JP2013227617A - Method for manufacturing formed body having plating film - Google Patents

Method for manufacturing formed body having plating film Download PDF

Info

Publication number
JP2013227617A
JP2013227617A JP2012100105A JP2012100105A JP2013227617A JP 2013227617 A JP2013227617 A JP 2013227617A JP 2012100105 A JP2012100105 A JP 2012100105A JP 2012100105 A JP2012100105 A JP 2012100105A JP 2013227617 A JP2013227617 A JP 2013227617A
Authority
JP
Japan
Prior art keywords
acid
molded body
plating film
plating
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100105A
Other languages
Japanese (ja)
Inventor
Hiroki Ota
寛紀 太田
Atsushi Yusa
敦 遊佐
Tetsuya Ano
哲也 阿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2012100105A priority Critical patent/JP2013227617A/en
Publication of JP2013227617A publication Critical patent/JP2013227617A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a formed body having a plating film which has high adhesive strength as initial characteristics, durability and reliability over a long period of time, and excellent appearance characteristics.SOLUTION: A method for manufacturing a formed body having a plating film includes a step of preparing the formed body consisting of a polyamide resin containing metal particles, a step of bringing weak acid into contact with the formed body, and a step of forming the plating film by bringing electroless plating liquid into contact with the formed body with which the weak acid is brought into contact.

Description

本発明は、メッキ膜を有する成形体の製造方法に関する。   The present invention relates to a method for producing a molded body having a plating film.

成形体に安価に金属膜を形成する方法として、無電解メッキ法が知られている。無電解メッキ法では、金属膜の成形体への密着性確保のため、六価クロム酸や過マンガン酸等の酸化剤を含むエッチング液を用いて成形体表面を粗化する前処理を行う。そのため、無電解メッキ法には、エッチング液により侵食されるABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)が主に用いられてきた。ABS樹脂は、ブタジエンゴム成分がエッチング液に選択的に侵食され、表面に凹凸が形成される。一方、ABS樹脂以外の樹脂、例えば、ポリカーボネート等では、無電解メッキを可能にするため、ABS樹脂やエラストマー等、エッチング液に選択的に酸化される成分を混合したメッキグレードが市販されている。しかし、このような無電解メッキ法の前処理は、六価クロム酸や過マンガン酸等を使用することから、環境負荷が高いという問題があった。   An electroless plating method is known as a method for forming a metal film on a molded body at low cost. In the electroless plating method, a pretreatment for roughening the surface of the molded body is performed using an etching solution containing an oxidizing agent such as hexavalent chromic acid or permanganic acid in order to ensure adhesion of the metal film to the molded body. Therefore, an ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin) that is eroded by an etching solution has been mainly used in the electroless plating method. In the ABS resin, the butadiene rubber component is selectively eroded by the etching solution, and irregularities are formed on the surface. On the other hand, for a resin other than the ABS resin, for example, polycarbonate, a plating grade in which a component that is selectively oxidized to an etching solution such as an ABS resin or an elastomer is mixed in order to enable electroless plating. However, the pretreatment of such an electroless plating method has a problem of high environmental load because hexavalent chromic acid, permanganic acid or the like is used.

一方、前処理であるエッチング工程を経ずに、成形体に金属膜を形成する方法として、超臨界二酸化炭素等の加圧二酸化炭素を用いた成形体の表面改質法の利用が提案されている。本発明者らは、加圧二酸化炭素を用いた表面改質処理を射出成形と同時に行い、成形体の表面近傍に無電解メッキの触媒核となるパラジウムを分散させる方法を提案している(特許文献1〜3)。この方法では、表面にパラジウムが偏在化した成形体に無電解メッキを施すことにより、エッチング工程を経ずに成形体表面にメッキ膜を形成できる。   On the other hand, as a method for forming a metal film on a molded body without passing through the pretreatment etching step, use of a surface modification method of the molded body using pressurized carbon dioxide such as supercritical carbon dioxide has been proposed. Yes. The present inventors have proposed a method of performing surface modification treatment using pressurized carbon dioxide at the same time as injection molding, and dispersing palladium serving as a catalyst core for electroless plating near the surface of the molded body (patent) Literatures 1-3). In this method, a plating film can be formed on the surface of the molded body without performing an etching step by performing electroless plating on the molded body having palladium unevenly distributed on the surface.

特許第4160623号公報Japanese Patent No. 4160623 特許第3696878号公報Japanese Patent No. 3696878 特開2010−30106号公報JP 2010-30106 A

特許文献1〜3に記載される触媒を内部に含んだ成形体に無電解メッキ液を接触させると、メッキ液は成形体の表面から内部に浸透して金属微粒子と接触し、成形体の内部から成形体を押し広げながらメッキ膜が成長していく。このため、メッキ膜は高い密着強度を有する。   When the electroless plating solution is brought into contact with the molded body containing the catalyst described in Patent Documents 1 to 3, the plating solution penetrates from the surface of the molded body into contact with the metal fine particles, and the inside of the molded body. The plating film grows while spreading the molded body. For this reason, the plating film has high adhesion strength.

一方、メッキ膜を有する成形体の使用用途は多様であり、例えば、装飾用途においてはメッキ膜の密着強度のみならず、高品質の外観が要求される。また、メッキ膜を有する成形体は、初期特性のみならず、長期間に亘る耐久性及び信頼性が求められることも少なくない。   On the other hand, there are various uses of the molded body having a plated film. For example, in decorative applications, not only the adhesion strength of the plated film but also a high quality appearance is required. In addition, a molded body having a plated film often requires not only initial characteristics but also durability and reliability over a long period of time.

本発明は、これらの課題を解決するものであり、初期特性としての高い密着強度を有すると共に、長期間に亘る耐久性及び信頼性を有し、更に、外観特性も優れるメッキ膜を有する成形体の製造方法を提供する。   The present invention solves these problems, and has a high adhesion strength as an initial characteristic, a durability and reliability over a long period of time, and a molded article having an excellent appearance characteristic. A manufacturing method is provided.

