドレート銅(II)、ヘキサフルオロアセチルアセトナトプラチナ(II)、ヘキサフルオロアセチルアセトナト(トリメチルホスフィン)銀(I)、ジメチル(ヘプタフルオロオクタネジオネート)銀(AgFOD)などが挙げられる。これらは単独でも複数混合して用いてもよい。これらの中でも、フッ素を配位子として有する有機金属錯体は高圧二酸化炭素に優れた溶解性を有しており、フッ素を含有しない有機金属錯体に比べて、高圧二酸化炭素への溶解度が二桁以上高い。従って、このようなフッ素を配位子として有する有機金属錯体を使用することにより、数分間〜数十分間で高圧容器内の有機金属錯体の濃度を高くすることができる。また、このような溶解性に優れる有機金属錯体を使用することにより、超臨界状態の高圧二酸化炭素を用いなくとも、有機金属錯体が溶解した加圧流体を調製することができる。これにより、浸透工程における処理時間を短くできるとともに、製造装置における負担を軽減することができる。   The organometallic complex is not particularly limited as long as it is soluble in high-pressure carbon dioxide in the permeation step and can be reduced to a metal substance that becomes a plating catalyst in the reduction step. Specifically, organometallic complexes containing metals such as palladium, platinum, nickel, copper, and silver can be given. Examples of such organometallic complexes include bis (cyclopentadienyl) nickel, bis (acetylacetonato) palladium (II), dimethyl (cyclooctadienyl) platinum (II), hexafluoroacetylacetonatopalladium ( II), hexafluoroacetylacetonatohydrate copper (II), hexafluoroacetylacetonatoplatinum (II), hexafluoroacetylacetonato (trimethylphosphine) silver (I), dimethyl (heptafluorooctaneconate) silver (AgFOD) ) And the like. These may be used alone or in combination. Among these, organometallic complexes having fluorine as a ligand have excellent solubility in high-pressure carbon dioxide, and the solubility in high-pressure carbon dioxide is more than two orders of magnitude compared to organometallic complexes that do not contain fluorine. high. Therefore, by using such an organometallic complex having fluorine as a ligand, the concentration of the organometallic complex in the high-pressure vessel can be increased for several minutes to several tens of minutes. In addition, by using such an organometallic complex having excellent solubility, a pressurized fluid in which the organometallic complex is dissolved can be prepared without using high-pressure carbon dioxide in a supercritical state. Thereby, while being able to shorten the processing time in an infiltration process, the burden in a manufacturing apparatus can be reduced.

高圧二酸化炭素としては、液体状態、ガス状態、または超臨界状態の二酸化炭素を用いることができる。このような高圧の二酸化炭素を使用することにより、高圧条件下で高分子基材に有機金属錯体を浸透させることができる。本実施の形態において、高圧二酸化炭素としては、超臨界状態の二酸化炭素を用いてもよいが、既述したように、高圧二酸化炭素に優れた溶解性を有する有機金属錯体が触媒成分として使用されるため、超臨界状態にない高圧二酸化炭素を用いることができる。従って、高圧二酸化炭素は、臨界点(温度が31℃以上、圧力が7.38MPa以上の超臨界状態)以上に加圧された二酸化炭素を用いてもよいし、臨界点より低圧力で加圧された二酸化炭素を用いてもよい。より具体的には、高圧二酸化炭素の圧力は、5〜30MPaが好ましい。圧力が5MPa未満の場合、高圧二酸化炭素の密度が低下する傾向がある。一方、圧力が30MPaより高い場合、高耐圧の製造装置が必要となり、コスト高となる。また、高圧二酸化炭素の温度は、加圧流体中における有機金属錯体の還元を防止するため、有機金属錯体の還元温度未満であることが好ましい。さらに、高圧二酸化炭素の密度は、0.10〜0.99g/cmが好ましい。 As high-pressure carbon dioxide, carbon dioxide in a liquid state, a gas state, or a supercritical state can be used. By using such high-pressure carbon dioxide, the organometallic complex can be infiltrated into the polymer substrate under high-pressure conditions. In the present embodiment, carbon dioxide in a supercritical state may be used as high-pressure carbon dioxide, but as described above, an organometallic complex having excellent solubility in high-pressure carbon dioxide is used as a catalyst component. Therefore, high-pressure carbon dioxide that is not in a supercritical state can be used. Therefore, the high-pressure carbon dioxide may be carbon dioxide pressurized to a critical point (supercritical state where the temperature is 31 ° C. or higher and the pressure is 7.38 MPa or higher), or pressurized at a pressure lower than the critical point. Carbon dioxide may be used. More specifically, the pressure of the high-pressure carbon dioxide is preferably 5 to 30 MPa. When the pressure is less than 5 MPa, the density of high-pressure carbon dioxide tends to decrease. On the other hand, when the pressure is higher than 30 MPa, a high pressure resistant manufacturing apparatus is required, resulting in an increase in cost. The temperature of the high-pressure carbon dioxide is preferably lower than the reduction temperature of the organometallic complex in order to prevent the organometallic complex from being reduced in the pressurized fluid. Furthermore, the density of the high-pressure carbon dioxide is preferably 0.10 to 0.99 g / cm 3 .

有機金属錯体を高圧二酸化炭素に溶解させた加圧流体の調製にあたっては、従来公知の方法を使用することができる。例えば、ポンプなどの加圧手段により液体二酸化炭素を加圧し、加圧した高圧二酸化炭素を有機金属錯体が投入されている溶解槽に供給し、該有機金属錯体と高圧二酸化炭素とを有機金属錯体の還元温度未満で混合することによって加圧流体を調製することができる。加圧流体中の有機金属錯体の濃度は、特に限定されるものではないが、飽和濃度未満が好ましく、30〜1,000mg/Lがより好ましい。有機金属錯体の濃度が余りに高いと、高圧容器内の圧力変化により、加圧流体から有機金属錯体が析出しやすい。この析出した有機金属錯体は加圧流体に溶解していないため、高分子基材に浸透せず、不要な有機金属錯体となる。また、高分子基材の最表面に付着する有機金属錯体の量が増加して、めっき膜が高分子基材の最表面から成長し、密着性が低下しやすい。   In preparing a pressurized fluid in which an organometallic complex is dissolved in high-pressure carbon dioxide, a conventionally known method can be used. For example, liquid carbon dioxide is pressurized by a pressurizing means such as a pump, the pressurized high-pressure carbon dioxide is supplied to a dissolution tank in which an organometallic complex is charged, and the organometallic complex and the high-pressure carbon dioxide are combined. Pressurized fluids can be prepared by mixing below the reduction temperature. The concentration of the organometallic complex in the pressurized fluid is not particularly limited, but is preferably less than a saturated concentration, and more preferably 30 to 1,000 mg / L. If the concentration of the organometallic complex is too high, the organometallic complex tends to precipitate from the pressurized fluid due to a pressure change in the high-pressure vessel. Since the deposited organometallic complex is not dissolved in the pressurized fluid, it does not penetrate into the polymer base material and becomes an unnecessary organometallic complex. In addition, the amount of the organometallic complex adhering to the outermost surface of the polymer substrate increases, and the plating film grows from the outermost surface of the polymer substrate, so that the adhesion tends to decrease.

高分子基材を構成する樹脂材料は特に制限されず、任意の樹脂材料を使用することができる。例えば、高分子基材として樹脂成形体を用いる場合、樹脂成形体を構成する樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂などを用いることができる。これらの中でも、熱可塑性樹脂が好ましい。熱可塑性樹脂の種類は任意であり、非晶性、結晶性いずれも使用できる。例えば、ポリエステル系樹脂;ナイロン系樹脂;ポリプロピレン系樹脂;ポリアミド系樹脂;ポリメチルメタクリレート系樹脂;ポリカーボネート系樹脂;アモルファスポリオレフィン系樹脂;ポリエーテルイミド系樹脂;ポリエチレンテレフタレート系樹脂;液晶ポリマー;ABS系樹脂;ポリアミドイミド系樹脂;ポリフタルアミド系樹脂;ポリフェニレンサルファイド系樹脂;ポリ乳酸等の生分解性プラスチックなどを用いることができる。また、これらの樹脂の複合材料を用いてもよい。さらに、これらの樹脂に、ガラス繊維、カーボン繊維、ナノカーボン、ミネラルなどの各種無機フィラー等を混練した樹脂材料を用いることもできる。これらの中でも、加圧流体の浸透性に優れるナイロン系樹脂が好ましい。また、例えば、高分子基材として高分子繊維基材を用いる場合、高分子繊維基材を構成する繊維材料としては、植物繊維や動物繊維などの天然繊維;レーヨンやキュプラなどの再生繊維;アセテートなどの半合成繊維;合成繊維などが挙げられる。合成繊維としては、ナイロン系繊維;アラミド系繊維;ポリアクリル系繊維;ポリエステル系繊維;ポリウレタン系繊維;ポリエチレンやポリプロピレンなどのポリオレフィン系繊維;ポリ塩化ビニル系繊維;ポリ塩化ビニリデン系繊維;ポリビニルアルコール系繊維などが挙げられる。これらは、単独でまたは複数併用してもよい。これらの中でも、加圧流体及び無電解めっき液の浸透性に優れるナイロン系繊維、及びアラミド系繊維からなる群から選ばれる少なくとも1種が好ましい。このようなナイロン系繊維としては、例えば、ナイロン6、ナイロン46、ナイロン66、ナイロン11、ナイロン12、ナイロンMXD6、ナイロン6T、ナイロン9Tなどが挙げられる。アラミド系繊維としては、メタ系アラミド繊維、パラ系アラミド繊維いずれも制限なく使用することができる。メタ系アラミド繊維としては、例えば、ポリメタフェニレンイソフタルアミド繊維(例えば、デュポン社製,ノーメックス)などが挙げられる。また、パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維(例えば、東レ・デュポン社製,ケブラー)、コポリパラフェニレン−3,4’−ジフェニルエーテルテレフタルアミド繊維(例えば、帝人株式会社製,テクノーラ)などが挙げられる。   The resin material constituting the polymer base material is not particularly limited, and any resin material can be used. For example, when a resin molded body is used as the polymer substrate, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used as the resin material constituting the resin molded body. Among these, a thermoplastic resin is preferable. The type of the thermoplastic resin is arbitrary, and both amorphous and crystalline can be used. For example, polyester resin; nylon resin; polypropylene resin; polyamide resin; polymethyl methacrylate resin; polycarbonate resin; amorphous polyolefin resin; polyetherimide resin; polyethylene terephthalate resin; A polyamidoimide resin; a polyphthalamide resin; a polyphenylene sulfide resin; a biodegradable plastic such as polylactic acid can be used. Further, a composite material of these resins may be used. Furthermore, resin materials obtained by kneading these resins with various inorganic fillers such as glass fibers, carbon fibers, nanocarbons, and minerals can also be used. Among these, nylon resins that are excellent in permeability of pressurized fluid are preferable. For example, when a polymer fiber substrate is used as the polymer substrate, the fiber material constituting the polymer fiber substrate includes natural fibers such as plant fibers and animal fibers; regenerated fibers such as rayon and cupra; acetate Semi-synthetic fibers such as; synthetic fibers and the like. Synthetic fibers include nylon fibers; aramid fibers; polyacrylic fibers; polyester fibers; polyurethane fibers; polyolefin fibers such as polyethylene and polypropylene; polyvinyl chloride fibers; polyvinylidene chloride fibers; Examples include fibers. These may be used alone or in combination. Among these, at least one selected from the group consisting of nylon fibers and aramid fibers excellent in permeability of pressurized fluid and electroless plating solution is preferable. Examples of such nylon fibers include nylon 6, nylon 46, nylon 66, nylon 11, nylon 12, nylon MXD6, nylon 6T, nylon 9T, and the like. As the aramid fiber, any of a meta aramid fiber and a para aramid fiber can be used without limitation. Examples of the meta-aramid fiber include polymetaphenylene isophthalamide fiber (for example, Nomex manufactured by DuPont). Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber (for example, Kevlar manufactured by Toray DuPont), copolyparaphenylene-3,4'-diphenyl ether terephthalamide fiber (for example, manufactured by Teijin Ltd., Technora).

