JP4092364B1 - Method for forming plating film and electroless plating solution - Google Patents

Method for forming plating film and electroless plating solution Download PDF

Info

Publication number
JP4092364B1
JP4092364B1 JP2007096818A JP2007096818A JP4092364B1 JP 4092364 B1 JP4092364 B1 JP 4092364B1 JP 2007096818 A JP2007096818 A JP 2007096818A JP 2007096818 A JP2007096818 A JP 2007096818A JP 4092364 B1 JP4092364 B1 JP 4092364B1
Authority
JP
Japan
Prior art keywords
carbon dioxide
polymer
polymer member
plating solution
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007096818A
Other languages
Japanese (ja)
Other versions
JP2008255390A (en
Inventor
敦 遊佐
善行 野村
哲也 阿野
哲夫 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2007096818A priority Critical patent/JP4092364B1/en
Application granted granted Critical
Publication of JP4092364B1 publication Critical patent/JP4092364B1/en
Publication of JP2008255390A publication Critical patent/JP2008255390A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C2045/0079Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping applying a coating or covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C2045/1722Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles injecting fluids containing plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws
    • B29C2045/605Screws comprising a zone or shape enhancing the degassing of the plastic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

【課題】 様々な種類のポリマー部材の表面に、安価で、高密着強度を有する無電解メッキ膜を形成する方法を提供する。
【解決手段】 ポリマー部材にメッキ膜を形成する方法であって、表面内部にメッキ触媒核となる金属物質が含浸したポリマー部材を用意することと、加圧二酸化炭素及びアルコールを含む無電解メッキ液をポリマー部材に接触させて、ポリマー部材にメッキ膜を形成することとを含むメッキ膜の形成方法を提供することにより上記課題を解決する。
【選択図】 図5
PROBLEM TO BE SOLVED: To provide an inexpensive electroless plating film having high adhesion strength on the surface of various kinds of polymer members.
A method of forming a plating film on a polymer member, comprising preparing a polymer member impregnated with a metal substance serving as a plating catalyst core inside the surface, and an electroless plating solution containing pressurized carbon dioxide and alcohol The above-mentioned problem is solved by providing a method for forming a plating film, which comprises contacting a polymer member with a polymer member to form a plating film on the polymer member.
[Selection] Figure 5

Description

本発明は、ポリマー部材にメッキ膜を形成する方法及びその方法により用いられる無電解メッキ液に関する。   The present invention relates to a method of forming a plating film on a polymer member and an electroless plating solution used by the method.

従来、ポリマー部材(ポリマー成形品)の表面に安価に金属膜を形成する方法としては、無電解メッキ法が知られている。しかしながら、無電解メッキ法では、メッキ膜の密着性を確保するために、無電解メッキの前処理としてポリマー部材表面を六価クロム酸や過マンガン酸等の環境負荷の大きい酸化剤を用いてエッチングを行い、ポリマー部材の表面を粗化する必要がある。また、このようなエッチング液で浸漬されるポリマー、すなわち、無電解メッキが適用可能なポリマーとしては、ABS等のポリマーに限定されていた。これは、ABSにはブタジエンゴム成分が含まれており、この成分がエッチング液に選択的に浸食され表面に凹凸が形成されるのに対して、他のポリマーではこのようなエッチング液に選択的に酸化される成分が少なく、表面に凹凸が形成され難いためである。それゆえ、ABS以外のポリマーであるポリカーボネート等では、無電解メッキを可能にするためにABSやエラストマーを混合したメッキグレードが市販されている。しかしながら、そのようなメッキグレードのポリマーでは、主材料の耐熱性が低下する等の物性の劣化は避けられず、耐熱性を要求する成形品に適用することは困難であった。   Conventionally, an electroless plating method is known as a method for forming a metal film on the surface of a polymer member (polymer molded product) at low cost. However, in the electroless plating method, in order to ensure the adhesion of the plating film, the surface of the polymer member is etched using an oxidizing agent having a large environmental load such as hexavalent chromic acid or permanganic acid as a pretreatment of the electroless plating. It is necessary to roughen the surface of the polymer member. In addition, polymers immersed in such an etching solution, that is, polymers to which electroless plating can be applied are limited to polymers such as ABS. This is because ABS contains a butadiene rubber component, and this component is selectively eroded by the etching solution to form irregularities on the surface, whereas other polymers are selective to such an etching solution. This is because there are few components that are oxidized to the surface and it is difficult to form irregularities on the surface. Therefore, for a polycarbonate or the like which is a polymer other than ABS, a plating grade in which ABS or an elastomer is mixed to enable electroless plating is commercially available. However, with such plating grade polymers, deterioration of physical properties such as a decrease in heat resistance of the main material is inevitable, and it has been difficult to apply to molded products that require heat resistance.

また、従来、超臨界二酸化炭素等の加圧二酸化炭素を用いた表面改質方法をメッキ前処理に適用する技術が提案されている。加圧二酸化炭素を用いた表面改質方法では、加圧二酸化炭素に機能性材料を溶解させ、該機能材材料の溶解した加圧二酸化炭素をポリマー部材に接触させることにより、機能性材料をポリマー部材の表面内部に浸透させてポリマー部材表面を高機能化(改質)する。例えば、本発明者らは、加圧二酸化炭素を用いた表面改質処理を射出成形と同時に行い、ポリマー成形品の表面を高機能化させる方法を開示している(例えば、特許文献1参照)。   Conventionally, a technique for applying a surface modification method using pressurized carbon dioxide such as supercritical carbon dioxide to plating pretreatment has been proposed. In the surface modification method using pressurized carbon dioxide, the functional material is dissolved in the pressurized carbon dioxide, and the functional material is polymerized by bringing the pressurized carbon dioxide dissolved in the functional material material into contact with the polymer member. The polymer member surface is highly functionalized (modified) by penetrating the inside of the member surface. For example, the present inventors have disclosed a method of performing a surface modification treatment using pressurized carbon dioxide simultaneously with injection molding to make the surface of a polymer molded product highly functional (for example, see Patent Document 1). .

特許文献1では、次のような表面改質方法を開示している。まず、射出成形機の加熱(可塑化)シリンダー内で樹脂を可塑化計量した後、加熱シリンダー内のスクリューをサックバックさせて後退させる。次いで、スクリューのサックバックにより負圧になった(圧力が低下した)溶融樹脂のスクリュー前方部(フローフロント部)に超臨界状態の加圧二酸化炭素およびそれに溶解した金属錯体等の機能性有機材料を導入する。この動作によりスクリュー前方部における溶融樹脂に加圧二酸化炭素と機能性材料を浸透させることができる。次いで、溶融樹脂を金型に射出充填する。この際、機能性材料が浸透したスクリュー前方部の溶融樹脂がまず金型に射出され、次いで、機能性材料がほとんど浸透していない溶融樹脂が射出充填される。機能性材料が浸透したスクリュー前方部の溶融樹脂が射出された際には、金型内における流動樹脂のファウンテンフロー現象(噴水効果)により、スクリュー前方部の溶融樹脂は金型表面に引っ張られながら金型に接して表面層(スキン層)を形成する。それゆえ、特許文献1に記載の表面改質方法では、ポリマー成形品の表面内部に機能性材料が含浸した(機能性材料により表面改質された)ポリマー成形品が作製される。機能性材料として、メッキ触媒となる金属錯体等を用いると、表面にメッキ触媒が含浸したポリマー成形品が得られるので、従来のメッキ前処理方法のようにエッチング液で表面を粗化する必要なく、無電解メッキ可能な射出成形品を得ることができる。   Patent Document 1 discloses the following surface modification method. First, after plasticizing and weighing the resin in a heating (plasticizing) cylinder of an injection molding machine, the screw in the heating cylinder is sucked back and moved backward. Next, a functional organic material such as pressurized carbon dioxide in a supercritical state and a metal complex dissolved in the screw front part (flow front part) of the molten resin that became negative pressure (reduced pressure) due to the suck back of the screw Is introduced. By this operation, the pressurized carbon dioxide and the functional material can be infiltrated into the molten resin in the front portion of the screw. Next, the molten resin is injection-filled into a mold. At this time, the molten resin in the front portion of the screw infiltrated with the functional material is first injected into the mold, and then the molten resin in which the functional material is hardly infiltrated is injected and filled. When the molten resin in the front part of the screw infiltrated with the functional material is injected, the molten resin in the front part of the screw is pulled by the mold surface due to the fountain flow phenomenon (fountain effect) of the flowing resin in the mold. A surface layer (skin layer) is formed in contact with the mold. Therefore, in the surface modification method described in Patent Document 1, a polymer molded article in which a functional material is impregnated (surface-modified by the functional material) is produced inside the surface of the polymer molded article. By using a metal complex or the like as a plating catalyst as a functional material, a polymer molded product impregnated with the plating catalyst on the surface can be obtained, so there is no need to roughen the surface with an etching solution as in the conventional plating pretreatment method. An injection-molded product that can be electrolessly plated can be obtained.

さらに、従来、超臨界二酸化炭素を含む無電解メッキ液を用いて無電解メッキを行う方法が開示されている(例えば、特許文献2、非特許文献1)。これらの文献では、無電解メッキ液と超臨界二酸化炭素とを、界面活性剤を用いて相溶させ、攪拌によりエマルジョン(乳濁状態)を形成し、該エマルジョン中でメッキ反応を起こす無電解メッキ方法が開示されている。通常、電解メッキや無電解メッキにおいては、メッキ反応中に発生する水素ガスがメッキ対象物の表面に滞留しメッキ膜にピンホールが発生する要因となる。しかしながら、上記文献に開示されている無電解メッキ法のように超臨界二酸化炭素を含む無電解メッキ液を用いた場合には、超臨界二酸化炭素は水素を溶解するので、上記メッキ反応中に発生する水素が取り除かれ、それによりピンホールが発生しにくく、硬度の高い無電解メッキ膜が得られるとされる。なお、特許文献2では、金属基材に対するメッキ処理は開示されているものの、ポリマー部材を対するメッキ処理については開示されていない。   Furthermore, conventionally, a method of performing electroless plating using an electroless plating solution containing supercritical carbon dioxide has been disclosed (for example, Patent Document 2 and Non-Patent Document 1). In these documents, an electroless plating solution and supercritical carbon dioxide are dissolved using a surfactant, and an emulsion (emulsion state) is formed by stirring to cause a plating reaction in the emulsion. A method is disclosed. Usually, in electroplating or electroless plating, hydrogen gas generated during the plating reaction stays on the surface of the object to be plated, causing pinholes in the plating film. However, when an electroless plating solution containing supercritical carbon dioxide is used as in the electroless plating method disclosed in the above-mentioned document, supercritical carbon dioxide dissolves hydrogen, so it is generated during the plating reaction. It is said that the hydrogen that is removed is removed, so that a pinhole is hardly generated and an electroless plating film having high hardness is obtained. In Patent Document 2, although a plating process for a metal substrate is disclosed, a plating process for a polymer member is not disclosed.

特許第3696878号公報Japanese Patent No. 3696878 特許第3571627号公報Japanese Patent No. 3571627 表面技術 Vol.56、No.2、P83(2005)Surface technology Vol. 56, no. 2, P83 (2005)

上記したように、従来の樹脂のメッキ方法においては、環境負荷の大きい前処理を行う必要があり、ポリマー材料の選択性も狭いものであった。   As described above, in the conventional resin plating method, it is necessary to perform a pretreatment with a large environmental load, and the selectivity of the polymer material is also narrow.

また、特許文献1に記載の超臨界流体等の加圧二酸化炭素を用いたポリマー部材の表面改質方法を用いてポリマー部材の表面内部にメッキ触媒となる金属微粒子を浸透させた場合には、上述のように、表面および内部にメッキ触媒となる金属微粒子が存在するポリマー部材が得られる。しかしながら、このようなポリマー部材に無電解メッキを施した場合、無電解メッキの触媒核として寄与するのはポリマー部材の最表面に存在する金属微粒子のみであり、ポリマー部材の内部に存在する金属微粒子は余剰な触媒核となり不経済である。また、特許文献1に記載の技術を用いて得られたポリマー部材にメッキ膜を形成した場合、ポリマー部材の表面を粗化していないので、メッキ膜の物理的アンカー効果が得にくく、メッキ膜と成形品の強固な密着性を得ることが困難であるという課題があった。   Further, when metal fine particles serving as a plating catalyst are infiltrated into the surface of the polymer member using the surface modification method of the polymer member using pressurized carbon dioxide such as supercritical fluid described in Patent Document 1, As described above, a polymer member having metal fine particles serving as a plating catalyst on the surface and inside is obtained. However, when electroless plating is applied to such a polymer member, only the metal fine particles present on the outermost surface of the polymer member contribute to the catalyst core of the electroless plating, and the metal fine particles present inside the polymer member. Is uneconomical because it is an excessive catalyst core. In addition, when a plating film is formed on a polymer member obtained using the technique described in Patent Document 1, the surface of the polymer member is not roughened, so that it is difficult to obtain a physical anchor effect of the plating film. There was a problem that it was difficult to obtain strong adhesion of the molded product.

本発明は、上記問題を解決するためになされたものであり、本発明の目的は、ポリマー部材の表面に、安価で、高密着強度を有する無電解メッキ膜を形成する方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for forming an electroless plating film having a low adhesion and high adhesion strength on the surface of a polymer member. is there.

本発明の第1の態様に従えば、ポリマー部材にメッキ膜を形成する方法であって、表面内部にメッキ触媒核となる金属物質が含浸したポリマー部材を用意することと、加圧二酸化炭素及びアルコールを含む無電解メッキ液を上記ポリマー部材に接触させて、上記ポリマー部材にメッキ膜を形成することとを含むメッキ膜の形成方法が提供される。   According to a first aspect of the present invention, there is provided a method of forming a plating film on a polymer member, comprising preparing a polymer member impregnated with a metal substance that serves as a plating catalyst nucleus inside the surface, There is provided a method for forming a plating film, which comprises contacting an electroless plating solution containing alcohol with the polymer member to form a plating film on the polymer member.

本明細書でいう「加圧二酸化炭素」とは、加圧された二酸化炭素のことをいう。なお、ここでいう「加圧二酸化炭素」には、超臨界状態の二酸化炭素のみならず、加圧された液状二酸化炭素及び加圧された二酸化炭素ガスも含む意味である。また、加圧二酸化炭素の圧力は、臨界点(超臨界状態)以上に加圧された二酸化炭素のみならず、臨界点より低圧力で加圧された二酸化炭素も含まれる。より具体的には、本発明では、無電解メッキ液と加圧二酸化炭素とが相溶し易くなるように、二酸化炭素の密度が下記範囲となるような温度及び圧力を有する加圧二酸化炭素であることが望ましい。加圧二酸化炭素の密度の好ましい範囲は、0.10g/cm〜0.99g/cm、より好ましくは0.40g/cm〜0.99g/cmである。この範囲よりも加圧二酸化炭素の密度が低いと、無電解メッキ液との相溶性が低くなり、さらにポリマー部材への浸透性も低下する。また、加圧二酸化炭素の密度が上記範囲よりも高いと、加圧二酸化炭素の圧力が非常に高くなり(例えば温度10℃で圧力30MPa以上、温度20℃で圧力40MPa以上となる)、量産装置が高価になる。 As used herein, “pressurized carbon dioxide” refers to pressurized carbon dioxide. Note that “pressurized carbon dioxide” here means not only supercritical carbon dioxide but also pressurized liquid carbon dioxide and pressurized carbon dioxide gas. The pressure of pressurized carbon dioxide includes not only carbon dioxide pressurized to a critical point (supercritical state) or higher, but also carbon dioxide pressurized at a pressure lower than the critical point. More specifically, in the present invention, a pressurized carbon dioxide having a temperature and pressure such that the density of carbon dioxide is in the following range so that the electroless plating solution and the pressurized carbon dioxide are easily compatible. It is desirable to be. The preferred range of density of the pressurized carbon dioxide, 0.10g / cm 3 ~0.99g / cm 3, more preferably 0.40g / cm 3 ~0.99g / cm 3 . When the density of the pressurized carbon dioxide is lower than this range, the compatibility with the electroless plating solution is lowered, and the permeability to the polymer member is also lowered. Further, when the density of the pressurized carbon dioxide is higher than the above range, the pressure of the pressurized carbon dioxide becomes very high (for example, a pressure of 30 MPa or more at a temperature of 10 ° C., a pressure of 40 MPa or more at a temperature of 20 ° C.), and a mass production apparatus. Becomes expensive.

なお、上記加圧二酸化炭素の密度を得るために、二酸化炭素の温度は10℃〜110℃、圧力は5MPa〜25MPaの範囲であることが望ましい。特に、加圧二酸化炭素が、温度31℃以上、圧力7.38MPa以上の超臨界二酸化炭素であることが望ましい。超臨界状態になると加圧二酸化炭素の密度が高くなるだけでなく、表面張力もゼロとなるので、ポリマー部材へのメッキ液の浸透性が向上する。なお、温度が10℃以下であるとメッキ反応が起こり難くなり、温度が110℃以上であるとメッキ液が分解する等の弊害が発生する。圧力については、5MPa以下であると加圧二酸化炭素の密度が大きく低下し、圧力が25MPa以上となると工業化用の装置に負担がかかる。   In order to obtain the density of the pressurized carbon dioxide, it is desirable that the temperature of the carbon dioxide is in the range of 10 ° C. to 110 ° C. and the pressure is in the range of 5 MPa to 25 MPa. In particular, the pressurized carbon dioxide is desirably supercritical carbon dioxide having a temperature of 31 ° C. or higher and a pressure of 7.38 MPa or higher. In the supercritical state, not only the density of pressurized carbon dioxide increases, but also the surface tension becomes zero, so that the permeability of the plating solution into the polymer member is improved. If the temperature is 10 ° C. or lower, the plating reaction is difficult to occur, and if the temperature is 110 ° C. or higher, the plating solution is decomposed. Regarding the pressure, if the pressure is 5 MPa or less, the density of the pressurized carbon dioxide is greatly reduced, and if the pressure is 25 MPa or more, a burden is imposed on the industrialization apparatus.

また、本明細書でいう「無電解メッキ法」とは、外部電源を用いることなく触媒活性を有する基材表面で、還元剤を用いて金属皮膜を析出する方法のことをいう。また、ここいうポリマー部材の「表面内部」は、ポリマー部材の内部のみならず、最表面も含む意味である。   The “electroless plating method” as used herein refers to a method of depositing a metal film using a reducing agent on the surface of a substrate having catalytic activity without using an external power source. Further, the “inside surface” of the polymer member here means not only the inside of the polymer member but also the outermost surface.

本発明者らが、特許文献2及び非特許文献1等に開示されている超臨界二酸化炭素を含む無電解メッキ液を用いた無電解メッキ方法について、鋭意検討したところ、表面内部に金属物質(例えば、金属微粒子)が含浸したポリマー部材を、単に、加圧二酸化炭素を含む無電解メッキ液に接触させただけでは、ポリマー部材の表面に無電解メッキ膜は形成されるものの、十分な密着性を有するメッキ膜を形成することが困難であることが分かった。本発明者らの検証実験によると、この場合、メッキ膜は、主にポリマー部材の最表面に存在する金属物質を触媒核としてメッキ膜が成長しており、メッキ膜の物理的アンカー効果が得にくくなっていることが分かった。それゆえ、単に無電解メッキ液を加圧二酸化炭素とともにポリマー部材に接触させただけでは、メッキ膜と成形品の強固な密着性を得られなかったものと思われる。   When the present inventors diligently examined the electroless plating method using the electroless plating solution containing supercritical carbon dioxide disclosed in Patent Document 2 and Non-Patent Document 1, etc., a metallic substance ( For example, by simply contacting a polymer member impregnated with metal fine particles) with an electroless plating solution containing pressurized carbon dioxide, an electroless plating film is formed on the surface of the polymer member, but sufficient adhesion is achieved. It was found difficult to form a plating film having According to the verification experiment of the present inventors, in this case, the plating film grows mainly using the metal substance present on the outermost surface of the polymer member as a catalyst nucleus, and the physical anchor effect of the plating film is obtained. I found it difficult. Therefore, it is considered that the strong adhesion between the plating film and the molded product cannot be obtained simply by bringing the electroless plating solution into contact with the polymer member together with the pressurized carbon dioxide.

さらに、本発明者の検討によると、特許文献2及び非特許文献1等に開示されている超臨界二酸化炭素を含む無電解メッキ液を用いた無電解メッキ方法では、高圧状態の二酸化炭素と水溶液である無電解メッキ液とは、界面活性剤を用いたとしても、相溶し難く、攪拌効果を高くする必要のあることが判明した。具体的には、攪拌トルクの高い攪拌子を用いたり、底の浅い高圧容器を用いたりすることが必要であることが分かった。すなわち、無電解メッキ液と加圧二酸化炭素とを均一に混合して安定したエマルジョンを得るためには、高圧容器や攪拌子等の形状や攪拌子の回転数における制限が大きいことが分かった。   Further, according to the study of the present inventor, in the electroless plating method using the electroless plating solution containing supercritical carbon dioxide disclosed in Patent Document 2 and Non-Patent Document 1, etc., carbon dioxide and aqueous solution in a high pressure state are used. It was found that the electroless plating solution is not compatible with the electroless plating solution even if a surfactant is used, and the stirring effect needs to be increased. Specifically, it has been found that it is necessary to use a stirrer with high stirring torque or a high-pressure vessel with a shallow bottom. That is, in order to obtain a stable emulsion by uniformly mixing the electroless plating solution and the pressurized carbon dioxide, it has been found that there are large restrictions on the shape of the high-pressure vessel, the stirrer, etc. and the rotation speed of the stirrer.

本発明は上記課題を解決するためになされたものであり、本発明のメッキ膜の形成方法では、加圧二酸化炭素だけでなく、さらにアルコールを含む無電解メッキ液を用いてポリマー部材のメッキ処理を行う。本発明者らの検証実験によると、無電解メッキ液は水が主成分であるが、さらに、アルコールを無電解メッキ液に混合させることにより、無電解メッキ液と加圧二酸化炭素とを攪拌しなくても、高圧状態の二酸化炭素とメッキ液とが安定して混ざり易くなることがわかった。これは、アルコールが高圧状態の二酸化炭素と相溶しやすいためであると考えられる。それゆえ、通常、無電解メッキ液を調合する際には、金属イオンや還元剤等の入った原液を、例えばメーカー推奨の成分比に従って、水で薄めてメッキ液を健浴するが、本発明のメッキ膜の形成方法では、さらにアルコールを任意の割合で水に混合するだけで、無電解メッキ液と加圧二酸化炭素とが均一に相溶した安定した混合溶液を調合することができる。   The present invention has been made to solve the above-described problems. In the plating film forming method of the present invention, the plating treatment of the polymer member is performed using not only pressurized carbon dioxide but also an electroless plating solution containing alcohol. I do. According to the verification experiment of the present inventors, the electroless plating solution is mainly composed of water. Furthermore, the electroless plating solution and the pressurized carbon dioxide are stirred by mixing alcohol with the electroless plating solution. Even without this, it has been found that carbon dioxide in a high pressure state and the plating solution can be mixed stably and easily. This is considered to be because alcohol is easily compatible with high-pressure carbon dioxide. Therefore, normally, when preparing an electroless plating solution, the stock solution containing metal ions, a reducing agent, etc. is diluted with water according to, for example, the component ratio recommended by the manufacturer, and the plating solution is bathed. In this plating film forming method, a stable mixed solution in which the electroless plating solution and the pressurized carbon dioxide are uniformly mixed can be prepared by further mixing alcohol with water at an arbitrary ratio.

そして、本発明のメッキ膜の形成方法では、アルコールを介して無電解メッキ液と加圧二酸化炭素とが均一に相溶しているので、そのような混合溶媒を表面内部にメッキ触媒核となるPd、Ni、Pt、Cu等を含む金属物質が含浸したポリマー部材に接触させた際には、無電解メッキ液が加圧二酸化炭素とともにポリマー部材内部に浸透しやすくなり、ポリマー部材内部の金属物質を触媒核としてメッキ膜を成長させることができる。   In the plating film forming method of the present invention, since the electroless plating solution and the pressurized carbon dioxide are uniformly mixed via alcohol, such a mixed solvent becomes a plating catalyst nucleus inside the surface. When contacted with a polymer member impregnated with a metal material containing Pd, Ni, Pt, Cu, etc., the electroless plating solution easily penetrates into the polymer member together with the pressurized carbon dioxide, and the metal material inside the polymer member The plating film can be grown using the catalyst nucleus.

上述のように、本発明のメッキ膜の形成方法では、ポリマー部材の内部に存在する金属物質を触媒核としてメッキ膜が成長するので、メッキ膜はポリマー部材の内部に食い込んだ状態でポリマー部材上に形成される。それゆえ、本発明のメッキ膜の形成方法では、従来の無電解メッキ法のようにポリマー部材の表面をエッチングで粗化する必要がないので、環境に優しいメッキ膜の形成方法であり、且つ、多様な種類のポリマー部材に対しても容易に密着性の優れたメッキ膜を形成することができる。また、本発明のメッキ膜の形成方法では、従来の無電解メッキ法のようにポリマー部材の表面を粗化しないので、表面粗度の非常に小さい(ナノオーダー)メッキ膜を形成することができる。   As described above, in the plating film forming method of the present invention, the plating film grows using the metal substance existing inside the polymer member as a catalyst nucleus, so that the plating film is bitten into the inside of the polymer member. Formed. Therefore, in the method for forming a plating film of the present invention, it is not necessary to roughen the surface of the polymer member by etching as in the conventional electroless plating method. A plating film having excellent adhesion can be easily formed on various types of polymer members. Further, in the method for forming a plating film of the present invention, the surface of the polymer member is not roughened as in the conventional electroless plating method, so that a plating film having a very small surface roughness (nano order) can be formed. .

なお、水に対するアルコールの体積比率は、任意であるが、10〜80%の範囲であることが望ましい。より望ましくは、30〜60%の範囲である。アルコールの体積比率が10%より少ないと、安定な混合液が得られ難くなり、無電解メッキ液のポリマー部材への浸透性も低下する。また、アルコールの体積比率が80%より大きくなると(アルコール成分が多すぎると)、例えばニッケル−リンメッキに用いられる硫酸ニッケルにエタノール等の有機溶媒は不溶であるため、浴が安定しない場合がある。   In addition, although the volume ratio of the alcohol with respect to water is arbitrary, it is desirable to be in the range of 10 to 80%. More desirably, it is 30 to 60% of range. When the volume ratio of alcohol is less than 10%, it becomes difficult to obtain a stable mixed solution, and the permeability of the electroless plating solution to the polymer member also decreases. Moreover, when the volume ratio of alcohol is larger than 80% (when there are too many alcohol components), for example, an organic solvent such as ethanol is insoluble in nickel sulfate used for nickel-phosphorus plating, so the bath may not be stable.

なお、本発明に用い得るアルコールの種類は任意であり、メタノール、エタノール、n−プロパノール、イソプロパノール、ブタノール、ヘプタノール、エチレングリコール等を用いることができる。メッキ反応がおよそ60℃以上となるニッケルリンメッキにおいては、その反応処理温度の沸点以上のアルコールを用いることが望ましい。処理温度よりも沸点の低いアルコールを用いると、加圧二酸化炭素雰囲気においては、アルコールの沸点が低下して沸騰しないが、二酸化炭素を排気した直後の大気圧下においては、アルコールが揮発してメッキ浴が不安定になる。   In addition, the kind of alcohol which can be used for this invention is arbitrary, Methanol, ethanol, n-propanol, isopropanol, butanol, heptanol, ethylene glycol, etc. can be used. In nickel phosphorus plating in which the plating reaction is about 60 ° C. or higher, it is desirable to use an alcohol having a boiling point higher than the reaction processing temperature. When alcohol having a boiling point lower than the treatment temperature is used, the boiling point of the alcohol is lowered and does not boil in a pressurized carbon dioxide atmosphere, but the alcohol volatilizes and plating at atmospheric pressure immediately after exhausting the carbon dioxide. The bath becomes unstable.

本発明のメッキ膜の形成方法では、成形機を用いて上記ポリマー部材を作製し、上記ポリマー部材を用意することが、上記成形機内の上記ポリマー部材の溶融樹脂に上記金属物質が溶解した加圧二酸化炭素を導入することと、上記金属物質が導入された溶融樹脂を成形することとを含むことが好ましい。   In the method for forming a plated film according to the present invention, the polymer member is prepared using a molding machine, and the polymer member is prepared by pressing the metal material in the molten resin of the polymer member in the molding machine. It is preferable to include introducing carbon dioxide and molding the molten resin into which the metal substance is introduced.

なお、本発明のメッキ膜の形成方法では、上記ポリマー部材が大気圧下で無電解メッキ液に不活性であるメッキ膜形成面を有するものであってもよい。 In the plating film forming method of the present invention, the polymer member may have a plating film forming surface that is inert to the electroless plating solution under atmospheric pressure .