本発明の態様に従えば、メッキ膜を有する成形体の製造方法であって、金属微粒子を含むポリアミド樹脂からなる成形体を用意することと、前記成形体に弱酸を接触させることと、前記弱酸を接触させた前記成形体に、無電解メッキ液を接触させてメッキ膜を形成することを含むメッキ膜を有する成形体の製造方法が提供される。   According to an aspect of the present invention, there is provided a method for producing a molded body having a plating film, comprising preparing a molded body made of a polyamide resin containing metal fine particles, bringing a weak acid into contact with the molded body, and the weak acid. There is provided a method for producing a molded body having a plated film, which comprises contacting the molded body in contact with an electroless plating solution to form a plated film.

本発明は、初期特性としての高い密着強度を有すると共に、長期間に亘る耐久性及び信頼性を有し、更に外観特性にも優れるメッキ膜を有する成形体を製造することができる。   The present invention can produce a molded article having a plating film having high adhesion strength as an initial characteristic, durability and reliability over a long period of time, and excellent appearance characteristics.

実施形態で製造するメッキ膜を有する成形体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the molded object which has a plating film manufactured in embodiment. 実施例1で使用した成形機の概略図である。1 is a schematic view of a molding machine used in Example 1. FIG. 実施例1で使用した成形機の可塑化シリンダの概略断面図であり、可塑化ゾーン、高圧混練ゾーン及び減圧ゾーンが連通した状態を示す図である。It is a schematic sectional drawing of the plasticization cylinder of the molding machine used in Example 1, and is a figure which shows the state which the plasticization zone, the high pressure kneading zone, and the pressure reduction zone connected. 実施例1で使用した成形機の可塑化シリンダの概略断面図であり、可塑化ゾーン、高圧混練ゾーン及び減圧ゾーンの連通が遮断された状態を示す図である。It is a schematic sectional drawing of the plasticization cylinder of the molding machine used in Example 1, and is a figure which shows the state by which the communication of the plasticization zone, the high pressure kneading zone, and the pressure reduction zone was interrupted | blocked. 実施例1、2、比較例1及び2において、それぞれ作製した試料を高温高湿環境に放置したときの放置時間と試料のメッキ膜の密着強度との関係を示す図である。In Example 1, 2, and Comparative example 1 and 2, it is a figure which shows the relationship between the leaving time when each produced sample is left to stand in a high-temperature, high-humidity environment, and the adhesion strength of the plating film of a sample. (a)は、実施例3で作製した試料の表面のレーザー顕微鏡写真であり、(b)は比較例3で作製した試料の表面のレーザー顕微鏡写真である。(A) is a laser micrograph of the surface of the sample produced in Example 3, and (b) is a laser micrograph of the surface of the sample produced in Comparative Example 3. 比較例3で作製した試料断面のSEM写真である。6 is a SEM photograph of a cross section of a sample manufactured in Comparative Example 3.

図1に従い、本発明の実施形態のメッキ膜を有する成形体の製造方法について説明する。まず、金属微粒子を含むポリアミド樹脂からなる成形体を用意する(ステップS1)。   A method for producing a molded body having a plated film according to an embodiment of the present invention will be described with reference to FIG. First, a molded body made of a polyamide resin containing metal fine particles is prepared (step S1).

金属微粒子は、メッキ触媒として機能し、Pd、Ni、Pt、Cu等の金属微粒子、金属錯体、金属アルコキシド等の金属酸化物の前駆体を用いることができる。金属錯体の種類は任意であるが、より具体的には、ヘキサフルオロアセチルアセトナトパラジウム(II)、白金ジメチル(シクロオクタジエン)、ビス(シクロペンタジエニル)ニッケル、ビス(アセチルアセトネート)パラジウム等が望ましい。   The metal fine particles function as a plating catalyst, and metal fine particles such as Pd, Ni, Pt, and Cu, metal oxides, and metal oxide precursors such as metal alkoxides can be used. The type of metal complex is arbitrary, but more specifically, hexafluoroacetylacetonato palladium (II), platinum dimethyl (cyclooctadiene), bis (cyclopentadienyl) nickel, bis (acetylacetonate) palladium. Etc. are desirable.

ポリアミド樹脂としては、吸水性及びメッキ反応性が高いナイロンが好ましく、6ナイロン、6,6ナイロンが特に好ましい。本実施形態で製造される成形体は、ポリアミド樹脂以外の熱可塑性樹脂を含んでもよいが、ポリアミド樹脂が主成分であることが好ましい。ポリアミド樹脂以外の熱可塑性樹脂としては、例えば、ポリプロピレン、ポリメチルメタクリレート、ポリカーボネート、アモルファスポリオレフィン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリテーテルエーテルケトン、ABS系樹脂、ポリフェニレンサルファイド、ポリアミドイミド、ポリ乳酸、ポリカプロラクトン等を用いることできる。   As the polyamide resin, nylon having high water absorption and plating reactivity is preferable, and 6 nylon and 6,6 nylon are particularly preferable. The molded body produced in the present embodiment may contain a thermoplastic resin other than the polyamide resin, but the polyamide resin is preferably the main component. Examples of the thermoplastic resin other than the polyamide resin include polypropylene, polymethyl methacrylate, polycarbonate, amorphous polyolefin, polyether imide, polyethylene terephthalate, polyethylene ether ketone, ABS resin, polyphenylene sulfide, polyamide imide, polylactic acid, and polycaprolactone. Etc. can be used.

また、ポリアミド樹脂には、ミネラル、ガラス繊維、タルク、カーボン繊維等、各種無機フィラー等を混練させることもできる。ポリアミド樹脂に、ミネラル等を配合する事で、成形体の反りを抑制し、剛性や寸法安定性を向上させることが可能である。   Moreover, various inorganic fillers, such as a mineral, glass fiber, a talc, a carbon fiber, can also be kneaded with a polyamide resin. By blending a mineral or the like with the polyamide resin, it is possible to suppress warping of the molded body and improve rigidity and dimensional stability.