特に、本実施の形態の前処理方法は、高分子基材として高分子繊維基材またはシート状の樹脂成形体を用いる場合に、その効果が大きい。すなわち、これらの高分子基材は薄肉であるため、肉厚の板状の樹脂成形体と比べて、高分子基材の内部に浸透させることができる有機金属錯体の量が少ない。また、有機金属錯体を高分子基材の内部に浸透させても、浸透工程後、加圧流体を排出して高圧容器を大気開放すると、加圧流体とともに高分子基材の内部に浸透した有機金属錯体の大半が容易に排出されてしまう。その結果、めっき反応に必要な有機金属錯体の量をこれらの薄肉の高分子基材の内部に確保することができず、優れた密着性を有するめっき膜を形成することが難しい。これに対し、本実施の形態の前処理方法では、浸透工程後に高圧容器内に高圧二酸化炭素を流動させているため、加圧流体を希釈しても有機金属錯体が薄肉の高分子基材の内部に留まり、また高圧容器を大気開放する場合に比べて、薄肉の高分子基材からの有機金属錯体の脱離が抑えられる。従って、高分子繊維基材またはシート状の樹脂成形体を高分子基材として用いても、内部に有機金属錯体を高濃度で有する高分子基材を得ることができる。このため、本実施の形態の前処理方法によれば、例えば、50μm以下の繊維径を有する高分子繊維基材や200μm以下の厚さを有するシート状の樹脂成形体にも高い密着力を有するめっき膜を形成できる。   In particular, the pretreatment method of the present embodiment is highly effective when a polymer fiber substrate or a sheet-like resin molded body is used as the polymer substrate. That is, since these polymer base materials are thin, the amount of the organometallic complex that can permeate the inside of the polymer base material is smaller than that of a thick plate-shaped resin molded body. In addition, even if the organometallic complex penetrates into the inside of the polymer substrate, after the infiltration process, when the pressurized fluid is discharged and the high-pressure vessel is opened to the atmosphere, the organic material that has penetrated into the inside of the polymer substrate together with the pressurized fluid. Most of the metal complex is easily discharged. As a result, the amount of the organometallic complex necessary for the plating reaction cannot be secured inside these thin polymer substrates, and it is difficult to form a plating film having excellent adhesion. On the other hand, in the pretreatment method of the present embodiment, high-pressure carbon dioxide is flowed into the high-pressure vessel after the infiltration step, so that even if the pressurized fluid is diluted, the organometallic complex is a thin-walled polymer substrate. The detachment of the organometallic complex from the thin polymer base material can be suppressed as compared with the case where it remains inside and the high-pressure vessel is opened to the atmosphere. Therefore, even when a polymer fiber substrate or a sheet-like resin molded product is used as a polymer substrate, a polymer substrate having a high concentration of an organometallic complex therein can be obtained. For this reason, according to the pretreatment method of the present embodiment, for example, the polymer fiber base material having a fiber diameter of 50 μm or less and the sheet-like resin molded body having a thickness of 200 μm or less have high adhesion. A plating film can be formed.

本実施の形態において、高分子基材は、浸透工程前に、還元剤が付与されていてもよい。浸透工程前に高分子基材と還元剤を含有する還元剤含有水溶液とを接触させて還元剤を付与する還元剤付与工程を設けることにより、浸透工程において高分子基材に浸透してくる有機金属錯体が還元剤含有水溶液と接触し、高分子基材の内部で有機金属錯体の一部が高圧二酸化炭素への溶解性に劣る金属物質に還元される。そのため、浸透工程や後の希釈工程において高分子基材に高圧二酸化炭素が浸透してきても、高分子基材からの有機金属錯体の脱離を低減することができる。そして、高分子基材に浸透していない加圧流体中の遊離の有機金属錯体は還元剤と接触しないため、金属物質に還元されることもない。このため、希釈工程において、高圧容器内の加圧流体を希釈することにより、不要な有機金属錯体を回収することができるとともに、無電解めっき工程において、効率的にめっき反応を生じさせることができる。   In the present embodiment, the polymer substrate may be provided with a reducing agent before the infiltration step. Organic that permeates into the polymer substrate in the infiltration step by providing a reducing agent application step in which the reducing agent is added by bringing the polymer substrate into contact with the reducing agent-containing aqueous solution containing the reducing agent before the infiltration step. The metal complex comes into contact with the reducing agent-containing aqueous solution, and a part of the organometallic complex is reduced to a metal substance having poor solubility in high-pressure carbon dioxide inside the polymer substrate. Therefore, even if high-pressure carbon dioxide has permeated into the polymer base material in the permeation step or the subsequent dilution step, the detachment of the organometallic complex from the polymer base material can be reduced. And since the free organometallic complex in the pressurized fluid which has not penetrated the polymer base material does not come into contact with the reducing agent, it is not reduced to a metallic substance. Therefore, by diluting the pressurized fluid in the high-pressure vessel in the dilution step, unnecessary organometallic complexes can be recovered, and a plating reaction can be efficiently generated in the electroless plating step. .

上記還元剤付与工程は、高分子基材を還元剤を含有する還元剤含有水溶液に浸漬することにより行うことができる。このような還元剤としては、無電解めっき処理に用いられる還元剤と同様のものを用いることができる。具体的には、例えば、次亜リン酸、次亜リン酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、及びフェノール類からなる群から選択される少なくとも1種が挙げられる。還元剤付与工程は常圧下で行うことができる。また、還元剤付与工程は、常温下で行ってもよいし、高分子基材への還元剤含有水溶液の浸透を促進するために、加温下で行ってもよい。加温する場合、高分子基材を構成する樹脂材料にもよるが、温度は水の沸点である100℃未満が好ましい。還元剤含有水溶液中の還元剤の濃度は、使用する還元剤の種類や高分子基材を構成する樹脂材料の種類にもよるため、特に限定されるものではないが、通常0.1〜10vol%である。なお、還元剤付与工程においては、高分子基材と還元剤含有水溶液とを接触させた後、高分子基材を洗浄液で洗浄することが好ましい。洗浄により、高分子基材の表面に付着した還元剤が除去されるため、浸透工程において高分子基材の最表面での有機金属錯体の還元が抑えられ、無電解めっき工程における最表面からのめっき反応の進行を抑えることができる。このような洗浄液としては、具体的には、例えば、水、アルコールなどが挙げられる。   The said reducing agent provision process can be performed by immersing a polymeric base material in the reducing agent containing aqueous solution containing a reducing agent. As such a reducing agent, the same reducing agent as used in the electroless plating process can be used. Specific examples include at least one selected from the group consisting of hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, and phenols. A reducing agent provision process can be performed under a normal pressure. In addition, the reducing agent application step may be performed at normal temperature, or may be performed under heating in order to promote the penetration of the reducing agent-containing aqueous solution into the polymer substrate. When heating, although depending on the resin material constituting the polymer substrate, the temperature is preferably less than 100 ° C., which is the boiling point of water. The concentration of the reducing agent in the reducing agent-containing aqueous solution is not particularly limited because it depends on the type of reducing agent used and the type of resin material constituting the polymer substrate, but usually 0.1 to 10 vol. %. In the reducing agent application step, it is preferable to wash the polymer substrate with a cleaning liquid after bringing the polymer substrate into contact with the reducing agent-containing aqueous solution. Since the reducing agent attached to the surface of the polymer substrate is removed by washing, the reduction of the organometallic complex on the outermost surface of the polymer substrate is suppressed in the permeation process, and from the outermost surface in the electroless plating process. Progress of the plating reaction can be suppressed. Specific examples of such cleaning liquid include water and alcohol.

浸透工程において、高分子基材と、有機金属錯体を含有する加圧流体とを接触させる方法は、高分子基材に有機金属錯体を浸透させることができれば特に限定されない。例えば、高分子基材を高圧容器に配置し、有機金属錯体を高圧二酸化炭素に溶解させた加圧流体を高圧容器に供給し、高分子基材と加圧流体とを接触させることにより、有機金属錯体を高分子基材に浸透させることができる。高分子基材として高分子繊維基材やシート状の樹脂成形体を用いる場合、多数の貫通孔を有する筒型のメッシュ部材に高分子基材を巻回した巻回体を高圧容器に配置してもよい。このような筒型のメッシュ部材としては、アルミ製のメッシュ部材、SUS製のメッシュ部材を用いることができる。また、これらの高分子基材を用いる場合、無機物から形成されているセパレータを介して高分子基材を巻回した巻回体を高圧容器に配置してもよい。このような無機物から形成されているセパレータとしては、具体的には、例えば、アルミ製のメッシュシート、SUS製のメッシュシート、ガラスクロスなどが挙げられる。加圧流体はこれらのセパレータを通過できるので、拡散性の高い加圧流体がセパレータを介して高分子基材の全表面に均一に拡散して浸透する。これにより、得られる高分子基材へのダメージを低減できるとともに、高分子基材に有機金属錯体を凝集の少ない状態で浸透させることができる。   In the infiltration step, the method for bringing the polymer substrate into contact with the pressurized fluid containing the organometallic complex is not particularly limited as long as the organometallic complex can be infiltrated into the polymer substrate. For example, by placing a polymer substrate in a high-pressure vessel, supplying a pressurized fluid in which an organometallic complex is dissolved in high-pressure carbon dioxide to the high-pressure vessel, and contacting the polymer substrate with the pressurized fluid, The metal complex can penetrate into the polymer substrate. When a polymer fiber substrate or a sheet-shaped resin molded body is used as the polymer substrate, a wound body in which the polymer substrate is wound around a cylindrical mesh member having a large number of through holes is arranged in a high-pressure container. May be. As such a cylindrical mesh member, an aluminum mesh member or a SUS mesh member can be used. Moreover, when using these polymer base materials, you may arrange | position the wound body which wound the polymer base material through the separator formed from the inorganic substance in a high pressure container. Specific examples of the separator formed of such an inorganic material include an aluminum mesh sheet, a SUS mesh sheet, and a glass cloth. Since the pressurized fluid can pass through these separators, the highly diffusible pressurized fluid uniformly diffuses and permeates through the separator to the entire surface of the polymer substrate. Thereby, while being able to reduce the damage to the polymer base material obtained, an organometallic complex can be permeated in the polymer base material with little aggregation.