本発明者らの検討によると、ポリマー部材のメッキ膜形成面に金属物質が大気圧下でメッキ反応が起きる程度の濃度で存在すると、メッキ処理条件によっては、無電解メッキ液がポリマー部材の内部に浸透する前に表面層でメッキ反応が起こり、ポリマー内部にてメッキ膜が成長し難くなる恐れがあることが分かった。なお、本明細書でいうポリマー部材の「メッキ膜形成面」とは、メッキ膜が形成されるポリマー部材の面のことを意味する。   According to the study by the present inventors, when a metal substance is present on the plating film forming surface of the polymer member at a concentration that causes a plating reaction under atmospheric pressure, the electroless plating solution may be contained inside the polymer member depending on the plating conditions. It has been found that a plating reaction may occur in the surface layer before penetrating into the polymer, making it difficult for the plating film to grow inside the polymer. The “plating film forming surface” of the polymer member in the present specification means the surface of the polymer member on which the plating film is formed.

そこで、内部にメッキ触媒核となるPd、Ni、Pt、Cu等を含む金属物質が存在し、且つ、大気圧下で無電解メッキ反応が起こらない表面状態のメッキ膜形成面を有するポリマー部材を用意し、そのようなメッキ膜形成面を有するポリマー部材に加圧二酸化炭素及びアルコールを含む無電解メッキ液を接触させると、メッキ膜形成面における金属物質の濃度は十分低いので(大気圧下で無電解メッキ液に不活性であるので)、メッキ膜形成面でメッキ膜が成長せず、無電解メッキ液はポリマー内部に浸透する。そして、ポリマー部材内部の金属物質の濃度が高い領域に無電解メッキ液が浸透すると、その領域からメッキ反応が開始する。その後、ニッケルリンメッキ等の金属物質の自己触媒作用により、メッキ膜がポリマー内部から表面に向かって成長する。   Accordingly, a polymer member having a plating film forming surface in a surface state in which a metal substance containing Pd, Ni, Pt, Cu, or the like serving as a plating catalyst nucleus is present and an electroless plating reaction does not occur under atmospheric pressure. If the prepared electroless plating solution containing carbon dioxide and alcohol is brought into contact with the polymer member having such a plating film forming surface, the concentration of the metal substance on the plating film forming surface is sufficiently low (under atmospheric pressure). Since it is inert to the electroless plating solution), the plating film does not grow on the surface where the plating film is formed, and the electroless plating solution penetrates into the polymer. When the electroless plating solution penetrates into a region where the concentration of the metal substance inside the polymer member is high, the plating reaction starts from that region. Thereafter, the plating film grows from the inside of the polymer toward the surface by the autocatalytic action of a metal substance such as nickel phosphorus plating.

上述のように、内部にメッキ触媒核となる金属物質が存在し、且つ、大気圧下で無電解メッキ反応が起こらない表面状態のメッキ膜形成面を有するポリマー部材を用意した場合には、確実にメッキ膜をポリマー部材の内部から成長させることができる。なお、本明細書でいう「大気圧下で無電解メッキ反応が起きない表面状態」とは、大気中(大気圧下)で且つメッキ反応が起こり得る温度において、加圧二酸化炭素を含まない無電解メッキ液中にポリマー部材を浸漬しても、ポリマー部材の表面にメッキ膜が成長しない状態のことをいう。より具体的には、大気中で且つメッキ反応可能な温度の範囲において、ポリマー部材を加圧二酸化炭素を含まない無電解メッキ液中に5分以上滞留させたときに、ポリマー部材の表面全体にメッキ膜が成長しない表面状態のことをいう。なお、触媒核となる金属物質がポリマー部材の表面に存在してもその濃度が低ければ、メッキ反応は容易に起きない。   As described above, when a polymer member having a plating film forming surface in a surface state in which a metal substance serving as a plating catalyst core is present inside and an electroless plating reaction does not occur under atmospheric pressure is surely provided. In addition, the plating film can be grown from the inside of the polymer member. As used herein, the “surface state in which electroless plating reaction does not occur under atmospheric pressure” refers to a non-pressurized carbon dioxide that does not contain pressurized carbon dioxide in the atmosphere (under atmospheric pressure) and at a temperature at which plating reaction can occur. A state in which a plating film does not grow on the surface of a polymer member even when the polymer member is immersed in an electrolytic plating solution. More specifically, when the polymer member is kept in the electroless plating solution not containing pressurized carbon dioxide for 5 minutes or more in the atmosphere and in a temperature range where the plating reaction is possible, the entire surface of the polymer member is removed. A surface state where the plating film does not grow. Even if the metal substance serving as the catalyst nucleus exists on the surface of the polymer member, the plating reaction does not easily occur if the concentration is low.

内部にメッキ触媒核となる金属物質が存在し、且つ、大気圧下で無電解メッキ反応が起こらない表面状態のメッキ膜形成面を有するポリマー部材の作製方法としては、次のような方法が用い得る。   The following method is used as a method for producing a polymer member having a plating film forming surface in a surface state in which a metal substance serving as a plating catalyst core is present and an electroless plating reaction does not occur under atmospheric pressure. obtain.

内部に金属物質が存在し且つ大気圧下で無電解メッキ反応が起こらないメッキ膜形成面を有するポリマー部材を作製する方法としては、例えば、射出成形機や押し出し成形機の可塑化スクリューにおける溶融状態の樹脂に、金属錯体等の金属物質を加圧二酸化炭素とともに浸透させて混錬し、金属物質が浸透した溶融樹脂を、金型やダイに射出成形もしくは押し出し成形することで得ることができる。この際、例えば、低速で溶融樹脂を金型やダイに射出または押し出すことにより、金属物質が樹脂内部にもぐり込み、成形品の最表面に金属物質を浮き出し難くすることができる。   As a method for producing a polymer member having a plating film forming surface in which a metal substance is present and an electroless plating reaction does not occur under atmospheric pressure, for example, a molten state in a plasticizing screw of an injection molding machine or an extrusion molding machine In this resin, a metal material such as a metal complex is infiltrated with pressure carbon dioxide and kneaded, and a molten resin in which the metal material has permeated can be obtained by injection molding or extrusion molding into a mold or a die. At this time, for example, by injecting or extruding the molten resin into a mold or die at a low speed, the metal substance can penetrate into the inside of the resin, and the metal substance can be made difficult to float on the outermost surface of the molded product.

また、本発明者らが上述した特許文献1に開示された超臨界二酸化炭素を用いた表面改質方法についてさらに検討を重ねたところ、特許文献1に開示された超臨界二酸化炭素を用いた表面改質方法では、可塑化シリンダー内にて金属錯体の滞留時間が長くなると、金属錯体が熱分解して金属微粒子となり凝集する。この場合、該金属微粒子の比重は重くなるため、金属微粒子が含まれた溶融樹脂を射出しても、ファウンテンフロー現象により成形品の最表面における金属微粒子が分散し難くなるという現象を見出した。すなわち、特許文献1に開示された表面改質方法では、その成形条件等によっては、得られた成形品の最表面に金属物質の濃度が低下することが分かった。それゆえ、特許文献1に開示された超臨界二酸化炭素を用いた表面改質方法において、可塑化シリンダー内にて金属錯体の滞留時間を長くすることにより、ポリマー部材の最表面における金属微粒子(金属物質)の濃度を低下させて大気圧下で無電解メッキ反応が起こらない表面状態にすることができる。   Further, when the inventors further studied the surface modification method using supercritical carbon dioxide disclosed in Patent Document 1 described above, the surface using supercritical carbon dioxide disclosed in Patent Document 1 was obtained. In the reforming method, when the residence time of the metal complex becomes longer in the plasticizing cylinder, the metal complex is thermally decomposed and aggregated into metal fine particles. In this case, since the specific gravity of the metal fine particles becomes heavy, the inventors have found a phenomenon that even when a molten resin containing metal fine particles is injected, the metal fine particles on the outermost surface of the molded article are difficult to disperse due to the fountain flow phenomenon. That is, in the surface modification method disclosed in Patent Document 1, it has been found that the concentration of the metal substance decreases on the outermost surface of the obtained molded product depending on the molding conditions and the like. Therefore, in the surface modification method using supercritical carbon dioxide disclosed in Patent Document 1, by increasing the residence time of the metal complex in the plasticizing cylinder, metal fine particles (metal) on the outermost surface of the polymer member are obtained. The concentration of the substance) can be reduced to a surface state in which no electroless plating reaction occurs at atmospheric pressure.

また、内部に金属物質が存在し且つ大気圧下で無電解メッキ反応が起こらないメッキ膜形成面を有するポリマー部材を作製するために、後述するように(実施例1参照)、金属錯体(金属物質)を溶融樹脂に十分に浸透させ後、樹脂内圧を減圧しても良い。この処理工程により、金属錯体を高温度高圧力下にて熱分解してクラースターを形成して有機物である金属錯体をより比重の重い金属微粒子と変化させるとともに、二酸化炭素を低圧のガスにする。このような状態の溶融樹脂を射出充填した場合においても、金属微粒子や二酸化炭素ガスはポリマー部材の表面に分散し難くなる(浮き出てきにくくなる)。   In order to produce a polymer member having a plating film-forming surface in which a metal substance is present and an electroless plating reaction does not occur under atmospheric pressure, as described later (see Example 1), a metal complex (metal After sufficiently infiltrating the substance) into the molten resin, the internal pressure of the resin may be reduced. By this treatment process, the metal complex is pyrolyzed at high temperature and high pressure to form a cluster to change the metal complex, which is an organic substance, into metal fine particles with a higher specific gravity, and to convert carbon dioxide into a low-pressure gas. . Even when the molten resin in such a state is injection-filled, the metal fine particles and the carbon dioxide gas are difficult to disperse on the surface of the polymer member (are difficult to be lifted).

上述のように、成形機内のポリマー部材の溶融樹脂に金属物質を浸透させてポリマー部材を成形する場合には、その成形条件を適宜調整することにより、内部に金属物質が存在し且つ大気圧下で無電解メッキ反応が起こらないメッキ膜形成面を有するポリマー部材を作製することができる。また、金属物質を予め含浸させたポリマーのペレットを用いても、成形条件を最適化することにより、同様なポリマー部材を得ることができる。   As described above, when molding a polymer member by infiltrating a metal material into the molten resin of the polymer member in the molding machine, by appropriately adjusting the molding conditions, the metal material is present inside and the atmospheric pressure is reduced. Thus, it is possible to produce a polymer member having a plating film forming surface on which electroless plating reaction does not occur. Even when polymer pellets pre-impregnated with a metal substance are used, a similar polymer member can be obtained by optimizing the molding conditions.

なお、内部に金属物質が存在し且つ大気圧下で無電解メッキ反応が起こらないメッキ膜形成面を有するポリマー部材の作製方法として、上述のような成形機内のポリマー部材の溶融樹脂に金属物質を浸透させてポリマー部材を成形する方法を用いた場合には、ポリマー部材の成形と同時にメッキ膜の触媒核となる金属物質をポリマー部材の表面内部に含浸させることができ、表面内部に金属物質が含浸したポリマー部材を容易で安価なプロセスで作製することができる。なお、この成形方法としては、射出成形法(またはサンドイッチ成形法)や押し出し成形法が用い得る。   As a method for producing a polymer member having a plating film forming surface in which a metal substance is present inside and an electroless plating reaction does not occur under atmospheric pressure, a metal substance is applied to the molten resin of the polymer member in the molding machine as described above. When the method of forming the polymer member by infiltration is used, the metal material that becomes the catalyst core of the plating film can be impregnated into the surface of the polymer member simultaneously with the formation of the polymer member, and the metal material is formed inside the surface. The impregnated polymer member can be produced by an easy and inexpensive process. As the molding method, an injection molding method (or sandwich molding method) or an extrusion molding method can be used.

上述した成形時の条件を調整する方法以外では、次のような方法を用いてポリマー部材のメッキ膜形成面を、大気圧下で無電解メッキ反応が起こらない状態にしても良い。   In addition to the method for adjusting the molding conditions described above, the plating film forming surface of the polymer member may be brought into a state in which electroless plating reaction does not occur under atmospheric pressure using the following method.

まず、成形機等を用いて大気圧下で無電解メッキ反応が起こる程度の濃度で金属物質が最表面に存在するポリマー部材を作製し、次いで、硝酸や塩酸、王水等の酸でポリマー部材を洗浄し、最表面の金属物質を除去することにより、ポリマー部材の最表面でメッキ反応が起きない状態(無電解メッキ液に対して不活性である状態)にしても良い。   First, using a molding machine or the like, a polymer member having a metal substance on the outermost surface at a concentration at which an electroless plating reaction occurs under atmospheric pressure is produced, and then a polymer member with an acid such as nitric acid, hydrochloric acid, or aqua regia. The metal material on the outermost surface may be washed to remove the plating material from the outermost surface of the polymer member (in a state inactive to the electroless plating solution).

さらに、別の方法としては、成形機等を用いて大気圧下で無電解メッキ反応が起こる程度の濃度で金属物質が最表面に存在するポリマー部材を作製し、次いで、加圧二酸化炭素を含む無電解メッキ液を通過させるような材料(例えば、ポリマー部材と同じ材料)からなる膜を、キャスティング、スクリーン印刷、スピンコート、ディッピング等の方法により、ポリマー部材のメッキ膜形成面上に形成しても良い。この方法では、ポリマー部材の表面に金属物質が存在しない膜が形成されるので、大気圧下ではメッキ反応が起きない。なお、このような膜の形成材料としては、例えば、ポリカーボネート、ポリメチルメタクリレート、シクロオレフィン、ポリマー等の熱可塑性樹脂、シリコーン、エポキシ、ポリイミド等の熱硬化性樹脂、アクリル、エポキシ樹脂等の光硬化性樹脂、及び、それらの多孔質材料等が用い得る。   Further, as another method, using a molding machine or the like, a polymer member in which a metal substance is present on the outermost surface at a concentration at which an electroless plating reaction occurs at atmospheric pressure, and then containing pressurized carbon dioxide is included. A film made of a material that allows the electroless plating solution to pass through (for example, the same material as the polymer member) is formed on the plating film forming surface of the polymer member by a method such as casting, screen printing, spin coating, or dipping. Also good. In this method, a film without a metal substance is formed on the surface of the polymer member, so that no plating reaction occurs under atmospheric pressure. Examples of the material for forming such a film include thermoplastic resins such as polycarbonate, polymethyl methacrylate, cycloolefin, and polymers, thermosetting resins such as silicone, epoxy, and polyimide, and photocuring such as acrylic and epoxy resins. Resin, those porous materials, etc. can be used.

また、本発明のメッキ膜の形成方法において、確実にメッキ膜をポリマー部材の内部から成長させる別の方法として、次のような方法が用い得る。   In the method for forming a plating film of the present invention, the following method can be used as another method for reliably growing the plating film from the inside of the polymer member.

本発明のメッキ膜の形成方法では、上記ポリマー部材にメッキ膜を形成することが、加圧二酸化炭素をポリマー基材に接触させてポリマー部材の表面近傍を膨潤させることと、上記ポリマー部材の表面近傍を膨潤させた状態で、加圧二酸化炭素を含む無電解メッキ液を上記ポリマー部材に接触させることとを含むことが好ましい。   In the method for forming a plating film of the present invention, forming the plating film on the polymer member includes contacting pressurized polymer dioxide with the polymer substrate to swell the vicinity of the surface of the polymer member, and the surface of the polymer member. It is preferable to include contacting the polymer member with an electroless plating solution containing pressurized carbon dioxide in a state where the vicinity is swollen.

この方法では、まず、表面内部にメッキ触媒核となるPd、Ni、Pt、Cu等の金属微粒子が含浸したポリマー部材に加圧二酸化炭素を接触させる。この際、ポリマー部材が非晶性材料で形成されている場合にはガラス転移温度が低下して表面近傍が軟化して膨潤する。また、ポリマー部材が結晶性材料で形成されている場合には、軟化しないまでも、表面近傍で分子間距離が拡大して膨潤する。   In this method, first, pressurized carbon dioxide is brought into contact with a polymer member impregnated with metal fine particles such as Pd, Ni, Pt, and Cu, which are plating catalyst nuclei, inside the surface. At this time, when the polymer member is formed of an amorphous material, the glass transition temperature is lowered and the vicinity of the surface is softened and swells. Further, when the polymer member is formed of a crystalline material, the intermolecular distance expands and swells in the vicinity of the surface even if it is not softened.

次いで、このような表面状態にあるポリマー部材に、加圧二酸化炭素を含む無電解メッキ液(メッキ反応が起こる状態(例えば、高温状態)にある無電解メッキ液)を接触させる。この際、ポリマー部材の表面近傍が膨潤した状態で無電解メッキ液を接触させるので、無電解メッキ液を加圧二酸化炭素とともにポリマー部材の内部に速やかに浸透させることができる。また、この際、超臨界状態等の加圧二酸化炭素を混合した無電解メッキ液は表面張力が低くなるので、ポリマー部材の内部に無電解メッキ液がより浸透し易くなる。この結果、ポリマー部材の内部に存在する金属物質まで無電解メッキ液が到達し、ポリマー部材の内部に存在する金属物質を触媒核としてメッキ膜が成長する。この方法においても、無電解メッキ液をポリマー部材の内部に速やかに浸透させることができるので、ポリマー部材の表面だけでなく、内部に存在する金属物質を触媒核としてメッキ膜が成長する。それゆえ、この方法によっても確実にメッキ膜をポリマー部材の内部から成長させることができる。   Next, an electroless plating solution containing pressurized carbon dioxide (an electroless plating solution in a state where a plating reaction occurs (for example, a high temperature state)) is brought into contact with the polymer member in such a surface state. At this time, since the electroless plating solution is brought into contact with the vicinity of the surface of the polymer member being swollen, the electroless plating solution can be rapidly infiltrated into the inside of the polymer member together with the pressurized carbon dioxide. At this time, since the electroless plating solution mixed with pressurized carbon dioxide in a supercritical state or the like has a low surface tension, the electroless plating solution is more easily penetrated into the polymer member. As a result, the electroless plating solution reaches the metal material existing inside the polymer member, and the plating film grows using the metal material existing inside the polymer member as the catalyst nucleus. Also in this method, since the electroless plating solution can be rapidly infiltrated into the inside of the polymer member, the plating film grows using not only the surface of the polymer member but also a metal substance existing inside as a catalyst nucleus. Therefore, the plated film can be reliably grown from the inside of the polymer member also by this method.

本発明のメッキ膜の形成方法では、金属物質が、金属微粒子、金属錯体及び金属錯体の変性物のいずれかを含むことが好ましい。具体的には、ポリマー部材内部に含浸している金属物質はPd、Pt、Cu、Niのいずれかの金属元素からなる微粒子(金属微粒子)もしくは、それらの有機金属錯体および金属錯体の変性物であることが望ましい。特に、金属錯体は加圧二酸化炭素に溶解することから望ましい。また、金属物質が、金属錯体を溶解した加圧二酸化炭素をポリマー部材に浸透させた後の熱等により還元され酸化物や金属微粒子に変質したものでもよい。さらに、金属物質としてパラジウム微粒子を用いた場合には、この金属微粒子は多様な無電解メッキの触媒核として機能するので好適である。また、ニッケル及び銅を金属微粒子として用いた場合には、それぞれニッケルメッキや銅メッキの触媒核と作用する。また、この場合、ニッケル及び銅はパラジウムよりも安価なので状況(コスト等)に応じては好適である。   In the method for forming a plating film of the present invention, it is preferable that the metal substance includes any one of metal fine particles, a metal complex, and a modified metal complex. Specifically, the metal material impregnated inside the polymer member is fine particles (metal fine particles) made of any metal element of Pd, Pt, Cu, or Ni, or their organometallic complexes and modified products of metal complexes. It is desirable to be. In particular, metal complexes are desirable because they dissolve in pressurized carbon dioxide. Alternatively, the metal substance may be reduced to heat or the like after impregnating pressurized carbon dioxide in which the metal complex is dissolved into the polymer member to be converted into oxide or metal fine particles. Further, when palladium fine particles are used as the metal material, the metal fine particles function as catalyst nuclei for various electroless platings, which is preferable. Further, when nickel and copper are used as the metal fine particles, they act on catalyst nuclei for nickel plating and copper plating, respectively. In this case, since nickel and copper are less expensive than palladium, they are suitable depending on the situation (cost, etc.).

本発明のメッキ膜の形成方法では、無電解メッキ液が、界面活性剤を含んでよい。これにより、超臨界二酸化炭素等の加圧二酸化炭素と水溶液である無電解メッキ液との相溶性(親和性)をより向上させ、エマルジョンの形成を助長することができる。また、ポリマー部材に対するメッキ液の親和性も向上させることができる。   In the plating film forming method of the present invention, the electroless plating solution may contain a surfactant. Thereby, the compatibility (affinity) of the pressurized carbon dioxide such as supercritical carbon dioxide and the electroless plating solution that is an aqueous solution can be further improved, and the formation of the emulsion can be promoted. In addition, the affinity of the plating solution for the polymer member can be improved.

界面活性剤としては、公知の、非イオン性、陰イオン性、陽イオン性、両性イオン性界面活性剤のうち、少なくも1種類以上を選択して用いることが望ましい。特に、超臨界二酸化炭素と水とのエマルジョンを形成するのに有効であると確認されている各種界面活性剤を用いることが望ましい。例えば、ポリエチレンオキシド(PEO)−ポリプロピレンオキシド(PPO)のブロックコポリマー、アンモニウムカルボキシレートパーフルオロポリエーテル(PFPE)、PEO−ポリブチレンオキシド(PBO)のブロックコポリマー、オクタエチレングリコールモノドデシルエーテル等を用いることができる。   As the surfactant, it is desirable to select and use at least one of known nonionic, anionic, cationic and zwitterionic surfactants. In particular, it is desirable to use various surfactants that have been confirmed to be effective for forming an emulsion of supercritical carbon dioxide and water. For example, polyethylene oxide (PEO) -polypropylene oxide (PPO) block copolymer, ammonium carboxylate perfluoropolyether (PFPE), PEO-polybutylene oxide (PBO) block copolymer, octaethylene glycol monododecyl ether, etc. Can do.

本発明のメッキ膜の形成方法では、メッキ膜がニッケルリン膜であることが好ましい。本発明における加圧二酸化炭素を含む無電解メッキ液は、二酸化炭素を含むことによりpH(水素イオン指数)が低下する。すなわち、本発明のメッキ膜の形成方法では、無電解メッキ液のpHは二酸化炭素の含有量により変化するので、酸性で安定に反応する無電解メッキ液を用いることが望ましい。ニッケルリンメッキはpHが3〜6程度の広範囲にてメッキ反応可能なので、より好適である。   In the plating film forming method of the present invention, the plating film is preferably a nickel phosphorous film. In the electroless plating solution containing pressurized carbon dioxide in the present invention, the pH (hydrogen ion index) is lowered by containing carbon dioxide. That is, in the method for forming a plating film of the present invention, since the pH of the electroless plating solution varies depending on the carbon dioxide content, it is desirable to use an electroless plating solution that reacts stably in an acidic manner. Nickel phosphorous plating is more suitable because it can be plated over a wide range of pH 3-6.

本発明のメッキ膜の形成方法では、短時間で最小限の薄い金属膜をポリマー部材の表面に形成して金属膜とポリマー部材の密着性を確保することが好ましい。それにより無電解メッキ液が過剰にポリマー部材の内部に浸透することを抑制することができ、無電解メッキ液によるポリマー部材の変形や変質を抑制することができる。また、メッキ膜の膜厚を厚くする必要がある場合には、本発明の上記方法によりポリマー部材上に無電解メッキ膜を形成した後に、常圧で従来のメッキ法(無電解メッキ法及び/又は電解メッキ法)を施すことにより、所望の膜厚を有する金属膜をポリマー部材上に積層することができる。この方法では、金属膜の信頼性(密着性)と、導電性等の物性の確保とを両立したメッキ膜を得ることができる。   In the method for forming a plating film of the present invention, it is preferable that a minimum thin metal film is formed on the surface of the polymer member in a short time to ensure adhesion between the metal film and the polymer member. Thereby, it is possible to suppress the electroless plating solution from excessively penetrating into the polymer member, and it is possible to suppress deformation and alteration of the polymer member due to the electroless plating solution. When it is necessary to increase the thickness of the plating film, after forming the electroless plating film on the polymer member by the above method of the present invention, the conventional plating method (electroless plating method and / or Alternatively, a metal film having a desired film thickness can be laminated on the polymer member by applying an electrolytic plating method). According to this method, a plating film having both the reliability (adhesiveness) of the metal film and securing of physical properties such as conductivity can be obtained.

本発明のメッキ膜の形成方法では、加圧二酸化炭素を含む無電解メッキ液に溶解可能な溶出物質が表面内部に存在するポリマー部材を用意することが好ましい。特に、上記溶出物質がミネラルであることが好ましい。   In the method for forming a plating film of the present invention, it is preferable to prepare a polymer member in which an elution substance that can be dissolved in an electroless plating solution containing pressurized carbon dioxide is present inside the surface. In particular, the elution substance is preferably a mineral.

本発明者の検討によれば、加圧二酸化炭素と水やアルコールの混合溶媒は、酸化力が強く、酸性溶媒に溶解する物質を溶解させることが判明した。特に酸性浴である無電解メッキ液と加圧二酸化炭素との混合溶媒ではその現象は顕著になる。それゆえ、ポリマー部材の表面内部に加圧二酸化炭素を含む無電解メッキ液に溶解する物質が存在するポリマー部材を用意した場合には、加圧二酸化炭素を含む無電解メッキ液をポリマー部材に接触させることにより、ポリマー部材の表面内部の溶出物質が無電解メッキ液に溶け出し、溶出物資が存在していた領域に空隙ができる。その結果、ポリマー部材表面に凹凸が形成され、ポリマー部材表面におけるメッキ膜の物理的アンカー効果が増大し、メッキ膜の密着力をさらに向上させることができる。また、この場合、従来のメッキ法で用いられていた有害な有機溶媒を用いることなくポリマー部材の表面をエッチングすることができる。さらに、ポリマー部材の表面内部に溶出物質が存在するポリマー部材を用いた場合には、ポリマー部材に加圧二酸化炭素と無電解メッキ液との混合溶媒を接触させた際に、混合溶媒が溶出物質を介してポリマー部材内部に浸透しやすくなるという効果も得られる。   According to the study of the present inventor, it has been found that a mixed solvent of pressurized carbon dioxide and water or alcohol has a strong oxidizing power and dissolves a substance that dissolves in an acidic solvent. In particular, the phenomenon becomes remarkable in a mixed solvent of an electroless plating solution and pressurized carbon dioxide, which is an acidic bath. Therefore, if you prepare a polymer member that contains a substance that dissolves in the electroless plating solution containing pressurized carbon dioxide inside the surface of the polymer member, contact the electroless plating solution containing pressurized carbon dioxide with the polymer member. By doing so, the eluted substance inside the surface of the polymer member dissolves into the electroless plating solution, and a void is formed in the region where the eluted substance was present. As a result, irregularities are formed on the surface of the polymer member, the physical anchor effect of the plating film on the surface of the polymer member is increased, and the adhesion of the plating film can be further improved. In this case, the surface of the polymer member can be etched without using a harmful organic solvent that has been used in the conventional plating method. Further, when a polymer member having an elution substance inside the surface of the polymer member is used, when the mixed solvent of pressurized carbon dioxide and electroless plating solution is brought into contact with the polymer member, the mixed solvent becomes the elution substance. It is also possible to obtain an effect that the polymer member can easily penetrate into the polymer member.

本発明のメッキ膜の形成方法において用い得る溶出物質としては、加圧二酸化炭素を含む無電解メッキ液に溶解及び抽出される材料であれば、任意の材料が用い得る。例えば、炭酸カルシウム、炭酸マグネシム等のミネラルを用いることができる。これらミネラルは、ポリマー部材の補強剤として従来用いられているので、ポリマー物性を変化させることなく用いることができる。また、これらの溶出物質は、メッキ反応中にポリマー部材から抽出されてもよいし、メッキ反応前に水やアルコール、または、それらと加圧二酸化炭素との混合溶媒に接触させて、ポリマー部材から予め抽出されていてもよい。   As an elution substance that can be used in the plating film forming method of the present invention, any material can be used as long as it is a material that is dissolved and extracted in an electroless plating solution containing pressurized carbon dioxide. For example, minerals such as calcium carbonate and magnesium carbonate can be used. Since these minerals are conventionally used as a reinforcing agent for polymer members, they can be used without changing the polymer properties. These elution substances may be extracted from the polymer member during the plating reaction, or contacted with water, alcohol, or a mixed solvent of these and pressurized carbon dioxide before the plating reaction. It may be extracted in advance.

ミネラル以外で、溶出物質として用い得るものとしては、熱可塑性樹脂やその低分子物質あるいは、熱可塑性エラストマー等の各種エラストマー(ゴム弾性体)等が挙げられる。これら樹脂物質をベースポリマーに配合することで、加圧二酸化炭素を含む無電解メッキ液をポリマー部材に接触させた際に、選択的に溶融物質の部分を膨潤させることができ、これにより無電解メッキ液が浸透しやすくなる。   Examples of substances that can be used as an eluent other than minerals include thermoplastic resins, low molecular weight substances thereof, and various elastomers (rubber elastic bodies) such as thermoplastic elastomers. By blending these resin substances into the base polymer, when the electroless plating solution containing pressurized carbon dioxide is brought into contact with the polymer member, it is possible to selectively swell the molten material portion, thereby Plating solution is easy to penetrate.