本実施形態において、メッキ触媒として機能する金属微粒子は、成形体の表面近傍に偏在していることが好ましい。本実施形態では、後述する無電解メッキ工程(ステップS3)において成形体に無電解メッキ液を接触させると、成形体内部にメッキ触媒を含むため、メッキ液は成形体の表面から内部に浸透して金属微粒子と接触し、成形体の内部からメッキ膜が成長する。よって、成形体の表面近傍の金属微粒子の濃度を高めると、メッキ反応が効率的に進行する。また、メッキ反応に寄与しない成形体の中心部に存在する金属微粒子の濃度を低下させることで、材料の無駄を省き、材料コストを削減することができる。   In the present embodiment, the metal fine particles functioning as a plating catalyst are preferably unevenly distributed near the surface of the molded body. In the present embodiment, when an electroless plating solution is brought into contact with the molded body in an electroless plating step (step S3) described later, since the plating catalyst is contained inside the molded body, the plating solution penetrates from the surface of the molded body. Thus, the plating film grows from the inside of the molded body in contact with the metal fine particles. Therefore, when the concentration of the metal fine particles near the surface of the molded body is increased, the plating reaction proceeds efficiently. Further, by reducing the concentration of the metal fine particles present in the central portion of the molded body that does not contribute to the plating reaction, waste of material can be eliminated and material cost can be reduced.

尚、本明細書において、「成形体の表面近傍」とは、成形体の内部であって、且つ、表面に近い領域を意味し、成形体をメッキ液に接触させたときに表面からメッキ液が浸透してメッキ反応が起きる領域を意味する。「成形体の表面近傍」が、成形体の表面から、どの程度の深さまでの領域を意味するかは、成形体に用いられる樹脂の種類によっても異なるが、例えば、成形体の表面から、0.1〜10μmまでの深さの領域である。   In the present specification, the “near the surface of the molded body” means an area inside the molded body and close to the surface. When the molded body is brought into contact with the plating solution, the plating solution is exposed from the surface. It means the area where plating penetrates and plating reaction occurs. The extent to which “near the surface of the molded body” means the region from the surface of the molded body varies depending on the type of resin used in the molded body. A region having a depth of 1 to 10 μm.

本実施形態に用いる成形体は、金属微粒子を加圧二酸化炭素に溶解又は分散し、金属微粒子が溶解又は分散した加圧二酸化炭素をポリアミド樹脂へ接触させる工程を経て製造してもよい。加圧二酸化炭素を用いてポリアミド樹脂に金属微粒子を含有させると、金属微粒子をポリアミド樹脂からなる成形体の最表面より1〜5μm程度の深さに偏在させることができる。また、触媒核となる金属微粒子の粒子径を著しく小さくでき、メッキ反応性の高い被メッキ成形体が製造できる。加圧二酸化炭素を用いて、金属微粒子を含む成形体を製造する方法としては、例えば、上述の特許文献1〜3に開示される方法が挙げられる。   The molded body used in the present embodiment may be manufactured through a process in which metal fine particles are dissolved or dispersed in pressurized carbon dioxide, and the pressurized carbon dioxide in which the metal fine particles are dissolved or dispersed is brought into contact with the polyamide resin. When metal fine particles are contained in the polyamide resin using pressurized carbon dioxide, the metal fine particles can be unevenly distributed at a depth of about 1 to 5 μm from the outermost surface of the molded body made of the polyamide resin. Moreover, the particle diameter of the metal fine particles serving as catalyst nuclei can be remarkably reduced, and a molded article having high plating reactivity can be manufactured. Examples of the method for producing a molded article containing metal fine particles using pressurized carbon dioxide include the methods disclosed in the above-mentioned Patent Documents 1 to 3.

例えば、成形体は、射出成形機又は押出成形機の可塑化シリンダ内でポリアミド樹脂を可塑化溶融し、その可塑化シリンダへ金属微粒子が溶解した加圧二酸化炭素を導入し、可塑化シリンダ内でポリアミド樹脂と加圧二酸化炭素を混合した後、成形して製造してもよい。別の方法としては、射出成形機の金型内に予め金属微粒子が溶解又は分散した加圧二酸化炭素を導入しておき、そこへ可塑化溶融したポリアミド樹脂を射出充填し、金型内でポリアミド樹脂に加圧二酸化炭素を接触させ、成形体内に金属微粒子を含有させて製造してもよい。更に、加圧二酸化炭素とポリアミド樹脂との接触は、必ずしもポリアミド樹脂の成形過程において行う必要はない。例えば、まず、ポリアミド樹脂を成形して成形体を得て、次に、成形体を高圧容器内に設置し、高圧容器内において成形体に金属微粒子が溶解又は分散した加圧二酸化炭素を接触させ、成形体の表面近傍に金属微粒子を浸透させてもよい。   For example, in a molded body, a polyamide resin is plasticized and melted in a plasticizing cylinder of an injection molding machine or an extrusion molding machine, and pressurized carbon dioxide in which metal fine particles are dissolved is introduced into the plasticizing cylinder. The polyamide resin and the pressurized carbon dioxide may be mixed and then molded. As another method, pressurized carbon dioxide in which metal fine particles are dissolved or dispersed in advance is introduced into a mold of an injection molding machine, and a polyamide resin that has been plasticized and melted is injected and filled therein. The resin may be produced by bringing pressurized carbon dioxide into contact with the resin and containing fine metal particles in the molded body. Further, the contact between the pressurized carbon dioxide and the polyamide resin is not necessarily performed during the molding process of the polyamide resin. For example, a polyamide resin is first molded to obtain a molded body, and then the molded body is placed in a high-pressure container, and in the high-pressure container, pressurized carbon dioxide in which metal fine particles are dissolved or dispersed is brought into contact. The metal fine particles may be infiltrated in the vicinity of the surface of the molded body.