浸透工程において、高圧容器内の圧力は、供給される加圧流体の圧力によるが、5〜30MPaが好ましい。このような高圧条件下で高分子基材と加圧流体とを接触させることにより、効率的に有機金属錯体を高分子基材に浸透させることができる。また、浸透工程において、高分子基材と、有機金属錯体を含有する加圧流体とを接触させるときの高圧容器内の温度は上記したように有機金属錯体の還元温度未満であり、有機金属錯体の還元温度より10℃以上低いことが好ましい。なお、有機金属錯体の還元温度は、窒素雰囲気下で示差走査熱量計(DSC)を用いて有機金属錯体の分解開始温度を測定することにより求めることができる。高圧容器内の温度が有機金属錯体の還元温度以上である場合、高圧容器内に加圧流体が供給されたときに、加圧流体中の遊離の有機金属錯体が高圧二酸化炭素への溶解性に劣る金属物質に還元されるため、加圧流体中の有機金属錯体の濃度が低下する。そのため、高分子基材に浸透する有機金属錯体の量が減少する。また、遊離の有機金属錯体が還元されて金属物質となるため、有機金属錯体の回収率が低下する。さらに、加圧流体中の遊離の有機金属錯体が上記のような金属物質まで還元されると、高分子基材の最表面に還元された金属物質が多量に付着した状態の高分子基材が形成されるため、後の無電解めっき処理で、高分子基材の最表面からめっき膜が成長しやすく、それゆえ高いアンカー効果を有する高分子基材の内部からのめっき膜が形成され難くなる。このため、めっき膜の密着性が低下する。   In the infiltration step, the pressure in the high-pressure vessel depends on the pressure of the pressurized fluid supplied, but is preferably 5 to 30 MPa. By bringing the polymer substrate and the pressurized fluid into contact with each other under such a high pressure condition, the organometallic complex can be efficiently penetrated into the polymer substrate. In the infiltration step, the temperature in the high-pressure vessel when the polymer substrate and the pressurized fluid containing the organometallic complex are brought into contact is lower than the reduction temperature of the organometallic complex as described above, and the organometallic complex It is preferably 10 ° C. or more lower than the reduction temperature. The reduction temperature of the organometallic complex can be determined by measuring the decomposition start temperature of the organometallic complex using a differential scanning calorimeter (DSC) in a nitrogen atmosphere. When the temperature in the high-pressure vessel is equal to or higher than the reduction temperature of the organometallic complex, when the pressurized fluid is supplied into the high-pressure vessel, the free organometallic complex in the pressurized fluid becomes soluble in high-pressure carbon dioxide. Since it is reduced to an inferior metal substance, the concentration of the organometallic complex in the pressurized fluid is reduced. Therefore, the amount of the organometallic complex that penetrates the polymer substrate is reduced. In addition, since the free organometallic complex is reduced to a metal substance, the recovery rate of the organometallic complex is reduced. Furthermore, when the free organometallic complex in the pressurized fluid is reduced to the above metal material, the polymer substrate in a state in which a large amount of the reduced metal material adheres to the outermost surface of the polymer substrate. Therefore, the plating film easily grows from the outermost surface of the polymer base material in the subsequent electroless plating treatment, and therefore, it is difficult to form the plating film from the inside of the polymer base material having a high anchor effect. . For this reason, the adhesiveness of a plating film falls.

次に、上記のようにして有機金属錯体を浸透させた高分子基材を収容した高圧容器に、有機金属錯体を含有しない高圧二酸化炭素を流動させ、有機金属錯体の還元温度未満で、高圧容器内の加圧流体を希釈する希釈工程が行われる。   Next, the high-pressure vessel containing the polymer base material infiltrated with the organometallic complex as described above is allowed to flow high-pressure carbon dioxide not containing the organometallic complex, and the high-pressure vessel is less than the reduction temperature of the organometallic complex. A dilution process for diluting the pressurized fluid is performed.

浸透工程後の高圧容器に、有機金属錯体を含有しない高圧二酸化炭素を流動させることにより、高圧容器内の加圧流体と有機金属錯体を含有しない高圧二酸化炭素とが混合され、高圧容器内の加圧流体に含まれる有機金属錯体の濃度が希釈されながら、高分子基材に浸透していない遊離の有機金属錯体を含む加圧流体が高圧容器から排出される。そして、浸透工程及び希釈工程はいずれも、有機金属錯体の還元温度未満で行われるから、排出される加圧流体中に含まれる有機金属錯体は金属物質に還元されていない未還元状態で回収される。このため、回収された有機金属錯体は再利用可能であり、これにより製造コストを削減することができる。   By flowing high-pressure carbon dioxide that does not contain the organometallic complex into the high-pressure vessel after the infiltration process, the pressurized fluid in the high-pressure vessel and the high-pressure carbon dioxide that does not contain the organometallic complex are mixed and added to the high-pressure vessel in the high-pressure vessel. While the concentration of the organometallic complex contained in the pressurized fluid is diluted, the pressurized fluid containing the free organometallic complex that does not penetrate the polymer substrate is discharged from the high-pressure vessel. Since both the infiltration step and the dilution step are performed below the reduction temperature of the organometallic complex, the organometallic complex contained in the discharged pressurized fluid is recovered in an unreduced state that has not been reduced to a metallic substance. The For this reason, the recovered organometallic complex can be reused, thereby reducing the manufacturing cost.

また、高圧容器内に有機金属錯体を含有しない高圧二酸化炭素を流動させることにより、高圧容器内の加圧流体に含まれる有機金属錯体の濃度が希釈されるから、高分子基材の最表面に付着する有機金属錯体の量を減少させることができる。これにより、高分子基材の最表面よりも内部で有機金属錯体の濃度が高くなり、高分子基材の内部に浸透した有機金属錯体を利用して、めっき反応を起こさせることができる。すなわち、めっき膜の密着力は、めっき膜が樹脂成分に食い込むことによる物理的なアンカー効果に起因する。従って、高い密着力を得るためには、表面内部のめっき触媒を触媒核としてめっき膜を成長させる必要がある。しかしながら、高分子基材を無電解めっき液に浸漬した場合、無電解めっき液は高分子基材の表面から浸透していくため、高分子基材の最表面にめっき触媒が多量に付着していると、無電解めっき液が高分子基材の内部に十分に浸透する前にめっき反応が開始する。そのため、高分子基材の最表面のめっき膜の密度は高くなるが、高分子基材の内部で樹脂成分に食い込んだ状態のめっき膜が形成され難い。その結果、高いアンカー効果を得ることができず、まためっき反応も不均一となりやすい。このため、得られるめっき膜の密着力が低下したり、密着力のばらつきが発生しやすい。これに対して、上記のように浸透工程後に、有機金属錯体を含有しない高圧二酸化炭素を高圧容器内に流動させれば、高圧容器内の加圧流体に含まれる有機金属錯体の濃度が希釈されるため、高分子基材の最表面に存在する有機金属錯体の量を低下させることができ、最表面よりも内部に有機金属錯体を多く含有する高分子基材を得ることができる。そのため、この高分子基材を還元処理して有機金属錯体を金属物質に還元すれば、高分子基材の内部からめっき膜を成長させることができる。これにより、有機金属錯体を多量に浸透させることが困難な高分子繊維基材またはシート状の樹脂成形体に対しても、優れた密着性を有するめっき膜を形成することができる。   Moreover, since the concentration of the organometallic complex contained in the pressurized fluid in the high-pressure vessel is diluted by flowing high-pressure carbon dioxide that does not contain the organometallic complex in the high-pressure vessel, The amount of the organometallic complex attached can be reduced. Thereby, the density | concentration of an organometallic complex becomes high inside the outermost surface of a polymer base material, and it can raise | generate a plating reaction using the organometallic complex which osmose | permeated the inside of a polymer base material. That is, the adhesion of the plating film is due to a physical anchor effect caused by the plating film biting into the resin component. Therefore, in order to obtain high adhesion, it is necessary to grow a plating film using the plating catalyst inside the surface as a catalyst nucleus. However, when the polymer substrate is immersed in the electroless plating solution, the electroless plating solution penetrates from the surface of the polymer substrate, so that a large amount of plating catalyst adheres to the outermost surface of the polymer substrate. If so, the plating reaction starts before the electroless plating solution sufficiently penetrates into the polymer substrate. Therefore, although the density of the plating film on the outermost surface of the polymer base material is increased, it is difficult to form a plating film in a state where the resin component is bitten inside the polymer base material. As a result, a high anchor effect cannot be obtained, and the plating reaction tends to be uneven. For this reason, the adhesion strength of the obtained plating film is likely to be reduced, and variations in the adhesion strength are likely to occur. On the other hand, if the high-pressure carbon dioxide not containing an organometallic complex is flowed into the high-pressure vessel after the infiltration step as described above, the concentration of the organometallic complex contained in the pressurized fluid in the high-pressure vessel is diluted. Therefore, the amount of the organometallic complex existing on the outermost surface of the polymer substrate can be reduced, and a polymer substrate containing more organometallic complex inside than the outermost surface can be obtained. Therefore, if this polymer substrate is subjected to reduction treatment to reduce the organometallic complex to a metal substance, a plating film can be grown from the inside of the polymer substrate. Thereby, it is possible to form a plating film having excellent adhesion even to a polymer fiber substrate or a sheet-like resin molded body in which it is difficult to permeate a large amount of the organometallic complex.

有機金属錯体を含有しない高圧二酸化炭素を高圧容器に流動させる条件は、高圧容器内の加圧流体に含まれる有機金属錯体の濃度が希釈できれば特に限定されないが、浸透工程で高圧容器内に供給された有機金属錯体の供給量に対して、希釈工程で有機金属錯体を含有しない高圧二酸化炭素の流動によって回収される有機金属錯体の回収量との比(回収率)が25〜90質量%となるように、加圧流体を希釈することが好ましい。特に、回収率が50〜75質量%であれば、より高い密着力を有するめっき膜を均一に形成することができる。回収率が25質量%より少ないと、高圧容器内に多量の有機金属錯体が残存するため、後の還元工程において高分子基材に浸透していない遊離の有機金属錯体が金属物質に還元され、効率的に有機金属錯体を回収できないこととなる。また、高分子基材の最表面に有機金属錯体が多量に付着した状態で有機金属錯体が還元されるため、最表面からめっき反応が生じ、得られるめっき膜の密着力が低下する傾向にある。一方、回収率が95質量%より多いと、希釈工程において高分子基材の内部に浸透させた有機金属錯体が高分子基材から多量に脱離して、高分子基材の内部の有機金属錯体の量が低下する。そのため、めっき反応が十分に生ぜず、めっき膜の密着性が低下しやすい。   The conditions for flowing high-pressure carbon dioxide that does not contain an organometallic complex into the high-pressure vessel are not particularly limited as long as the concentration of the organometallic complex contained in the pressurized fluid in the high-pressure vessel can be diluted. The ratio (recovery rate) of the recovery amount of the organometallic complex recovered by the flow of high-pressure carbon dioxide not containing the organometallic complex in the dilution step to the supply amount of the organometallic complex is 25 to 90% by mass. Thus, it is preferred to dilute the pressurized fluid. In particular, when the recovery rate is 50 to 75% by mass, a plating film having higher adhesion can be formed uniformly. If the recovery rate is less than 25% by mass, a large amount of the organometallic complex remains in the high-pressure vessel, so that the free organometallic complex that has not penetrated the polymer base material in the subsequent reduction step is reduced to a metal substance, The organometallic complex cannot be efficiently recovered. In addition, since the organometallic complex is reduced in a state where a large amount of the organometallic complex adheres to the outermost surface of the polymer substrate, a plating reaction occurs from the outermost surface, and the adhesion of the obtained plating film tends to be reduced. . On the other hand, when the recovery rate is more than 95% by mass, the organometallic complex that has penetrated into the polymer substrate in the dilution step is detached in a large amount from the polymer substrate, and the organometallic complex inside the polymer substrate is removed. The amount of is reduced. For this reason, the plating reaction does not occur sufficiently, and the adhesion of the plating film tends to decrease.