本発明のメッキ膜の形成方法では、ポリマー部材にメッキ膜を形成する際に、金属製の容器本体と、該容器本体の内部に配置され且つ上記加圧二酸化炭素を含む無電解メッキ液に対して不活性な材料で形成された内部容器とを備える処理容器を用い、該内部容器内で上記ポリマー部材を、上記加圧二酸化炭素を含む無電解メッキ液に接触させることが好ましい。内部容器の形成材料はポリテトラフルオロエチレンやポリエチルエーテルケトンや液晶ポリマー等を用いることが好ましい。このような内部容器内でメッキ処理を行うことにより、高圧容器及び内部容器の内壁がメッキされない、腐食しない等の効果が得られる。   In the plating film forming method of the present invention, when the plating film is formed on the polymer member, the metal container body and the electroless plating solution disposed inside the container body and containing the pressurized carbon dioxide It is preferable to use a processing container provided with an inner container made of an inert material, and to bring the polymer member into contact with the electroless plating solution containing the pressurized carbon dioxide in the inner container. It is preferable to use polytetrafluoroethylene, polyethyl ether ketone, liquid crystal polymer, or the like as a material for forming the inner container. By performing the plating process in such an inner container, effects such as that the high-pressure container and the inner wall of the inner container are not plated or corroded can be obtained.

本発明のメッキ膜の形成方法に用い得るポリマー部材の形成材料は任意であり、熱可塑性樹脂、熱硬化樹脂及び紫外線硬化樹脂を用いることができる。特に、熱可塑性樹脂で形成したポリマー部材を用いることが望ましい。熱可塑性樹脂の種類は任意であり、非晶性、結晶性いずれでも適用できる。例えば、ポリエステル系等の合成繊維、ポリプロピレン、ポリアミド系樹脂、ポリメチルメタクリレート、ポリカーボネート、アモルファスポリオレフィン、ポリエーテルイミド、ポリエチレンテレフタレート、液晶ポリマー、ABS系樹脂、ポリアミドイミド、ポリフタルアミド、ポリフェニレンサルファイド、ポリ乳酸等の生分解性プラスチック、ナイロン樹脂等及びそれら複合材料を用いることできる。また、ガラス繊維、カーボン繊維、ナノカーボン、ミネラル等、各種無機フィラー等を混練させた樹脂材料を用いることもできる。   The material for forming the polymer member that can be used in the method for forming a plated film of the present invention is arbitrary, and a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin can be used. In particular, it is desirable to use a polymer member formed of a thermoplastic resin. The type of thermoplastic resin is arbitrary, and can be applied to either amorphous or crystalline. For example, synthetic fibers such as polyester, polypropylene, polyamide resin, polymethyl methacrylate, polycarbonate, amorphous polyolefin, polyetherimide, polyethylene terephthalate, liquid crystal polymer, ABS resin, polyamideimide, polyphthalamide, polyphenylene sulfide, polylactic acid Biodegradable plastics such as nylon resin, nylon resin and the like and composite materials thereof can be used. Further, a resin material in which various inorganic fillers such as glass fiber, carbon fiber, nanocarbon, and mineral are kneaded can also be used.

また、本発明のメッキ膜の形成方法では、ポリマー部材の形態および作製方法は任意であり、例えば、押し出し成形により作製されたシートやパイプ、紫外線硬化や射出成形により作製されたポリマー成形品を用いることができる。工業性を考慮すると、連続生産性の高い射出成形により得られたポリマー成形品を用いることが好ましい。   Further, in the method for forming a plating film of the present invention, the form and production method of the polymer member are arbitrary. For example, a sheet or pipe produced by extrusion molding, or a polymer molded article produced by ultraviolet curing or injection molding is used. be able to. In consideration of industrial properties, it is preferable to use a polymer molded product obtained by injection molding with high continuous productivity.

本発明の第2の態様に従えば、本発明の第1の態様に従うポリマー部材にメッキ膜を形成する方法で用いるための無電解メッキ液であって、さらに、アルコールを含むニッケルリンメッキ液であって、上記ニッケルリンメッキ液中の上記アルコールの体積比率が30〜60%である無電解メッキ液が提供される。 According to a second aspect of the present invention, there is provided an electroless plating solution for use in a method for forming a plating film on a polymer member according to the first aspect of the present invention, further comprising a nickel phosphorus plating solution containing alcohol. An electroless plating solution in which the volume ratio of the alcohol in the nickel phosphorus plating solution is 30 to 60% is provided.

また、本発明の無電解メッキ液では、さらに、加圧二酸化炭素を備えることが好ましい。   The electroless plating solution of the present invention preferably further includes pressurized carbon dioxide.

本発明のメッキ膜の形成方法によれば、ポリマー部材の内部から成長したメッキ膜をポリマー部材上に形成することができるので、より密着性の優れたメッキ膜を形成することができる。   According to the method for forming a plating film of the present invention, a plating film grown from the inside of the polymer member can be formed on the polymer member, so that a plating film with better adhesion can be formed.

また、本発明のメッキ膜の形成方法によれば、無電解メッキ液をポリマー部材の内部に浸透させてメッキ反応を起こさせるので、従来のようにポリマー部材の表面を粗化する必要がなくなり、あらゆる種類のポリマー部材に対して密着性の優れたメッキ膜を形成することができる。   Further, according to the method for forming a plating film of the present invention, since the electroless plating solution penetrates into the inside of the polymer member to cause a plating reaction, it is not necessary to roughen the surface of the polymer member as in the past, A plating film having excellent adhesion can be formed on all types of polymer members.

本発明のメッキ膜の形成方法によれば、アルコールを無電解メッキ液に含ませ、無電解メッキ液と加圧二酸化炭素との相溶性を向上させることができる。   According to the plating film forming method of the present invention, alcohol can be included in the electroless plating solution, and the compatibility between the electroless plating solution and the pressurized carbon dioxide can be improved.

以下、本発明のポリマー部材へのメッキ膜の形成方法の実施例について図面を参照しながら具体的に説明するが、以下に述べる実施例は本発明の好適な具体例であり、本発明はこれに限定されない。   Hereinafter, embodiments of a method for forming a plating film on a polymer member of the present invention will be specifically described with reference to the drawings. However, the embodiments described below are preferred specific examples of the present invention. It is not limited to.

実施例1では、射出成形機を用いてポリマー成形品(ポリマー部材)を射出成形した後に、同じ射出成形機内で無電解メッキ処理を行う方法について説明する。本実施例では、ポリマー部材として自動車ヘッドライトのリフレクターを作製した。   In Example 1, a method of performing an electroless plating process in the same injection molding machine after injection molding of a polymer molded product (polymer member) using an injection molding machine will be described. In this example, an automobile headlight reflector was manufactured as a polymer member.

[ポリマー成形品の製造装置]
本実施例で用いたポリマー成形品の製造装置の概略構成を図1に示した。本実施例の製造装置100は、図1に示すように、主に、金型を含む縦型の射出成形装置部103と、加圧二酸化炭素を含む無電解メッキ液の金型への供給及び排出を制御する無電解メッキ装置部101と、射出成形装置部103の可塑化シリンダー内の溶融樹脂に金属錯体を溶解した加圧二酸化炭素を浸透させるための表面改質装置部102とからなる。
[Production equipment for polymer molded products]
A schematic configuration of the apparatus for producing a polymer molded product used in this example is shown in FIG. As shown in FIG. 1, the manufacturing apparatus 100 of the present embodiment mainly includes a vertical injection molding apparatus 103 including a mold, and supply of an electroless plating solution including pressurized carbon dioxide to the mold. It comprises an electroless plating apparatus unit 101 that controls discharge, and a surface reforming apparatus unit 102 that permeates pressurized carbon dioxide in which a metal complex is dissolved in a molten resin in a plasticizing cylinder of an injection molding apparatus unit 103.

縦型の射出成形装置部103は、主に、図1に示すように、ポリマー成形品の形成樹脂を可塑化溶融する可塑化溶融装置110と、金型を開閉する型締め装置111とからなる。   As shown in FIG. 1, the vertical injection molding apparatus unit 103 mainly includes a plasticizing and melting apparatus 110 that plasticizes and melts a resin for forming a polymer molded product, and a mold clamping apparatus 111 that opens and closes a mold. .

可塑化溶融装置110は、主に、スクリュー51を内蔵した可塑化シリンダー52と、ホッパー50と、可塑化シリンダー52内の先端部(フローフロント部)付近に設けられた加圧二酸化炭素の導入バルブ65とからなる。また、可塑化シリンダー52の導入バルブ65と対向する位置には、樹脂内圧を計測するための圧力センサー40を設けた。なお、ホッパー50内から可塑化シリンダー52内に供給される図示しない樹脂ペレットの材料としては、ポニフェニレンサルファイド(大日本インキ化学工業社製FZ−8600 Black)を用いた。   The plasticizing and melting apparatus 110 mainly includes a plasticizing cylinder 52 with a built-in screw 51, a hopper 50, and a pressurized carbon dioxide introduction valve provided in the vicinity of a tip portion (flow front portion) in the plasticizing cylinder 52. 65. Further, a pressure sensor 40 for measuring the resin internal pressure was provided at a position facing the introduction valve 65 of the plasticizing cylinder 52. Poniphenylene sulfide (FZ-8600 Black manufactured by Dainippon Ink & Chemicals, Inc.) was used as a material for resin pellets (not shown) supplied from the hopper 50 into the plasticizing cylinder 52.

また、型締め装置111は、主に、固定金型53と、可動金型54とからなり、可動金型54が可動プラテン56およびそれに連結した図示しない油圧型締め機構の駆動に連動して4本のタイバー55間を開閉する構造になっている。また、可動金型54には、可動金型54及び固定金型53との間に画成されるキャビティ104に、加圧二酸化炭素及び無電解メッキ液を供給及び排出するためのメッキ液導入路61,62が形成されている。なお、メッキ液導入路61,62は、図1に示すように後述する無電解メッキ装置部101の配管15に接続されており、配管15を介して加圧二酸化炭素及び無電解メッキ液がキャビティ104に導入される構造になっている。また、キャビティ104のシールは、固定金型53の外径部に設けられたバネ内蔵シール17と可動金型54との勘合により行われる。   The mold clamping device 111 is mainly composed of a fixed mold 53 and a movable mold 54. The movable mold 54 is connected to a movable platen 56 and a hydraulic mold clamping mechanism (not shown) connected to the movable mold 54 in conjunction with the drive. It is structured to open and close between the tie bars 55 of the book. Further, the movable mold 54 has a plating solution introduction path for supplying and discharging pressurized carbon dioxide and electroless plating solution to a cavity 104 defined between the movable mold 54 and the fixed mold 53. 61, 62 are formed. The plating solution introduction paths 61 and 62 are connected to a pipe 15 of an electroless plating apparatus unit 101 to be described later as shown in FIG. 1, and pressurized carbon dioxide and electroless plating liquid are cavities through the pipe 15. The structure is introduced into 104. The cavity 104 is sealed by fitting the spring-incorporated seal 17 provided on the outer diameter portion of the fixed mold 53 and the movable mold 54.

表面改質装置部102は、図1に示すように、主に、液体二酸化炭素ボンベ21と、シリンジポンプ20,34と、フィルター57と、背圧弁48と、金属錯体を加圧二酸化炭素に溶解する溶解槽35と、これらの構成要素を繋ぐ配管80とから構成される。また、表面改質装置部102の配管80は、図1に示すように、可塑化シリンダー52の導入バルブ65に接続されており、導入バルブ65付近の配管80には圧力センサー47が設けられている。なお、この例では、溶解槽35に仕込んだ金属微粒子(金属物質)の原料としては、金属錯体(ヘキサフルオロアセチルアセトナパラジウム(II))を用いた。   As shown in FIG. 1, the surface reformer unit 102 mainly dissolves a liquid carbon dioxide cylinder 21, syringe pumps 20, 34, a filter 57, a back pressure valve 48, and a metal complex in pressurized carbon dioxide. It comprises a dissolving tank 35 and a pipe 80 connecting these components. Further, as shown in FIG. 1, the pipe 80 of the surface reforming unit 102 is connected to an introduction valve 65 of the plasticizing cylinder 52, and a pressure sensor 47 is provided in the pipe 80 near the introduction valve 65. Yes. In this example, a metal complex (hexafluoroacetylacetona palladium (II)) was used as a raw material for the metal fine particles (metal substance) charged in the dissolution tank 35.

無電解メッキ装置部101は、図1に示すように、主に、液体二酸化炭素ボンベ21と、ポンプ19と、バッファータンク36と、無電解メッキ液と加圧二酸化炭素を混合させる高圧容器10と、循環ポンプ90と、無電解メッキ液を補給するためのメッキタンク11と、シリンジポンプ33と、無電解メッキ液を回収する回収容器63と、回収槽12と、これらの構成要素を繋ぐ配管15とから構成される。また、加圧二酸化炭素及び無電解メッキ液の流動を制御するための自動バルブ43〜46,38が配管15の所定箇所に設けられている。また、配管15は、図1に示すように、可動金型54のメッキ液導入路61,62と接続されている。なお、この例では、無電解メッキ液としては、原液15%、アルコール(エタノール)50vol%を含むニッケルリン無電解メッキ液を用いた。   As shown in FIG. 1, the electroless plating apparatus unit 101 mainly includes a liquid carbon dioxide cylinder 21, a pump 19, a buffer tank 36, and a high-pressure vessel 10 that mixes an electroless plating solution and pressurized carbon dioxide. The circulation pump 90, the plating tank 11 for replenishing the electroless plating solution, the syringe pump 33, the recovery container 63 for recovering the electroless plating solution, the recovery tank 12, and the piping 15 connecting these components It consists of. Further, automatic valves 43 to 46 and 38 for controlling the flow of the pressurized carbon dioxide and the electroless plating solution are provided at predetermined positions of the pipe 15. Further, as shown in FIG. 1, the pipe 15 is connected to plating solution introduction paths 61 and 62 of the movable mold 54. In this example, a nickel phosphorus electroless plating solution containing 15% stock solution and 50 vol% alcohol (ethanol) was used as the electroless plating solution.

[ポリマー成形品の成形方法]
次に、表面内部に金属微粒子を浸透させたポリマー成形品の成形方法について説明する。なお、本発明において金属錯体の樹脂への浸透方法は任意であるが、本実施例では、可塑化シリンダー52内で可塑化計量した溶融樹脂の先端部(フローフロント部)に金属錯体を溶解した加圧二酸化炭素を導入した。
[Molding method of polymer molded product]
Next, a method for forming a polymer molded article in which metal fine particles are infiltrated into the surface will be described. In the present invention, the method of penetrating the metal complex into the resin is arbitrary, but in this embodiment, the metal complex was dissolved at the tip (flow front part) of the molten resin plasticized and measured in the plasticizing cylinder 52. Pressurized carbon dioxide was introduced.

まず、溶解槽35において金属錯体をエタノールに溶解させ、金属錯体が溶解したエタノールをシリンジポンプ34内で15MPaに昇圧した。一方、液体二酸化炭素ボンベ21よりフィルター57を介してシリンジポンプ20に供給し、シリンジポンプ20内で液体二酸化炭素を15MPaと昇圧した。そして、昇圧された二酸化炭素と金属錯体が溶解したエタノールと配管80内で混合した(加圧混合流体を生成した)。なお、この加圧混合流体を可塑化溶融装置110に供給する際、加圧混合流体の供給圧力は、圧力計49の表示が15MPaになるように、背圧弁48により制御した。また、両シリンンジポンプ20,34からのエタノール溶液と加圧二酸化炭素との加圧混合流体の送液は、各シリンジポンプ20,34の制御を圧力制御から流量制御に切り替えて行った。さらに、加圧混合流体を可塑化溶融装置110に供給する際には、加圧混合流体を、配管80内で図示しないヒーターにより50℃に温度制御しつつ、可塑化溶融装置110に供給した。   First, the metal complex was dissolved in ethanol in the dissolution tank 35, and the ethanol in which the metal complex was dissolved was increased to 15 MPa in the syringe pump 34. On the other hand, the liquid carbon dioxide cylinder 21 was supplied to the syringe pump 20 via the filter 57, and the liquid carbon dioxide pressure was increased to 15 MPa in the syringe pump 20. The pressurized carbon dioxide and ethanol in which the metal complex was dissolved were mixed in the pipe 80 (a pressurized mixed fluid was generated). When the pressurized mixed fluid was supplied to the plasticizing and melting apparatus 110, the supply pressure of the pressurized mixed fluid was controlled by the back pressure valve 48 so that the display of the pressure gauge 49 became 15 MPa. Further, the feeding of the pressurized mixed fluid of the ethanol solution and the pressurized carbon dioxide from both syringe pumps 20 and 34 was performed by switching the control of each syringe pump 20 and 34 from the pressure control to the flow rate control. Furthermore, when supplying the pressurized mixed fluid to the plasticizing and melting apparatus 110, the pressurized mixed fluid was supplied to the plasticizing and melting apparatus 110 while controlling the temperature in the pipe 80 to 50 ° C. by a heater (not shown).

次に、加圧混合流体を可塑化溶融装置110内に導入する手順を図1及び2を参照しながら説明する。図2(a)及び2(b)は、可塑化溶融装置110の導入バルブ65付近の拡大断面図である。まず、ホッパー50から樹脂ペレットを供給しながら、可塑化シリンダー52内のスクリュー51を回転させて、樹脂の可塑化計量を行った。可塑化計量完了時における導入バルブ65付近の状態を示したのが図2(a)である。なお、この際、図2(a)に示すように、導入バルブ65の導入ピン70が後退(図2(a)中の左側に移動)することで、溶融樹脂66へ加圧混合流体67が導入されること遮断している。   Next, a procedure for introducing the pressurized mixed fluid into the plasticizing and melting apparatus 110 will be described with reference to FIGS. 2A and 2B are enlarged cross-sectional views of the vicinity of the introduction valve 65 of the plasticizing and melting apparatus 110. FIG. First, while supplying resin pellets from the hopper 50, the screw 51 in the plasticizing cylinder 52 was rotated to measure plasticization of the resin. FIG. 2A shows a state in the vicinity of the introduction valve 65 when the plasticizing measurement is completed. At this time, as shown in FIG. 2A, the introduction pin 70 of the introduction valve 65 moves backward (moves to the left side in FIG. 2A), so that the pressurized mixed fluid 67 is fed to the molten resin 66. It is blocked from being introduced.

次いで、スクリュー51をサックバック(後退)して、溶融樹脂66の内圧力を低下させると同時に、両シリンジポンプ20,34を圧力制御から流量制御に切り替え、金属錯体の溶解したエタノールと二酸化炭素の流量をそれぞれ上述の方法にて1:10としながら、加圧混合流体67を導入バルブ65を介して可塑化シリンダー52内のフローフロント部の溶融樹脂66に導入した(図2(b)の状態)。図2(b)中の領域68が加圧混合流体67が浸透した溶融樹脂の部分である。   Next, the screw 51 is sucked back (retracted) to reduce the internal pressure of the molten resin 66, and at the same time, both syringe pumps 20 and 34 are switched from pressure control to flow rate control. The pressure mixed fluid 67 was introduced into the molten resin 66 at the flow front portion in the plasticizing cylinder 52 through the introduction valve 65 while the flow rate was set to 1:10 by the above-described method (the state of FIG. 2B). ). A region 68 in FIG. 2B is a portion of the molten resin into which the pressurized mixed fluid 67 has permeated.

なお、本実施例の可塑化シリンダー52の導入バルブ65では、溶融樹脂66と加圧混合流体67との圧力差が5MPa以上となったときに、加圧混合流体67が可塑化シリンダー52内の溶融樹脂66の導入される構造になっており、導入バルブ65による加圧混合流体67の導入原理は次の通りである。可塑化計量完了後、スクリュー51をサックバックさせると、溶融樹脂66が減圧され密度が低下する。そして、溶融樹脂66と加圧混合流体67との圧力差が5MPa以上となったとき、加圧混合流体67の圧力が導入バルブ65内のバネ71の戻し力(弾性力)に打ち勝ち、導入ピン70が溶融樹脂66側に前進し、加圧混合流体67が溶融樹脂66内部に導入される。なお、加圧混合流体67の導入は、樹脂圧および加圧混合流体67の圧力を、それぞれ圧力センサー40,47で監視しながら行った。   In the introduction valve 65 of the plasticizing cylinder 52 of this embodiment, when the pressure difference between the molten resin 66 and the pressurized mixed fluid 67 becomes 5 MPa or more, the pressurized mixed fluid 67 is contained in the plasticizing cylinder 52. The structure is such that the molten resin 66 is introduced, and the principle of introduction of the pressurized mixed fluid 67 by the introduction valve 65 is as follows. When the screw 51 is sucked back after the plasticization measurement is completed, the molten resin 66 is decompressed and the density is lowered. When the pressure difference between the molten resin 66 and the pressurized mixed fluid 67 becomes 5 MPa or more, the pressure of the pressurized mixed fluid 67 overcomes the return force (elastic force) of the spring 71 in the introduction valve 65, and the introduction pin 70 advances to the molten resin 66 side, and the pressurized mixed fluid 67 is introduced into the molten resin 66. The pressurized mixed fluid 67 was introduced while monitoring the resin pressure and the pressure of the pressurized mixed fluid 67 with the pressure sensors 40 and 47, respectively.

次いで、両シリンジポンプ20,34を停止して加圧混合流体67の送液を停止した。また、それと同時に、スクリュー51を前進させて、樹脂圧力を20MPaまで再度上昇させ、導入ピン70を後退(図2(b)中の左方向に移動)させた。それにより、加圧混合流体67の導入を停止するとともに、加圧混合流体67と溶融樹脂66とを相溶させた。   Subsequently, both syringe pumps 20 and 34 were stopped, and liquid feeding of the pressurized mixed fluid 67 was stopped. At the same time, the screw 51 was advanced to increase the resin pressure again to 20 MPa, and the introduction pin 70 was retracted (moved leftward in FIG. 2B). Thus, the introduction of the pressurized mixed fluid 67 was stopped, and the pressurized mixed fluid 67 and the molten resin 66 were made compatible.

次いで、可塑化シリンダー52内のフローフロント部の樹脂圧力を20MPaに保持して金属錯体を樹脂に十分に浸透させた後、樹脂内圧を1MPaまで減圧した。この動作により、浸透した多くの金属錯体は高温度高圧力下にて熱分解してクラースターを形成し、有機物である金属錯体はより比重の重い金属微粒子と変化する。また、この際、二酸化炭素は低圧のガスとなる。溶融樹脂のフローフロント部をこのような状態にすることにより、後述する射出充填でスキン層を形成した際に、金属微粒子や二酸化炭素ガスがスキン層の表面(成形品の最表面)に浮き出難くなる。   Subsequently, the resin pressure of the flow front part in the plasticizing cylinder 52 was maintained at 20 MPa to sufficiently infiltrate the metal complex into the resin, and then the internal pressure of the resin was reduced to 1 MPa. By this operation, many of the infiltrated metal complexes are thermally decomposed under high temperature and high pressure to form a clusterer, and the metal complex that is an organic substance changes to metal fine particles having a higher specific gravity. At this time, carbon dioxide becomes a low-pressure gas. By setting the flow front portion of the molten resin in such a state, when the skin layer is formed by injection filling described later, the metal fine particles and carbon dioxide gas are difficult to float on the surface of the skin layer (the outermost surface of the molded product). Become.

次いで、両シリンジポンプ20,34を、配管80中の図示しない自動バルブを閉鎖した後、可塑化溶融装置110に供給した加圧二酸化炭素及び金属錯体が溶解したエタノール溶液の流量分をシリンジポンプ20,34内に補液した。その後、圧力制御に切り替え、15MPaの高圧に保持し、次ショットの送液まで待機させた。   Subsequently, after closing both the syringe pumps 20 and 34 in an automatic valve (not shown) in the pipe 80, the flow rate of the ethanol solution in which the pressurized carbon dioxide and the metal complex supplied to the plasticizing and melting apparatus 110 are dissolved is the syringe pump 20. , 34 was replenished. After that, the pressure control was switched to 15 MPa, and the system was kept waiting until the next shot was fed.

次に、可塑化シリンダー52内のフローフロント部の溶融樹脂66に加圧混合流体67を導入した後、型締め装置111の油圧型締め機構(不図示)により型締めされ、温調回路(不図示)により温度制御された金型内に画成されたキャビティ104に溶融樹脂を射出充填した。この際、射出充填するまでの射出速度を100m/sと低速にして、ポリマー成形品の最表面に金属微粒子(Pd)が十分な濃度で分散しない、すなわち、大気圧下でメッキ反応を起こさない濃度で分散するように射出成形した。次いで、成形品を冷却固化した(図3の状態)。   Next, after the pressurized mixed fluid 67 is introduced into the molten resin 66 in the flow front part in the plasticizing cylinder 52, the mold is clamped by a hydraulic mold clamping mechanism (not shown) of the mold clamping device 111, and a temperature control circuit (not shown). The molten resin was injected and filled into the cavity 104 defined in the mold controlled in temperature by the illustration. At this time, the injection speed until injection filling is set to a low speed of 100 m / s, and the fine metal particles (Pd) are not dispersed at a sufficient concentration on the outermost surface of the polymer molded product, that is, no plating reaction is caused under atmospheric pressure. Injection molding was performed so as to disperse at a concentration. Next, the molded product was cooled and solidified (state shown in FIG. 3).

なお、溶融樹脂を金型内に射出成形する際、最初に射出されるフローフロント部の溶融樹脂68は噴水効果(ファウンテンフロー)により、射出成形品の表皮を形成する。すなわち、この例では、フローフロント部近傍に金属錯体由来の金属微粒子が分散しているので、図3に示すように、ポリマー成形品507の表皮505(表面内部)には金属微粒子が含浸したポリマー成形品507が得られる(図5中のステップS11)。この例では、このようにして、表皮であるスキン層505に金属微粒子が分散し、内皮であるコア層506に、ほとんど金属微粒子が存在しないポリマー成形品507を得た。   When the molten resin is injection-molded into the mold, the molten resin 68 in the flow front portion that is injected first forms the skin of the injection-molded product by the fountain effect (fountain flow). That is, in this example, metal fine particles derived from the metal complex are dispersed in the vicinity of the flow front portion, and therefore, as shown in FIG. 3, the polymer 507 (inside the surface) of the polymer molded product 507 has a polymer impregnated with metal fine particles. A molded product 507 is obtained (step S11 in FIG. 5). In this example, in this way, the metal fine particles were dispersed in the skin layer 505 as the epidermis, and the polymer molded product 507 having almost no metal fine particles in the core layer 506 as the endothelium was obtained.

上述のようにして作製したこの例のポリマー成形品507の概略断面図を図6に示した。この例のポリマー成形品507のスキン層505には、図6に示すように、金属微粒子550(金属物質)がスキン層505の表面近傍から内部に分散(存在)しているものの、スキン層505の最表面近傍における金属微粒子550の濃度は、スキン層505内部の金属微粒子550の濃度より低くなっていた。また、この例の成形直後のポリマー成形品507(図6の成形品)を、実際に、大気圧にて70℃の無電解メッキ液(メッキ反応温度60〜85℃のメッキ液)中に10分間浸漬したところ、ポリマー成形品507の表面にはメッキ膜は形成されなかった。このことから、この例の成形直後のポリマー成形品507では、その最表面(メッキ膜形成面)が大気圧下でメッキ反応を起こさない状態、すなわち、無電解メッキ液に対して不活性であることが確認された。   A schematic cross-sectional view of the polymer molded product 507 of this example produced as described above is shown in FIG. In the skin layer 505 of the polymer molded product 507 of this example, as shown in FIG. 6, although the metal fine particles 550 (metal substance) are dispersed (existing) from the vicinity of the surface of the skin layer 505 to the inside, the skin layer 505 The concentration of the metal fine particles 550 in the vicinity of the outermost surface was lower than the concentration of the metal fine particles 550 inside the skin layer 505. In addition, the polymer molded product 507 (molded product in FIG. 6) immediately after molding in this example is actually 10% in an electroless plating solution (plating solution having a plating reaction temperature of 60 to 85 ° C.) at 70 ° C. at atmospheric pressure. When immersed for a minute, no plating film was formed on the surface of the polymer molded product 507. From this, in the polymer molded product 507 immediately after molding in this example, the outermost surface (plated film forming surface) is inactive to the electroless plating solution in a state where no plating reaction occurs under atmospheric pressure. It was confirmed.

[メッキ膜の形成方法]
上述のようにして作製された表面内部に金属微粒子が分散したポリマー成形品507に対して、次のようにして、金型内で無電解メッキ処理を行った。なお、無電解メッキ処理を行っている間、金型内部は80℃に温調した。
[Method of forming plating film]
The polymer molded product 507 in which metal fine particles were dispersed inside the surface produced as described above was subjected to electroless plating in a mold as follows. During the electroless plating process, the temperature inside the mold was adjusted to 80 ° C.