このように、金属微粒子を加圧二酸化炭素に溶解する工程を経て、成形体を製造する場合には、金属微粒子は、ヘキサフルオロアセチルアセトナトパラジウム(II)、ビス(シクロペンタジエニル)ニッケル、ビス(アセチルアセトナト)パラジウム(II)、ジメチル(シクロオクタジエニル)プラチナ(II)、ヘキサフルオロアセチルアセトナトヒドレート銅(II)、ヘキサフルオロアセチルアセトナトプラチナ(II)、ヘキサフルオロアセチルアセトナト(トリメチルホスフィン)銀(I)、ジメチル(ヘプタフルオロオクタネジオネート)銀(AgFOD)等を用いることができる。特にフッ素を含む配位子を有する金属錯体は、加圧二酸化炭素に相溶しやすいので好ましい。また、加圧二酸化炭素へ溶解された金属錯体は、成形体の製造過程で配位子が外れて還元され、成形体内においては、金属錯体の形ではなく、還元された後の金属の微粒子として存在していることも多い。   Thus, when manufacturing a molded object through the process of melt | dissolving a metal microparticle in pressurized carbon dioxide, a metal microparticle is hexafluoroacetylacetonato palladium (II), bis (cyclopentadienyl) nickel, Bis (acetylacetonato) palladium (II), dimethyl (cyclooctadienyl) platinum (II), hexafluoroacetylacetonatohydrate copper (II), hexafluoroacetylacetonatoplatinum (II), hexafluoroacetylacetonato ( Trimethylphosphine) silver (I), dimethyl (heptafluorooctaneoneate) silver (AgFOD), or the like can be used. In particular, a metal complex having a ligand containing fluorine is preferable because it is easily compatible with pressurized carbon dioxide. In addition, the metal complex dissolved in pressurized carbon dioxide is reduced by removing the ligand in the manufacturing process of the molded body, and in the molded body, not as a metal complex, but as reduced metal fine particles It often exists.

次に、上述のようにして用意された金属微粒子を含む成形体に弱酸を接触させる(ステップS2)。本実施形態において、成形体に弱酸を接触させる工程は、成形体にメッキ膜を形成するためのメッキ前処理に相当する。金属微粒子の一部は、成形体表面に露出していると考えられるが、ポリアミド樹脂からなる成形体の表面を弱酸によりエッチングすることで、更に多くの金属微粒子を成形体表面に露出させることができる。より多くの金属微粒子が成形体表面に露出することで、成形体表面にメッキ膜が形成し易くなり、メッキ膜形成時間を短縮できる。メッキ膜形成時間が短くなることで、ピンホール等のメッキ膜の欠陥も生じにくくなる。   Next, a weak acid is brought into contact with the molded body containing the metal fine particles prepared as described above (step S2). In the present embodiment, the step of bringing a weak acid into contact with the molded product corresponds to a pretreatment for plating for forming a plating film on the molded product. Although some of the metal fine particles are considered to be exposed on the surface of the molded body, more metal fine particles can be exposed on the surface of the molded body by etching the surface of the molded body made of polyamide resin with a weak acid. it can. By exposing more metal fine particles to the surface of the molded body, it becomes easier to form a plating film on the surface of the molded body, and the time for forming the plating film can be shortened. By shortening the plating film formation time, defects in the plating film such as pinholes are less likely to occur.

但し、本実施形態における弱酸によるメッキの前処理は、従来の成形体表面を粗化するメッキ前処理とは異なる。従来のメッキ前処理としては、ABS樹脂、エラストマー、ミネラル等を樹脂に含有させ、これらを六価クロム酸や過マンガン酸等の環境負荷の高いエッチング液により成形体表面から除去する方法が知られている。したがって、従来のメッキ前処理では、成形体表面に凹凸が形成される。これに対して、弱酸によるメッキの前処理は、成形体表面をわずかに溶解し、金属微粒子を成形体表面に露出させるにとどまり、成形体表面を粗化させることはない。   However, the pretreatment for plating with a weak acid in the present embodiment is different from the conventional plating pretreatment for roughening the surface of the molded body. As a conventional pretreatment for plating, there is known a method in which ABS resin, elastomer, mineral or the like is contained in the resin and these are removed from the surface of the molded body with an etching solution having high environmental load such as hexavalent chromic acid or permanganic acid. ing. Therefore, in the conventional plating pretreatment, irregularities are formed on the surface of the molded body. On the other hand, the pretreatment of the plating with the weak acid slightly dissolves the surface of the molded body and exposes the metal fine particles to the surface of the molded body, and does not roughen the surface of the molded body.

本実施形態で用いる弱酸とは、ポリアミド樹脂を溶解する酸であって、例えば、酢酸、ギ酸、酪酸、ラウリン酸、乳酸、リンゴ酸、クエン酸、オレイン酸、リノール酸、安息香酸、シュウ酸、コハク酸、マロン酸、マレイン酸、酒石酸、アミノ酸等のカルボン酸全般、およびリン酸、ホウ酸、次亜塩素酸、フッ化水素、硫化水素からなる群から選択される一種である。本実施形態に用いる弱酸は、ポリアミド樹脂を溶解するが、樹脂を破壊するほど侵し過ぎないこと、更に環境性や作業者の取り扱い易さの観点から、酢酸又はリン酸であることが好ましい。   The weak acid used in the present embodiment is an acid that dissolves the polyamide resin. For example, acetic acid, formic acid, butyric acid, lauric acid, lactic acid, malic acid, citric acid, oleic acid, linoleic acid, benzoic acid, oxalic acid, It is a kind selected from the group consisting of carboxylic acids such as succinic acid, malonic acid, maleic acid, tartaric acid and amino acids, and phosphoric acid, boric acid, hypochlorous acid, hydrogen fluoride and hydrogen sulfide. The weak acid used in the present embodiment is preferably acetic acid or phosphoric acid from the viewpoints of dissolving the polyamide resin but not eroding so much as to destroy the resin, and environmental and ease of handling by the operator.