希釈工程において高圧容器内を流動させる高圧二酸化炭素は、浸透工程で用いた高圧二酸化炭素と同様の圧力を有するものを使用することができる。また、希釈工程における高圧容器内の温度は、上記したように有機金属錯体の還元温度未満であり、有機金属錯体の還元温度より10℃以上低いことが好ましい。高圧容器内の温度が有機金属錯体の還元温度以上である場合、高圧容器内で高分子基材に浸透していない遊離の有機金属錯体が金属物質に還元されるため、浸透工程の場合と同様に、有機金属錯体の回収量が減少し、不経済となるとともに、めっき膜の密着性が低下する傾向にある。なお、希釈工程における高圧容器内の温度は、浸透工程における高圧容器内の温度を維持することが好ましい。特に、浸透工程における高圧容器内の温度よりも希釈工程における高圧容器内の温度が低下すると、高圧容器内の圧力が低下して、高分子基材の内部に浸透した有機金属錯体が脱離しやすくなる。   As the high-pressure carbon dioxide flowing in the high-pressure vessel in the dilution step, one having the same pressure as the high-pressure carbon dioxide used in the permeation step can be used. Further, the temperature in the high-pressure vessel in the dilution step is lower than the reduction temperature of the organometallic complex as described above, and is preferably lower by 10 ° C. or more than the reduction temperature of the organometallic complex. When the temperature in the high-pressure vessel is equal to or higher than the reduction temperature of the organometallic complex, the free organometallic complex that has not penetrated the polymer substrate in the high-pressure vessel is reduced to a metal substance, so that it is the same as in the infiltration process. In addition, the recovered amount of the organometallic complex is reduced, which is uneconomical and the adhesion of the plating film tends to be lowered. In addition, it is preferable that the temperature in the high-pressure vessel in the dilution step is maintained at the temperature in the high-pressure vessel in the infiltration step. In particular, when the temperature in the high-pressure vessel in the dilution step is lower than the temperature in the high-pressure vessel in the infiltration step, the pressure in the high-pressure vessel is reduced, and the organometallic complex that has penetrated into the polymer substrate is likely to be detached. Become.

次に、上記のようにして高圧容器内に有機金属錯体を含有しない高圧二酸化炭素を流動させた後、高圧容器内に高圧二酸化炭素が含まれた状態で、高分子基材に浸透させた有機金属錯体を金属物質に還元する還元工程が行われる。これにより、高分子基材の内部に浸透させた有機金属錯体が金属物質に還元され、該還元された金属物質を高分子基材の内部に固定化することができる。また、高圧容器内に高圧二酸化炭素が含まれた状態の加圧下で還元処理が行なわれるから、従来の高圧容器を大気開放する場合に比べて、高圧二酸化炭素の排出に伴う有機金属錯体の高分子基材からの脱離を抑えることができる。   Next, after the high-pressure carbon dioxide that does not contain the organometallic complex is flowed in the high-pressure vessel as described above, the organic material that has been permeated into the polymer substrate in a state where the high-pressure carbon dioxide is contained in the high-pressure vessel. A reduction process for reducing the metal complex to a metal substance is performed. As a result, the organometallic complex that has permeated the inside of the polymer substrate is reduced to a metal material, and the reduced metal material can be immobilized inside the polymer substrate. In addition, since the reduction treatment is performed under pressure in a state where high-pressure carbon dioxide is contained in the high-pressure vessel, the organometallic complex accompanying the discharge of high-pressure carbon dioxide is higher than when a conventional high-pressure vessel is opened to the atmosphere. Desorption from the molecular substrate can be suppressed.

還元工程は、高圧容器を有機金属錯体の還元温度以上に加熱することにより行ってもよいし、高圧容器に還元剤を供給することにより行ってもよい。また、これらの還元処理を併用してもよい。熱還元処理を行う場合、高圧容器内の温度は、有機金属錯体の還元温度以上であれば限定されないが、還元を促進するために、有機金属錯体の還元温度よりも10℃以上高いことが好ましい。なお、熱還元処理を行う場合、高分子基材の樹脂材料へのダメージを抑えるために、高圧容器内の温度は樹脂材料の分解開始温度未満が好ましい。また、還元剤による還元処理を行う場合、還元剤としては、上述した還元剤付与工程で用いられる還元剤と同様のものを用いることができる。これらの中でも、ニッケル−リンめっき膜を形成する場合、還元剤は、次亜リン酸、及び次亜リン酸ナトリウムからなる群から選ばれる少なくとも1種が好ましい。還元剤による還元処理を行う場合、還元剤を溶解させた高圧二酸化炭素を高圧容器内に供給する必要がある。しかしながら、還元剤は水が周囲に存在しなければ有機金属錯体の還元作用が得られないのに対し、水の高圧二酸化炭素に対する溶解性は低い。従って、還元剤を含有する水溶液を高圧二酸化炭素に溶解させることが困難となる。このため、還元剤により還元処理を行う場合、還元剤、水、及びアルコールを高圧二酸化炭素に溶解させた還元剤含有流体を高圧容器に供給することが好ましい。アルコールは水との相溶性が高く、また高圧二酸化炭素にも優れた溶解性を有し、さらに高分子基材への浸透性にも優れるため、還元剤を高分子基材に円滑に浸透させることができ、高分子基材の内部で有機金属錯体を金属物質に効率的に還元することができる。アルコールの種類は任意であるが、高分子基材への浸透性を考慮すると、表面張力が低いアルコールが望ましい。具体的には、20℃において、水の表面張力(73dyn/cm)よりも低い表面張力を有するアルコールが好ましく、40dyn/cm以下の表面張力を有するアルコールがより好ましい。また、アルコールの分子量が大きいと高分子基材に浸透し難くなるため、150以下の分子量を有するアルコールが好ましく、120以下の分子量を有するアルコールがより好ましい。これらの条件を満たすアルコールとしては、具体的には、例えば、エタノール(分子量:46.1,表面張力:22.3dyn/cm)、1−プロパノール(分子量:60.1,表面張力:23.8dyn/cm)、2−プロパノール(分子量:60.1,表面張力:21.7dyn/cm)、2−メトキシエタノール(分子量:76.1,表面張力:31.8dyn/cm)、2−エトキシエタノール(分子量:90.1,表面張力:28.2dyn/cm)、1−メトキシ−2−プロパノール(分子量:90.1,表面張力:27.1dyn/cm)、1−エトキシ−2−プロパノール(分子量:104.2,表面張力:25.9dyn/cm)、1,3−ブタンジオール(分子量:90.1,表面張力:37.8dyn/cm)、tert−ブチルアルコール(分子量:74.1,表面張力:19.5dyn/cm)、2−(2−エトキシエトキシ)エタノール(分子量:134.2,表面張力:31.3dyn/cm)、1−プロポキシ−2−プロパノール(分子量:118.2,表面張力:25.9dyn/cm)、2(2−メトキシプロポキシ)プロパノール(分子量:148.2,表面張力:28.8dyn/cm)などが挙げられる。これらは単独でも複数混合して用いてもよい。アルコールの含有量は任意であるが、水とアルコールとの合計量に対して、35〜65vol%が望ましい。   The reduction step may be performed by heating the high-pressure vessel to a temperature equal to or higher than the reduction temperature of the organometallic complex, or may be performed by supplying a reducing agent to the high-pressure vessel. These reduction treatments may be used in combination. When performing the thermal reduction treatment, the temperature in the high-pressure vessel is not limited as long as it is equal to or higher than the reduction temperature of the organometallic complex, but is preferably 10 ° C. or higher than the reduction temperature of the organometallic complex in order to promote the reduction. . In addition, when performing a thermal reduction process, in order to suppress the damage to the resin material of a polymer base material, it is preferable that the temperature in a high pressure container is less than the decomposition start temperature of a resin material. Moreover, when performing the reduction process by a reducing agent, as a reducing agent, the thing similar to the reducing agent used at the reducing agent provision process mentioned above can be used. Among these, when forming a nickel-phosphorous plating film, the reducing agent is preferably at least one selected from the group consisting of hypophosphorous acid and sodium hypophosphite. When performing a reduction treatment with a reducing agent, it is necessary to supply high-pressure carbon dioxide in which the reducing agent is dissolved into the high-pressure vessel. However, the reducing agent does not provide the reducing action of the organometallic complex unless water is present in the surroundings, whereas the solubility of water in high-pressure carbon dioxide is low. Therefore, it becomes difficult to dissolve the aqueous solution containing the reducing agent in high-pressure carbon dioxide. For this reason, when performing a reduction process with a reducing agent, it is preferable to supply the reducing agent containing fluid which dissolved the reducing agent, water, and alcohol in the high pressure carbon dioxide to a high pressure container. Alcohol is highly compatible with water, has excellent solubility in high-pressure carbon dioxide, and also has excellent penetrability into the polymer substrate, so that the reducing agent can smoothly penetrate into the polymer substrate. The organometallic complex can be efficiently reduced to a metal substance inside the polymer substrate. The type of alcohol is arbitrary, but considering the permeability to the polymer substrate, an alcohol having a low surface tension is desirable. Specifically, an alcohol having a surface tension lower than the surface tension of water (73 dyn / cm) at 20 ° C. is preferable, and an alcohol having a surface tension of 40 dyn / cm or less is more preferable. Moreover, since it will become difficult to penetrate | invade a polymer base material when the molecular weight of alcohol is large, the alcohol which has a molecular weight of 150 or less is preferable, and the alcohol which has a molecular weight of 120 or less is more preferable. Specific examples of alcohols that satisfy these conditions include ethanol (molecular weight: 46.1, surface tension: 22.3 dyn / cm), 1-propanol (molecular weight: 60.1, surface tension: 23.8 dyn). / Propanol), 2-propanol (molecular weight: 60.1, surface tension: 21.7 dyn / cm), 2-methoxyethanol (molecular weight: 76.1, surface tension: 31.8 dyn / cm), 2-ethoxyethanol ( Molecular weight: 90.1, surface tension: 28.2 dyn / cm), 1-methoxy-2-propanol (molecular weight: 90.1, surface tension: 27.1 dyn / cm), 1-ethoxy-2-propanol (molecular weight: 104.2, surface tension: 25.9 dyn / cm), 1,3-butanediol (molecular weight: 90.1, surface tension: 37.8 dyn / cm), te t-butyl alcohol (molecular weight: 74.1, surface tension: 19.5 dyn / cm), 2- (2-ethoxyethoxy) ethanol (molecular weight: 134.2, surface tension: 31.3 dyn / cm), 1-propoxy -2-propanol (molecular weight: 118.2, surface tension: 25.9 dyn / cm), 2 (2-methoxypropoxy) propanol (molecular weight: 148.2, surface tension: 28.8 dyn / cm), and the like. These may be used alone or in combination. Although content of alcohol is arbitrary, 35-65 vol% is desirable with respect to the total amount of water and alcohol.

還元工程における高圧容器内の圧力は、高分子基材からの有機金属錯体の脱離を低減するため、5〜30MPaが好ましい。   The pressure in the high-pressure vessel in the reduction step is preferably 5 to 30 MPa in order to reduce the desorption of the organometallic complex from the polymer substrate.

以上の前処理方法により金属物質を高分子基材に固定化することができ、この金属物質をめっき触媒として利用することによりめっき膜を形成することができる。そして、本実施の形態の前処理方法によれば、希釈工程により高分子基材の最表面の有機金属錯体の量が低減されているため、該高分子基材を無電解めっき処理することにより、内部から成長した高いアンカー効果を有するめっき膜を形成することができる。   The metal material can be immobilized on the polymer substrate by the above pretreatment method, and a plating film can be formed by using this metal material as a plating catalyst. And according to the pretreatment method of the present embodiment, since the amount of the organometallic complex on the outermost surface of the polymer substrate is reduced by the dilution step, the polymer substrate is subjected to electroless plating treatment. A plating film having a high anchor effect grown from the inside can be formed.