まず、図4に示すように、型締め装置111の油圧型締め機構(不図示)を後退(図4中の下方向)させることにより、可動プラテン56および可動金型54を後退させ、固定金型53とポリマー成形品507との間に隙間508(キャビティ508)を設けた。   First, as shown in FIG. 4, the movable platen 56 and the movable mold 54 are moved backward by retreating the hydraulic mold clamping mechanism (not shown) of the mold clamping device 111 (downward in FIG. 4), so that the fixed mold is fixed. A gap 508 (cavity 508) was provided between the mold 53 and the polymer molded product 507.

次いで、加圧二酸化炭素を含む無電解メッキ液をキャビティ508に導入して、ポリマー成形品507に接触させた。具体的には、次のようにして加圧二酸化炭素を含む無電解メッキ液をポリマー成形品507に接触させた。まず、予め、無電解メッキ装置部101のメッキタンク11から供給されたアルコールを含む無電解メッキ液と、バッファータンク36から供給された15MPaの加圧二酸化炭素とを、高圧容器10内にて7:3の比で混合させた(図5中のステップS12)。本発明においては、加圧二酸化炭素とメッキ液の混合比は1:9から5:5の範囲が好ましく、特に、メッキ液の量が多いほうが望ましい。また、この際、スタラー16の駆動および、マグネチックスタラー6の高速回転により加圧二酸化炭素と無電解メッキ液とを高圧容器10内で相溶させた。次いで、自動バルブ43を閉鎖し、自動バルブ44,45を開放した。   Next, an electroless plating solution containing pressurized carbon dioxide was introduced into the cavity 508 and brought into contact with the polymer molded product 507. Specifically, an electroless plating solution containing pressurized carbon dioxide was brought into contact with the polymer molded product 507 as follows. First, an electroless plating solution containing alcohol supplied from the plating tank 11 of the electroless plating apparatus unit 101 and a pressurized carbon dioxide of 15 MPa supplied from the buffer tank 36 in advance in the high-pressure vessel 10. : 3 was mixed (step S12 in FIG. 5). In the present invention, the mixing ratio of the pressurized carbon dioxide and the plating solution is preferably in the range of 1: 9 to 5: 5, and it is particularly desirable that the amount of the plating solution is large. At this time, the pressurized carbon dioxide and the electroless plating solution were dissolved in the high-pressure vessel 10 by driving the stirrer 16 and rotating the magnetic stirrer 6 at high speed. Subsequently, the automatic valve 43 was closed and the automatic valves 44 and 45 were opened.

次いで、循環ポンプ9を運転し、高圧容器10、配管15およびキャビティ508からなる循環流路に、加圧二酸化炭素及びアルコールを含む無電解メッキ液を循環させて、一時的にポリマー成形品507の表面に無電解メッキ液を滞留および接触させ、メッキ膜(ニッケルリン膜)を形成した(図5中のステップS13)。なお、加圧二酸化炭素を含む無電解メッキ液が循環している際には、キャビティ508および循環ライン15の圧力は圧力センサー58,59で同圧になっていた。また、無電解メッキ液の補給は、メッキタンク11より供給したメッキ液をシリンジポンプ33で昇圧して、自動バルブ46の開放と同時に送液することで随時行った。   Next, the circulation pump 9 is operated, and an electroless plating solution containing pressurized carbon dioxide and alcohol is circulated through a circulation flow path including the high-pressure vessel 10, the pipe 15, and the cavity 508, so that the polymer molded product 507 is temporarily formed. An electroless plating solution was retained and contacted on the surface to form a plating film (nickel phosphorus film) (step S13 in FIG. 5). When the electroless plating solution containing pressurized carbon dioxide was circulated, the pressures in the cavities 508 and the circulation line 15 were the same by the pressure sensors 58 and 59. Further, replenishment of the electroless plating solution was performed at any time by increasing the pressure of the plating solution supplied from the plating tank 11 with the syringe pump 33 and feeding it simultaneously with the opening of the automatic valve 46.

上述の工程で、加圧二酸化炭素及びアルコールを含む無電解メッキ液をポリマー成形品507に接触させた際には、ポリマー成形品507の最表面ではメッキ反応は起こらず、加圧二酸化炭素を含む無電解メッキ液はポリマー成形品507の内部に浸透する。そして、ポリマー成形品507内部において、メッキ反応を起こすのに十分な濃度で金属微粒子が分散している領域まで、無電解メッキ液が浸透すると、その領域の金属微粒子を触媒核にして、メッキ膜が成長し始める。その後、金属微粒子の自己触媒作用により、メッキ膜がポリマー部材の内部から表面に向かって成長する。すなわち、ポリマー成形品507上に形成されたメッキ膜はポリマー成形品507の内部に食い込んだ状態で成長するので、密着性の優れたメッキ膜が形成される。   When the electroless plating solution containing pressurized carbon dioxide and alcohol is brought into contact with the polymer molded product 507 in the above-described process, the plating reaction does not occur on the outermost surface of the polymer molded product 507, and the pressurized carbon dioxide is contained. The electroless plating solution penetrates into the polymer molded product 507. Then, when the electroless plating solution penetrates to a region where the metal fine particles are dispersed at a concentration sufficient to cause a plating reaction inside the polymer molded product 507, the metal fine particles in the region are used as catalyst nuclei to form a plating film. Begins to grow. Thereafter, the plating film grows from the inside of the polymer member toward the surface by the autocatalytic action of the metal fine particles. That is, since the plating film formed on the polymer molded product 507 grows in a state of being bitten into the polymer molded product 507, a plating film having excellent adhesion is formed.

次いで、上述のようにしてポリマー成形品507上にメッキ膜を形成した後、加圧二酸化炭素を含む無電解メッキ液の循環経路から加圧二酸化炭素を含む無電解メッキ液を回収容器63を介して回収槽12から排気した。具体的には、自動バルブ44,45を閉鎖し、次いで、自動バルブ38を開放することで、加圧二酸化炭素を含む無電解メッキ液を回収容器63に排出した。回収容器63では、回収した加圧二酸化炭素を含む無電解メッキ液が、遠心分離の原理で水溶液(メッキ液)と高圧ガス(二酸化炭素)に分離される。メッキ液は回収槽12で回収し再利用することができる。ガス化した二酸化炭素は回収容器63の上部から排出され、図示しない排気ダクトに回収される。   Next, after forming a plating film on the polymer molded product 507 as described above, the electroless plating solution containing pressurized carbon dioxide is circulated through the collection vessel 63 from the circulation path of the electroless plating solution containing pressurized carbon dioxide. Exhausted from the recovery tank 12. Specifically, the automatic valves 44 and 45 were closed, and then the automatic valve 38 was opened, whereby the electroless plating solution containing pressurized carbon dioxide was discharged into the collection container 63. In the recovery container 63, the electroless plating solution containing the recovered pressurized carbon dioxide is separated into an aqueous solution (plating solution) and a high-pressure gas (carbon dioxide) by the principle of centrifugation. The plating solution can be recovered in the recovery tank 12 and reused. The gasified carbon dioxide is discharged from the upper part of the recovery container 63 and recovered in an exhaust duct (not shown).

次いで、自動バルブ43を一定時間開いて、固定金型53とポリマー成形品507との間の隙間508(キャビティ508)に加圧二酸化炭素を導入し、キャビティ508に残ったメッキ液の残留物を加圧二酸化炭素とともに金型の外へ排出した。次いで、キャビティ508の内圧が圧力センサー59のモニター値でゼロになったところで、金型を開きポリマー成形品507を取り出した。   Next, the automatic valve 43 is opened for a certain period of time, and pressurized carbon dioxide is introduced into the gap 508 (cavity 508) between the fixed mold 53 and the polymer molded product 507, and the plating solution residue remaining in the cavity 508 is removed. It was discharged out of the mold together with the pressurized carbon dioxide. Next, when the internal pressure of the cavity 508 became zero as monitored by the pressure sensor 59, the mold was opened and the polymer molded product 507 was taken out.

次に、取り出したポリマー成形品507に対して、通常の銀メッキを施して、ポリマー成形品507の表面に銀メッキ膜を積層した。この例では、上述のようにして、表面にメッキ膜が形成されたポリマー成形品507を得た。   Next, the silver molded film 507 was laminated on the surface of the polymer molded product 507 by applying normal silver plating to the polymer molded product 507 taken out. In this example, a polymer molded product 507 having a plating film formed on the surface was obtained as described above.

この例で作製されたポリマー成形品507の一部の模式断面図を図7に示した。この例で作製されたポリマー成形品507の片側には、金型内で成長させたニッケルーリンの金属膜509(メッキ膜)が形成されており、ニッケルーリンの金属膜509はポリマー成形品507の内部から成長していた(金属膜509の浸透層が形成されていた)。また、ニッケルーリンの金属膜509の上に銀の高反射膜510が形成されていた。   FIG. 7 shows a schematic cross-sectional view of a part of the polymer molded product 507 produced in this example. A nickel-phosphorus metal film 509 (plating film) grown in a mold is formed on one side of the polymer molded article 507 manufactured in this example. The nickel-phosphorus metal film 509 is formed of the polymer molded article 507. It grew from the inside (the permeation layer of the metal film 509 was formed). Further, a silver highly reflective film 510 was formed on the nickel-phosphorus metal film 509.

[メッキ膜の評価]
次に、この例で作製されたポリマー成形品507に対して、金属膜の密着性評価を行った。具体的には、高温多湿環境試験(条件:温度85℃、湿度85%Rh、放置時間1000時間)、温度150℃,放置時間500時間の条件での高温試験、並びに、−30℃と150℃との温度間でヒートッショク試験を20サイクル行った。その結果、すべての試験において金属膜の密着性の低下は認められなかった。さらに、この例で作製されたポリマー成形品507の表面粗さRaを測定したところ、金型の表面粗さと同等のRa=100nmであった。すなわち、この例のメッキ膜の形成方法によれば、射出成形と同時にメッキ処理を行うことができ、プロセスが簡略化することができる(安価にポリマー部材を製造できる)だけでなく、密着性が高く且つ平滑な金属膜を耐熱性の高い樹脂材料に形成できることが分かった。
[Evaluation of plating film]
Next, the adhesion evaluation of a metal film was performed with respect to the polymer molded product 507 produced in this example. Specifically, high temperature and high humidity environment test (conditions: temperature 85 ° C., humidity 85% Rh, standing time 1000 hours), high temperature test under conditions of temperature 150 ° C. and standing time 500 hours, and −30 ° C. and 150 ° C. The heat shock test was performed 20 cycles between the temperatures. As a result, no decrease in the adhesion of the metal film was observed in all tests. Furthermore, when the surface roughness Ra of the polymer molded product 507 produced in this example was measured, Ra = 100 nm, which is equivalent to the surface roughness of the mold. That is, according to the plating film forming method of this example, the plating process can be performed simultaneously with the injection molding, the process can be simplified (the polymer member can be manufactured at a low cost), and the adhesiveness is also improved. It was found that a high and smooth metal film can be formed on a resin material having high heat resistance.

実施例2では、サンドイッチ成形機を用いて表面内部に金属微粒子が含浸したポリマー成形品(ポリマー部材)を作製し、その後、別の容器内で成形したポリマー成形品に無電解メッキ処理を施す方法について説明する。本実施例では、ポリマー成形品として自動車用のドアノブを作製した。   In Example 2, a method of producing a polymer molded article (polymer member) in which metal fine particles are impregnated on the surface using a sandwich molding machine, and then subjecting the polymer molded article molded in another container to electroless plating treatment Will be described. In this example, a door knob for an automobile was produced as a polymer molded product.

本実施例では、後述する加圧二酸化炭素に溶解させる機能性材料の種類は任意であるが、本実施例においては、金属錯体を用いた。金属錯体の種類は任意であるが、二酸化炭素に対し高い溶解度を有するヘキサフルオロアセチルアセトナトパラジウム(II)を用いた。また、後述する溶融樹脂に導入する加圧二酸化炭素の温度、圧力条件は任意であるが、本実施例においては超臨界状態となる温度40℃、圧力10MPaとした。また、本実施例では、ポリマー成形品の形成材料としては、ガラス繊維30%含むポリアミド6樹脂を用いた。   In this example, the type of functional material to be dissolved in pressurized carbon dioxide described later is arbitrary, but in this example, a metal complex was used. The type of the metal complex is arbitrary, but hexafluoroacetylacetonato palladium (II) having high solubility in carbon dioxide was used. Moreover, although the temperature and pressure conditions of the pressurized carbon dioxide introduced into the molten resin described later are arbitrary, in this embodiment, the temperature is 40 ° C. and the pressure is 10 MPa at which a supercritical state is achieved. In this example, polyamide 6 resin containing 30% glass fiber was used as a material for forming a polymer molded product.

[サンドイッチ成形装置]
まず、この例のポリマー成形品(ポリマー部材)の製造方法で用いたサンドイッチ成形装置について説明する。この例で用いた成形装置の概略構成を図8に示した。この例で用いた成形装置200は、図8に示すように、サンドイッチ成形機部201と、加圧流体供給部202と、加圧流体排出部203とから構成される。
[Sandwich molding equipment]
First, the sandwich molding apparatus used in the method for producing a polymer molded product (polymer member) of this example will be described. A schematic configuration of the molding apparatus used in this example is shown in FIG. As shown in FIG. 8, the molding apparatus 200 used in this example includes a sandwich molding machine unit 201, a pressurized fluid supply unit 202, and a pressurized fluid discharge unit 203.

サンドイッチ成形機部201は、図8に示すように、主に、ポリマー成形品の外皮(表面層)を形成するための第1の可塑化溶融シリンダー220(以下、第1加熱シリンダーともいう)と、ポリマー成形品のコア部を形成するための第2の可塑化溶融シリンダー224(以下、第2加熱シリンダーともいう)と、第1加熱シリンダー220及び第2加熱シリンダー224の溶融樹脂の排出口220a及び224aに接続され且つ第1加熱シリンダー220及び第2加熱シリンダー224内部に流通したノズル部218と、可動金型211及び固定金型212を備える金型210とから構成される。   As shown in FIG. 8, the sandwich molding machine unit 201 mainly includes a first plasticizing and melting cylinder 220 (hereinafter, also referred to as a first heating cylinder) for forming a skin (surface layer) of a polymer molded product. , A second plasticizing and melting cylinder 224 (hereinafter also referred to as a second heating cylinder) for forming the core of the polymer molded product, and a molten resin outlet 220a of the first heating cylinder 220 and the second heating cylinder 224 And a nozzle part 218 connected to the first heating cylinder 220 and the second heating cylinder 224, and a mold 210 including a movable mold 211 and a fixed mold 212.

ノズル部218内には、図8に示すように、金型210内に射出する溶融樹脂の射出経路を切り替えるためのロータリーバルブ219が設けられている。この例では、後述するように、ロータリーバルブ219を回転させることにより、第1加熱シリンダー220内部から金型210のキャビティ216に至る溶融樹脂の射出経路と、第2加熱シリンダー224内部から金型210のキャビティ216に至る溶融樹脂の射出経路とが切り替える。なお、金型210のキャビティ216は、固定金型212および可動金型211が突き当たることにより画成される空間である。また、この例では、図8に示すように、スプール217を中心にして、自動車用のドアノブを2個同時に成形できる金型210を用いた。固定金型212および可動金型211は、それぞれ固定プラテン214及び可動プラテン213にそれぞれ固定されており、型締め機構215により可動プラテン213を駆動することにより金型210が開閉される構造になっている。   In the nozzle part 218, as shown in FIG. 8, a rotary valve 219 for switching the injection path of the molten resin injected into the mold 210 is provided. In this example, as will be described later, by rotating a rotary valve 219, a molten resin injection path from the inside of the first heating cylinder 220 to the cavity 216 of the mold 210, and from the inside of the second heating cylinder 224 to the mold 210. The molten resin injection path to the cavity 216 is switched. Note that the cavity 216 of the mold 210 is a space defined by the fixed mold 212 and the movable mold 211 abutting against each other. In this example, as shown in FIG. 8, a mold 210 capable of simultaneously molding two door knobs for an automobile is used around a spool 217. The fixed mold 212 and the movable mold 211 are respectively fixed to the fixed platen 214 and the movable platen 213, and the mold 210 is opened and closed by driving the movable platen 213 by the mold clamping mechanism 215. Yes.

また、この例では、図8に示すように、第1加熱シリンダー220には、金属錯体を溶解した超臨界二酸化炭素を溶融樹脂に導入するためのエアー駆動式の導入シリンダー227と、超臨界二酸化炭素を溶融樹脂から排出するためのエアー駆動式の排出シリンダー229とが設けられている。導入シリンダー227及び排出シリンダー229の内部には、それぞれ導入ピストン228及び排出ピストン230が設けられている。また、この例では、第1加熱シリンダー220内のスクリュー221(以下、第1スクリューともいう)としては、図8に示すように、樹脂内圧を減圧させるベント部を2箇所設けた(図8中の第1ベント部223及び第2ベント部222)。そして、導入シリンダー227及び排出シリンダー229は、それぞれ第1ベント部223及び第2ベント部222の近傍に配置した。上述のように、この例の成形装置では、溶融樹脂に浸透させた超臨界二酸化炭素をガス化して射出充填前に排気させる機構を設けた。一方、第2加熱シリンダー224は、従来の加熱シリンダーと同じ構造とした。   In this example, as shown in FIG. 8, the first heating cylinder 220 includes an air-driven introduction cylinder 227 for introducing supercritical carbon dioxide in which the metal complex is dissolved into the molten resin, and supercritical dioxide. An air-driven discharge cylinder 229 for discharging carbon from the molten resin is provided. An introduction piston 228 and a discharge piston 230 are provided inside the introduction cylinder 227 and the discharge cylinder 229, respectively. Further, in this example, as the screw 221 (hereinafter also referred to as the first screw) in the first heating cylinder 220, as shown in FIG. 8, two vent portions for reducing the resin internal pressure are provided (in FIG. 8). First vent portion 223 and second vent portion 222). The introduction cylinder 227 and the discharge cylinder 229 are arranged in the vicinity of the first vent part 223 and the second vent part 222, respectively. As described above, the molding apparatus of this example is provided with a mechanism for gasifying supercritical carbon dioxide permeated into the molten resin and exhausting it before injection filling. On the other hand, the second heating cylinder 224 has the same structure as a conventional heating cylinder.

加圧流体供給部202は、図8に示すように、主に、液体二酸化炭素ボンベ240と、公知のシリンジポンプ241と、金属錯体を超臨界二酸化炭素に溶解する溶解槽242とから構成され、各構成要素は配管243により繋がれている。また、加圧流体供給部202では、図8に示すように、超臨界二酸化炭素の流動を制御するためのバルブ244,245が適宜所定の箇所に設置されており、溶解槽242は配管243により、サンドイッチ成形機部201の導入シリンダー227に繋がれている。   As shown in FIG. 8, the pressurized fluid supply unit 202 mainly includes a liquid carbon dioxide cylinder 240, a known syringe pump 241, and a dissolution tank 242 for dissolving a metal complex in supercritical carbon dioxide. Each component is connected by a pipe 243. In the pressurized fluid supply unit 202, as shown in FIG. 8, valves 244 and 245 for controlling the flow of supercritical carbon dioxide are appropriately installed at predetermined locations, and the dissolution tank 242 is connected by a pipe 243. , And connected to the introduction cylinder 227 of the sandwich molding machine unit 201.

加圧流体排出部203は、図8に示すように、主に、フィルタ254と、バッファー容器253と、減圧弁252と、真空ポンプ250とから構成され、各構成要素は配管255により繋がれている。また、フィルタ254は配管255により、サンドイッチ成形機部201の排出シリンダー229に繋がれている。   As shown in FIG. 8, the pressurized fluid discharge unit 203 mainly includes a filter 254, a buffer container 253, a pressure reducing valve 252, and a vacuum pump 250, and each component is connected by a pipe 255. Yes. The filter 254 is connected to the discharge cylinder 229 of the sandwich molding machine unit 201 by a pipe 255.

なお、本実施例で用い得る成形装置としては、図8に示した例に限定されない。成形装置としては、ポリマー成形品の外皮を形成する第一の可塑化シリンダーと内皮を形成する第二の可塑化シリンダーを有し、少なくとも第一の可塑化シリンダーに加圧二酸化炭素およびそれに溶解した機能性材料(金属錯体)を導入する機能を有すれば、任意の構造の装置が用い得る。   In addition, as a shaping | molding apparatus which can be used by a present Example, it is not limited to the example shown in FIG. The molding apparatus has a first plasticizing cylinder that forms the outer skin of the polymer molded article and a second plasticizing cylinder that forms the endothelium, and at least the first plasticizing cylinder was dissolved in pressurized carbon dioxide and the same. An apparatus having an arbitrary structure can be used as long as it has a function of introducing a functional material (metal complex).

[ポリマー成形品の製造方法及びメッキ膜の形成方法]
次に、この例のポリマー成形品の製造方法を、図8〜15を参照しながら説明する。なお、この例では、先のサンドイッチ成形が終了した時点(図9の状態)からポリマー成形品の製造方法を説明する。それゆえ、図9では、前回の成形時に第2加熱シリンダー224から射出された溶融樹脂がノズル部218内の樹脂の流路に残留している。
[Production method of polymer molded product and formation method of plating film]
Next, the manufacturing method of the polymer molded product of this example is demonstrated, referring FIGS. In this example, a method for producing a polymer molded product will be described from the time when the previous sandwich molding is completed (the state shown in FIG. 9). Therefore, in FIG. 9, the molten resin injected from the second heating cylinder 224 during the previous molding remains in the resin flow path in the nozzle portion 218.

最初に、金属錯体を超臨界二酸化炭素に溶解させる方法について説明する。まず、バルブ244を開き、液体二酸化炭素ボンベ240よりシリンジポンプ241に二酸化炭素を供給した。シリンジポンプ241では、供給された二酸化炭素は所定の圧力(10MPa)に昇圧される。次いで、バルブ245を開き、加圧液体二酸化炭素を溶解槽242に導入して、金属錯体を加圧二酸化炭素に溶解させた(図15中のステップS21)。この際、溶解槽242の温度を40℃にしておき、導入された加圧液体二酸化炭素を超臨界状態にした。なお、この例では、溶解槽242内には、金属錯体を過飽和となるように予め仕込んだ。また、超臨界二酸化炭素を溶解槽242に導入することにより、導入シリンダー227までの配管領域も加圧した。なお、後述する可塑化計量工程における超臨界二酸化炭素及び有機金属錯体を第1加熱シリンダー220内に導入する時以外では、溶解槽242から導入シリンダー227までの領域がシリンジポンプ241により一定圧力で保持されるように制御した。   First, a method for dissolving a metal complex in supercritical carbon dioxide will be described. First, the valve 244 was opened, and carbon dioxide was supplied from the liquid carbon dioxide cylinder 240 to the syringe pump 241. In the syringe pump 241, the supplied carbon dioxide is boosted to a predetermined pressure (10 MPa). Next, the valve 245 was opened, and pressurized liquid carbon dioxide was introduced into the dissolution tank 242 to dissolve the metal complex in the pressurized carbon dioxide (step S21 in FIG. 15). At this time, the temperature of the dissolution tank 242 was kept at 40 ° C., and the introduced pressurized liquid carbon dioxide was brought into a supercritical state. In this example, the metal complex was previously charged in the dissolution tank 242 so as to be supersaturated. Further, by introducing supercritical carbon dioxide into the dissolution tank 242, the piping region up to the introduction cylinder 227 was also pressurized. Note that the region from the dissolution tank 242 to the introduction cylinder 227 is held at a constant pressure by the syringe pump 241 except when supercritical carbon dioxide and organometallic complex in the plasticization metering step described later are introduced into the first heating cylinder 220. Controlled to be.

次に、ホッパー226から第1加熱シリンダー220内に十分な量の樹脂ペレット(不図示)を供給し、第1スクリュー221の回転により、ペレット(第1熱可塑性樹脂:ポリアミド6樹脂)を可塑化溶融した。なお、可塑化計量時には、第1スクリュー221の回転によりスクリュー前方の内圧が上昇して第1スクリュー221が後退するので、導入シリンダー227の下部に設けられた第1スクリュー221の第1ベント部223では、溶融した第1熱可塑性樹脂(以下では、第1溶融樹脂ともいう)が減圧(7MPa程度)される。   Next, a sufficient amount of resin pellets (not shown) are supplied from the hopper 226 into the first heating cylinder 220, and the pellets (first thermoplastic resin: polyamide 6 resin) are plasticized by the rotation of the first screw 221. Melted. At the time of plasticization measurement, the internal pressure in front of the screw is increased by the rotation of the first screw 221 and the first screw 221 is retracted. Therefore, the first vent portion 223 of the first screw 221 provided at the lower portion of the introduction cylinder 227 is used. Then, the melted first thermoplastic resin (hereinafter also referred to as the first molten resin) is depressurized (about 7 MPa).

次いで、第1溶融樹脂が減圧された状態で、図9に示すように、導入シリンダー227内の導入ピストン228を上昇させて、加圧流体供給部202の溶解槽242と第1加熱シリンダー220の内部とを流通させ、金属錯体が溶解した超臨界二酸化炭素を第1加熱シリンダー220の内部に導入し、第1溶融樹脂に浸透させた(図15中のステップS22)。この浸透工程中は、シリンジポンプ241を流量制御に切り替え、一定流量の超臨界二酸化炭素を一定時間、第1加熱シリンダー220内に注入した。また、第1溶融樹脂に浸透した金属錯体の多くは、第1溶融樹脂の熱等によりメッキ用触媒(金属微粒子)に還元される。   Next, in a state where the first molten resin is decompressed, as shown in FIG. 9, the introduction piston 228 in the introduction cylinder 227 is raised, and the dissolution tank 242 of the pressurized fluid supply unit 202 and the first heating cylinder 220 are moved. The supercritical carbon dioxide in which the metal complex was dissolved was introduced into the first heating cylinder 220 and permeated into the first molten resin (step S22 in FIG. 15). During this infiltration process, the syringe pump 241 was switched to flow control, and a constant flow of supercritical carbon dioxide was injected into the first heating cylinder 220 for a fixed time. Also, most of the metal complex that has penetrated into the first molten resin is reduced to a plating catalyst (metal fine particles) by the heat of the first molten resin.

また、この例では、可塑化計量中に第1溶融樹脂に浸透した超臨界二酸化炭素をガス化しては排出シリンダー229を介して、第1加熱シリンダー220内部から加圧流体排出部203に排出した。具体的には、次のようにして超臨界二酸化炭素を排出した。   Further, in this example, the supercritical carbon dioxide that has penetrated into the first molten resin during plasticization measurement is gasified and discharged from the inside of the first heating cylinder 220 to the pressurized fluid discharge unit 203 via the discharge cylinder 229. . Specifically, supercritical carbon dioxide was discharged as follows.

まず、可塑化計量時に第1スクリュー221の第2ベント部222で第1溶融樹脂を減圧し、浸透している超臨界二酸化炭素を臨界圧力以下に減圧してガス化した。この際、図9に示すように、排出シリンダー229内に設けられた排気ピストン230を上昇させて、第1加熱シリンダー220の内部と加圧流体排出部203とを流通させ、第1加熱シリンダー220内の第2ベント部222でガス化した二酸化炭素を一部排出シリンダー229を介して加圧流体排出部203に排出した。また、この際、高温の樹脂内で混錬された昇華型の金属錯体は上述のように熱分解して金属微粒子化して、二酸化炭素に不溶解状態となっているので、二酸化炭素と同時に排気されることはない。そして、この例では、高温樹脂内における金属微粒子の滞留時間を延ばし(具体的には、50sec程度)、溶融樹脂内に比重の大きい金属微粒子を分散させた。このような状態にすることにより、後述する射出充填時において、金属微粒子がポリマー成形品(スキン層)の最表面に分散し難く(浮き出難く)なるようにした。   First, at the time of plasticization measurement, the first molten resin was depressurized by the second vent portion 222 of the first screw 221, and the permeating supercritical carbon dioxide was depressurized below the critical pressure to be gasified. At this time, as shown in FIG. 9, the exhaust piston 230 provided in the discharge cylinder 229 is raised to circulate the inside of the first heating cylinder 220 and the pressurized fluid discharge portion 203, and the first heating cylinder 220. The carbon dioxide gasified in the second vent portion 222 was partially discharged to the pressurized fluid discharge portion 203 via the discharge cylinder 229. At this time, the sublimation-type metal complex kneaded in the high-temperature resin is thermally decomposed into fine metal particles as described above and is in an insoluble state in carbon dioxide. It will never be done. In this example, the residence time of the metal fine particles in the high temperature resin was extended (specifically, about 50 seconds), and the metal fine particles having a large specific gravity were dispersed in the molten resin. By adopting such a state, the metal fine particles are difficult to disperse on the outermost surface of the polymer molded product (skin layer) during injection filling described later.