本実施形態で用いる弱酸は、ポリアミド樹脂を溶解する酸であるが、塩酸、硫酸、硝酸等の強酸は含まない。強酸を用いて成形体表面をエッチングすることは可能であるが、強酸は成形体表面及び表面近傍に残存し、成形体及びメッキ膜の両方を腐食させ、成形体の耐久性を低下させる。また、腐食の問題を解決するために、塩酸、硫酸、硝酸等の強酸を薄めてpHを下げると、これらの強酸は、成形体をエッチングする能力を失ってしまう。これに対して、本実施形態で用いる弱酸は、ポリアミド樹脂からなる成形体をエッチングする能力を有し、且つ、成形体及びメッキ膜の両方に対して腐食の問題を生じない。したがって、金属微粒子を含む成形体のメッキ前処理を弱酸で行うと、エッチングにより多くの金属微粒子を成形体表面に露出させてメッキ膜形成を促進でき、更に、成形体の耐久性も向上する。また、本実施形態に用いる弱酸は、強酸等と比較して環境負荷が低く、取り扱いが容易なので、作業者の危険性も下がり、作業性が向上する。   The weak acid used in the present embodiment is an acid that dissolves the polyamide resin, but does not include strong acids such as hydrochloric acid, sulfuric acid, and nitric acid. Although it is possible to etch the surface of the molded body using a strong acid, the strong acid remains on the surface of the molded body and in the vicinity of the surface, corrodes both the molded body and the plated film, and decreases the durability of the molded body. Further, when the pH is lowered by diluting strong acids such as hydrochloric acid, sulfuric acid and nitric acid in order to solve the corrosion problem, these strong acids lose the ability to etch the molded body. On the other hand, the weak acid used in the present embodiment has an ability to etch a molded body made of a polyamide resin, and does not cause a corrosion problem for both the molded body and the plated film. Therefore, when the pre-plating treatment of the molded body containing metal fine particles is performed with a weak acid, the formation of a plating film can be promoted by exposing many metal fine particles to the surface of the molded body by etching, and the durability of the molded body is also improved. In addition, the weak acid used in the present embodiment has a lower environmental load than a strong acid and is easy to handle, so that the operator's risk is reduced and workability is improved.

更に、金属微粒子を含む成形体のメッキ前処理を弱酸で行うことは、以下の効果を奏する。本発明者らは、成形体の反り抑制、剛性及び寸法安定性の向上を目的にポリアミド樹脂にミネラルを含有させた場合、強酸を用いてメッキ前処理を行うと、成形体表面にメッキ膜が形成されないメッキ未着部が多数発生することを発見した。そして、成形体のメッキ前処理に弱酸を用いることで、このメッキ未着部の発生を抑制できることを見出した。この理由は、定かではないが以下のように推察される。メッキ前処理に強酸を用いると、強酸と成形体内に含まれるミネラルが反応し、例えば、ミネラルが溶解してガスを発生する等、何らかのメッキ反応に悪影響を与える現象が生じる。一方、本実施形態で用いる弱酸は、ミネラルとこのような反応をしないため、メッキ未着部が発生せず、外観特性に優れたメッキ膜を形成できると考えられる。   Furthermore, performing the plating pretreatment of the molded body containing the metal fine particles with a weak acid has the following effects. In the case where a mineral is contained in a polyamide resin for the purpose of suppressing warpage of the molded body and improving rigidity and dimensional stability, the present inventors perform a plating pretreatment using a strong acid to form a plating film on the surface of the molded body. It was discovered that a large number of unplated portions that were not formed occurred. And it discovered that generation | occurrence | production of this unplated part can be suppressed by using a weak acid for the plating pretreatment of a molded object. The reason for this is not clear, but is presumed as follows. When a strong acid is used for the plating pretreatment, a strong acid and a mineral contained in the molded body react, and for example, a phenomenon that adversely affects a plating reaction occurs, for example, the mineral dissolves to generate gas. On the other hand, since the weak acid used in this embodiment does not react with minerals in this manner, it is considered that a plating non-deposited portion does not occur and a plating film having excellent appearance characteristics can be formed.

ポリアミド樹脂に添加されるミネラルとしては、例えば、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、二酸化ケイ素等のケイ酸塩、ケイ酸、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、硫酸バリウム、及びそれを含む化合物(鉱物)からなる群から選択される少なくとも一種が挙げられる。特に、成形物の表面性(外観)や機械強度、寸法安定性およびコストの観点から、ケイ酸カルシウム等のケイ酸塩、水酸化マグネシウムが好ましい。同様に、酸化カルシウム、二酸化ケイ素も本実施形態に用いるミネラルとして好ましい。この様なミネラルを含有するポリアミド樹脂の市販品としては、例えば、東洋紡製、ミネラル強化樹脂T777‐02、宇部興産製、ミネラル強化樹脂1013R、1013R1等がある。ミネラルは、成形される成形体中の含有量が、10〜50vol%となるように、ポリアミド樹脂に添加することが好ましい。本実施形態の成形体の製造方法は、このようなミネラルを含有するポリアミド樹脂からなる成形体の製造方法として適している。   Examples of minerals added to the polyamide resin include silicates such as calcium silicate, aluminum silicate, magnesium silicate, and silicon dioxide, silicic acid, calcium oxide, calcium carbonate, magnesium oxide, magnesium hydroxide, and barium sulfate. And at least one selected from the group consisting of compounds (minerals) containing the same. In particular, silicates such as calcium silicate and magnesium hydroxide are preferable from the viewpoints of surface properties (appearance), mechanical strength, dimensional stability, and cost. Similarly, calcium oxide and silicon dioxide are also preferable as minerals used in this embodiment. Examples of commercially available polyamide resins containing such minerals include Toyobo, Mineral Reinforced Resin T777-02, Ube Industries, Mineral Reinforced Resins 1013R, 1013R1, and the like. It is preferable to add the mineral to the polyamide resin so that the content in the molded article to be molded is 10 to 50 vol%. The manufacturing method of the molded body of this embodiment is suitable as a manufacturing method of the molded body which consists of a polyamide resin containing such a mineral.

次に、弱酸によりメッキ前処理を行った成形体に、無電解メッキ液を接触させてメッキ膜を形成する(図1のステップS3)。無電解メッキ液としては、公知のものを使用できるが、触媒活性が高く液が安定であるという点から、無電解ニッケルリンメッキ液が好ましい。本実施形態で製造する成形体は、メッキ触媒として働く金属微粒子を包含しているので、メッキ触媒付与処理を行う必要がない。また、上述のように、本実施形態で製造する成形体は、弱酸を用いてメッキ前処理を行っているので、多くの金属微粒子が成形体表面に露出し、成形体表面にメッキ膜が形成し易い。   Next, an electroless plating solution is brought into contact with the molded body that has been subjected to pre-plating treatment with a weak acid to form a plating film (step S3 in FIG. 1). As the electroless plating solution, a known one can be used, but an electroless nickel phosphorous plating solution is preferable from the viewpoint that the catalyst activity is high and the solution is stable. Since the molded body manufactured in the present embodiment includes metal fine particles that function as a plating catalyst, it is not necessary to perform a plating catalyst application treatment. In addition, as described above, since the molded body manufactured in this embodiment is pre-plated using weak acid, many metal fine particles are exposed on the surface of the molded body, and a plating film is formed on the surface of the molded body. Easy to do.