無電解めっき処理を行う場合、無電解めっき液としては、従来公知のめっき液を使用することができる。具体的には、例えば、ニッケル−リンめっき液、ニッケル−ホウ素めっき液、パラジウムめっき液、銅めっき液、銀めっき液、コバルトめっき液などが挙げられる。また、無電解めっき液は、アルコールを含有することが好ましい。無電解めっき液にアルコールを含有させることで無電解めっき液の表面張力を低下させることができ、常圧下の無電解めっき処理であっても、無電解めっき液が高分子基材に円滑に浸透できる。また、アルコールはめっき膜の成長を遅らせる還元剤として作用するので、高分子基材の表面に無電解めっき液が浸透し始めた時点で、最表面におけるめっき反応を遅らせることができる。その結果、形成された無電解めっき膜は、高分子基材の内部で成長し、高い密着強度を有する。無電解めっき液に混合されるアルコールとしては、上記の還元工程で使用されるアルコールと同様のものを使用することができる。無電解めっき液中のアルコールの含有量は任意であるが、20〜60vol%が好ましい。   When performing an electroless plating treatment, a conventionally known plating solution can be used as the electroless plating solution. Specifically, for example, nickel-phosphorous plating solution, nickel-boron plating solution, palladium plating solution, copper plating solution, silver plating solution, cobalt plating solution and the like can be mentioned. The electroless plating solution preferably contains alcohol. By adding alcohol to the electroless plating solution, the surface tension of the electroless plating solution can be reduced, and the electroless plating solution penetrates smoothly into the polymer substrate even in electroless plating treatment under normal pressure. it can. In addition, since alcohol acts as a reducing agent that delays the growth of the plating film, the plating reaction on the outermost surface can be delayed when the electroless plating solution begins to permeate the surface of the polymer substrate. As a result, the formed electroless plating film grows inside the polymer substrate and has high adhesion strength. As the alcohol mixed in the electroless plating solution, the same alcohol as that used in the above reduction step can be used. The content of alcohol in the electroless plating solution is arbitrary, but is preferably 20 to 60 vol%.

本実施の形態において、無電解めっき工程は、還元工程後、高圧容器を大気開放し、高圧容器から取り出した高分子基材を、常圧下で無電解めっき液に浸漬することにより行うことができる。すなわち、本実施の形態の前処理方法によれば、高圧容器内で有機金属錯体が金属物質に還元されており、該金属物質は有機金属錯体よりも高分子基材に対して高い親和性を有するとともに、高圧二酸化炭素に対する溶解性が低い。そのため、この金属物質が固定化された高分子基材を高圧容器から取り出す際に、高圧二酸化炭素が排出されても、高分子基材からの金属物質の脱離が少ない。従って、常圧下に高分子基材を取り出しても、内部に金属物質が固定化された状態の高分子基材に無電解めっき処理を行うことができる。無電解めっき工程における処理温度は、めっき反応が生ずる温度以上であれば特に限定されない。なお、無電解めっき工程は上記したように常圧下で行えるため、高圧二酸化炭素を使用する必要がない。そのため、圧力や温度変化による無電解めっき液の濃度変化などが少ない均一なめっき浴を調製することができる。これにより、めっき反応のばらつきをさらに抑えることができ、密着力のばらつきの少ないめっき膜を形成することができる。   In the present embodiment, the electroless plating step can be performed by opening the high-pressure vessel to the atmosphere after the reduction step and immersing the polymer substrate taken out from the high-pressure vessel in an electroless plating solution under normal pressure. . That is, according to the pretreatment method of the present embodiment, the organometallic complex is reduced to a metal substance in the high-pressure vessel, and the metal substance has a higher affinity for the polymer substrate than the organometallic complex. And has low solubility in high-pressure carbon dioxide. For this reason, even when high-pressure carbon dioxide is discharged when the polymer substrate on which the metal substance is immobilized is taken out from the high-pressure vessel, the metal substance is hardly detached from the polymer substrate. Therefore, even if the polymer base material is taken out under normal pressure, the electroless plating treatment can be performed on the polymer base material in which the metal substance is fixed inside. The treatment temperature in the electroless plating process is not particularly limited as long as it is equal to or higher than the temperature at which the plating reaction occurs. In addition, since the electroless plating process can be performed under normal pressure as described above, it is not necessary to use high-pressure carbon dioxide. Therefore, it is possible to prepare a uniform plating bath with little change in the concentration of the electroless plating solution due to changes in pressure and temperature. Thereby, the dispersion | variation in a plating reaction can further be suppressed and the plating film with few dispersion | variation in adhesive force can be formed.

本実施の形態においては、無電解めっき工程は複数回行ってもよい。例えば、上記のアルコールを含有する無電解めっき液を用いて無電解めっき処理を行った後、さらに水系の無電解めっき液を用いた無電解めっき処理を行なってもよい。また、無電解めっき膜の上に、電解めっき膜を積層してもよい。   In the present embodiment, the electroless plating step may be performed a plurality of times. For example, after performing an electroless plating treatment using an electroless plating solution containing the above-described alcohol, an electroless plating treatment using an aqueous electroless plating solution may be further performed. Further, an electrolytic plating film may be laminated on the electroless plating film.

以下、本発明について実施例を挙げてさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these Examples.

[実施例1]
本実施例では、高分子基材として、アラミド繊維(帝人株式会社製,テクノーラ,単繊維直径:12μmφ)を用い、有機金属錯体として、ヘキサフルオロアセチルアセトナトパラジウム(II)を用いた。
[Example 1]
In this example, an aramid fiber (manufactured by Teijin Ltd., Technora, single fiber diameter: 12 μmφ) was used as the polymer substrate, and hexafluoroacetylacetonato palladium (II) was used as the organometallic complex.

(還元剤付与工程)
還元剤付与工程では、高分子基材を還元剤を含有する還元剤含有水溶液に浸漬する。本実施例では、アラミド繊維を80℃の次亜リン酸水溶液(次亜リン酸濃度:6質量%)に常圧下で、30分間浸漬させた。浸漬後、アラミド繊維を取り出し、アラミド繊維表面に付着した次亜リン酸を除去するため、アラミド繊維を水中で1分間超音波洗浄した。その後、さらに、表面に付着した還元剤を十分に除去するため、水で洗浄したアラミド繊維を70℃のエタノールに、常圧下で、15秒間浸漬させた。浸漬後、アラミド繊維を取り出し、乾燥エアによりアラミド繊維表面に付着したエタノールを除去し、さらに大気中で5分間乾燥させた。
(Reducing agent application process)
In the reducing agent application step, the polymer substrate is immersed in a reducing agent-containing aqueous solution containing a reducing agent. In this example, the aramid fiber was immersed in a hypophosphorous acid aqueous solution (hypophosphorous acid concentration: 6% by mass) at 80 ° C. for 30 minutes under normal pressure. After the immersion, the aramid fiber was taken out and the aramid fiber was ultrasonically washed in water for 1 minute in order to remove hypophosphorous acid adhering to the surface of the aramid fiber. Thereafter, in order to sufficiently remove the reducing agent adhering to the surface, the aramid fibers washed with water were immersed in ethanol at 70 ° C. under normal pressure for 15 seconds. After immersion, the aramid fiber was taken out, ethanol adhering to the aramid fiber surface was removed by dry air, and further dried in the air for 5 minutes.

(浸透工程)
次に、上記のようにして還元剤を付与した高分子基材に有機金属錯体を浸透させるため、高圧容器内で有機金属錯体を高圧二酸化炭素に溶解させた加圧流体と高分子基材とを有機金属錯体の還元温度未満で接触させる浸透工程が行なわれる。図1は本実施例で用いた製造装置を示す概略模式図である。図1に示すように、この製造装置は、液体二酸化炭素ボンベ1と、液体二酸化炭素を所定の圧力に加圧して高圧二酸化炭素を供給するためのシリンジポンプ2と、高分子基材が収容された高圧容器3と、高圧容器3から排出される加圧流体を回収し、有機金属錯体と高圧二酸化炭素とを分離するための分離回収機4と、分離された有機金属錯体を回収する回収槽5とを備えている。液体二酸化炭素ボンベ1とシリンジポンプ2とを接続する配管L1には、手動ニードルバルブV1が配設されており、シリンジポンプ2と高圧容器3とを接続する配管L2には、上流側から順に、圧力計P1、逆止弁S、及び手動ニードルバルブV2が配設されている。また、シリンジポンプ2と高圧容器3とを接続する配管L2には、手動ニードルバルブV2の上流側及び下流側で分岐管L3が接続されており、該分岐管L3には、上流側から順に、手動ニードルバルブV3、有機金属錯体が収容された溶解槽6、及び手動ニードルバルブV4が介設されている。さらに、高圧容器3と分離回収機4とを接続する配管L4には、上流側から順に、圧力計P2、手動ニードルバルブV5、及び背圧弁Vbが配設されている。
(Penetration process)
Next, in order to infiltrate the organometallic complex into the polymer base material provided with the reducing agent as described above, a pressurized fluid in which the organometallic complex is dissolved in high-pressure carbon dioxide in the high-pressure vessel, the polymer base material, The permeation step is performed in which the is contacted at a temperature lower than the reduction temperature of the organometallic complex. FIG. 1 is a schematic diagram showing a manufacturing apparatus used in this example. As shown in FIG. 1, this manufacturing apparatus contains a liquid carbon dioxide cylinder 1, a syringe pump 2 for supplying high-pressure carbon dioxide by pressurizing liquid carbon dioxide to a predetermined pressure, and a polymer substrate. The high-pressure vessel 3, the pressurized fluid discharged from the high-pressure vessel 3, the separation / recovery machine 4 for separating the organometallic complex and the high-pressure carbon dioxide, and the collection tank for collecting the separated organometallic complex And 5. A manual needle valve V1 is disposed in the pipe L1 that connects the liquid carbon dioxide cylinder 1 and the syringe pump 2, and the pipe L2 that connects the syringe pump 2 and the high-pressure vessel 3 is in order from the upstream side. A pressure gauge P1, a check valve S, and a manual needle valve V2 are provided. Further, a branch pipe L3 is connected to the upstream side and the downstream side of the manual needle valve V2 to the pipe L2 connecting the syringe pump 2 and the high-pressure vessel 3, and the branch pipe L3 is sequentially connected from the upstream side. A manual needle valve V3, a dissolution tank 6 containing an organometallic complex, and a manual needle valve V4 are interposed. Furthermore, a pressure gauge P2, a manual needle valve V5, and a back pressure valve Vb are arranged in this order from the upstream side in the pipe L4 that connects the high-pressure vessel 3 and the separation and recovery machine 4.

高圧二酸化炭素を溶解槽6に供給する際には、液体二酸化炭素ボンベ1の手動ニードルバルブV1を開放し、シリンジポンプ2を圧力一定モードに設定して、液体二酸化炭素ボンベ1から液体二酸化炭素を吸引する。そして、圧力計P1で検出される圧力が所定の圧力となるようにシリンジポンプ2で二酸化炭素を昇圧する。本実施例では、液体二酸化炭素ボンベ1から4〜6MPaの液体二酸化炭素を吸引し、シリンジポンプ2によって圧力計P1で検出される圧力が15MPaとなるように二酸化炭素を昇圧した。なお、浸透工程においては、高圧二酸化炭素のみが高圧容器3に供給されないよう、手動ニードルバルブV2は閉鎖されている。   When supplying high-pressure carbon dioxide to the dissolution tank 6, the manual needle valve V1 of the liquid carbon dioxide cylinder 1 is opened, the syringe pump 2 is set to a constant pressure mode, and liquid carbon dioxide is supplied from the liquid carbon dioxide cylinder 1. Suction. Then, the pressure of carbon dioxide is increased by the syringe pump 2 so that the pressure detected by the pressure gauge P1 becomes a predetermined pressure. In this example, 4 to 6 MPa of liquid carbon dioxide was sucked from the liquid carbon dioxide cylinder 1 and the pressure of the carbon dioxide was increased by the syringe pump 2 so that the pressure detected by the pressure gauge P1 was 15 MPa. In the permeation process, the manual needle valve V2 is closed so that only high-pressure carbon dioxide is not supplied to the high-pressure vessel 3.