次いで、高圧流体排出部203に排出された二酸化炭素をフィルタ254、バッファー容器253を通過させた後、減圧弁252で圧力計251が0MPaを示すように減圧し、真空ポンプ250により排気した。この例では、上述のようにして、第1加熱シリンダー220内で第1熱可塑性樹脂を可塑化軽量しながら、第1溶融樹脂に金属錯体を浸透させるとともに、超臨界二酸化炭素をガス化して第1溶融樹脂から排出した。   Next, after the carbon dioxide discharged to the high-pressure fluid discharge unit 203 was passed through the filter 254 and the buffer container 253, the pressure was reduced by the pressure reducing valve 252 so that the pressure gauge 251 showed 0 MPa, and the vacuum pump 250 exhausted the carbon dioxide. In this example, as described above, the first thermoplastic resin is plasticized and lightened in the first heating cylinder 220, while the metal complex is infiltrated into the first molten resin, and supercritical carbon dioxide is gasified to form the first. 1 discharged from the molten resin.

なお、上述した第1加熱シリンダー220における第1熱可塑性樹脂の可塑化計量の工程の際には、ホッパー226から供給された樹脂ペレットは、導入された超臨界二酸化炭素及び金属錯体と混錬されながら可塑化溶融されるので、第1溶融樹脂内部には超臨界二酸化炭素及び金属錯体が均一に拡散した状態となる。また、第1加熱シリンダー220における可塑化計量の際には、第1加熱シリンダー220内で加圧された第1溶融樹脂がノズル部218の先端から金型210内へ漏れないようにするため、図9に示すように、第2加熱シリンダー224内部とノズル部218内の射出流路とがロータリーバルブ219内の流路を介して流通するように、ロータリーバルブ219の回転を調整して、第1加熱シリンダー220内部とノズル部218内とが流通しないようにした。   In the above-described step of plasticizing and metering the first thermoplastic resin in the first heating cylinder 220, the resin pellets supplied from the hopper 226 are kneaded with the introduced supercritical carbon dioxide and the metal complex. However, since it is plasticized and melted, the supercritical carbon dioxide and the metal complex are uniformly diffused inside the first molten resin. In order to prevent the first molten resin pressurized in the first heating cylinder 220 from leaking from the tip of the nozzle part 218 into the mold 210 during plasticization measurement in the first heating cylinder 220, As shown in FIG. 9, the rotation of the rotary valve 219 is adjusted so that the inside of the second heating cylinder 224 and the injection passage in the nozzle portion 218 circulate through the passage in the rotary valve 219. The inside of 1 heating cylinder 220 and the inside of the nozzle part 218 were made not to distribute | circulate.

次いで、第1スクリュー221で金属微粒子(及び金属錯体)が浸透した第1溶融樹脂260の可塑化計量が完了した時点で、図10に示すように、導入シリンダー227内の導入ピストン228及び排出シリンダー229内の排出ピストン230を下降させ、同時にシリンジポンプ241を流量制御から圧力制御に切り替え、加圧二酸化炭素の導入および排気を停止した。   Next, when the plasticization measurement of the first molten resin 260 in which the metal fine particles (and the metal complex) have permeated is completed with the first screw 221, the introduction piston 228 and the discharge cylinder in the introduction cylinder 227 are completed as shown in FIG. The discharge piston 230 in the 229 was lowered, and at the same time, the syringe pump 241 was switched from flow control to pressure control, and the introduction and exhaust of pressurized carbon dioxide were stopped.

次に、図11に示すように、第1加熱シリンダー220内部とノズル部218内の射出流路とが流通するように、すなわち、第1加熱シリンダー220内部と金型210内のキャビティ216とが流通するように、ロータリーバルブ219を回転させた。次いで、第1加熱シリンダー220の第1スクリュー221を前進させて、可塑化計量された第1溶融樹脂260を金型210内のスプール及びキャビティ216に射出した(図15中のステップS23:図11及び12の状態)。なお、図12の状態は、第1溶融樹脂260の射出充填が完了する直前の状態を表しており、図12に示すように、この例では、射出する第1溶融樹脂260の量は、キャビティ216内が全て充填されない程度の量に調整した。   Next, as shown in FIG. 11, the inside of the first heating cylinder 220 and the injection flow path in the nozzle portion 218 are circulated, that is, the inside of the first heating cylinder 220 and the cavity 216 in the mold 210 are connected. The rotary valve 219 was rotated so as to circulate. Next, the first screw 221 of the first heating cylinder 220 is advanced to inject the plasticized and weighed first molten resin 260 into the spool and cavity 216 in the mold 210 (step S23 in FIG. 15: FIG. 11). And 12 states). The state of FIG. 12 represents a state immediately before the injection filling of the first molten resin 260 is completed. As shown in FIG. 12, in this example, the amount of the first molten resin 260 to be injected is the cavity The amount was adjusted so that the entire interior of 216 was not filled.

一方、第2加熱シリンダー224では、上記第1溶融樹脂の射出中に、図示しないホッパーより樹脂ペレット(第2熱可塑性樹脂:ポリアミド6樹脂)を第2加熱シリンダー224内に供給して、第2スクリュー225の回転により可塑化計量を行った。この際、第2加熱シリンダー224では、金属錯体を導入せずに樹脂ペレットを可塑化溶融した(以下では、第2加熱シリンダー224内で可塑化溶融された樹脂を第2溶融樹脂ともいう)。そして、第1溶融樹脂260の射出充填が完了する直前に、第2溶融樹脂261の可塑化計量を完了させた(図12の状態)。なお、この例では、第1熱可塑性樹脂及び第2熱可塑性樹脂に同じ材料を用いたが、本発明はこれに限定されず、第1熱可塑性樹脂及び第2熱可塑性樹脂に異なる材料で形成してもよい。   On the other hand, in the second heating cylinder 224, during the injection of the first molten resin, resin pellets (second thermoplastic resin: polyamide 6 resin) are supplied into the second heating cylinder 224 from a hopper (not shown), Plasticization weighing was performed by rotating the screw 225. At this time, in the second heating cylinder 224, the resin pellets were plasticized and melted without introducing a metal complex (hereinafter, the resin plasticized and melted in the second heating cylinder 224 is also referred to as a second molten resin). Then, immediately before the injection filling of the first molten resin 260 was completed, the plasticization measurement of the second molten resin 261 was completed (state of FIG. 12). In this example, the same material is used for the first thermoplastic resin and the second thermoplastic resin, but the present invention is not limited to this, and the first thermoplastic resin and the second thermoplastic resin are formed of different materials. May be.

次に、第1溶融樹脂の射出充填が完了した後、図13に示すように、第2加熱シリンダー224内部とノズル部218内の射出流路とが流通するように、すなわち、第2加熱シリンダー224内部と金型210内のキャビティ216とが流通するように、ロータリーバルブ219を回転させた。次いで、第2スクリュー225を前進させて、第2溶融樹脂261を金型210内のスプール及びキャビティ216に射出した(図15中のステップS24:図13の状態)。この際、先にキャビティ216に充填されていた第1溶融樹脂260は第2溶融樹脂261の充填圧力により、キャビティ216を画成する金型表面に押しやられる。その結果、図14に示すように、第2溶融樹脂261の射出完了後には、成形品の表面層(外皮)には、金属微粒子(及び金属錯体)が分散した第1溶融樹脂260の層が形成され、成形品の内部には金属微粒子を含有しない第2溶融樹脂261からなるコア部が形成される。   Next, after the injection filling of the first molten resin is completed, as shown in FIG. 13, the second heating cylinder 224 and the injection flow path in the nozzle portion 218 are circulated, that is, the second heating cylinder. The rotary valve 219 was rotated so that the inside of the 224 and the cavity 216 in the mold 210 circulated. Next, the second screw 225 was advanced to inject the second molten resin 261 into the spool and cavity 216 in the mold 210 (step S24 in FIG. 15: state of FIG. 13). At this time, the first molten resin 260 previously filled in the cavity 216 is pushed to the mold surface defining the cavity 216 by the filling pressure of the second molten resin 261. As a result, as shown in FIG. 14, after completion of the injection of the second molten resin 261, the surface layer (outer skin) of the molded product has a layer of the first molten resin 260 in which metal fine particles (and metal complex) are dispersed. The core part which consists of the 2nd molten resin 261 which is formed and does not contain a metal microparticle is formed in the inside of a molded article.

次いで、射出充填された溶融樹脂を冷却固化した後、金型210を開き成形品(ポリマー基体)を取り出した。この例では、上述したサンドイッチ成形により、金属微粒子が表面内部に分散しポリマー成形品を得た。   Next, after the injection-filled molten resin was cooled and solidified, the mold 210 was opened and the molded product (polymer substrate) was taken out. In this example, metal fine particles were dispersed inside the surface by the above-described sandwich molding to obtain a polymer molded product.

上述のようにして成形したこの例のポリマー成形品に対して、実施例1と同様にして、大気圧にて70℃の無電解メッキ液(メッキ反応温度60〜85℃のメッキ液)中に10分間浸漬したが、ポリマー成形品の表面にはメッキ膜は形成されなかった。すなわち、本実施例の上記成形方法で成形したポリマー成形品では、その最表面(表面層)における金属微粒子の濃度が低く、ポリマー成形品の最表面が大気圧下でメッキ反応を起こさない状態、すなわち、無電解メッキ液に対して不活性であることが確認された。   In the same manner as in Example 1, the polymer molded product of this example molded as described above was placed in an electroless plating solution (plating solution having a plating reaction temperature of 60 to 85 ° C.) at 70 ° C. at atmospheric pressure. Although immersed for 10 minutes, no plating film was formed on the surface of the polymer molded product. That is, in the polymer molded product molded by the molding method of the present embodiment, the concentration of metal fine particles on the outermost surface (surface layer) is low, and the outermost surface of the polymer molded product does not cause a plating reaction under atmospheric pressure, That is, it was confirmed that it was inert to the electroless plating solution.

次に、上述のようにして成形したこの例のポリマー成形品の表面に無電解メッキ法によりメッキ膜を形成した(図15中ステップS25)。具体的には、次のようにしてポリマー成形品表面にメッキ膜を形成した。まず、PTFE(ポリテトラフルオロエチレン)製の内部容器を備えた高圧容器を用意し、内部容器内に原液15%、アルコール(プロパノール)50%、水35%からなるニッケルリンメッキ液を内部容器内に注入し、次いで、ポリマー成形品を内部容器内に挿入して無電解メッキ液に浸漬した。なお、この際、無電解メッキ液および高圧容器及び内部容器は予め70℃に加温しておいた。次いで、20℃、15MPaの加圧二酸化炭素を高圧容器及び内部容器内に導入して加圧二酸化炭素を無電解メッキ液に相溶させて(加圧二酸化炭素を含む無電解メッキ液をポリマー成形品に接触させて)、その状態を5分間保持した後、減圧した。この例では、上述のようにして、ポリマー成形品の表面全体にニッケルリンの金属膜を形成した。   Next, a plating film was formed by electroless plating on the surface of the polymer molded product of this example molded as described above (step S25 in FIG. 15). Specifically, a plating film was formed on the surface of the polymer molded product as follows. First, a high-pressure vessel having an inner container made of PTFE (polytetrafluoroethylene) is prepared, and a nickel phosphorus plating solution consisting of 15% stock solution, 50% alcohol (propanol) and 35% water is placed in the inner vessel. Then, the polymer molded product was inserted into the inner container and immersed in the electroless plating solution. At this time, the electroless plating solution, the high-pressure vessel, and the inner vessel were previously heated to 70 ° C. Next, pressurized carbon dioxide at 20 ° C. and 15 MPa is introduced into the high-pressure vessel and the inner vessel to dissolve the pressurized carbon dioxide in the electroless plating solution (an electroless plating solution containing pressurized carbon dioxide is polymer-molded). The product was kept in contact for 5 minutes and then decompressed. In this example, a nickel phosphorus metal film was formed on the entire surface of the polymer molded article as described above.

なお、上記方法においても、加圧二酸化炭素を含む無電解メッキ液をポリマー成形品に接触させた際には、ポリマー成形品の最表面ではメッキ反応は起こらずに、加圧二酸化炭素を含む無電解メッキ液はポリマー成形品の内部に浸透する。そして、ポリマー成形品内部において、メッキ反応を起こすのに十分な濃度で金属微粒子が分散している領域まで、無電解メッキ液が浸透すると、その領域の金属微粒子を触媒核にして、メッキ膜が成長し始める。その後、金属微粒子の自己触媒作用により、メッキ膜がポリマー内部から表面に向かって成長する。すなわち、本実施例においても、ポリマー成形品上に形成されたメッキ膜はポリマー成形品の内部に食い込んだ状態で成長するので、密着性の優れたメッキ膜が形成される。   Even in the above method, when the electroless plating solution containing pressurized carbon dioxide is brought into contact with the polymer molded product, the plating reaction does not occur on the outermost surface of the polymer molded product. The electrolytic plating solution penetrates into the polymer molded product. Then, when the electroless plating solution penetrates to a region where the metal fine particles are dispersed at a concentration sufficient to cause a plating reaction inside the polymer molded product, the metal fine particles in that region are used as catalyst nuclei, and the plating film is formed. Start growing. Thereafter, the plating film grows from the inside of the polymer toward the surface by the autocatalytic action of the metal fine particles. That is, also in the present embodiment, the plating film formed on the polymer molded product grows in a state of being bitten into the polymer molded product, so that a plating film having excellent adhesion is formed.

次いで、上述した無電解メッキ処理された(ニッケルリンの金属膜が表面に形成された)ポリマー成形品の表面に、従来の電解メッキ方法により電解銅メッキ膜を20μmの厚さで形成し、さらのその上に光沢電解ニッケルメッキ膜を10μmの厚さで形成した。また、この例で作製した表面に金属膜が形成されたポリマー成形品に対しても、実施例1と同様にして金属膜の密着性の評価試験を行ったところ、実施例1と同様に、金属膜の剥離は見られず、密着性の低下は認められなかった。   Next, an electrolytic copper plating film having a thickness of 20 μm is formed on the surface of the above-described polymer molded article that has been subjected to electroless plating (a nickel phosphorus metal film is formed) by a conventional electrolytic plating method. A bright electrolytic nickel plating film having a thickness of 10 μm was formed thereon. Further, for the polymer molded article having a metal film formed on the surface produced in this example, the metal film adhesion evaluation test was conducted in the same manner as in Example 1. As in Example 1, No peeling of the metal film was observed, and no decrease in adhesion was observed.

実施例3では、実施例2の無電解メッキ処理において、無電解メッキ液(ニッケルリンメッキ液)中のアルコールの体積比率を5、10、30、60、80及び90%に変化させた種々の無電解メッキ液を用意した。それ以外は、実施例2と同様にして無電解メッキ膜をポリマー成形品(ポリマー部材)の表面に形成した。なお、この例では、各無電解メッキ液で複数回続けてメッキ処理を行った。   In Example 3, in the electroless plating process of Example 2, various volume ratios of alcohol in the electroless plating solution (nickel phosphorus plating solution) were changed to 5, 10, 30, 60, 80, and 90%. An electroless plating solution was prepared. Other than that was carried out similarly to Example 2, and formed the electroless-plated film on the surface of the polymer molded article (polymer member). In this example, the plating process was continuously performed a plurality of times with each electroless plating solution.

上記処理の結果、アルコールの体積比率が80%である無電解メッキ液では、1回目の処理ではメッキ膜はポリマー成形品前面に形成されたが、2回目の処理ではメッキ膜は殆ど形成されなかった。これは、アルコールの添加量が多いと、ニッケルリンメッキ液から硫酸ニッケルが析出しやすくなり、その結果、メッキ液中の硫酸ニッケルイオンの量が不十分となりメッキ浴が壊れたためであると考えられる。実際のところ、アルコールの体積比率が80%である無電解メッキ液では、1回目及び2回目の処理において、メッキ液中において硫酸ニッケルの析出物が確認された。しかしながら、上述のように、アルコールの体積比率が80%である無電解メッキ液では、メッキ液中において硫酸ニッケルの析出物は存在するものの、少なくとも1回はメッキ処理を行うことができることが分かった。   As a result of the above treatment, in the electroless plating solution having an alcohol volume ratio of 80%, the plating film was formed on the front surface of the polymer molded product in the first treatment, but the plating film was hardly formed in the second treatment. It was. This is thought to be because when the amount of alcohol added is large, nickel sulfate is likely to precipitate from the nickel phosphorus plating solution, and as a result, the amount of nickel sulfate ions in the plating solution is insufficient and the plating bath is broken. . Actually, in the electroless plating solution having an alcohol volume ratio of 80%, nickel sulfate deposits were confirmed in the plating solution in the first and second treatments. However, as described above, it was found that in the electroless plating solution having an alcohol volume ratio of 80%, nickel plating precipitates are present in the plating solution, but the plating treatment can be performed at least once. .

アルコールの体積比率が60%である無電解メッキ液では、2回目以降もメッキ膜を形成することができた。なお、アルコールの体積比率が60%である場合には、メッキ処理時間(ポリマー成形品の全面にメッキ膜が形成される時間)は3分であった。   With the electroless plating solution having an alcohol volume ratio of 60%, a plating film could be formed after the second time. When the volume ratio of alcohol was 60%, the plating treatment time (time for forming a plating film on the entire surface of the polymer molded product) was 3 minutes.

アルコールの体積比率が30%である無電解メッキ液では、メッキ処理時間が10分と長くなった。また、アルコールの体積比率が10%である無電解メッキ液では、メッキ処理時間がさらに長くなり、30分となった。これは、アルコールの量が少なくなると、無電解メッキ液の表面張力が大きくなり、無電解メッキ液のポリマー成形品への浸透時間が長くなったためであると考えられる。なお、アルコールの体積比率が10、30及び60%である場合には、いずれも2回目以降のメッキ処理においてもメッキ膜は形成された。   In the electroless plating solution in which the volume ratio of alcohol is 30%, the plating time is as long as 10 minutes. In addition, in the electroless plating solution having an alcohol volume ratio of 10%, the plating time was further increased to 30 minutes. This is considered to be because when the amount of alcohol decreases, the surface tension of the electroless plating solution increases and the penetration time of the electroless plating solution into the polymer molded product becomes longer. When the alcohol volume ratio was 10, 30 and 60%, the plating film was formed in the second and subsequent plating treatments.

また、アルコールの体積比率が5%の無電解メッキ液では、メッキ処理時間を1hrと長くしても、ポリマー成形品表面の一部にしかメッキ膜が形成されなかった。アルコールの体積比率が90%の無電解メッキ液では、硫酸ニッケルが全て沈殿し、メッキ膜は形成されなかった。   In addition, with the electroless plating solution having an alcohol volume ratio of 5%, a plating film was formed only on a part of the surface of the polymer molded product even when the plating treatment time was increased to 1 hr. In the electroless plating solution having an alcohol volume ratio of 90%, all nickel sulfate was precipitated, and no plating film was formed.

実施例4では、ポリマー成形品(ポリマー部材)の形成材料として、炭酸カルシウム(ミネラル)の微粒子を予め混合したポリフェニレンサルファイドの樹脂材料を用いた。なお、炭酸カルシウムは加圧二酸化炭素とメッキ液との混合溶媒により溶解、抽出される物質(溶出物質)である。ポリマー成形品の形成材料を変えたこと以外は、実施例1と同様にして、射出成形によりポリマー成形品を成形し、その後、成形に用いた金型内でメッキ処理を行いポリマー成形品上にメッキ膜を形成した。   In Example 4, a polyphenylene sulfide resin material in which fine particles of calcium carbonate (mineral) were mixed in advance was used as a material for forming a polymer molded article (polymer member). Calcium carbonate is a substance (eluting substance) that is dissolved and extracted by a mixed solvent of pressurized carbon dioxide and plating solution. Except that the forming material of the polymer molded product was changed, the polymer molded product was molded by injection molding in the same manner as in Example 1, and then plated in the mold used for molding to form the polymer molded product on the polymer molded product. A plating film was formed.

なお、本実施例では、無電解メッキ処理後に加圧二酸化炭素により残存メッキ液を金型から排出した後、減圧と同時に100トンの型締め圧力を成形品に印加した。これは、加圧二酸化炭素とメッキ液の混合溶液をポリマー内部からより多く除去するため、膨潤したポリマー成形品を押し固めて物理的強度を向上させるため、及び、ポリマーの変形を矯正するため等の目的で行っている。このメッキ後のプレス工程は、金型内で行ってもよいし、バッチ処理で行ってもよい。また、メッキ反応後の脱圧後に行ってもよい。このような方法を用いることにより、膨潤して変形が著しくなる非晶性熱可塑性樹脂等にも本発明のメッキ膜の形成方法が適用可能となる。   In this example, after the electroless plating treatment, the residual plating solution was discharged from the mold with pressurized carbon dioxide, and then a clamping pressure of 100 tons was applied to the molded product simultaneously with the pressure reduction. This is to remove more of the mixed solution of pressurized carbon dioxide and plating solution from the inside of the polymer, to compress the swollen polymer molded product to improve the physical strength, and to correct the deformation of the polymer, etc. It is done for the purpose. This pressing step after plating may be performed in a mold or by batch processing. Moreover, you may carry out after the depressurization after plating reaction. By using such a method, the plating film forming method of the present invention can be applied to an amorphous thermoplastic resin that swells and deforms significantly.

本実施例のように、加圧二酸化炭素、メッキ液や水、及び、アルコールの混合溶液に溶解および抽出される物質を樹脂材料にブレンドしておくことにより、ポリマー成形品の内部に溶出物質が分散したポリマー成形品が得られ、そのようなポリマー成形品に混合溶液を接触させた際には、混合溶液が溶出物質を介してポリマー成形品内部に浸透しやすくなる。このような溶出物質としては、ポリエチレングリコールや界面活性剤等の水溶性材料、非晶性熱可塑性樹脂成分、各種エラストマー等を用いることができる。   As in this example, the substance dissolved and extracted in the mixed solution of pressurized carbon dioxide, plating solution, water, and alcohol is blended with the resin material, so that the eluted substance is contained inside the polymer molded product. A dispersed polymer molded article is obtained, and when the mixed solution is brought into contact with such a polymer molded article, the mixed solution easily penetrates into the polymer molded article through the eluting substance. As such an elution substance, water-soluble materials, such as polyethylene glycol and surfactant, an amorphous thermoplastic resin component, various elastomers, etc. can be used.

また、本実施例のように、内部に溶出物質が分散したポリマー成形品では、最表面に分散していた溶出物質が無電解メッキ液に溶け出すと、ポリマー成形品表面に凹凸が形成され、ポリマー成形品表面における金属膜の物理的アンカー効果が増大し、金属膜の密着力を向上させることができる。   Further, as in this example, in the polymer molded product in which the eluted substance is dispersed inside, when the eluted material dispersed on the outermost surface is dissolved in the electroless plating solution, irregularities are formed on the surface of the polymer molded product, The physical anchor effect of the metal film on the surface of the polymer molded article is increased, and the adhesion of the metal film can be improved.

なお、本発明のポリマー成形品では、上記効果を得るために、溶出物質はポリマー成形品の最表面から少なくとも5μm以内、より望ましくは1μm以内の深さ領域に分散していることが望ましい。本実施例ではポリマー成形品の最表面から約0.5μmの深さまでの領域に炭酸カルシウム微粒子を高濃度に分散させた。なお、ポリマー成形品の溶出物質の含浸深さは、溶出物質の粒径や溶出物質への化学修飾の有無等により調整することができる。具体的には、溶出物質を微粒化したり、あるいは、化学修飾して樹脂との相溶性を向上させた場合には、射出成形時に、成形品の表面に溶出物質が分散し易くなる。   In the polymer molded product of the present invention, in order to obtain the above effect, it is desirable that the eluting substance is dispersed in a depth region of at least 5 μm, more preferably 1 μm or less from the outermost surface of the polymer molded product. In this example, calcium carbonate fine particles were dispersed at a high concentration in a region from the outermost surface of the polymer molded product to a depth of about 0.5 μm. In addition, the impregnation depth of the eluted substance of the polymer molded product can be adjusted by the particle size of the eluted substance, the presence or absence of chemical modification to the eluted substance, and the like. Specifically, when the eluted substance is atomized or chemically modified to improve the compatibility with the resin, the eluted substance is easily dispersed on the surface of the molded product during injection molding.

また、本実施例では、メッキ処理中に溶出物質の溶出を行ったが、溶出物質の溶出プロセスをメッキ処理前にバッチ処理で行ってもよい。その場合も、水、アルコール、加圧二酸化炭素の少なくとも1種類を含む溶液中で、溶出物質の溶解、抽出反応を行うことが望ましい。   In this embodiment, the elution substance is eluted during the plating process. However, the elution process of the elution substance may be performed in a batch process before the plating process. In this case also, it is desirable to perform dissolution and extraction reaction of the eluted substance in a solution containing at least one of water, alcohol and pressurized carbon dioxide.

本実施例のメッキ膜の形成方法では、無電解メッキ液が樹脂内部の炭酸カルシウムを溶解させながら速やかに内部に浸透し、触媒核と反応するので、成形品表面全体にメッキ薄膜のつきまわる反応時間(メッキ処理時間)が大幅に短縮された。具体的には、ポリマー成形品の内部に炭酸カルシウムを分散させない場合には、メッキ処理時間は2分であったが、本実施例の方法では1分であった。また、本実施例の処理方法のように、メッキ処理後にポリマー成形品をプレスすることにより、メッキ膜とポリマーの密着強度が向上した。具体的には、プレス成形を行わない場合にはメッキ膜とポリマーの密着強度が0.9kgf/cmであったが、本実施例の方法でメッキ膜を形成した場合には密着強度が1.3kgf/cmとなった。   In the plating film forming method of this embodiment, the electroless plating solution quickly penetrates into the resin while dissolving the calcium carbonate inside the resin and reacts with the catalyst core, so that the reaction of the plating thin film on the entire surface of the molded product. Time (plating processing time) has been greatly reduced. Specifically, when calcium carbonate was not dispersed inside the polymer molded article, the plating treatment time was 2 minutes, but in the method of this example, it was 1 minute. Moreover, the adhesion strength between the plating film and the polymer was improved by pressing the polymer molded product after the plating treatment as in the treatment method of this example. Specifically, when the press molding is not performed, the adhesion strength between the plating film and the polymer is 0.9 kgf / cm, but when the plating film is formed by the method of this example, the adhesion strength is 1. It became 3 kgf / cm.

上記実施例1〜4では、射出成形の成形条件により、ポリマー成形品のメッキ膜形成面の金属微粒子(金属物質)の濃度を調整したが、本発明はこれに限定されない。例えば、後述する実施例5〜9のように、まず、大気圧下で無電解メッキ反応が起こる程度の濃度で金属微粒子が最表面に存在するポリマー成形品を成形し、次いで、硝酸や塩酸、王水等の酸でポリマー成形品を洗浄し、最表面の金属微粒子を除去して、メッキ膜形成面の金属微粒子の濃度を調整しても良い。また、別の方法としては、大気圧下で無電解メッキ反応が起こる程度の濃度で金属微粒子が最表面に存在するポリマー成形品を作製し、次いで、加圧二酸化炭素を含む無電解メッキ液を通過させるような材料(例えば、ポリマー成形品と同じ材料)からなる膜をポリマー成形品のメッキ膜形成面上に形成しても良い。   In the above Examples 1 to 4, the concentration of the metal fine particles (metal substance) on the plating film forming surface of the polymer molded product was adjusted according to the injection molding conditions, but the present invention is not limited to this. For example, as in Examples 5 to 9 described later, first, a polymer molded product in which metal fine particles are present on the outermost surface at a concentration at which electroless plating reaction occurs at atmospheric pressure, and then nitric acid, hydrochloric acid, The polymer molded product may be washed with an acid such as aqua regia to remove the outermost metal fine particles and adjust the concentration of the metal fine particles on the plating film forming surface. Another method is to prepare a polymer molded product in which metal fine particles are present on the outermost surface at a concentration at which electroless plating reaction occurs under atmospheric pressure, and then apply an electroless plating solution containing pressurized carbon dioxide. You may form the film | membrane which consists of material (For example, the same material as a polymer molded product) which lets it pass on the plating film formation surface of a polymer molded product.

実施例5では、バッチ処理によりポリマー部材の表面に無電解メッキ膜を形成する方法を説明する。   In Example 5, a method of forming an electroless plating film on the surface of a polymer member by batch processing will be described.

本実施例では、ポリマー部材として、携帯電話やデジタルカメラ等で用いられるカメラレンズモジュールのマウントを用いた。本実施例のポリマー部材の概略断面図を、図17に示した。図17に示すように、カメラレンズモジュール701は、内穴708を有するマウント702と、レンズ704と、レンズ704を固定するレンズホルダー703とから構成される。なお、図17(a)はマウント702とレンズホルダー703を分解した際の図であり、図17(b)はマウント702とレンズホルダー703を合体させた際の図である。図17(a)に示すように、レンズホルダー703は内穴707が設けられており、その内穴707に、レンズ704が固定されている。また、カメラモジュール701下部には、図示しないC−MOSセンサー等の撮像素子が固定される。   In this embodiment, the mount of a camera lens module used in a mobile phone, a digital camera, or the like is used as the polymer member. A schematic cross-sectional view of the polymer member of this example is shown in FIG. As shown in FIG. 17, the camera lens module 701 includes a mount 702 having an inner hole 708, a lens 704, and a lens holder 703 that fixes the lens 704. 17A is a diagram when the mount 702 and the lens holder 703 are disassembled, and FIG. 17B is a diagram when the mount 702 and the lens holder 703 are combined. As shown in FIG. 17A, the lens holder 703 is provided with an inner hole 707, and the lens 704 is fixed to the inner hole 707. An imaging element such as a C-MOS sensor (not shown) is fixed to the lower part of the camera module 701.