本実施形態では、無電解メッキ液が成形体の表面から浸透して成形体に含まれる金属微粒子に接触し、金属微粒子を触媒としてメッキ膜が成長する。したがって、メッキ膜は成形体に食い込んだ状態(メッキ膜の一部が成形体に浸透した状態)で成形体上に形成され、成形体の表面近傍にはポリアミド樹脂とメッキ膜と同じ金属からなる金属領域との混合層が形成される。それゆえ、従来の無電解メッキ法のように成形体の表面を粗化する必要がなく、容易に密着性の優れたメッキ膜を形成することができる。本実施形態では、従来の無電解メッキ法のように成形体の表面を粗化しないので、表面粗度の非常に小さい(ナノオーダー)メッキ膜を形成することができる。   In the present embodiment, the electroless plating solution penetrates from the surface of the molded body and comes into contact with the metal fine particles contained in the molded body, and the plating film grows using the metal fine particles as a catalyst. Therefore, the plating film is formed on the molded body in a state where it has penetrated into the molded body (a part of the plating film has penetrated into the molded body), and is made of the same metal as the polyamide resin and the plating film in the vicinity of the surface of the molded body. A mixed layer with the metal region is formed. Therefore, it is not necessary to roughen the surface of the molded body unlike the conventional electroless plating method, and a plating film having excellent adhesion can be easily formed. In the present embodiment, since the surface of the molded body is not roughened as in the conventional electroless plating method, a plating film having a very small surface roughness (nano order) can be formed.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例により制限されない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not restrict | limited by the following Example.

[実施例1]
本実施例では、図2に示す成形機1000を用いて、金属微粒子を含むポリアミド樹脂からなる成形体を射出成形により製造し、製造した成形体上にメッキ膜を形成した。
[Example 1]
In this example, a molding body made of polyamide resin containing metal fine particles was manufactured by injection molding using a molding machine 1000 shown in FIG. 2, and a plating film was formed on the manufactured molding body.

ポリアミド樹脂としては、ガラスフィラーを30vol%混合したナイロン6(東レ株式会社製,CM1001G-30)を、金属微粒子としては、有機金属錯体であるヘキサフルオロアセチルアセトナトパラジウム(II)金属錯体を用いた。   Nylon 6 (manufactured by Toray Industries, Inc., CM1001G-30) mixed with 30 vol% of glass filler was used as the polyamide resin, and hexafluoroacetylacetonato palladium (II) metal complex, which is an organometallic complex, was used as the metal fine particles. .

<成形機>
まず、本実施例で成形体の成形に用いた成形機について説明する。図2に示すように、成形機1000は、混練装置200と、金属微粒子を含む加圧二酸化炭素(以下、必要に応じて、「混合加圧流体」と記す)を混練装置200に供給する加圧流体供給装置100と、金型が設けられた型締めユニット250と、制御装置(不図示)を備える。制御装置は、加圧流体供給装置100、混練装置200、及び型締めユニット250の動作を制御する。
<Molding machine>
First, a molding machine used for molding a molded body in this example will be described. As shown in FIG. 2, the molding machine 1000 includes a kneading device 200 and a pressurized carbon dioxide containing metal fine particles (hereinafter referred to as “mixed pressurized fluid” as necessary). The pressurized fluid supply device 100, a mold clamping unit 250 provided with a mold, and a control device (not shown) are provided. The control device controls operations of the pressurized fluid supply device 100, the kneading device 200, and the mold clamping unit 250.

加圧流体供給装置100は、加圧二酸化炭素に金属微粒子を溶解もしくは分散させて混練装置200に導入することができれば任意の装置を用いることができるが、本実施例においては注射器のように加圧二酸化炭素等を吸引、送液するシリンジポンプを備えた供給装置を用いた。すなわち、加圧流体供給装置100は、加圧二酸化炭素と金属微粒子を混合して供給する装置であり、サイフォン式の二酸化炭素ボンベ101と、二酸化炭素ボンベ101より液体二酸化炭素を吸引した後、加圧して液体二酸化炭素を供給する二酸化炭素用シリンジポンプ102と、金属微粒子含有液体Cを収容する溶液槽111と、金属微粒子含有液体Cを加圧して供給する溶液用シリンジポンプ112より構成される。各シリンジポンプ102、112は圧力制御と流量制御が可能である。液体二酸化炭素ボンベ101と二酸化炭素用シリンジポンプ102とを接続する配管及び二酸化炭素用シリンジポンプ102と混練装置200とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ104及び供給用エアオペレートバルブ105が配設されている。また、溶液槽111と溶液用シリンジポンプ112とを接続する配管及び溶液用シリンジポンプ112と混練装置200とを接続する配管にはそれぞれ、吸引用エアオペレートバルブ114及び供給用エアオペレートバルブ115が配設されている。   As the pressurized fluid supply apparatus 100, any apparatus can be used as long as the metal fine particles can be dissolved or dispersed in pressurized carbon dioxide and introduced into the kneading apparatus 200. In this embodiment, however, the pressurized fluid supply apparatus 100 is added like a syringe. A supply device equipped with a syringe pump for sucking and feeding pressurized carbon dioxide and the like was used. That is, the pressurized fluid supply device 100 is a device that supplies a mixture of pressurized carbon dioxide and metal fine particles. The pressurized carbon dioxide cylinder 101 and liquid carbon dioxide are sucked from the carbon dioxide cylinder 101 and then added. It comprises a carbon dioxide syringe pump 102 that supplies liquid carbon dioxide under pressure, a solution tank 111 that contains the metal fine particle-containing liquid C, and a solution syringe pump 112 that pressurizes and supplies the metal fine particle-containing liquid C. Each syringe pump 102, 112 is capable of pressure control and flow rate control. The piping connecting the liquid carbon dioxide cylinder 101 and the carbon dioxide syringe pump 102 and the piping connecting the carbon dioxide syringe pump 102 and the kneading device 200 are respectively the suction air operated valve 104 and the supply air operated valve 105. Is arranged. In addition, a suction air operated valve 114 and a supply air operated valve 115 are arranged on a pipe connecting the solution tank 111 and the solution syringe pump 112 and a pipe connecting the solution syringe pump 112 and the kneading apparatus 200, respectively. It is installed.