所定圧力まで二酸化炭素が昇圧された後、手動ニードルバルブV3を開放し、所定温度に温調された溶解槽6に高圧二酸化炭素を供給する。これにより、溶解槽6中に収容された有機金属錯体が高圧二酸化炭素に溶解され、加圧下で有機金属錯体を含有する加圧流体が調製される。本実施例では、溶解槽6に100mgのヘキサフルオロアセチルアセトナトパラジウム(II)を収容し、溶解槽6を50℃に温調して、図示しない撹拌装置を用いて撹拌しながら有機金属錯体を高圧二酸化炭素に溶解させた。なお、有機金属錯体が均一に溶解した加圧流体を高圧容器3に供給するため、浸透工程中、溶解槽6中の加圧流体の撹拌を継続した。   After the pressure of carbon dioxide is increased to a predetermined pressure, the manual needle valve V3 is opened, and the high-pressure carbon dioxide is supplied to the dissolution tank 6 whose temperature is adjusted to a predetermined temperature. Thereby, the organometallic complex accommodated in the dissolution tank 6 is dissolved in high-pressure carbon dioxide, and a pressurized fluid containing the organometallic complex is prepared under pressure. In this example, 100 mg of hexafluoroacetylacetonato palladium (II) was placed in the dissolution tank 6, the temperature of the dissolution tank 6 was adjusted to 50 ° C., and the organometallic complex was stirred while stirring using a stirrer (not shown). Dissolved in high pressure carbon dioxide. In addition, in order to supply the pressurized fluid which the organometallic complex melt | dissolved uniformly to the high pressure vessel 3, stirring of the pressurized fluid in the dissolution tank 6 was continued during the infiltration process.

図1及び2に示すように、高圧容器3内には、高分子基材であるアラミド繊維21を筒型のメッシュ部材22に巻回した巻回体20が収容されている。この筒型のメッシュ部材22は筒部の側面に多数の貫通孔を有しており、筒型のメッシュ部材22の内部を透過した加圧流体も高分子基材の表面と接触するように構成されている。本実施例では、還元剤を付与したアラミド繊維を10mの長さに裁断し、これをSUS製の筒型のメッシュ部材(直径:1.5cmφ,長さ:10cm)に巻回した巻回体20を高圧容器3内に配置した。なお、高圧容器3は図示しない温調機を備えており、これにより有機金属錯体の還元温度未満で高圧容器3が温調される。本実施例では、ヘキサフルオロアセチルアセトナトパラジウム(II)の還元温度である73℃より10℃以上低い50℃に高圧容器3を温調した。   As shown in FIGS. 1 and 2, a wound body 20 in which an aramid fiber 21 as a polymer base material is wound around a cylindrical mesh member 22 is accommodated in the high-pressure vessel 3. The cylindrical mesh member 22 has a large number of through holes on the side surface of the cylindrical portion, and is configured such that the pressurized fluid that has permeated the inside of the cylindrical mesh member 22 is also in contact with the surface of the polymer base material. Has been. In this example, an aramid fiber provided with a reducing agent was cut into a length of 10 m, and this was wound around a cylindrical mesh member made of SUS (diameter: 1.5 cmφ, length: 10 cm). 20 was placed in the high-pressure vessel 3. The high-pressure vessel 3 includes a temperature controller (not shown), whereby the temperature of the high-pressure vessel 3 is adjusted below the reduction temperature of the organometallic complex. In the present example, the temperature of the high-pressure vessel 3 was adjusted to 50 ° C., which is 10 ° C. or more lower than 73 ° C., which is the reduction temperature of hexafluoroacetylacetonato palladium (II).

高圧容器3に加圧流体を供給する際には、手動ニードルバルブV4を開放する。これにより、高圧容器3に一定圧力の加圧流体が供給され、高圧容器3内で加圧流体が高分子基材と接触し、有機金属錯体が高分子基材に浸透する。本実施例では、圧力15MPaの加圧流体を高圧容器3に供給して、圧力15MPaの高圧容器3内で加圧流体と高分子基材とを30分間接触させた。   When supplying the pressurized fluid to the high-pressure vessel 3, the manual needle valve V4 is opened. As a result, a pressurized fluid having a constant pressure is supplied to the high-pressure vessel 3, the pressurized fluid comes into contact with the polymer substrate in the high-pressure vessel 3, and the organometallic complex penetrates into the polymer substrate. In this example, a pressurized fluid having a pressure of 15 MPa was supplied to the high-pressure vessel 3, and the pressurized fluid and the polymer substrate were brought into contact with each other for 30 minutes in the high-pressure vessel 3 having a pressure of 15 MPa.

(希釈工程)
次に、浸透工程後、加圧流体が含まれている高圧容器に、有機金属錯体の還元温度未満で、有機金属錯体を含有しない高圧二酸化炭素を流動させて、高圧容器内の加圧流体を希釈する希釈工程が行われる。
(Dilution process)
Next, after the infiltration step, high-pressure carbon dioxide that does not contain the organometallic complex is flowed into the high-pressure vessel containing the pressurized fluid at a temperature lower than the reduction temperature of the organometallic complex, A dilution step for diluting is performed.

高圧容器3内の加圧流体を希釈するためには、まず分岐管L3の手動ニードルバルブV3,V4を閉鎖し、高圧容器3の上流側及び下流側の配管L2,L4に配設されている手動ニードルバルブV2,V5を開放する。また、シリンジポンプ2を圧力一定モードから流速一定モードに変更し、有機金属錯体の還元温度未満の有機金属錯体を含有していない高圧二酸化炭素を、有機金属錯体の還元温度未満に温調された高圧容器3に一定時間送液する。このとき、シリンジポンプ2は流速一定モードで制御されているため、供給される高圧二酸化炭素により高圧容器3内の圧力が上昇する。そのため、圧力上昇分の加圧流体が排出されるように背圧弁Vbを所定圧力に設定する。これにより、高圧容器3内の圧力が一定に保持された状態で、高圧容器3内の有機金属錯体を含有する加圧流体が、有機金属錯体を含有しない高圧二酸化炭素によって希釈され、遊離の有機金属錯体を含む加圧流体が高圧容器3から分離回収機4に排出される。本実施例では、背圧弁Vbの圧力を15MPaに設定し、10℃の高圧二酸化炭素を流速10mL/minで、浸透工程と同様に50℃に温調した高圧容器3に10分間送液した。このとき、回収槽5に回収される有機金属錯体の回収量を計量した。   In order to dilute the pressurized fluid in the high-pressure vessel 3, first, the manual needle valves V3 and V4 of the branch pipe L3 are closed, and are arranged in the pipes L2 and L4 on the upstream side and downstream side of the high-pressure vessel 3. Open the manual needle valves V2 and V5. Moreover, the syringe pump 2 was changed from the constant pressure mode to the constant flow rate mode, and the high-pressure carbon dioxide not containing the organometallic complex below the reduction temperature of the organometallic complex was adjusted to a temperature below the reduction temperature of the organometallic complex. The liquid is sent to the high-pressure vessel 3 for a certain period of time. At this time, since the syringe pump 2 is controlled in the constant flow rate mode, the pressure in the high-pressure vessel 3 is increased by the supplied high-pressure carbon dioxide. Therefore, the back pressure valve Vb is set to a predetermined pressure so that the pressurized fluid corresponding to the pressure increase is discharged. Thereby, in a state where the pressure in the high-pressure vessel 3 is kept constant, the pressurized fluid containing the organometallic complex in the high-pressure vessel 3 is diluted with the high-pressure carbon dioxide not containing the organometallic complex, and free organic The pressurized fluid containing the metal complex is discharged from the high-pressure vessel 3 to the separation / recovery machine 4. In this example, the pressure of the back pressure valve Vb was set to 15 MPa, and high-pressure carbon dioxide at 10 ° C. was fed at a flow rate of 10 mL / min to the high-pressure vessel 3 that was temperature-controlled at 50 ° C. in the same manner as the infiltration step. At this time, the recovered amount of the organometallic complex recovered in the recovery tank 5 was weighed.

(還元工程)
次に、希釈工程後、高圧容器内に高圧二酸化炭素が含まれた加圧下で、高分子基材に浸透させた有機金属錯体を還元する還元工程が行われる。本実施例では、高圧容器3を有機金属錯体の還元温度以上に加熱する熱還元処理を行った。
(Reduction process)
Next, after the dilution step, a reduction step of reducing the organometallic complex that has permeated the polymer base material is performed under pressure in which high-pressure carbon dioxide is contained in the high-pressure vessel. In this example, a thermal reduction treatment was performed in which the high-pressure vessel 3 was heated to a temperature higher than the reduction temperature of the organometallic complex.

熱還元処理は、シリンジポンプ2を流速一定モードから圧力一定モードに再度変更し、高圧容器3を加熱することにより行うことができる。このとき、温度上昇に伴い高圧容器3内の圧力が上昇するため、圧力上昇分の高圧二酸化炭素が排出されるように背圧弁Vbを所定圧力に設定する。これにより、高圧容器3内の圧力が一定に保持される。本実施例では、温調機を用いて高圧容器3内の温度を50℃から150℃に上昇させた。また、背圧弁Vbの圧力を15MPaに設定して、高圧容器3内の圧力を15MPaに保持し、圧力上昇分の高圧二酸化炭素を排出しながら30分間熱還元処理を行った。熱還元処理後、背圧弁Vbの圧力を大気圧まで徐々に低下させ、高圧容器3を大気開放して、前処理を行った高分子基材を高圧容器3から取り出した。   The thermal reduction treatment can be performed by changing the syringe pump 2 again from the constant flow rate mode to the constant pressure mode and heating the high-pressure vessel 3. At this time, since the pressure in the high-pressure vessel 3 increases as the temperature rises, the back pressure valve Vb is set to a predetermined pressure so that high-pressure carbon dioxide corresponding to the pressure increase is discharged. Thereby, the pressure in the high-pressure vessel 3 is kept constant. In this example, the temperature inside the high-pressure vessel 3 was increased from 50 ° C. to 150 ° C. using a temperature controller. Further, the pressure of the back pressure valve Vb was set to 15 MPa, the pressure in the high-pressure vessel 3 was kept at 15 MPa, and thermal reduction treatment was performed for 30 minutes while discharging high pressure carbon dioxide corresponding to the pressure increase. After the thermal reduction treatment, the pressure of the back pressure valve Vb was gradually reduced to atmospheric pressure, the high-pressure vessel 3 was opened to the atmosphere, and the pre-treated polymer substrate was taken out from the high-pressure vessel 3.