レンズホルダー703の外壁には、図17(a)に示すように、ネジ溝705が形成されており、マウント702の内穴708内壁の上端部には、レンズホルダー703のネジ溝705と勘合するネジ溝706が形成されている。レンズホルダー703のネジ溝705と、マウント702のネジ溝706とを勘合させることにより、図17(b)に示すように、マウント702とレンズホルダー703とが合体される。   As shown in FIG. 17A, a screw groove 705 is formed on the outer wall of the lens holder 703, and the upper end portion of the inner wall of the inner hole 708 of the mount 702 is fitted with the screw groove 705 of the lens holder 703. A thread groove 706 is formed. By fitting the screw groove 705 of the lens holder 703 and the screw groove 706 of the mount 702, the mount 702 and the lens holder 703 are combined as shown in FIG.

なお、携帯電話やデジタルカメラ等で用いられるカメラレンズモジュール701では、レンズ704により被写体像をCCDやC−MOS等の撮像素子等のセンサーに結像させるが、携帯電話本体からの電気信号ノイズによる該モジュールへの悪影響を抑制する方法として、撮像素子に隣接したマウント702を電磁波シールドすることが望ましい。しかしながら、マウント702全体にメッキ膜を形成した場合、マウント702の内壁表面が金属の光沢膜であると、マウント702内部で光が反射するのでゴーストフレアの要因となる。それゆえ、本実施例のメッキ膜の最終工程では、マウント702の表面に黒色無電解メッキを施した。   Note that in the camera lens module 701 used in a mobile phone, a digital camera, or the like, a subject image is formed on a sensor such as an image sensor such as a CCD or C-MOS by the lens 704, but due to electrical signal noise from the mobile phone body. As a method for suppressing an adverse effect on the module, it is desirable to shield the mount 702 adjacent to the image sensor with an electromagnetic wave. However, when a plating film is formed on the entire mount 702, if the inner wall surface of the mount 702 is a metallic gloss film, light is reflected inside the mount 702, which causes ghost flare. Therefore, in the final step of the plating film of this example, the surface of the mount 702 was subjected to black electroless plating.

また、本実施例では、ポリマー部材702(マウント)の形成材料として、ガラス繊維およびミネラル65%入りの強化ポリフタルアミド(ソルベイアドバンストポリマー製アモデルAS−1566HS)を用いた。   Further, in this example, reinforced polyphthalamide containing 65% glass fiber and mineral (Amodel AS-1566HS manufactured by Solvay Advanced Polymer) was used as a forming material of the polymer member 702 (mount).

[メッキ装置]
実施例5で用いたメッキ装置の概略構成図を図16に示した。メッキ装置300は、図16に示すように、主に、二酸化炭素ボンベ321、フィルター326、高圧シリンジポンプ320及び高圧容器301から構成されており、これらの構成要素は配管327により接続されている。また、図16に示すように、各構成要素間を繋ぐ配管327には、加圧二酸化炭素の流動を制御するための手動バルブ322〜324が所定の位置に設けられている。
[Plating equipment]
A schematic configuration diagram of the plating apparatus used in Example 5 is shown in FIG. As shown in FIG. 16, the plating apparatus 300 mainly includes a carbon dioxide cylinder 321, a filter 326, a high-pressure syringe pump 320, and a high-pressure container 301, and these components are connected by a pipe 327. In addition, as shown in FIG. 16, manual valves 322 to 324 for controlling the flow of pressurized carbon dioxide are provided at predetermined positions on the pipe 327 connecting the constituent elements.

高圧容器301は、図16に示すように、無電解メッキ液308及びポリマー部材702が収容される容器本体302と、蓋303とからなる。蓋部303には、公知のバネが内蔵されたポリイミド製シール304が設けられており、ポリイミド製シール304により、高圧容器301内部に高圧ガスを密閉する。また、蓋303のメッキ液308側の表面(下面)には、複数のポリマー部材702を無電解メッキ液308内に吊るして保持することのできる保持部材305が設けられている。一方、容器本体302内の底部には、無電解メッキ液308を攪拌するためのマグネチックスターラー306が設けられている。また、容器本体302は、温調流路307を有しており、温調機(不図示)により温度制御された温調水をこの温調流路307内に流すことにより、高圧容器301の温度が調整される。なお、この例では、30℃から145℃の任意の温度により温調することができる。また、容器本体302の側壁部には、図16に示すように、加圧二酸化炭素の導入口325を設けた。   As shown in FIG. 16, the high-pressure container 301 includes a container main body 302 that stores an electroless plating solution 308 and a polymer member 702, and a lid 303. The lid 303 is provided with a polyimide seal 304 containing a known spring. The polyimide seal 304 seals high-pressure gas inside the high-pressure vessel 301. A holding member 305 that can suspend and hold a plurality of polymer members 702 in the electroless plating solution 308 is provided on the surface (lower surface) of the lid 303 on the plating solution 308 side. On the other hand, a magnetic stirrer 306 for stirring the electroless plating solution 308 is provided at the bottom of the container body 302. Further, the container body 302 has a temperature control flow path 307, and the temperature control water controlled in temperature by a temperature controller (not shown) is caused to flow into the temperature control flow path 307, whereby the high-pressure container 301. The temperature is adjusted. In this example, the temperature can be adjusted at any temperature from 30 ° C. to 145 ° C. Further, as shown in FIG. 16, a pressurized carbon dioxide inlet 325 was provided on the side wall of the container main body 302.

本実施例では、高圧容器301の形成材料としてSUS316Lを用いた。なお、高圧容器301の形成材料としては、腐食されにくい材質を用いることが望ましく、SUS316、SUS316L、インコネル、ハステロイ、チタン等を用いることができる。また、本実施例では、高圧容器301の内壁面が無電解メッキ液に接触した際に容器内壁にメッキ膜が成長しないようにするため、高圧容器301の内壁面には、CVD(Chemical Vapor Deposition化学気相法)によりDLC(ダイヤモンドライクカーボン)からなる非メッキ成長膜を形成した。なお、非メッキ成長膜としてはPTFE(ポリテトラフロオロエチレン)、PEEK(ポリエチルエーテルケトン)等を用いることもできる。   In this example, SUS316L was used as a material for forming the high-pressure vessel 301. As a material for forming the high-pressure vessel 301, it is desirable to use a material that is not easily corroded, and SUS316, SUS316L, Inconel, Hastelloy, titanium, or the like can be used. Further, in this embodiment, in order to prevent a plating film from growing on the inner wall of the high-pressure vessel 301 when the inner wall surface of the high-pressure vessel 301 comes into contact with the electroless plating solution, the CVD (Chemical Vapor Deposition) A non-plated growth film made of DLC (diamond-like carbon) was formed by a chemical vapor deposition method. As the non-plated growth film, PTFE (polytetrafluoroethylene), PEEK (polyethyl ether ketone), or the like can also be used.

また、本実施例では、無電解メッキ液308としてニッケルーリンを用いた。なお、無電解メッキ液としては、ニッケルーホウ素、パラジウム、銅、銀、コバルト等を用いても良い。また、無電解メッキ液308としては、中性、弱アルカリ性から酸性の浴でメッキできる液が好適であり、ニッケルーリンの場合はpH4〜6の範囲で用いることができるので望ましい。なお、加圧二酸化炭素を導入する前の無電解メッキ液308の条件によっては、加圧二酸化炭素を無電解メッキ液に浸透させる(導入する)ことで、無電解メッキ液308のpHが低下し、リン濃度が上昇して、メッキ膜の析出速度が低下する等の弊害が生じる恐れもあるので、予め無電解メッキ液308のpHを上昇させておいてもよい。   In this example, nickel-phosphorus was used as the electroless plating solution 308. As the electroless plating solution, nickel-boron, palladium, copper, silver, cobalt, or the like may be used. Further, as the electroless plating solution 308, a solution that can be plated in a neutral or weakly alkaline to acidic bath is suitable, and in the case of nickel-phosphorus, it can be used in a pH range of 4 to 6, and is desirable. Depending on the conditions of the electroless plating solution 308 before introducing the pressurized carbon dioxide, the pH of the electroless plating solution 308 is lowered by allowing the pressurized carbon dioxide to penetrate (introduce) into the electroless plating solution. In addition, since the phosphorous concentration may increase and the plating film deposition rate may decrease, the pH of the electroless plating solution 308 may be increased in advance.

本実施例では、無電解メッキ液308の原液として、硫酸ニッケルの金属塩と還元剤や錯化剤が含まれる奥野製薬社製ニコロンDKを用いた。また、無電解メッキ液308にアルコールを混合させた。本実施例で用い得るアルコールの種類は任意であり、メタノール、エタノール、n−プロパノール、イソプロパノール、ブタノール、ヘプタノール、エチレングリコール等を用いることができるが、本実施例ではエタノールを用いた。より具体的には、無電解メッキ液1l中の各成分の割合は、硫酸ニッケルの金属塩と還元剤や錯化剤の含まれる原液(奥野製薬社製ニコロンDK)を150ml、水を350ml、及び、アルコール(エタノール)を500mlとした。すなわち、無電解メッキ液308中のアルコールの割合(体積比率)は50%とした。なお、硫酸ニッケルはアルコールに不溶なので、アルコールの添加量が80%を超えると硫酸ニッケルが多く沈殿するので適用できないことがわかった。   In this example, Nicolon DK manufactured by Okuno Pharmaceutical Co., Ltd., which contains a nickel sulfate metal salt, a reducing agent, and a complexing agent, was used as a stock solution for the electroless plating solution 308. Further, alcohol was mixed with the electroless plating solution 308. The type of alcohol that can be used in this example is arbitrary, and methanol, ethanol, n-propanol, isopropanol, butanol, heptanol, ethylene glycol, and the like can be used. In this example, ethanol was used. More specifically, the ratio of each component in 1 l of the electroless plating solution is as follows: 150 ml of stock solution (Nicolon DK manufactured by Okuno Seiyaku Co., Ltd.) containing a metal salt of nickel sulfate and a reducing agent or complexing agent, 350 ml of water, And alcohol (ethanol) was made into 500 ml. That is, the ratio (volume ratio) of alcohol in the electroless plating solution 308 was 50%. In addition, since nickel sulfate was insoluble in alcohol, it was found that when the amount of alcohol added exceeds 80%, a large amount of nickel sulfate precipitates, which makes it impossible to apply.

本発明者らの検討によれば、無電解メッキ液308は水が主成分であるが、アルコールを混合することで、高圧状態の二酸化炭素と無電解メッキ液が安定に混ざり易くなることが分かった。これは、アルコールと超臨界二酸化炭素とが相溶し易いことによるものと考えられる。それゆえ、本実施例のように無電解メッキ液にアルコールを混合した場合には、無電解メッキ液に界面活性剤を添加したり、無電解メッキ液を攪拌する必要がなくなる。さらに、ポリマー部材内に加圧二酸化炭素とともにメッキ液を浸透させてポリマー部材内部でメッキ反応を成長させるためには、メッキ液にアルコールを添加させたほうが、水のみよりも表面張力が低下するため、より好適である。ただし、本発明では、加圧二酸化炭素と無電解メッキ液との相溶性(親和性)をより高めるために、界面活性剤を添加したり、無電解メッキ液を攪拌したりしても良い。この例では、後述するように、界面活性剤を無電解メッキ液に添加し、無電解メッキ液の攪拌も行った。   According to the study by the present inventors, water is the main component of the electroless plating solution 308, but it is understood that carbon dioxide in a high pressure state and the electroless plating solution are easily mixed stably by mixing alcohol. It was. This is considered due to the fact that alcohol and supercritical carbon dioxide are easily compatible. Therefore, when alcohol is mixed with the electroless plating solution as in this embodiment, it is not necessary to add a surfactant to the electroless plating solution or to stir the electroless plating solution. Furthermore, in order to allow the plating solution to penetrate into the polymer member together with the pressurized carbon dioxide to grow the plating reaction inside the polymer member, the surface tension is lower when alcohol is added to the plating solution than with water alone. Is more preferable. However, in the present invention, a surfactant may be added or the electroless plating solution may be stirred in order to further improve the compatibility (affinity) between the pressurized carbon dioxide and the electroless plating solution. In this example, as described later, a surfactant was added to the electroless plating solution, and the electroless plating solution was also stirred.

本実施例では、さらに、界面活性剤としてオクタエチレングリコールモノドデシルエーテルを無電解メッキ液308に対し、3wt%添加した。   In this example, octaethylene glycol monododecyl ether as a surfactant was further added at 3 wt% with respect to the electroless plating solution 308.

なお、本実施例で用いたメッキ装置300のシリンジポンプ320では、手動バルブ322、323を開いた状態で圧力一定制御することにより、高圧容器301内部の温度および加圧二酸化炭素の密度が変化した際にも、圧力変動を吸収することができ、それにより、高圧容器301内部の圧力を安定に保持することができる構造になっている。   In the syringe pump 320 of the plating apparatus 300 used in this example, the pressure inside the high-pressure vessel 301 and the density of the pressurized carbon dioxide were changed by controlling the pressure constant with the manual valves 322 and 323 opened. Even in such a case, it is possible to absorb pressure fluctuations and thereby to stably hold the pressure inside the high-pressure vessel 301.

[メッキ膜の形成方法]
まず、次のようにして、金属微粒子が表面内部に浸透したポリマー部材702(マウント)を作製(用意)した。射出成形により、図17に示した所定形状のポリマー部材702を成形した。次いで、成形後のポリマー部材702と金属錯体とを表面改質装置(不図示)の高圧容器(不図示)内に装着した。なお、この際、ポリマー部材702の全表面が、後に高圧容器に導入される超臨界状態の二酸化炭素(以下、超臨界二酸化炭素という)と接するようにポリマー部材702を高圧容器内で保持した。また、この例では、金属錯体としてヘキサフルオロアセチルアセトナトパラジウム(II)を用いた。
[Method of forming plating film]
First, a polymer member 702 (mount) in which metal fine particles penetrated into the surface was prepared (prepared) as follows. A polymer member 702 having a predetermined shape shown in FIG. 17 was formed by injection molding. Next, the molded polymer member 702 and the metal complex were mounted in a high-pressure container (not shown) of a surface modification device (not shown). At this time, the polymer member 702 was held in the high-pressure vessel so that the entire surface of the polymer member 702 was in contact with supercritical carbon dioxide (hereinafter referred to as supercritical carbon dioxide) to be introduced into the high-pressure vessel later. In this example, hexafluoroacetylacetonato palladium (II) was used as the metal complex.

次いで、高圧容器内に15MPaの超臨界二酸化炭素を導入した。この際、高圧容器内に仕込まれた金属錯体は超臨界二酸化炭素に溶解し、超臨界二酸化炭素とともにポリマー部材702全体の表面内部に浸透する。次いで、高圧容器を120℃で30分間圧力を保持することにより、ポリマー部材702の表面全体に浸透した金属錯体の一部が還元される。この例では、このようにして金属微粒子が表面内部に浸透したポリマー部材702を作製した(図21中のステップS51)。この様子を示したのが、図18であり、図18中の黒丸印709がポリマー部材702の表面内部に浸透している金属微粒子である。なお、上述のようにして作製した金属微粒子が表面内部に浸透したポリマー部材702では、大気圧下でメッキ反応が起こる程度の濃度で金属微粒子がポリマー部材702の最表面に分散していた。   Next, 15 MPa of supercritical carbon dioxide was introduced into the high-pressure vessel. At this time, the metal complex charged in the high-pressure vessel is dissolved in supercritical carbon dioxide and penetrates into the entire surface of the polymer member 702 together with the supercritical carbon dioxide. Next, by holding the pressure in the high-pressure vessel at 120 ° C. for 30 minutes, a part of the metal complex that has permeated the entire surface of the polymer member 702 is reduced. In this example, the polymer member 702 in which the metal fine particles penetrated into the inside of the surface was produced in this way (step S51 in FIG. 21). This state is shown in FIG. 18, where the black circles 709 in FIG. 18 are the metal fine particles penetrating the inside of the surface of the polymer member 702. In the polymer member 702 in which the metal fine particles produced as described above have permeated the inside of the surface, the metal fine particles are dispersed on the outermost surface of the polymer member 702 at a concentration at which a plating reaction occurs at atmospheric pressure.

次に、上述のようにして作製されたポリマー部材702を、図16に示した高圧容器301の蓋305の保持部材305に装着した後、ポリマー部材702を容器本体302内に挿入して蓋303を閉め、高圧容器301を密閉した。なお、容器本体302には予め無電解メッキ液308を容器本体302の内容積の70%満たしており、蓋303で容器本体302を密閉することにより、界面活性剤およびアルコールを含む無電解メッキ液308中に複数個のポリマー部材702が吊るされた状態となる(図16の状態、図21中のステップS52)。ただし、この時点では、高圧容器301および無電解メッキ液308の温度を、高圧容器301の温調流路307を流れる温調水により、メッキの反応温度(70℃〜85℃)以下である50℃に調整した。それゆえ、この時点では、ポリマー部材702はメッキの反応温度以下の低温(メッキ反応の起こらない温度)の無電解メッキ液と接触しており、ポリマー部材702の表面にメッキ膜は成長しない。   Next, after attaching the polymer member 702 manufactured as described above to the holding member 305 of the lid 305 of the high-pressure vessel 301 shown in FIG. 16, the polymer member 702 is inserted into the container body 302 and the lid 303 is inserted. Was closed and the high-pressure vessel 301 was sealed. The container body 302 is filled with 70% of the inner volume of the container body 302 in advance, and the container body 302 is sealed with a lid 303, whereby an electroless plating solution containing a surfactant and alcohol is sealed. A plurality of polymer members 702 are suspended in 308 (state in FIG. 16, step S52 in FIG. 21). However, at this time, the temperature of the high-pressure vessel 301 and the electroless plating solution 308 is 50 or lower than the plating reaction temperature (70 ° C. to 85 ° C.) due to the temperature-controlled water flowing through the temperature adjustment flow path 307 of the high-pressure vessel 301. Adjusted to ° C. Therefore, at this point, the polymer member 702 is in contact with the electroless plating solution at a temperature lower than the plating reaction temperature (the temperature at which the plating reaction does not occur), and the plating film does not grow on the surface of the polymer member 702.

次に、加圧二酸化炭素を、次のようにして、メッキ反応が起こらない低温度に温調されている高圧容器301内に導入した。なお、この例では、加圧二酸化炭素として超臨界二酸化炭素を用いた。まず、液体二酸化炭素ボンベ321より取り出した液体二酸化炭素を、フィルター326を介して高圧シリンジポンプ320で吸い上げ、次いで、ポンプ内で15MPaに昇圧にした(超臨界二酸化炭素を生成した)。次いで、手動バルブ322,323を開いて15MPaの超臨界二酸化炭素を導入口325を介して高圧容器301内部に導入し、ポリマー部材702と接触させた(図21中のステップS53)。この際、導入された超臨界二酸化炭素により、ポリマー部材702の表面は膨潤し、また、超臨界二酸化炭素の混合したメッキ液は表面張力が低くなっているので、無電解メッキ液308が超臨界二酸化炭素とともにポリマー部材内部に浸透する。その結果、ポリマー部材702の内部に存在する金属微粒子まで無電解メッキ液308が到達することになる。なお、この例では無電解メッキ液308にアルコールを含ませているので、無電解メッキ液308の表面張力が一層低下するため、無電解メッキ液308がポリマー部材702の内部により浸透し易くなる。   Next, pressurized carbon dioxide was introduced into the high-pressure vessel 301 that was temperature-controlled at a low temperature at which no plating reaction occurred as follows. In this example, supercritical carbon dioxide was used as pressurized carbon dioxide. First, the liquid carbon dioxide taken out from the liquid carbon dioxide cylinder 321 was sucked up by the high-pressure syringe pump 320 through the filter 326, and then the pressure was increased to 15 MPa in the pump (supercritical carbon dioxide was generated). Next, the manual valves 322 and 323 were opened, 15 MPa of supercritical carbon dioxide was introduced into the high-pressure vessel 301 through the inlet 325, and contacted with the polymer member 702 (step S53 in FIG. 21). At this time, the surface of the polymer member 702 is swollen by the introduced supercritical carbon dioxide, and the surface tension of the plating solution mixed with the supercritical carbon dioxide is low. Therefore, the electroless plating solution 308 is supercritical. It penetrates inside the polymer member together with carbon dioxide. As a result, the electroless plating solution 308 reaches the fine metal particles present inside the polymer member 702. In this example, since the electroless plating solution 308 contains alcohol, the surface tension of the electroless plating solution 308 is further reduced, so that the electroless plating solution 308 easily penetrates into the polymer member 702.

なお、この例では、超臨界二酸化炭素導入後に、マグレチックスタラー306を高速で回転させて無電解メッキ液308を攪拌した。上述のように、この例では、無電解メッキ液にアルコールが含まれているので、マグレチックスタラー306を用いて無電解メッキ液308を拡散しなくとも、超臨界二酸化炭素とメッキ液との相溶性を十分に確保できるが、この例では、超臨界二酸化炭素とメッキ液との相溶性をより高くするために、マグレチックスタラー306で無電解メッキ液308を攪拌した。   In this example, after the supercritical carbon dioxide was introduced, the electroless plating solution 308 was agitated by rotating the magical stirrer 306 at a high speed. As described above, in this example, since the electroless plating solution contains alcohol, the phase between the supercritical carbon dioxide and the plating solution can be obtained without diffusing the electroless plating solution 308 by using the magnetic stirrer 306. Although sufficient solubility can be secured, in this example, the electroless plating solution 308 was agitated with a magretic stirrer 306 in order to increase the compatibility between the supercritical carbon dioxide and the plating solution.

次に、高圧容器301の温度を85℃に昇温し、高圧容器301内でメッキ反応を起こして(無電解メッキを施して)ポリマー部材702の表面にメッキ膜を形成した(図21中のステップS54)。この際、この例のメッキ膜の形成方法では、上述のようにポリマー部材702の内部に存在する金属微粒子のところまで無電解メッキ液が浸透しているので、ポリマー部材702の表面だけでなく、その内部に存在する金属微粒子を触媒核としてメッキ膜が成長する。すなわち、この例のメッキ膜の形成方法では、ポリマー部材702内部の自由体積内にもメッキ膜が成長することとなり、メッキ膜はポリマー部材702の内部に食い込んだ状態でポリマー部材702上に形成される。   Next, the temperature of the high-pressure vessel 301 was raised to 85 ° C., and a plating reaction was caused in the high-pressure vessel 301 (electroless plating was performed) to form a plating film on the surface of the polymer member 702 (in FIG. 21). Step S54). At this time, in the plating film forming method of this example, since the electroless plating solution penetrates to the metal fine particles existing inside the polymer member 702 as described above, not only the surface of the polymer member 702, A plating film grows using the metal fine particles existing inside as catalyst nuclei. That is, in the plating film forming method of this example, the plating film grows also in the free volume inside the polymer member 702, and the plating film is formed on the polymer member 702 in a state of being bitten into the polymer member 702. The

メッキ終了後、マグネチックスターラー306を停止させ、しばらく静置して、高圧容器301内で二酸化炭素とメッキ液とを2相分離させた。その後、手動バルブ322を閉じて、手動バルブ324を開き、高圧容器301内の二酸化炭素を排気した。次いで、高圧容器301を開けて、ポリマー部材702を高圧容器301から取り出した。取り出されたポリマー部材702を目視で確認したところ、ポリマー部材702の表面全体に金属光沢がみられた。   After the completion of plating, the magnetic stirrer 306 was stopped and allowed to stand for a while to separate the carbon dioxide and the plating solution into two phases in the high-pressure vessel 301. Thereafter, the manual valve 322 was closed, the manual valve 324 was opened, and the carbon dioxide in the high-pressure vessel 301 was exhausted. Next, the high-pressure vessel 301 was opened, and the polymer member 702 was taken out from the high-pressure vessel 301. When the taken out polymer member 702 was visually confirmed, metallic luster was observed on the entire surface of the polymer member 702.

次に、高圧容器301から取り出したポリマー部材702の内部から二酸化炭素および無電解メッキ液を脱気させるために、ポリマー部材702を150℃で1時間アニールした。次いで、酸化されたメッキ膜表面を塩酸で活性化した。その後、大気中で従来の無電解ニッケル−リン液を用いて、常圧で無電解メッキを施し、膜厚500nmのメッキ膜を積層し、さらに、その上に無電解銅メッキを1μmの厚さで積層し、電磁波シールド膜を施した。次いで、黒色の無電解メッキを行ない、無電解銅メッキ膜の上に黒色の無電解ニッケル−リンメッキ膜を積層した。黒色化は、専用の無電解ニッケルーリンメッキ液を用いてメッキを施した後、エッチングにより表面を粗化して行った。これは、ポリマー部材702(マウント)の内壁を黒色化して、光の反射によるゴーストフレアを抑制するためである。この例では、上述のようにして、図19に示すようなポリマー部材702の全表面を金属膜(図19中の符号番号710)で覆ったポリマー部材を得た。   Next, the polymer member 702 was annealed at 150 ° C. for 1 hour in order to degas the carbon dioxide and the electroless plating solution from the inside of the polymer member 702 taken out from the high-pressure vessel 301. Next, the oxidized plating film surface was activated with hydrochloric acid. After that, electroless plating is performed at atmospheric pressure using a conventional electroless nickel-phosphorous solution in the atmosphere, a 500 nm thick plating film is laminated, and an electroless copper plating is further formed thereon with a thickness of 1 μm. And an electromagnetic wave shielding film was applied. Next, black electroless plating was performed, and a black electroless nickel-phosphorous plating film was laminated on the electroless copper plating film. The blackening was performed by plating using a dedicated electroless nickel-phosphorous plating solution and then roughening the surface by etching. This is because the inner wall of the polymer member 702 (mount) is blackened to suppress ghost flare due to light reflection. In this example, as described above, a polymer member was obtained in which the entire surface of the polymer member 702 as shown in FIG. 19 was covered with a metal film (reference numeral 710 in FIG. 19).

[メッキ膜の評価]
上述のようにして作製されたポリマー部材702に対して、高温多湿試験(条件:温度80℃、湿度90%Rh、放置時間500時間)やヒートサイクル試験(80℃と150℃との温度間を15サイクル)を行った後、ピール試験したところ、膜剥れは発生しなかった。また、本実施例の上記プロセスを繰り返し行ったところ、高圧容器301内部にはメッキ膜の成長や容器内壁の腐食は認められなかった。
[Evaluation of plating film]
For the polymer member 702 manufactured as described above, a high-temperature and high-humidity test (conditions: temperature 80 ° C., humidity 90% Rh, standing time 500 hours) and heat cycle test (between temperatures between 80 ° C. and 150 ° C.) After performing a peel test after 15 cycles, no film peeling occurred. Further, when the above process of this example was repeated, no growth of plating film or corrosion of the inner wall of the container was observed in the high pressure container 301.

また、この例で作製したポリマー部材702の表面近傍の断面をSEM(走査電子顕微鏡)で観察した。その結果を図20に示した。図20中の領域702aは、メッキ膜が形成されていないポリマー部材702の領域であり、領域702bはポリマー部材702の内部に金属膜が成長している層である。また、図20中の領域702cは、大気中で従来の無電解ニッケル−リン液を用いて、常圧で無電解メッキを施した際に形成された金属膜の領域であり、図20中の領域702dは、無電解銅メッキ膜の領域である。それゆえ、領域702bと領域702cの境界付近が、ポリマー部材702の最表面となる。図20の観察像から明らかなように、ポリマー部材702の内部に金属膜が成長している層が形成されたことが確認された(図20中の領域702b)。   Moreover, the cross section of the surface vicinity of the polymer member 702 produced in this example was observed with SEM (scanning electron microscope). The results are shown in FIG. A region 702a in FIG. 20 is a region of the polymer member 702 in which no plating film is formed, and a region 702b is a layer in which a metal film is grown inside the polymer member 702. A region 702c in FIG. 20 is a region of a metal film formed when electroless plating is performed at normal pressure using a conventional electroless nickel-phosphorus solution in the atmosphere. A region 702d is a region of the electroless copper plating film. Therefore, the vicinity of the boundary between the region 702 b and the region 702 c is the outermost surface of the polymer member 702. As is apparent from the observation image of FIG. 20, it was confirmed that a layer in which a metal film was grown was formed inside the polymer member 702 (region 702b in FIG. 20).

この例では、さらに、ポリマー部材702の内部に存在する金属をXRD(X線回折装置)により成分分析したところ、Ni、PとPdが検出された。この結果から、ポリマー部材702の内部に浸透した金属錯体由来のPdが触媒として働き、ポリマー内部でNi−Pメッキ膜が成長していることが確認された。   In this example, when a metal component present in the polymer member 702 was subjected to component analysis using an XRD (X-ray diffractometer), Ni, P and Pd were detected. From this result, it was confirmed that Pd derived from a metal complex that penetrated into the polymer member 702 worked as a catalyst, and a Ni-P plating film was grown inside the polymer.