混練装置200は、可塑化シリンダ210と、可塑化シリンダ210内に回転及び進退自在に配設されたスクリュ20と、可塑化シリンダ210内に配置される上流側シール機構S1及び下流側シール機構S2と、可塑化シリンダ210に接続する減圧ゾーン圧力調整機構1を備える。また、可塑化シリンダ210のノズル先端29には、エアーシリンダ12の駆動により開閉するシャットオフバルブ36が設けられ、可塑化シリンダ210の内部を高圧に保持できる。ノズル先端29には、金型が密着し、金型が形成するキャビティ253内に、ノズル先端29から溶融樹脂が射出充填される。本実施例では、可塑化シリンダ210内において、可塑化溶融された溶融樹脂は、図2〜図4における右手から左手に向かって流動する。したがって、可塑化シリンダ210の内部においては、図2〜図4における右手を「上流」又は「後方」、左手を「下流」又は「前方」と定義する。   The kneading apparatus 200 includes a plasticizing cylinder 210, a screw 20 disposed in the plasticizing cylinder 210 so as to be able to rotate and advance, and an upstream sealing mechanism S1 and a downstream sealing mechanism S2 disposed in the plasticizing cylinder 210. And a pressure-reducing zone pressure adjusting mechanism 1 connected to the plasticizing cylinder 210. Further, a shut-off valve 36 that opens and closes by driving the air cylinder 12 is provided at the nozzle tip 29 of the plasticizing cylinder 210 so that the inside of the plasticizing cylinder 210 can be held at a high pressure. A mold is brought into close contact with the nozzle tip 29, and molten resin is injected and filled from the nozzle tip 29 into a cavity 253 formed by the mold. In the present embodiment, in the plasticizing cylinder 210, the plasticized and melted molten resin flows from the right hand to the left hand in FIGS. Therefore, in the plasticizing cylinder 210, the right hand in FIGS. 2 to 4 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.

更に、図示しないが、可塑化シリンダ210の上流側の後端部には、スクリュ20を回転させる回転モータなどの回転駆動手段と、スクリュ20を前後進させるためのボールネジ及びそれを駆動させるモータなどの移動手段とが接続されている。なお、図3及び図4に示すように、混練装置200は、可塑化シリンダ210の後方側から見た場合に、スクリュ20を反時計回りに回転させると溶融樹脂を前方(ノズル部側)に送る正回転をし、時計回りに回転させると逆回転するように構成されている。   Further, although not shown, at the rear end portion on the upstream side of the plasticizing cylinder 210, a rotation driving means such as a rotary motor for rotating the screw 20, a ball screw for moving the screw 20 forward and backward, a motor for driving the same, and the like Is connected to the moving means. As shown in FIGS. 3 and 4, when the kneading apparatus 200 is viewed from the rear side of the plasticizing cylinder 210, when the screw 20 is rotated counterclockwise, the molten resin is moved forward (nozzle part side). It is configured to perform forward rotation to be sent and to reverse rotation when rotated clockwise.

可塑化シリンダ210の上部側面には、上流側から順に、ポリアミド樹脂を可塑化シリンダ210に供給するための樹脂供給口201、混合加圧流体を可塑化シリンダ210内に導入するための導入口202、及び可塑化シリンダ210内からガス化した二酸化炭素を排出するためのベント203が形成されている。これらの樹脂供給口201、及び導入口202にはそれぞれ、樹脂供給用ホッパ211、及び導入バルブ212が配設されており、ベント203には、減圧ゾーン圧力調整機構1が接続されている。また導入バルブ212は、上述の加圧流体供給装置100と接続される。   On the upper side surface of the plasticizing cylinder 210, a resin supply port 201 for supplying polyamide resin to the plasticizing cylinder 210 in order from the upstream side, and an introduction port 202 for introducing mixed pressurized fluid into the plasticizing cylinder 210. , And a vent 203 for discharging the gasified carbon dioxide from the plasticizing cylinder 210 is formed. The resin supply port 201 and the introduction port 202 are provided with a resin supply hopper 211 and an introduction valve 212, respectively, and the vent 203 is connected to the decompression zone pressure adjusting mechanism 1. The introduction valve 212 is connected to the pressurized fluid supply apparatus 100 described above.