(無電解めっき工程)
次に、上記のようにして前処理した高分子基材を無電解めっき処理する無電解めっき工程が行われる。これにより、高分子基材に無電解めっき膜を形成することができる。本実施例では、前処理した高分子基材を、常圧下でアルコールを含有する無電解めっき液に浸漬する無電解めっき処理を行った。無電解めっき液は、エタノールと、硫酸ニッケルの金属塩、還元剤、及び錯化剤を含有するニッケル−リンめっき液(奥野製薬工業株式会社製,ニコロンDK)とを混合して調製した(無電解めっき液中のアルコールの含有量:50vol%)。上記の無電解めっき液を開放容器内に投入し、これに前処理した高分子基材を浸漬して、常圧下、70〜85℃で無電解めっき処理を行って、0.5μmの膜厚を有する無電解めっき膜を形成した。
(Electroless plating process)
Next, an electroless plating process is performed in which the polymer substrate pretreated as described above is subjected to electroless plating. Thereby, an electroless plating film can be formed on the polymer substrate. In this example, an electroless plating treatment was performed in which the pretreated polymer substrate was immersed in an electroless plating solution containing alcohol under normal pressure. The electroless plating solution was prepared by mixing ethanol and a nickel-phosphorus plating solution containing a metal salt of nickel sulfate, a reducing agent, and a complexing agent (Okuno Pharmaceutical Co., Ltd., Nicolon DK). Content of alcohol in electroplating solution: 50 vol%). The above electroless plating solution is put into an open container, and the pretreated polymer base material is immersed in the electroless plating solution, and an electroless plating treatment is performed at 70 to 85 ° C. under normal pressure. An electroless plating film having the following was formed.

[実施例2]
希釈工程において、有機金属錯体を含有しない高圧二酸化炭素の送液時間を15分間に変更した以外は、実施例1と同様にして、無電解めっき膜を形成した。
[Example 2]
In the dilution step, an electroless plating film was formed in the same manner as in Example 1 except that the feeding time of high-pressure carbon dioxide not containing an organometallic complex was changed to 15 minutes.

[実施例3]
希釈工程において、有機金属錯体を含有しない高圧二酸化炭素の送液時間を30分間に変更した以外は、実施例1と同様にして、無電解めっき膜を形成した。
[Example 3]
In the dilution step, an electroless plating film was formed in the same manner as in Example 1 except that the liquid feeding time of high-pressure carbon dioxide not containing an organometallic complex was changed to 30 minutes.

[実施例4]
希釈工程において、有機金属錯体を含有しない高圧二酸化炭素の送液時間を45分間に変更した以外は、実施例1と同様にして、無電解めっき膜を形成した。
[Example 4]
In the dilution step, an electroless plating film was formed in the same manner as in Example 1 except that the feeding time of high-pressure carbon dioxide not containing an organometallic complex was changed to 45 minutes.

[実施例5]
本実施例では、高分子基材として、ナイロン6製のシート(三菱樹脂株式会社製,ダイアミロン,厚み:25μm,幅:40cm,長さ:20m)を用いた。浸透工程において、図3に示す筒型のメッシュ部材22にアルミ製のメッシュセパレータ23を介してシート21Aを巻回した巻回体20Aを用い、希釈工程において、有機金属錯体を含有しない高圧二酸化炭素の送液時間を30分間に変更した以外は、実施例1と同様にして無電解めっき膜を形成した。
[Example 5]
In this example, a sheet made of nylon 6 (manufactured by Mitsubishi Plastics, Diamilon, thickness: 25 μm, width: 40 cm, length: 20 m) was used as the polymer substrate. In the permeation step, a high-pressure carbon dioxide containing no organometallic complex is used in the dilution step using a wound body 20A in which a sheet 21A is wound around a cylindrical mesh member 22 shown in FIG. 3 via an aluminum mesh separator 23. An electroless plating film was formed in the same manner as in Example 1 except that the liquid feeding time was changed to 30 minutes.

[比較例1]
浸透工程後、希釈工程を行なわずに、直ちに高圧容器を大気開放して高分子基材を高圧容器から取り出し、これを常圧下、電気炉を用いて150℃で熱還元処理した以外は、実施例1と同様にして無電解めっき処理を行ったが、めっき反応が進行せず、高分子基材に無電解めっき膜を形成することができなかった。なお、大気開放時に回収槽5に回収される有機金属錯体の回収量を計量した。
[Comparative Example 1]
After the infiltration step, without performing the dilution step, the high-pressure vessel was immediately opened to the atmosphere and the polymer substrate was taken out of the high-pressure vessel, and this was carried out except that it was subjected to thermal reduction treatment at 150 ° C. using an electric furnace under normal pressure. Although electroless plating treatment was performed in the same manner as in Example 1, the plating reaction did not proceed, and an electroless plating film could not be formed on the polymer substrate. The recovered amount of the organometallic complex recovered in the recovery tank 5 when the atmosphere was released was measured.

[比較例2]
浸透工程において、高圧容器内の温度を150℃に変更して、有機金属錯体の還元を行いながら高分子基材に有機金属錯体を浸透させ、希釈工程及び還元工程を行わなかった以外は、実施例1と同様にして無電解めっき膜を形成した。
[Comparative Example 2]
In the infiltration process, the temperature inside the high-pressure vessel was changed to 150 ° C., and the organic metal complex was infiltrated into the polymer base material while reducing the organometallic complex. In the same manner as in Example 1, an electroless plating film was formed.

[比較例3]
浸透工程後、希釈工程を行なわずに、直ちに還元工程を行った以外は、実施例1と同様にして無電解めっき膜を形成した。
[Comparative Example 3]
After the infiltration step, an electroless plating film was formed in the same manner as in Example 1 except that the reduction step was performed immediately without performing the dilution step.

以上の実施例1〜5、及び比較例2〜3で無電解めっき膜を形成した各高分子基材について、無電解めっき膜の表面を目視により観察し、無電解めっき膜が欠陥なく高分子基材の全表面に形成されている場合を、○、高分子基材の表面の一部に無電解めっき膜が形成されていない場合を、△として評価した。   About each polymer base material in which the electroless plating film was formed in the above Examples 1 to 5 and Comparative Examples 2 to 3, the surface of the electroless plating film was visually observed, and the electroless plating film was a polymer without defects. The case where it was formed on the entire surface of the substrate was evaluated as ◯, and the case where the electroless plating film was not formed on a part of the surface of the polymer substrate was evaluated as Δ.

次に、無電解めっき膜を形成した各高分子基材を用いて、常法の電解銅めっき処理(めっき浴:硫酸銅めっき浴,陽極:銅電極)を行い、無電解めっき膜上に、1.0μmの膜厚を有する電解めっき膜を積層した。この電解めっき膜を形成した各高分子基材を用い、以下のテープ剥離試験によるめっき膜の密着性、及びめっき膜の電気抵抗を測定した。これらの結果と、実施例及び比較例で回収された有機金属錯体の回収率を併せて表1に示す。   Next, using each polymer substrate on which the electroless plating film is formed, an ordinary electrolytic copper plating treatment (plating bath: copper sulfate plating bath, anode: copper electrode) is performed, and on the electroless plating film, An electrolytic plating film having a thickness of 1.0 μm was laminated. Using each polymer substrate on which this electrolytic plating film was formed, the adhesion of the plating film and the electric resistance of the plating film were measured by the following tape peeling test. Table 1 shows the results together with the recovery rates of the organometallic complexes recovered in the examples and comparative examples.

〔密着性〕
JIS K 5600(25マス,1×1mm/マス)に準拠して碁盤目テープ剥離試験を行い、めっき膜の密着性を評価した。剥離用テープとして、セロハン粘着テープ(ニチバン(株)製)を用い、指の腹でめっき膜にテープを密着後、テープを剥離した。剥離後、25マスの内、めっき膜の剥離がない場合を、○、一部剥離する場合を、△、完全に剥離する場合を、×として評価した。
[Adhesion]
A cross-cut tape peeling test was conducted in accordance with JIS K 5600 (25 squares, 1 × 1 mm / mass) to evaluate the adhesion of the plating film. A cellophane adhesive tape (manufactured by Nichiban Co., Ltd.) was used as the peeling tape, and the tape was peeled off after the tape was adhered to the plating film with the belly of the finger. After peeling, the case where there was no peeling of the plating film out of 25 squares was evaluated as ◯, the case of partial peeling was evaluated as Δ, and the case of complete peeling was evaluated as x.

〔電気抵抗〕
デジタルマルチメータPC5000テスタ(三和電気計器株式会社製)を用いて、室温下で、めっき膜の電気抵抗を測定した。
[Electric resistance]
Using a digital multimeter PC5000 tester (manufactured by Sanwa Denki Keiki Co., Ltd.), the electric resistance of the plating film was measured at room temperature.

上記表1に示すように、加圧流体を用い、有機金属錯体の還元温度未満で、有機金属錯体を高分子基材に浸透させた後、有機金属錯体の還元温度未満で、有機金属錯体を含有しない高圧二酸化炭素を高圧容器に流動させることにより、未還元状態の有機金属錯体を回収できることが分かる。また、送液時間が長くなるに従って、高圧容器に供給された有機金属錯体の回収率が高くなることが分かる。そして、これら実施例の希釈工程において回収された有機金属錯体を再利用したところ、上記と同様に問題なくめっき膜を形成することができた。従って、有機金属錯体の還元温度未満の浸透工程及び希釈工程を組み合わせることにより、回収された有機金属錯体を再利用できることが確認された。   As shown in Table 1 above, after the organometallic complex was infiltrated into the polymer substrate at a temperature lower than the reduction temperature of the organometallic complex using a pressurized fluid, the organometallic complex was removed at a temperature lower than the reduction temperature of the organometallic complex. It can be seen that the unreduced organometallic complex can be recovered by flowing high-pressure carbon dioxide not contained in the high-pressure vessel. Moreover, it turns out that the recovery rate of the organometallic complex supplied to the high-pressure vessel becomes higher as the liquid feeding time becomes longer. And when the organometallic complex collect | recovered in the dilution process of these Examples was reused, the plating film was able to be formed without a problem similarly to the above. Therefore, it was confirmed that the recovered organometallic complex can be reused by combining an infiltration step and a dilution step below the reduction temperature of the organometallic complex.

これに対して、希釈工程を行なわず、浸透工程後、直ちに高圧容器を大気開放した場合、供給した有機金属錯体の殆どが回収された。これは、大気開放時に加圧流体の排出に伴って、高分子基材の内部に浸透した有機金属錯体が高分子基材から脱離したものと考えられる。また、従来と同様に、浸透工程において有機金属錯体の還元温度以上に高圧容器を加熱して、有機金属錯体を還元しながら高分子基材に有機金属錯体を浸透させた場合や、希釈工程を行なわずに、浸透工程後、直ちに高圧容器内で還元工程を行った場合、還元時の圧力上昇に伴って高圧容器から加圧流体が排出されたが、該加圧流体中には金属物質のみが含まれており、再利用可能な有機金属錯体は含まれていなかった。   On the other hand, when the high pressure vessel was opened to the atmosphere immediately after the infiltration step without performing the dilution step, most of the supplied organometallic complex was recovered. This is presumably because the organometallic complex that had penetrated into the interior of the polymer substrate was detached from the polymer substrate along with the discharge of the pressurized fluid when the atmosphere was released. In addition, as in the past, when the high-pressure vessel is heated to a temperature higher than the reduction temperature of the organometallic complex in the permeation process and the organometallic complex is infiltrated into the polymer substrate while reducing the organometallic complex, the dilution process is performed. If the reduction process is performed in the high-pressure vessel immediately after the infiltration step, the pressurized fluid is discharged from the high-pressure vessel as the pressure increases during the reduction, but only the metallic substance is contained in the pressurized fluid. And no reusable organometallic complex.