実施例6では、実施例5と同様に、バッチ処理によりポリマー部材の表面に無電解メッキ膜を形成する方法を説明する。なお、この例では、メッキ装置内の高圧容器に実施例5と異なる構造の高圧容器を用いた。なお、この例で用いた無電解メッキ液は実施例5と同じとした。また、この例では、実施例5と同様に、カメラレンズモジュールのマウント(図17に示す構造のマウント702)の表面に金属膜を形成した。また、無電解メッキ液に導入する加圧二酸化炭素としては、超臨界二酸化炭素を用いた。   In Example 6, as in Example 5, a method for forming an electroless plating film on the surface of a polymer member by batch processing will be described. In this example, a high pressure vessel having a structure different from that of Example 5 was used as the high pressure vessel in the plating apparatus. The electroless plating solution used in this example was the same as in Example 5. In this example, similarly to Example 5, a metal film was formed on the surface of the camera lens module mount (mount 702 having the structure shown in FIG. 17). Moreover, supercritical carbon dioxide was used as the pressurized carbon dioxide introduced into the electroless plating solution.

[メッキ装置]
実施例6で用いたメッキ装置の概略構成図を図22に示した。メッキ装置400は、図22に示すように、主に、二酸化炭素ボンベ421、フィルター426、高圧シリンジポンプ420、及び、高圧容器401から構成されており、これらの構成要素は配管427により接続されている。また、図22に示すように、各構成要素間を繋ぐ配管427には、超臨界二酸化炭素の流動を制御するための手動バルブ422〜424が所定の位置に設けられている。
[Plating equipment]
A schematic configuration diagram of the plating apparatus used in Example 6 is shown in FIG. As shown in FIG. 22, the plating apparatus 400 mainly includes a carbon dioxide cylinder 421, a filter 426, a high-pressure syringe pump 420, and a high-pressure container 401, and these components are connected by a pipe 427. Yes. Further, as shown in FIG. 22, manual valves 422 to 424 for controlling the flow of supercritical carbon dioxide are provided at predetermined positions on a pipe 427 that connects the components.

高圧容器401は、図22に示すように、容器本体402と、蓋403と、容器本体402の内部に収容される内部容器409とからなる。蓋403は、実施例5のようにポリマー部材702を保持する保持部材を備えないこと以外は、実施例5と同様の構造である。この例の容器本体402では、その内壁表面に、非メッキ成長膜を設けなかったこと以外は、実施例5と同様の構造とした。そして、この例のメッキ装置400では、金属製の容器本体402の内部に収容可能なPTFE(ポリテトラフルオロエチレン)製の内部容器409を用い、この内部容器409内でポリマー部材702に無電解メッキを施した。   As shown in FIG. 22, the high-pressure container 401 includes a container main body 402, a lid 403, and an internal container 409 accommodated in the container main body 402. The lid 403 has the same structure as that of the fifth embodiment except that the lid 403 does not include a holding member that holds the polymer member 702 as in the fifth embodiment. The container body 402 of this example has the same structure as that of Example 5 except that the non-plated growth film is not provided on the inner wall surface. In the plating apparatus 400 of this example, an inner container 409 made of PTFE (polytetrafluoroethylene) that can be accommodated in the metal container body 402 is used, and the polymer member 702 is electrolessly plated in the inner container 409. Was given.

内部容器409は、図22に示すように、無電解メッキ液408及びポリマー部材702が収容される容器本体部409aと、蓋部409bとからなる。蓋部409bの無電解メッキ液408側の表面(下面)には、複数のポリマー部材702を無電解メッキ液408内に吊るして保持することのできる保持部材405が設けられている。この保持部材405は、実施例5の保持部材と同様の構造を有する。一方、容器本体部409a内の底部には、無電解メッキ液408を攪拌するためのマグネチックスターラー406が設けられている。また、容器本体部409aの上端付近の外壁にはネジ溝が形成されており、蓋部409b内壁には容器本体部409aの上端の外壁に設けられたネジ溝と勘合するネジ溝が形成されている。そして、容器本体部409aのネジ溝と蓋部409bのネジ溝とを勘合させることにより、内部容器409を閉める構造になっている。   As shown in FIG. 22, the inner container 409 includes a container main body 409 a in which the electroless plating solution 408 and the polymer member 702 are accommodated, and a lid 409 b. A holding member 405 capable of suspending and holding a plurality of polymer members 702 in the electroless plating solution 408 is provided on the surface (lower surface) of the lid portion 409b on the electroless plating solution 408 side. The holding member 405 has the same structure as the holding member of the fifth embodiment. On the other hand, a magnetic stirrer 406 for stirring the electroless plating solution 408 is provided at the bottom of the container body 409a. In addition, a screw groove is formed on the outer wall near the upper end of the container main body 409a, and a screw groove is formed on the inner wall of the lid 409b to be mated with a screw groove provided on the outer wall of the upper end of the container main body 409a. Yes. Then, the inner container 409 is closed by fitting the screw groove of the container main body 409a and the screw groove of the lid 409b.

[メッキ膜の形成方法]
まず、この例では、実施例5と同様にして、金属微粒子が表面内部に浸透したポリマー部材702(図18に示した形状のマウント702)を作製(用意)した。なお、この例では、金属錯体としてヘキサフルオロアセチルアセトナトパラジウム(II)を用いた。
[Method of forming plating film]
First, in this example, in the same manner as in Example 5, a polymer member 702 (mount 702 having the shape shown in FIG. 18) in which metal fine particles penetrated into the surface was prepared (prepared). In this example, hexafluoroacetylacetonato palladium (II) was used as the metal complex.

次いで、成形後のポリマー部材702を、図22に示した内部容器409の蓋部409bの保持部材405に装着した後、ポリマー部材702を容器本体部409a内に挿入して蓋部409bを閉めた。なお、この際、図22に示したように、界面活性剤およびアルコールを含む無電解メッキ液408中に複数個のポリマー部材702が吊るされた状態となる。そして、常温でこの状態を保持した。それゆえ、この時点では、無電解メッキ液408の温度はメッキ反応温度(70℃〜85℃)以下であるのでポリマー部材702の表面にメッキ膜は成長しない。   Next, after the molded polymer member 702 was attached to the holding member 405 of the lid portion 409b of the inner container 409 shown in FIG. 22, the polymer member 702 was inserted into the container main body portion 409a and the lid portion 409b was closed. . At this time, as shown in FIG. 22, a plurality of polymer members 702 are suspended in an electroless plating solution 408 containing a surfactant and alcohol. And this state was hold | maintained at normal temperature. Therefore, at this time, since the temperature of the electroless plating solution 408 is equal to or lower than the plating reaction temperature (70 ° C. to 85 ° C.), the plating film does not grow on the surface of the polymer member 702.

次いで、予め90℃に温調しておいた高圧容器401内に、内部容器409を挿入して、蓋403を閉め、直ちに、超臨界二酸化炭素を実施例5と同様にして導入口425を介して高圧容器401内に導入した。その後、マグネチックスターラー406で無電解メッキ液408を攪拌した。この際、内部容器409の容器本体部409aと蓋部409bは、上述のように、ネジで勘合されているが、その状態においても、超臨界二酸化炭素は、粘度が低く拡散性が高いので、内部容器409のネジで勘合されている部分のわずかの隙間から内部容器409の内部に充分に導入される。また、この時点では、内部容器409には熱伝導性の低い樹脂を使用しているので、内部容器409内の温度は急激には上昇しないので、メッキ反応が起こる温度以下の低温度になっており、ポリマー部材702の表面にメッキ膜は成長しない。それゆえ、内部容器409を高圧容器401内に挿入して、直ちに超臨界二酸化炭素を導入すると、実施例5と同様に、ポリマー部材702の表面は膨潤し、また、超臨界二酸化炭素の混合したメッキ液は表面張力が低くなっているので、無電解メッキ液が超臨界二酸化炭素とともにポリマー部材702の内部に浸透し、ポリマー部材702の内部に存在する金属微粒子まで無電解メッキ液が到達する。   Next, the inner vessel 409 is inserted into the high-pressure vessel 401 that has been previously adjusted to 90 ° C., the lid 403 is closed, and immediately, supercritical carbon dioxide is introduced through the inlet 425 in the same manner as in Example 5. And introduced into the high-pressure vessel 401. Thereafter, the electroless plating solution 408 was stirred with a magnetic stirrer 406. At this time, the container body 409a and the lid 409b of the inner container 409 are fitted with screws as described above, but even in that state, supercritical carbon dioxide has low viscosity and high diffusibility. The inner container 409 is sufficiently introduced into the inner container 409 through a slight gap in the portion engaged with the screw. At this time, since the resin having low thermal conductivity is used for the inner container 409, the temperature in the inner container 409 does not rise rapidly, so that the temperature is lower than the temperature at which the plating reaction occurs. In addition, the plating film does not grow on the surface of the polymer member 702. Therefore, when the internal container 409 is inserted into the high-pressure container 401 and supercritical carbon dioxide is immediately introduced, the surface of the polymer member 702 swells and the supercritical carbon dioxide is mixed as in the fifth embodiment. Since the plating solution has a low surface tension, the electroless plating solution penetrates into the polymer member 702 together with the supercritical carbon dioxide, and the electroless plating solution reaches the metal fine particles existing inside the polymer member 702.

その後、時間の経過とともに、内部容器409内の温度が上昇し、最終的には無電解メッキ液408等の温度がメッキ反応温度まで上昇する。その時点で内部容器409でメッキ反応が起こり、ポリマー部材702の表面にメッキ膜が成長する。この際、この例のメッキ膜の形成方法では、上述のようにポリマー部材702の内部に存在する金属微粒子のところまで無電解メッキ液が浸透しているので、ポリマー部材702の表面だけでなく、その内部に存在する金属微粒子を触媒核としてメッキ膜が成長する。すなわち、この例のメッキ膜の形成方法では、メッキ膜はポリマー部材702の内部に食い込んだ状態でポリマー部材上に形成される。   Thereafter, with the passage of time, the temperature in the inner container 409 rises, and finally the temperature of the electroless plating solution 408 etc. rises to the plating reaction temperature. At that time, a plating reaction occurs in the inner container 409 and a plating film grows on the surface of the polymer member 702. At this time, in the plating film forming method of this example, since the electroless plating solution penetrates to the metal fine particles existing inside the polymer member 702 as described above, not only the surface of the polymer member 702, A plating film grows using the metal fine particles existing inside as catalyst nuclei. In other words, in the plating film forming method of this example, the plating film is formed on the polymer member in a state of being bitten into the polymer member 702.

次に、上述したメッキ処理後(内部容器409の挿入後、約30分経過後)、超臨界二酸化炭素を高圧容器401から排気し、そのまま90℃に内部容器409を温調保持した。このプロセスにより、ポリマー部材702の内部から成長したメッキ膜の上に、さらに常圧でメッキ膜を成長させた。その後、内部容器409を高圧容器401から取り出し、次いで、内部容器409からポリマー部材702を取り出した。次いで、内部容器409から取り出したポリマー部材702に対して、実施例5と同様にして、無電解銅メッキおよび黒色無電解ニッケルーリンメッキを施した。この例では、上述のようにして、図19に示すような全表面が金属膜(図19中の符号番号710)で覆われたポリマー部材702を得た。   Next, after the plating process described above (about 30 minutes after the insertion of the inner container 409), supercritical carbon dioxide was exhausted from the high-pressure container 401, and the inner container 409 was kept at 90 ° C. as it was. By this process, a plating film was further grown at normal pressure on the plating film grown from the inside of the polymer member 702. Thereafter, the inner container 409 was taken out from the high-pressure container 401, and then the polymer member 702 was taken out from the inner container 409. Subsequently, the polymer member 702 taken out from the inner container 409 was subjected to electroless copper plating and black electroless nickel-phosphorous plating in the same manner as in Example 5. In this example, as described above, a polymer member 702 having the entire surface as shown in FIG. 19 covered with a metal film (reference numeral 710 in FIG. 19) was obtained.

[メッキ膜の評価]
上述のようにして作製されたポリマー部材702に対して、実施例5と同様にして環境試験(高温多湿試験、ヒートサイクル試験)及び密着性評価(ピール試験)を行ったところ、実施例5と同様に、密着性の高いメッキ膜がポリマー部材702上に形成されていることが分かった。
[Evaluation of plating film]
When the environmental test (high temperature and humidity test, heat cycle test) and adhesion evaluation (peel test) were performed on the polymer member 702 produced as described above in the same manner as in Example 5, Example 5 and Similarly, it was found that a plating film with high adhesion was formed on the polymer member 702.

また、本実施例の高圧容器401の内部にはメッキ膜は確認されなかった。それゆえ、本実施例のように、樹脂製の内部容器を用いた場合には、高圧容器401内部をコーティングしなくても高圧容器401内壁にメッキが成長することはないので、安定したメッキを行うことができる。また、高圧容器401の表面の腐食を抑制することができるので、超臨界二酸化炭素を用いたメッキ膜の形成方法として好適なメッキ装置である。   Further, no plating film was confirmed inside the high-pressure vessel 401 of this example. Therefore, as in this embodiment, when a resin-made inner container is used, plating does not grow on the inner wall of the high-pressure vessel 401 without coating the inside of the high-pressure vessel 401. It can be carried out. Further, since the corrosion of the surface of the high-pressure vessel 401 can be suppressed, the plating apparatus is suitable as a plating film forming method using supercritical carbon dioxide.

実施例7では、無電解メッキ液に界面活性剤を添加しなかったこと、及び、マグネチックスターラーによる無電解メッキ液の攪拌を行わなかったこと以外は、実施例6と同様のメッキ装置を用いて、同様の方法によりポリマー部材に無電解メッキ処理を行った。   In Example 7, the same plating apparatus as in Example 6 was used except that the surfactant was not added to the electroless plating solution and that the electroless plating solution was not stirred with a magnetic stirrer. Then, the electroless plating treatment was performed on the polymer member by the same method.

また、この例で作製されたポリマー部材に対しても、実施例6と同様にして環境試験(高温多湿試験、ヒートサイクル試験)及び密着性評価(ピール試験)を行ったところ、実施例6と同様に、密着性の高いメッキ膜がポリマー部材上に形成されていることが分かった。すなわち、本発明のメッキ膜の形成方法によれば、界面活性剤やマグネチックスタラーを用いて超臨界二酸化炭素と無電解メッキ液との親和性(相溶性)の向上は図らなくても、無電解メッキ液にアルコールのみを添加することにより良好な密着性を有するメッキ膜をポリマー上に形成できることが分かった。   Further, for the polymer member produced in this example, environmental tests (high temperature and humidity test, heat cycle test) and adhesion evaluation (peel test) were conducted in the same manner as in Example 6. Similarly, it was found that a highly adhesive plating film was formed on the polymer member. That is, according to the method for forming a plating film of the present invention, there is no need to improve the affinity (compatibility) between the supercritical carbon dioxide and the electroless plating solution by using a surfactant or a magnetic stirrer. It has been found that a plating film having good adhesion can be formed on a polymer by adding only alcohol to the electrolytic plating solution.

実施例8では、メッキ装置の高圧容器の内壁に非メッキ成長膜をコーティングしなかったこと以外は、実施例5と同様のメッキ装置を用いて、実施例5と同様の方法によりポリマー部材に無電解メッキ処理を行った。   In Example 8, the polymer member was coated with the same method as in Example 5 except that the inner wall of the high-pressure vessel of the plating apparatus was not coated with a non-plated growth film. Electrolytic plating was performed.

また、この例で作製されたポリマー部材に対しても、実施例5と同様にして環境試験(高温多湿試験、ヒートサイクル試験)及び密着性評価(ピール試験)を行ったところ、実施例5と同様に、密着性の良好なメッキ膜がポリマー部材上に形成されていることが分かった。ただし、この例では、メッキ装置の高圧容器の内壁に非メッキ成長膜を形成しなかったので、高圧容器内壁にはメッキ膜の成長および腐食が確認された。   Further, for the polymer member produced in this example, environmental tests (high temperature and humidity test, heat cycle test) and adhesion evaluation (peel test) were conducted in the same manner as in Example 5. Similarly, it was found that a plating film with good adhesion was formed on the polymer member. However, in this example, since the non-plated growth film was not formed on the inner wall of the high-pressure vessel of the plating apparatus, the growth and corrosion of the plating film was confirmed on the inner wall of the high-pressure vessel.

[比較例1]
比較例1では、無電解メッキ液にアルコールを混合しなかったこと、無電解メッキ液に超臨界二酸化炭素の圧力を20MPaと高くしたこと、及び、メッキ装置の内部容器で攪拌を行わなかったこと以外は、実施例6と同様のメッキ装置を用いて、実施例6と同様にしてポリマー部材の無電解メッキ処理を行った。
[Comparative Example 1]
In Comparative Example 1, alcohol was not mixed in the electroless plating solution, the pressure of supercritical carbon dioxide was increased to 20 MPa in the electroless plating solution, and stirring was not performed in the inner container of the plating apparatus. Except for the above, the electroless plating treatment of the polymer member was performed in the same manner as in Example 6 using the same plating apparatus as in Example 6.

また、この例で作製されたポリマー部材に対しても、実施例5と同様にして環境試験(高温多湿試験、ヒートサイクル試験)及び密着性評価(ピール試験)を行ったところ、作製した殆どのポリマー部材で無電解メッキ膜に剥離が生じた。   Also, for the polymer member produced in this example, environmental tests (high temperature and humidity test, heat cycle test) and adhesion evaluation (peel test) were conducted in the same manner as in Example 5. The polymer member peeled off the electroless plating film.

上記実施例5〜8及び比較例1における高圧容器の形態、無電解メッキ液の条件、及び、評価結果をまとめた表を表1に示す。なお、表1中のメッキ膜の密着性及び高圧内壁の腐食性の評価基準は、次の通りである。
メッキ膜の密着性:
◎ 環境試験(高温多湿、ヒートサイクル試験)後のピール試験で問題がない場合(メッキ膜の剥離、膜膨れ等がない場合)
○ 環境試験前のピール試験で問題がない場合
× 環境試験前のピール試験で剥離した場合
容器内壁の腐食性及びメッキ膜の成長:
○ 容器内壁に錆やメッキ膜の成長がない場合
× 容器内壁に錆やメッキ膜の成長が発生した場合
Table 1 summarizes the form of the high-pressure vessel, the conditions of the electroless plating solution, and the evaluation results in Examples 5 to 8 and Comparative Example 1. In addition, the evaluation criteria of the adhesion of the plating film and the corrosivity of the high-pressure inner wall in Table 1 are as follows.
Plating film adhesion:
◎ When there is no problem in the peel test after the environmental test (high temperature and high humidity, heat cycle test) (when there is no peeling of the plating film or film swelling)
○ When there is no problem in the peel test before the environmental test × When peeled off during the peel test before the environmental test Corrosion of the inner wall of the container and growth of the plating film:
○ When there is no rust or plating film growth on the container inner wall × When rust or plating film growth occurs on the container inner wall

Figure 0004092364
Figure 0004092364

実施例9では、実施例1と同様の射出成形機を用いてポリマー成形品を射出成形した後に、同じ射出成形機内で無電解メッキ処理を行う方法について説明する。ただし、本実施例では、実施例1と異なる方法で成形処理及び無電解メッキ処理を行った。なお、本実施例では、実施例1と同様に、ポリマー成形品として自動車ヘッドライトのリフレクターを作製した。   In Example 9, a method of performing electroless plating in the same injection molding machine after injection molding of a polymer molded product using the same injection molding machine as in Example 1 will be described. However, in this example, the forming process and the electroless plating process were performed by a method different from that of Example 1. In this example, as in Example 1, an automobile headlight reflector was produced as a polymer molded product.

[ポリマー成形品の成形方法]
本実施例における表面内部に金属微粒子を浸透させたポリマー成形品の成形方法を図1〜3を参照しながら説明する。なお、本実施例では、実施例1と同様に、可塑化シリンダー52内で可塑化計量した溶融樹脂の先端部(フローフロント部)に金属微粒子を溶解した加圧二酸化炭素を導入した。
[Molding method of polymer molded product]
A method for forming a polymer molded article in which metal fine particles are infiltrated into the surface in this embodiment will be described with reference to FIGS. In this example, similarly to Example 1, pressurized carbon dioxide in which metal fine particles were dissolved was introduced into the tip (flow front part) of the molten resin plasticized and measured in the plasticizing cylinder 52.

まず、溶解槽35において金属錯体をエタノールに溶解させ、金属錯体が溶解したエタノールをシリンジポンプ34内で15MPaに昇圧した。一方、液体二酸化炭素ボンベ21よりフィルター57を介してシリンジポンプ20に供給し、シリンジポンプ20内で液体二酸化炭素を15MPaと昇圧した。そして、昇圧された二酸化炭素と金属錯体が溶解したエタノールと配管80内で混合した(加圧混合流体を生成した)。なお、この加圧混合流体を可塑化溶融装置110に供給する際、加圧混合流体の供給圧力は、圧力計49の表示が15MPaになるように、背圧弁48により制御した。また、両シリンンジポンプ20,34からのエタノール溶液と加圧二酸化炭素との加圧混合流体の送液は、各シリンジポンプ20,34の制御を圧力制御から流量制御に切り替えて行った。さらに、加圧混合流体を可塑化溶融装置110に供給する際には、加圧混合流体を、配管80内で図示しないヒーターにより50℃に温度制御しつつ、可塑化溶融装置110に供給した。   First, the metal complex was dissolved in ethanol in the dissolution tank 35, and the ethanol in which the metal complex was dissolved was increased to 15 MPa in the syringe pump 34. On the other hand, the liquid carbon dioxide cylinder 21 was supplied to the syringe pump 20 via the filter 57, and the liquid carbon dioxide pressure was increased to 15 MPa in the syringe pump 20. The pressurized carbon dioxide and ethanol in which the metal complex was dissolved were mixed in the pipe 80 (a pressurized mixed fluid was generated). When the pressurized mixed fluid was supplied to the plasticizing and melting apparatus 110, the supply pressure of the pressurized mixed fluid was controlled by the back pressure valve 48 so that the display of the pressure gauge 49 became 15 MPa. Further, the feeding of the pressurized mixed fluid of the ethanol solution and the pressurized carbon dioxide from both syringe pumps 20 and 34 was performed by switching the control of each syringe pump 20 and 34 from the pressure control to the flow rate control. Furthermore, when supplying the pressurized mixed fluid to the plasticizing and melting apparatus 110, the pressurized mixed fluid was supplied to the plasticizing and melting apparatus 110 while controlling the temperature in the pipe 80 to 50 ° C. by a heater (not shown).

次に、加圧混合流体を可塑化溶融装置110内に導入する手順を図1及び2を参照しながら説明する。まず、ホッパー50から樹脂ペレットを供給しながら、可塑化シリンダー52内のスクリュー51を回転させて、樹脂の可塑化計量を行った。可塑化計量完了時における導入バルブ65付近の状態を示したのが図2(a)である。なお、この際、図2(a)に示すように、導入バルブ65の導入ピン70が後退(図2(a)中の左側に移動)することで、溶融樹脂66へ加圧混合流体67が導入されること遮断している。   Next, a procedure for introducing the pressurized mixed fluid into the plasticizing and melting apparatus 110 will be described with reference to FIGS. First, while supplying resin pellets from the hopper 50, the screw 51 in the plasticizing cylinder 52 was rotated to measure plasticization of the resin. FIG. 2A shows a state in the vicinity of the introduction valve 65 when the plasticizing measurement is completed. At this time, as shown in FIG. 2A, the introduction pin 70 of the introduction valve 65 moves backward (moves to the left side in FIG. 2A), so that the pressurized mixed fluid 67 is fed to the molten resin 66. It is blocked from being introduced.

次いで、スクリュー51をサックバック(後退)して、溶融樹脂66の内圧力を低下させると同時に、両シリンジポンプ20,34を圧力制御から流量制御に切り替え、該金属錯体の溶解したエタノールと二酸化炭素の流量をそれぞれ上述の方法にて1:10としながら、加圧混合流体67を導入バルブ65を介して可塑化シリンダー52内のフローフロント部の溶融樹脂66に導入した(図2(b)の状態)。図2(b)中の領域68が加圧混合流体67が浸透した溶融樹脂の部分である。なお、加圧混合流体67の導入は、樹脂圧および加圧混合流体67の圧力を、それぞれ圧力センサー40,47で監視しながら行った。   Next, the screw 51 is sucked back (retracted) to reduce the internal pressure of the molten resin 66, and at the same time, both syringe pumps 20, 34 are switched from pressure control to flow rate control, and ethanol and carbon dioxide in which the metal complex is dissolved. The pressurized mixed fluid 67 was introduced into the molten resin 66 at the flow front portion in the plasticizing cylinder 52 via the introduction valve 65 (FIG. 2B). Status). A region 68 in FIG. 2B is a portion of the molten resin into which the pressurized mixed fluid 67 has permeated. The pressurized mixed fluid 67 was introduced while monitoring the resin pressure and the pressure of the pressurized mixed fluid 67 with the pressure sensors 40 and 47, respectively.

次いで、両シリンジポンプ20,34を停止して加圧混合流体67の送液を停止した。また、それと同時に、スクリュー51を前進させて、樹脂圧力を再度上昇させ、導入ピン70を後退(図2(b)中の左方向に移動)させた。それにより、加圧混合流体67の導入を停止するとともに、加圧混合流体67と溶融樹脂66とを相溶させた。   Subsequently, both syringe pumps 20 and 34 were stopped, and liquid feeding of the pressurized mixed fluid 67 was stopped. At the same time, the screw 51 is advanced to increase the resin pressure again, and the introduction pin 70 is retracted (moved leftward in FIG. 2B). Thus, the introduction of the pressurized mixed fluid 67 was stopped, and the pressurized mixed fluid 67 and the molten resin 66 were made compatible.

次いで、両シリンジポンプ20,34を、配管80中の図示しない自動バルブを閉鎖した後、可塑化溶融装置110に供給した加圧二酸化炭素及び金属錯体が溶解したエタノール溶液の流量分をシリンジポンプ20,34内に補液した。その後、圧力制御に切り替え、15MPaの高圧に保持し、次ショットの送液まで待機させた。   Subsequently, after closing both the syringe pumps 20 and 34 in an automatic valve (not shown) in the pipe 80, the flow rate of the ethanol solution in which the pressurized carbon dioxide and the metal complex supplied to the plasticizing and melting apparatus 110 are dissolved is the syringe pump 20. , 34 was replenished. After that, the pressure control was switched to 15 MPa, and the system was kept waiting until the next shot was fed.

次に、可塑化シリンダー52内のフローフロント部の溶融樹脂66に加圧混合流体67を導入した後、型締め装置111の油圧型締め機構(不図示)により型締めされ、温調回路(不図示)により温度制御された金型内に画成されたキャビティ104に溶融樹脂を射出充填した。なお、この際、射出充填するまでの射出速度を200m/sとした。   Next, after the pressurized mixed fluid 67 is introduced into the molten resin 66 in the flow front part in the plasticizing cylinder 52, the mold is clamped by a hydraulic mold clamping mechanism (not shown) of the mold clamping device 111, and a temperature control circuit (not shown). The molten resin was injected and filled into the cavity 104 defined in the mold controlled in temperature by the illustration. At this time, the injection speed until injection filling was set to 200 m / s.

次いで、成形品を冷却固化した(図3の状態)。なお、溶融樹脂を金型内に射出成形する際、最初に射出されるフローフロント部の溶融樹脂68は噴水効果(ファウンテンフロー)により、射出成形品の表皮を形成する。すなわち、この例では、フローフロント部近傍に金属錯体由来の金属微粒子が分散しているので、図3に示すように、ポリマー成形品507の表皮505(表面内部)には金属微粒子が含浸したポリマー成形品507が得られる(図23中のステップS91)。この例では、このようにして、表皮であるスキン層505に金属微粒子が分散し、内皮であるコア層506に、ほとんど金属微粒子が存在しないポリマー成形品507’を得た。   Next, the molded product was cooled and solidified (state shown in FIG. 3). When the molten resin is injection-molded into the mold, the molten resin 68 in the flow front portion that is injected first forms the skin of the injection-molded product by the fountain effect (fountain flow). That is, in this example, metal fine particles derived from the metal complex are dispersed in the vicinity of the flow front portion, and therefore, as shown in FIG. 3, the polymer 507 (inside the surface) of the polymer molded product 507 has a polymer impregnated with metal fine particles. A molded product 507 is obtained (step S91 in FIG. 23). In this example, in this way, the metal fine particles were dispersed in the skin layer 505 as the epidermis, and a polymer molded product 507 ′ having almost no metal fine particles in the core layer 506 as the endothelium was obtained.