また、上記表に示すように、希釈工程で有機金属錯体を含有しない高圧二酸化炭素を高圧容器内に流動させた後、高分子基材に無電解めっき処理を行なうことにより、高分子繊維基材及びシート状の樹脂成形体いずれにも密着性に優れためっき膜を形成できることが分かる。特に、回収率が50〜75質量%となるように有機金属錯体を含有しない高圧二酸化炭素を流動させることにより、優れた密着性と、低電気抵抗を有するめっき膜を形成できることが分かる。このため、これらのめっき膜は、高分子基材の内部からアンカー効果の高いめっき膜が均一に形成されていると考えられる。なお、実施例5で形成しためっき膜の密着強度は15N/cmであり、実用上問題のない密着力を有するめっき膜が形成されていることが確認された。   In addition, as shown in the above table, a polymer fiber substrate is obtained by performing electroless plating treatment on a polymer substrate after flowing high-pressure carbon dioxide not containing an organometallic complex in a high-pressure vessel in a dilution step. It can be seen that a plating film having excellent adhesion can be formed on both the sheet-like resin molded body and the sheet-like resin molded body. In particular, it is understood that a plating film having excellent adhesion and low electrical resistance can be formed by flowing high-pressure carbon dioxide not containing an organometallic complex so that the recovery rate is 50 to 75% by mass. For this reason, it is considered that these plating films are uniformly formed with a high anchor effect from the inside of the polymer substrate. In addition, the adhesion strength of the plating film formed in Example 5 was 15 N / cm, and it was confirmed that the plating film having an adhesion force having no practical problem was formed.

これに対して、浸透工程後、直ちに高圧容器を大気開放して、常圧下で還元工程を行った場合、無電解めっき膜自体を形成することができなかった。これは、上記したように、浸透工程後、大気開放することにより、加圧流体の排出に伴って、高分子基材の内部に浸透させた有機金属錯体の殆どが排出されてしまい、高分子基材の内部で無電解めっき膜の形成に必要な触媒核となる有機金属錯体の量が低下したためと考えられる。また、浸透工程において、還元を行った場合や、希釈工程を行わずに、浸透工程後、直ちに高圧容器内で還元工程を行った場合、無電解めっき膜は形成できるが、めっき膜の密着力が非常に低く、容易に高分子基材からめっき膜が剥離することが分かる。また、形成されためっき膜の電気抵抗も非常に高いことが分かる。これは、高分子基材に浸透していない遊離の有機金属錯体が高圧容器内で還元されるため、めっき反応に必要な量の有機金属錯体を高分子基材の内部に十分に浸透させることができなかったことや、高分子基材の最表面に有機金属錯体が還元された金属物質が多量に付着し、アンカー効果の少ない最表面から無電解めっき膜が不均一に成長したためと考えられる。   On the other hand, when the high-pressure vessel was opened to the atmosphere immediately after the infiltration step and the reduction step was performed under normal pressure, the electroless plating film itself could not be formed. As described above, by releasing the air after the permeation step, most of the organometallic complex that has permeated the inside of the polymer base material is discharged along with the discharge of the pressurized fluid. This is probably because the amount of the organometallic complex serving as a catalyst nucleus necessary for forming the electroless plating film inside the substrate was lowered. In addition, when the reduction is performed in the permeation process or when the reduction process is performed in the high-pressure vessel immediately after the permeation process without performing the dilution process, the electroless plating film can be formed. It can be seen that the plating film peels easily from the polymer substrate. Moreover, it turns out that the electrical resistance of the formed plating film is also very high. This is because the free organometallic complex that has not penetrated into the polymer substrate is reduced in the high-pressure vessel, so that the amount of organometallic complex necessary for the plating reaction can sufficiently penetrate into the interior of the polymer substrate. This is thought to be because the metal material with reduced organometallic complex adhered to the outermost surface of the polymer substrate and the electroless plating film grew unevenly from the outermost surface with less anchor effect. .

図4及び5に、実施例3でめっき膜を形成した高分子基材の断面の走査型電子顕微鏡(SEM)写真を、図6及び7に比較例2でめっき膜を形成した高分子基材の断面の走査型電子顕微鏡(SEM)写真を示す。図5及び7はそれぞれ、図4及び6の高分子基材の表面部の拡大写真である。図4及び5に示すように、実施例3で形成しためっき膜は、高分子基材の表面で繊維材料とめっき膜とが混ざり合った混合部が形成されていることが分かる。このように、本実施例によれば、高分子基材の内部からめっき膜が形成されているため、優れた密着性が得られるものと考えられる。これに対して、図6及び7に示すように、比較例2で形成しためっき膜は、高分子基材の表面にめっき膜が形成されているが、めっき膜は繊維材料の最表面に積層されているだけであり、繊維材料の内部まで入り込んで形成されていないことが分かる。このため、密着力の低いめっき膜しか形成できなかったと考えられる。なお、図6及び7のSEM写真は、めっき膜と繊維材料との界面におけるめっき膜の形成状態を確認するため、めっき膜が繊維材料の表面を覆っている部分を選択して観察したものであるが、他の部分ではめっき膜が形成されていない欠陥部分が多数観察された。このため、この比較例のめっき膜は高い電気抵抗を示すものと考えられる。   4 and 5 show scanning electron microscope (SEM) photographs of the cross section of the polymer substrate on which the plating film was formed in Example 3, and FIGS. 6 and 7 show the polymer substrate on which the plating film was formed in Comparative Example 2. The scanning electron microscope (SEM) photograph of the cross section of is shown. 5 and 7 are enlarged photographs of the surface portion of the polymer substrate of FIGS. 4 and 6, respectively. As shown in FIGS. 4 and 5, it can be seen that the plating film formed in Example 3 has a mixed portion in which the fiber material and the plating film are mixed on the surface of the polymer substrate. Thus, according to the present Example, since the plating film is formed from the inside of a polymer base material, it is thought that the outstanding adhesiveness is obtained. On the other hand, as shown in FIGS. 6 and 7, the plating film formed in Comparative Example 2 has a plating film formed on the surface of the polymer substrate, but the plating film is laminated on the outermost surface of the fiber material. It can only be seen that the fiber material is not formed. For this reason, it is thought that only the plating film with low adhesion could be formed. The SEM photographs in FIGS. 6 and 7 are obtained by selecting and observing a portion where the plating film covers the surface of the fiber material in order to confirm the formation state of the plating film at the interface between the plating film and the fiber material. There were many defective portions where no plating film was formed in other portions. For this reason, it is thought that the plating film of this comparative example shows high electrical resistance.

1 液体二酸化炭素ボンベ
3 高圧容器
20 巻回体
21 高分子基材
DESCRIPTION OF SYMBOLS 1 Liquid carbon dioxide cylinder 3 High pressure vessel 20 Rolling body 21 Polymer base material

Claims (3)

高圧容器内で、高分子基材と、有機金属錯体及び高圧二酸化炭素を含有する加圧流体とを、前記有機金属錯体の還元温度未満で接触させて、前記有機金属錯体を前記高分子基材に浸透させ、
前記高分子基材と前記加圧流体とを接触させた高圧容器に、前記有機金属錯体の還元温度未満で、有機金属錯体を含有しない高圧二酸化炭素を流動させて、前記高圧容器内の前記加圧流体を希釈し、
前記高圧容器内に高圧二酸化炭素が含まれた状態で、前記高分子基材に浸透させた有機金属錯体を還元する、高分子基材のめっき前処理方法。
In a high-pressure vessel, a polymer substrate and a pressurized fluid containing an organometallic complex and high-pressure carbon dioxide are brought into contact with each other at a temperature lower than the reduction temperature of the organometallic complex, and the organometallic complex is brought into contact with the polymer substrate. Infiltrate
A high-pressure carbon dioxide containing no organometallic complex is flowed to a high-pressure vessel in which the polymer base material and the pressurized fluid are in contact with each other at a temperature lower than the reduction temperature of the organometallic complex, and the added pressure in the high-pressure vessel is increased. Dilute the pressurized fluid,
A pretreatment method for plating a polymer substrate, wherein the organometallic complex infiltrated into the polymer substrate is reduced in a state in which high-pressure carbon dioxide is contained in the high-pressure vessel.
前記高分子基材は、高分子繊維基材またはシート状の樹脂成形体からなる請求項1に記載の高分子基材のめっき前処理方法。   2. The pretreatment method for plating a polymer substrate according to claim 1, wherein the polymer substrate comprises a polymer fiber substrate or a sheet-like resin molded product. 前記高分子基材と前記加圧流体とを接触させる前に、前記高分子基材と還元剤とを接触させる請求項1または2に記載の高分子基材のめっき前処理方法。   The pretreatment method for plating a polymer substrate according to claim 1 or 2, wherein the polymer substrate and the reducing agent are brought into contact with each other before the polymer substrate and the pressurized fluid are brought into contact with each other.
JP2009143938A 2009-06-17 2009-06-17 Plating-pretreatment method for polymeric base material Withdrawn JP2011001576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143938A JP2011001576A (en) 2009-06-17 2009-06-17 Plating-pretreatment method for polymeric base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143938A JP2011001576A (en) 2009-06-17 2009-06-17 Plating-pretreatment method for polymeric base material

Publications (1)

Publication Number Publication Date
JP2011001576A true JP2011001576A (en) 2011-01-06

Family

ID=43559771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143938A Withdrawn JP2011001576A (en) 2009-06-17 2009-06-17 Plating-pretreatment method for polymeric base material

Country Status (1)

Country Link
JP (1) JP2011001576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034591A (en) * 2012-08-07 2014-02-24 Taiyo Nippon Sanso Corp Manufacturing method of composite resin material particles and manufacturing method of a composite resin molding
JP2016513182A (en) * 2013-02-25 2016-05-12 ザ セクレタリー オブ ステイト フォー ビジネス イノベーション アンド スキルズ Conductive fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034591A (en) * 2012-08-07 2014-02-24 Taiyo Nippon Sanso Corp Manufacturing method of composite resin material particles and manufacturing method of a composite resin molding
JP2016513182A (en) * 2013-02-25 2016-05-12 ザ セクレタリー オブ ステイト フォー ビジネス イノベーション アンド スキルズ Conductive fiber

Similar Documents

Publication Publication Date Title
JP2010070826A (en) Manufacturing method of conductive fiber
JP2008208456A (en) Method of plating pretreatment for fiber and method for manufacturing plated fiber
Zhan et al. Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating
KR20070109917A (en) Manufacturing method of polymer member and polymer member
WO2015080052A1 (en) Copper foil with attached carrier foil and copper-clad laminate
JP2011001576A (en) Plating-pretreatment method for polymeric base material
JP3878962B1 (en) Pre-plating method and plating method for polymer substrate and method for producing molded article made of thermoplastic resin
JP4954126B2 (en) Method for producing composite material including resin molding
JP5215731B2 (en) Plastic surface modification method and surface modified plastic
JP2010280416A (en) Method for manufacturing conductive fastening band
JP4092364B1 (en) Method for forming plating film and electroless plating solution
JP5138394B2 (en) Polymer parts
KR20100135671A (en) Method for producing polymer member having plated film
JP4092360B1 (en) Polymer member and manufacturing method thereof
JP2008081800A (en) Method for forming plated film
JP4105214B1 (en) Plating film forming method, polymer member and manufacturing method thereof
JPH0472070A (en) Copper polyimide substrate and production of printed wiring board formed by using this substrate
TWI293999B (en) Precious metal recovery
JP2008188799A (en) Method and apparatus for producing polymer member
JP2009073994A (en) Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
JPWO2017203767A1 (en) Resin-coated substrate, method for producing the same, and method for forming film
US11008657B2 (en) Composition for catalyst-free electroless plating and method for electroless plating using the same
JP2016098415A (en) Production method of compact having plating film
JP2008174840A5 (en) Polymer parts
JP6318001B2 (en) Method for producing molded body having plated film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904