なお、本実施例の成形処理では、上述したように、実施例1のように、可塑化シリンダー52内のフローフロント部の樹脂に金属錯体を樹脂に十分に浸透させた後に減圧処理を行わず、且つ、実施例1より高速でフローフロント部の樹脂を射出した。この動作により、後述する射出充填でスキン層を形成した際に、金属微粒子や二酸化炭素ガスがスキン層の表面(成形品の最表面)に浮き出易くなり、大気圧下でメッキ反応が起こる程度の濃度で金属微粒子がスキン層の表面(成形品の最表面)に分散する(図24参照)。   In the molding process of the present embodiment, as described above, the pressure reduction process is not performed after the metal complex is sufficiently infiltrated into the resin in the flow front portion in the plasticizing cylinder 52 as in the first embodiment. And the resin of the flow front part was injected at a higher speed than Example 1. By this operation, when the skin layer is formed by injection filling described later, the metal fine particles and carbon dioxide gas easily float on the surface of the skin layer (the outermost surface of the molded product), and the plating reaction occurs at atmospheric pressure. Metal fine particles are dispersed on the surface of the skin layer (the outermost surface of the molded product) at a concentration (see FIG. 24).

[メッキ膜の形成方法]
上述のようにして作製された表面内部に金属微粒子が分散したポリマー成形品507に対して、次のようにして、金型内で無電解メッキ処理を行った。なお、無電解メッキ処理を行っている間、金型内部は80℃に温調した。
[Method of forming plating film]
The polymer molded product 507 in which metal fine particles were dispersed inside the surface produced as described above was subjected to electroless plating in a mold as follows. During the electroless plating process, the temperature inside the mold was adjusted to 80 ° C.

まず、図4に示すように、型締め装置111の油圧型締め機構(不図示)を後退(図4中の下方向)させることにより、可動プラテン56および可動金型54を後退させ、固定金型53とポリマー成形品507との間に隙間508(キャビティ508)を設けた。   First, as shown in FIG. 4, the movable platen 56 and the movable mold 54 are moved backward by retreating the hydraulic mold clamping mechanism (not shown) of the mold clamping device 111 (downward in FIG. 4), so that the fixed mold is fixed. A gap 508 (cavity 508) was provided between the mold 53 and the polymer molded product 507.

次いで、無電解メッキ装置部101の二酸化炭素ボンベ21より供給した二酸化炭素をポンプ19で昇圧し、バッファータンク36に貯蔵した。次いで、自動バルブ43を開放して、バッファータンク36に貯蔵されていた加圧二酸化炭素をメッキ液導入路61を介してキャビティ508に導入してポリマー成形品507の表面に加圧二酸化炭素を接触させた(図23中のステップS92)。なお、この際、固定金型53の外径部に設けられたバネ内蔵シール17と可動金型54の勘合により、キャビティ508はシールされているので、導入された加圧二酸化炭素が金型外部に漏れ出すことはない。また、この際、キャビティ508における加圧二酸化炭素の圧力は15MPaとした。このように、ポリマー成形品507の表面に加圧二酸化炭素を接触させることにより、ポリマー成形品507の表面が膨潤するので、次いで導入される加圧二酸化炭素と無電解メッキ液との混合流体のポリマー成形品507の内部への浸透がよりスムーズに行われるという効果が得られる。   Next, the carbon dioxide supplied from the carbon dioxide cylinder 21 of the electroless plating apparatus unit 101 was pressurized by the pump 19 and stored in the buffer tank 36. Next, the automatic valve 43 is opened, and the pressurized carbon dioxide stored in the buffer tank 36 is introduced into the cavity 508 through the plating solution introduction path 61 to bring the pressurized carbon dioxide into contact with the surface of the polymer molded product 507. (Step S92 in FIG. 23). At this time, since the cavity 508 is sealed by fitting the spring-incorporated seal 17 provided on the outer diameter portion of the fixed mold 53 and the movable mold 54, the introduced pressurized carbon dioxide is outside the mold. Never leak out. At this time, the pressure of the pressurized carbon dioxide in the cavity 508 was set to 15 MPa. Since the surface of the polymer molded product 507 swells when the pressurized carbon dioxide is brought into contact with the surface of the polymer molded product 507 in this way, the mixed fluid of the pressurized carbon dioxide and the electroless plating solution to be introduced next The effect that the penetration into the inside of the polymer molded product 507 is performed more smoothly is obtained.

次いで、次のようにして、加圧二酸化炭素を含む無電解メッキ液をキャビティ508に導入して、ポリマー成形品507に接触させた。まず、予め、無電解メッキ装置部101のメッキタンク11から供給されたアルコールおよび界面活性剤混合の無電解メッキ液と、バッファータンク36から供給された15MPaの加圧二酸化炭素とを、高圧容器10内にて混合させた。なお、この例の無電解メッキ液は、それに含まれる各成分の割合が、実施例5と同様となるように調合した。また、この際、スタラー16の駆動および、マグネチックスタラー6の高速回転により加圧二酸化炭素と無電解メッキ液とを高圧容器10内で相溶させた。次いで、自動バルブ43を閉鎖し、自動バルブ44,45を開放した。   Next, an electroless plating solution containing pressurized carbon dioxide was introduced into the cavity 508 and brought into contact with the polymer molded product 507 as follows. First, an alcohol and surfactant-mixed electroless plating solution supplied from the plating tank 11 of the electroless plating apparatus unit 101 and a 15 MPa pressurized carbon dioxide supplied from the buffer tank 36 in advance are used. Mixed inside. The electroless plating solution of this example was prepared so that the ratio of each component contained therein was the same as in Example 5. At this time, the pressurized carbon dioxide and the electroless plating solution were dissolved in the high-pressure vessel 10 by driving the stirrer 16 and rotating the magnetic stirrer 6 at high speed. Subsequently, the automatic valve 43 was closed and the automatic valves 44 and 45 were opened.

次いで、循環ポンプ90を運転し、高圧容器10、配管15およびキャビティ508からなる循環流路に、加圧二酸化炭素を含む無電解メッキ液を循環させて、ポリマー成形品507の表面に無電解メッキ液を接触させ、メッキ膜(ニッケルリン膜)を形成した(図23中のステップS93)。この際、ポリマー成形品507の表面は膨潤しているので、ポリマー成形品507の表面から無電解メッキ液がポリマー成形品507の内部に浸透するとともに、ポリマー成形品507内部に分散する金属微粒子を触媒核にして、メッキ膜が成長する。すなわち、ポリマー成形品507上に形成されたメッキ膜はポリマー成形品507の内部に食い込んだ状態で成長するので、密着性の優れたメッキ膜が形成される。なお、加圧二酸化炭素を含む無電解メッキ液が循環している際には、キャビティ508および循環ライン15の圧力は圧力センサー58,59で同圧になっていた。また、無電解メッキ液の補給は、メッキタンク11より供給したメッキ液をシリンジポンプ33で昇圧して、自動バルブ46の開放と同時に送液することで随時行った。   Next, the circulation pump 90 is operated, and an electroless plating solution containing pressurized carbon dioxide is circulated through a circulation flow path including the high-pressure vessel 10, the pipe 15, and the cavity 508, so that the surface of the polymer molded product 507 is electrolessly plated. The liquid was contacted to form a plating film (nickel phosphorus film) (step S93 in FIG. 23). At this time, since the surface of the polymer molded product 507 is swollen, the electroless plating solution permeates into the polymer molded product 507 from the surface of the polymer molded product 507 and the metal fine particles dispersed inside the polymer molded product 507 are dispersed. A plating film grows as a catalyst nucleus. That is, since the plating film formed on the polymer molded product 507 grows in a state of being bitten into the polymer molded product 507, a plating film having excellent adhesion is formed. When the electroless plating solution containing pressurized carbon dioxide was circulated, the pressures in the cavities 508 and the circulation line 15 were the same by the pressure sensors 58 and 59. Further, replenishment of the electroless plating solution was performed at any time by increasing the pressure of the plating solution supplied from the plating tank 11 with the syringe pump 33 and feeding it simultaneously with the opening of the automatic valve 46.

次いで、上述のようにしてポリマー成形品507上にメッキ膜を形成した後、加圧二酸化炭素を含む無電解メッキ液の循環経路から加圧二酸化炭素を含む無電解メッキ液を回収容器63を介して回収槽12から排気した。具体的には、自動バルブ44,45を閉鎖し、次いで、自動バルブ38を開放することで、加圧二酸化炭素を含む無電解メッキ液を回収容器63に排出した。回収容器63では、回収した加圧二酸化炭素を含む無電解メッキ液が、遠心分離の原理で水溶液(メッキ液)と高圧ガス(二酸化炭素)に分離される。メッキ液は回収槽12で回収し再利用することができる。ガス化した二酸化炭素は回収容器63の上部から排出され、図示しない排気ダクトに回収される。   Next, after forming a plating film on the polymer molded product 507 as described above, the electroless plating solution containing pressurized carbon dioxide is circulated through the collection vessel 63 from the circulation path of the electroless plating solution containing pressurized carbon dioxide. Exhausted from the recovery tank 12. Specifically, the automatic valves 44 and 45 were closed, and then the automatic valve 38 was opened, whereby the electroless plating solution containing pressurized carbon dioxide was discharged into the collection container 63. In the recovery container 63, the electroless plating solution containing the recovered pressurized carbon dioxide is separated into an aqueous solution (plating solution) and a high-pressure gas (carbon dioxide) by the principle of centrifugation. The plating solution can be recovered in the recovery tank 12 and reused. The gasified carbon dioxide is discharged from the upper part of the recovery container 63 and recovered in an exhaust duct (not shown).

次いで、自動バルブ43を一定時間開いて、固定金型53とポリマー成形品507との間の隙間508(キャビティ508)に加圧二酸化炭素を導入し、キャビティ508に残ったメッキ液の残留物を加圧二酸化炭素とともに金型の外へ排出した。次いで、キャビティ508の内圧が圧力センサー59のモニター値でゼロになったところで、金型を開きポリマー成形品507を取り出した。   Next, the automatic valve 43 is opened for a certain period of time, and pressurized carbon dioxide is introduced into the gap 508 (cavity 508) between the fixed mold 53 and the polymer molded product 507, and the plating solution residue remaining in the cavity 508 is removed. It was discharged out of the mold together with the pressurized carbon dioxide. Next, when the internal pressure of the cavity 508 became zero as monitored by the pressure sensor 59, the mold was opened and the polymer molded product 507 was taken out.

次に、取り出したポリマー成形品507に対して、通常の置換型金メッキを施して、ポリマー成形品507の表面に金メッキ膜を積層した。この例では、上述のようにして、表面にメッキ膜が形成されたポリマー成形品507を得た。   Next, the extracted polymer molded product 507 was subjected to normal substitutional gold plating, and a gold plating film was laminated on the surface of the polymer molded product 507. In this example, a polymer molded product 507 having a plating film formed on the surface was obtained as described above.

この例で作製されたポリマー成形品507の一部の模式断面図を図24に示した。この例で作製されたポリマー成形品507のスキン層505内部には金属微粒子600(図24中の黒丸印)が分散していることが確認された。また、ポリマー成形品507の片側には、金型内で成長させたニッケルーリンの金属膜509が形成されており、ニッケルーリンの金属膜509はポリマー成形品507の内部から成長していた(金属膜509の浸透層が形成されていた)。また、ニッケルーリンの金属膜509の上に金の高反射膜510が形成されていた。   FIG. 24 shows a schematic cross-sectional view of a part of the polymer molded product 507 produced in this example. It was confirmed that metal fine particles 600 (black circles in FIG. 24) are dispersed in the skin layer 505 of the polymer molded product 507 produced in this example. Further, a nickel-phosphorus metal film 509 grown in a mold is formed on one side of the polymer molded article 507, and the nickel-phosphorus metal film 509 grew from the inside of the polymer molded article 507 (metal The permeation layer of the membrane 509 was formed). Also, a gold highly reflective film 510 was formed on the nickel-phosphorus metal film 509.

また、この例で作製されたポリマー成形品507に対しても、金属膜の密着性評価を、実施例5と同様な高温多湿環境試験にて行った。また、温度150℃、報知時間500時間の条件で高温試験も行った。その結果、実施例5と同様の結果が得られ、金属膜の密着性の低下は認められなかった。さらに、この例で作製されたポリマー成形品507の表面粗さRaを測定したところ、金型の表面粗さと同等のRa=100nmであった。すなわち、この例のメッキ膜の形成方法によれば、射出成形と同時にメッキ処理を行うことができ、プロセスが簡略化することができるだけでなく、密着性が高く且つ平滑な金属膜を耐熱性の高い樹脂材料に形成できることが分かった。   In addition, the adhesion evaluation of the metal film was also performed on the polymer molded product 507 produced in this example by the same high temperature and high humidity environment test as in Example 5. A high temperature test was also conducted under conditions of a temperature of 150 ° C. and a notification time of 500 hours. As a result, the same results as in Example 5 were obtained, and no decrease in the adhesion of the metal film was observed. Furthermore, when the surface roughness Ra of the polymer molded product 507 produced in this example was measured, Ra = 100 nm, which is equivalent to the surface roughness of the mold. That is, according to the plating film forming method of this example, the plating process can be performed simultaneously with the injection molding, and not only can the process be simplified, but also a metal film having high adhesion and smoothness can be made heat resistant. It was found that it can be formed into a high resin material.

なお、上記実施例9の無電解メッキ処理では、まず、加圧二酸化炭素のみをポリマー成形品に接触させてポリマー成形品の表面を膨潤した後に、無電解メッキ液をポリマー成形品に接触させたが、本発明はこれに限定されない。例えば、ポリマー成形品に加圧二酸化炭素を含み且つメッキ反応の起こらないメッキ液濃度を有する第1の無電解メッキ液をポリマー成形品に接触させ、次いで、加圧二酸化炭素を含み且つメッキ反応の起こるメッキ液濃度を有する第2の無電解メッキ液をポリマー成形品に接触させてメッキ膜を形成してもよい。なお、ここでいう、メッキ液濃度とは、メッキ液中の、メッキ反応を決定する因子である次亜燐酸ナトリウム等の還元剤の濃度のことである。すなわち、上記方法をより具体的に説明すると、メッキ反応が起きない程度に十分に還元剤量が少ない無電解メッキ液(第1の無電解メッキ液)と加圧二酸化炭素をポリマー成形品に接触させることでポリマー内にメッキ液を浸透させ、次いで、第1の無電解メッキ液を、十分にメッキ反応が起きる程度に還元剤が含まれた無電解メッキ液(第2の無電解メッキ液)に置換してもよい。または、還元剤を主成分とする水やアルコ−ルの含まれる溶媒と加圧二酸化炭素を、還元剤の少ない第1の無電解メッキ液に添加することで、第2の無電解メッキ液を形成してもよい。   In the electroless plating treatment of Example 9 above, first, only the pressurized carbon dioxide was brought into contact with the polymer molded article to swell the surface of the polymer molded article, and then the electroless plating solution was brought into contact with the polymer molded article. However, the present invention is not limited to this. For example, a first electroless plating solution containing a pressurized carbon dioxide in a polymer molded article and having a plating solution concentration that does not cause a plating reaction is brought into contact with the polymer molded article. A plating film may be formed by bringing a second electroless plating solution having a concentration of the plating solution to occur into contact with the polymer molded product. Here, the plating solution concentration refers to the concentration of a reducing agent such as sodium hypophosphite that is a factor that determines the plating reaction in the plating solution. That is, the above method will be described more specifically. An electroless plating solution (first electroless plating solution) and a pressurized carbon dioxide that are sufficiently small to prevent a plating reaction from occurring and pressurized carbon dioxide are brought into contact with a polymer molded product. Then, the plating solution is infiltrated into the polymer, and then the first electroless plating solution is electrolessly plated (a second electroless plating solution) containing a reducing agent to such an extent that a plating reaction occurs sufficiently. May be substituted. Alternatively, a second electroless plating solution can be obtained by adding a solvent containing water or alcohol containing a reducing agent as a main component and pressurized carbon dioxide to the first electroless plating solution having a small reducing agent. It may be formed.

上記実施例1〜9では、ポリマー部材(ポリマー成形品)の形成材料として結晶材料を用いた例を説明したが、本発明はこれに限定されず、ポリマー部材(ポリマー成形品)の形成材料として非結晶材料を用いた場合でも同様の効果が得られる。   In Examples 1 to 9 described above, the example in which the crystal material is used as the forming material of the polymer member (polymer molded product) has been described. However, the present invention is not limited to this, and as the forming material of the polymer member (polymer molded product). The same effect can be obtained even when an amorphous material is used.

本発明のメッキ膜の形成方法では、ポリマーの表面を粗化することなく、ポリマーの内部から成長したメッキ膜を形成することができるので、様々な種類のポリマーに対して密着性の優れたメッキ膜を形成する方法として最適である。   In the plating film forming method of the present invention, a plating film grown from the inside of the polymer can be formed without roughening the surface of the polymer, so that plating with excellent adhesion to various types of polymers is possible. It is the most suitable method for forming a film.

また、本発明のメッキ膜の形成方法において、射出成形機内で無電解メッキ処理を行った場合には、密着性が高く平滑な金属膜を耐熱性の高い樹脂材料に形成できるので、LED等高い耐熱性の要求される自動車用ヘッドライトのリフレクター等の作製方法として好適である。   Further, in the method for forming a plating film of the present invention, when an electroless plating process is performed in an injection molding machine, a smooth metal film with high adhesion can be formed on a resin material with high heat resistance. It is suitable as a method for producing a reflector for an automotive headlight that requires heat resistance.

図1は、実施例1で用いた製造装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a manufacturing apparatus used in the first embodiment. 図2は、可塑化シリンダー内の溶融樹脂に金属錯体を溶解した加圧二酸化炭素を導入する際の様子を示した図であり、図2(a)は溶融樹脂の可塑化軽量完了時の様子を示した図であり、図2(b)は加圧二酸化炭素導入時の様子を示した図である。FIG. 2 is a view showing a state in which pressurized carbon dioxide in which a metal complex is dissolved in a molten resin in a plasticizing cylinder is introduced, and FIG. FIG. 2 (b) is a diagram showing a state when pressurized carbon dioxide is introduced. 図3は、実施例1のポリマー成形品の製造方法において、ポリマー成形品の射出成形完了時の様子を示した図である。FIG. 3 is a view showing a state when the injection molding of the polymer molded product is completed in the method for producing a polymer molded product of Example 1. FIG. 図4は、実施例1のポリマー成形品の製造方法において、ポリマー成形品に対して無電解メッキ処理を施している際の様子を示した図である。FIG. 4 is a diagram showing a state where the polymer molded product is subjected to an electroless plating process in the method for producing a polymer molded product of Example 1. 図5は、実施例1のメッキ膜の形成方法の手順を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining the procedure of the plating film forming method according to the first embodiment. 図6は、実施例1の成形後のポリマー成形品の断面構造を模式的に表した図である。6 is a diagram schematically showing a cross-sectional structure of a polymer molded product after molding in Example 1. FIG. 図7は、実施例1で作製したポリマー成形品の断面構造を模式的に表した図である。FIG. 7 is a diagram schematically showing a cross-sectional structure of the polymer molded product produced in Example 1. 図8は、実施例2で用いた成形装置の概略構成図である。FIG. 8 is a schematic configuration diagram of the molding apparatus used in the second embodiment. 図9は、実施例2におけるポリマー基体の製造方法の手順を説明するための図である。FIG. 9 is a diagram for explaining the procedure of the method for producing a polymer substrate in Example 2. 図10は、実施例2におけるポリマー基体の製造方法の手順を説明するための図である。FIG. 10 is a view for explaining the procedure of the method for producing a polymer substrate in Example 2. 図11は、実施例2におけるポリマー基体の製造方法の手順を説明するための図である。FIG. 11 is a diagram for explaining the procedure of the method for producing a polymer substrate in Example 2. 図12は、実施例2におけるポリマー基体の製造方法の手順を説明するための図である。FIG. 12 is a diagram for explaining the procedure of the method for producing a polymer substrate in Example 2. 図13は、実施例2におけるポリマー基体の製造方法の手順を説明するための図である。FIG. 13 is a diagram for explaining the procedure of the method for producing a polymer substrate in Example 2. 図14は、実施例2におけるポリマー基体の製造方法の手順を説明するための図である。FIG. 14 is a diagram for explaining the procedure of the method for producing a polymer substrate in Example 2. 図15は、実施例2におけるポリマー基体の製造方法の手順を説明するためのフローチャートである。FIG. 15 is a flowchart for explaining the procedure of the method for producing a polymer substrate in Example 2. 図16は、実施例5で用いたメッキ装置の概略構成図である。FIG. 16 is a schematic configuration diagram of a plating apparatus used in the fifth embodiment. 図17は、実施例5で作製したポリマー部材の概略断面図であり、図17(a)はマウントとレンズホルダーを分解した際の図であり、図17(b)はマウントとレンズホルダーを合体させた際の図である。17 is a schematic cross-sectional view of the polymer member produced in Example 5, FIG. 17 (a) is a view when the mount and the lens holder are disassembled, and FIG. 17 (b) is a combination of the mount and the lens holder. FIG. 図18は、実施例5のメッキ膜の形成方法において、ポリマー部材の表面改質後のポリマー部材の概略断面図である。FIG. 18 is a schematic cross-sectional view of a polymer member after surface modification of the polymer member in the plating film forming method of Example 5. 図19は、実施例5のメッキ膜の形成方法において、ポリマー部材の表面にメッキ膜を形成した後のポリマー部材の概略断面図である。FIG. 19 is a schematic cross-sectional view of the polymer member after the plating film is formed on the surface of the polymer member in the plating film forming method of Example 5. 図20は、実施例5で作製したポリマー部材の表面近傍のSEM画像である。FIG. 20 is an SEM image near the surface of the polymer member produced in Example 5. 図21は、実施例5のメッキ膜の形成方法の手順を説明するためのフローチャートである。FIG. 21 is a flowchart for explaining the procedure of the plating film forming method according to the fifth embodiment. 図22は、実施例6で用いたメッキ装置の概略構成図である。FIG. 22 is a schematic configuration diagram of the plating apparatus used in Example 6. 図23は、実施例9のメッキ膜の形成方法の手順を説明するためのフローチャートである。FIG. 23 is a flowchart for explaining the procedure of the plating film forming method according to the ninth embodiment. 図24は、実施例9で作製したポリマー成形品の断面構造を模式的に表した図である。FIG. 24 is a diagram schematically showing a cross-sectional structure of a polymer molded product produced in Example 9.

符号の説明Explanation of symbols

500 製造装置
501 無電解メッキ装置部
502 表面改質装置部
503 射出成形装置部
504 キャビティ
505 スキン層(表皮)
506 コア層
507 ポリマー成形品
509 無電解ニッケル−リン膜
550 金属微粒子
500 Manufacturing apparatus 501 Electroless plating apparatus section 502 Surface modification apparatus section 503 Injection molding apparatus section 504 Cavity 505 Skin layer (skin)
506 Core layer 507 Polymer molded product 509 Electroless nickel-phosphorus film 550 Metal fine particles

Claims (5)

ポリマー部材にメッキ膜を形成する方法であって、
表面内部にメッキ触媒核となる金属物質が含浸したポリマー部材を用意することと、
加圧二酸化炭素及びアルコールを含むニッケルリンメッキ液を上記ポリマー部材に接触させて、上記ポリマー部材に、上記ポリマー部材の内部から成長したメッキ膜を形成することとを含み、
上記ニッケルリンメッキ液中の上記アルコールの体積比率が30〜60%であることを特徴とするメッキ膜の形成方法。
A method of forming a plating film on a polymer member,
Preparing a polymer member impregnated with a metal substance that becomes a plating catalyst core inside the surface;
Nickel phosphorus plating solution containing pressurized carbon dioxide and alcohol into contact with the polymer member, the above polymer member, see containing and forming a plated film grown from the inside of the polymer member,
The method for forming a plating film, wherein a volume ratio of the alcohol in the nickel phosphorus plating solution is 30 to 60% .
成形機を用いて上記ポリマー部材を作製し、上記ポリマー部材を用意することが、上記成形機内の上記ポリマー部材の溶融樹脂に上記金属物質が溶解した加圧二酸化炭素を導入することと、上記金属物質が導入された溶融樹脂を成形することとを含む請求項1に記載のメッキ膜の形成方法。 Preparing the polymer member using a molding machine and preparing the polymer member introduces pressurized carbon dioxide in which the metal substance is dissolved into the molten resin of the polymer member in the molding machine, and the metal The method for forming a plating film according to claim 1, comprising molding a molten resin into which a substance has been introduced . 上記ポリマー部材にメッキ膜を形成することが、加圧二酸化炭素をポリマー基材に接触させてポリマー部材の表面近傍を膨潤させることと、上記ポリマー部材の表面近傍を膨潤させた状態で、加圧二酸化炭素を含むニッケルリンメッキ液を上記ポリマー部材に接触させることとを含むことを特徴とする請求項1または2に記載のメッキ膜の形成方法。 Forming a plating film on the polymer member includes contacting the polymer substrate with pressurized carbon dioxide to swell the vicinity of the surface of the polymer member, and applying pressure in a state where the surface of the polymer member is swollen. The method for forming a plating film according to claim 1 , further comprising contacting a nickel phosphorus plating solution containing carbon dioxide with the polymer member . 請求項1〜3のいずれか一項に記載のポリマー部材のメッキ膜の形成方法で用いるための無電解メッキ液であって、  An electroless plating solution for use in the method for forming a plating film of a polymer member according to any one of claims 1 to 3,
アルコールを含むニッケルリンメッキ液であって、上記ニッケルリンメッキ液中の上記アルコールの体積比率が30〜60%であることを特徴とする無電解メッキ液。  An electroless plating solution comprising an alcohol-containing nickel phosphorus plating solution, wherein a volume ratio of the alcohol in the nickel phosphorus plating solution is 30 to 60%.
さらに、加圧二酸化炭素を備える請求項4に記載の無電解メッキ液。  The electroless plating solution according to claim 4, further comprising pressurized carbon dioxide.
JP2007096818A 2007-04-02 2007-04-02 Method for forming plating film and electroless plating solution Active JP4092364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096818A JP4092364B1 (en) 2007-04-02 2007-04-02 Method for forming plating film and electroless plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096818A JP4092364B1 (en) 2007-04-02 2007-04-02 Method for forming plating film and electroless plating solution

Publications (2)

Publication Number Publication Date
JP4092364B1 true JP4092364B1 (en) 2008-05-28
JP2008255390A JP2008255390A (en) 2008-10-23

Family

ID=39509574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096818A Active JP4092364B1 (en) 2007-04-02 2007-04-02 Method for forming plating film and electroless plating solution

Country Status (1)

Country Link
JP (1) JP4092364B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069761A (en) * 2008-09-19 2010-04-02 Hitachi Maxell Ltd Method of manufacturing resin-molded component with metal film
EP2270256A2 (en) 2009-06-17 2011-01-05 Hitachi Maxell, Ltd. Method for producing polymer member having plated film
EP2746025A1 (en) * 2011-08-19 2014-06-25 Hitachi Maxell, Ltd. Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821195A4 (en) * 2012-03-02 2015-11-11 Hitachi Maxell Method for producing molded body, method for producing molded body having plating film, method for producing resin pellets, molded foam having plating film, foam injection molding method, nozzle unit, and injection molding apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069761A (en) * 2008-09-19 2010-04-02 Hitachi Maxell Ltd Method of manufacturing resin-molded component with metal film
EP2270256A2 (en) 2009-06-17 2011-01-05 Hitachi Maxell, Ltd. Method for producing polymer member having plated film
EP2746025A1 (en) * 2011-08-19 2014-06-25 Hitachi Maxell, Ltd. Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
EP2746025A4 (en) * 2011-08-19 2015-02-25 Hitachi Maxell Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
US9186634B2 (en) 2011-08-19 2015-11-17 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
US9718217B2 (en) 2011-08-19 2017-08-01 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method

Also Published As

Publication number Publication date
JP2008255390A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
KR20070109917A (en) Manufacturing method of polymer member and polymer member
CN101302612B (en) Manufacturing method of polymer member and polymer member
JP4092364B1 (en) Method for forming plating film and electroless plating solution
JP4105753B2 (en) Method for surface modification of plastic member, method for forming metal film, and method for manufacturing plastic member
JP4160623B2 (en) Production method and production apparatus for polymer member
JP5138394B2 (en) Polymer parts
JP4105214B1 (en) Plating film forming method, polymer member and manufacturing method thereof
JP4092360B1 (en) Polymer member and manufacturing method thereof
JP3878962B1 (en) Pre-plating method and plating method for polymer substrate and method for producing molded article made of thermoplastic resin
JP3926835B1 (en) Formation method of plating film
JP2011001577A (en) Method for manufacturing polymer member having plating film
JP2009073994A (en) Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
WO2018117160A1 (en) Method for producing plated molded body, and plated molded body
US20110020550A1 (en) Process for producing composite material comprising resin molded product
JP2008174840A5 (en) Polymer parts
JP4324361B2 (en) Manufacturing method of inorganic fine particle composite organic polymer material.
JP2010280416A (en) Method for manufacturing conductive fastening band
JP2007051220A (en) Surface modification process
JP2008247962A (en) Plastic surface modification method and metal film formation method
JP2013227617A (en) Method for manufacturing formed body having plating film
JP2010132976A (en) Method for producing plastic member having plated film
JP2009113266A (en) Method for modifying surface of plastic molded body, method for forming metal film including the same, and plastic component thereof
JP2011001576A (en) Plating-pretreatment method for polymeric base material
JP4287894B2 (en) Method for forming metal film
JP2006131769A (en) Plastic structure and method for producing plastic structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5