混練装置200では、樹脂供給口201から可塑化シリンダ210内にポリアミド樹脂が供給され、ポリアミド樹脂は、可塑化シリンダ210の外壁面に配設されたバンドヒータ(不図示)によって可塑化されて溶融樹脂となり、スクリュ20が正回転することにより下流に送られる。そして、導入口202近傍まで送られた溶融樹脂は、導入された金属微粒子を含む加圧二酸化炭素(混合加圧流体)と高圧下、接触混練される。次いで、混合加圧流体と接触混練された溶融樹脂の樹脂内圧を低下させることにより、ガス化した二酸化炭素が溶融樹脂から分離し、ベント203からこのガス化した二酸化炭素が排出される。そして、さらに前方に送られた溶融樹脂はスクリュ20の先端部に押し出され、溶融樹脂の圧力がスクリュ20に対する反力となり、反力でスクリュ20が後退することにより溶融樹脂が計量される。これにより、可塑化シリンダ210内では、上流側から順に、ポリアミド樹脂を可塑化して溶融樹脂とする可塑化ゾーン21、溶融樹脂と導入口202から導入される混合加圧流体とを高圧下、接触混練する高圧混練ゾーン22、及び混合加圧流体と接触混練した溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂から分離された二酸化炭素をベント203から排出する減圧ゾーン23が形成される。更に、減圧ゾーン23の下流には、再昇圧ゾーン24が設けられる。再昇圧ゾーン24では、スクリュ前方に溶融樹脂が送り出され計量が行われる。   In the kneading apparatus 200, polyamide resin is supplied from the resin supply port 201 into the plasticizing cylinder 210, and the polyamide resin is plasticized and melted by a band heater (not shown) disposed on the outer wall surface of the plasticizing cylinder 210. It becomes resin and is sent downstream by the screw 20 rotating forward. The molten resin sent to the vicinity of the inlet 202 is contact-kneaded with pressurized carbon dioxide (mixed pressurized fluid) containing the introduced metal fine particles under high pressure. Next, by reducing the internal pressure of the molten resin that has been kneaded in contact with the mixed pressurized fluid, the gasified carbon dioxide is separated from the molten resin, and the gasified carbon dioxide is discharged from the vent 203. Then, the molten resin sent further forward is pushed out to the tip of the screw 20, and the pressure of the molten resin becomes a reaction force against the screw 20, and the screw 20 moves backward by the reaction force so that the molten resin is measured. As a result, in the plasticizing cylinder 210, in order from the upstream side, the plasticizing zone 21 that plasticizes the polyamide resin to form a molten resin, the molten resin and the mixed pressurized fluid introduced from the inlet 202 are brought into contact under high pressure. A high pressure kneading zone 22 for kneading and a pressure reducing zone 23 for discharging carbon dioxide separated from the molten resin from the vent 203 are formed by lowering the internal pressure of the molten resin kneaded in contact with the mixed pressurized fluid. Further, a repressurization zone 24 is provided downstream of the decompression zone 23. In the re-pressurization zone 24, the molten resin is sent to the front of the screw and is measured.

図2〜図4に示すように、上記可塑化ゾーン21、高圧混練ゾーン22、及び減圧ゾーン23の間にはそれぞれ、これらのゾーン21、22、23の連通状態を一時的に遮断する上流側シール機構S1及び下流側シール機構S2が配設されている。これにより、例えば、混合加圧流体を高圧混練ゾーン22に導入する際には、機械的に高圧混練ゾーン22の上流側及び下流側がシールされ、確実に高圧混練ゾーン22と隣接するゾーン21、23とを遮断できる。この結果、高圧混練ゾーン22の圧力は高圧に維持されるので、金属微粒子を溶融樹脂に効果的に浸透可能となる。上流側シール機構S1及び下流側シール機構S2は、ゾーン21、22、23の連通を遮断するものであれば、種々のものを利用できるが、本実施例では、後述するスクリュ20の回転状態に応じてこれらのゾーンの連通を遮断するものを用いた。   As shown in FIGS. 2 to 4, the upstream side that temporarily cuts off the communication state of the zones 21, 22, and 23, respectively, between the plasticizing zone 21, the high-pressure kneading zone 22, and the decompression zone 23. A seal mechanism S1 and a downstream seal mechanism S2 are provided. Thereby, for example, when the mixed pressurized fluid is introduced into the high-pressure kneading zone 22, the upstream side and the downstream side of the high-pressure kneading zone 22 are mechanically sealed to ensure that the zones 21 and 23 adjacent to the high-pressure kneading zone 22 are surely. Can be shut off. As a result, the pressure in the high-pressure kneading zone 22 is maintained at a high pressure, so that the metal fine particles can effectively penetrate into the molten resin. Various upstream sealing mechanisms S1 and downstream sealing mechanisms S2 can be used as long as they block communication between the zones 21, 22, and 23. In this embodiment, the screw 20 is rotated as described later. Accordingly, the one that cut off the communication between these zones was used.

減圧ゾーン圧力調整機構1は、常時、減圧ゾーンの圧力をほぼ一定の圧力に保持する。減圧ゾーン圧力調整機構1は、バッファ容器5と、バッファ容器5の接続口5aから、圧力計4及び背圧弁3を介して排気口11へ接続される排気機構を有する。減圧ゾーン圧力調整機構1は、排気機構の背圧弁3を所定の値に設定し、二酸化炭素ガスの排気量を制限することにより、減圧ゾーン23内部の圧力を制御する。このように、減圧ゾーン圧力調整機構1は、減圧ゾーン23内のガスの圧力を制御している。減圧ゾーン圧力調整機構1により、減圧ゾーンの圧力を一定に保持することで、可塑化シリンダ210内に導入する加圧二酸化炭素の量を毎ショット安定に制御することができる。   The decompression zone pressure adjustment mechanism 1 always maintains the pressure in the decompression zone at a substantially constant pressure. The depressurization zone pressure adjusting mechanism 1 includes a buffer container 5 and an exhaust mechanism that is connected from the connection port 5 a of the buffer container 5 to the exhaust port 11 via the pressure gauge 4 and the back pressure valve 3. The depressurization zone pressure adjusting mechanism 1 controls the pressure inside the depressurization zone 23 by setting the back pressure valve 3 of the exhaust mechanism to a predetermined value and limiting the exhaust amount of carbon dioxide gas. Thus, the decompression zone pressure adjustment mechanism 1 controls the gas pressure in the decompression zone 23. By maintaining the pressure in the decompression zone constant by the decompression zone pressure adjusting mechanism 1, the amount of pressurized carbon dioxide introduced into the plasticizing cylinder 210 can be stably controlled every shot.

次に、上流側シール機構S1及び下流側シール機構S2について説明する。図3及び図4に示すように、可塑化スクリュ20は、高圧混練ゾーン22と減圧ゾーン23との境界領域において、この境界領域と隣接する領域に比べて縮径された縮径部50を有している。縮径部50には、縮径部50の範囲で軸方向(前後方向)に移動可能となるように遊嵌状態で下流側シールリング60が外嵌している。これら縮径部50と下流側シールリング60とで、下流側シール機構S2が構成されている。同様に、可塑化ゾーン21と高圧混練ゾーン22との境界領域において、縮径部30と上流側シールリング40とで、上流側シール機構S1が構成されている。本実施例においては、上流側シール機構S1と下流側シール機構S2とは基本的に同一の構成である。下流側シールリング60の外周面には、下流側シールリング60の外周面から突出するように金属製の外側シール部材70が嵌合している。これにより、下流側シールリング60と可塑化シリンダ210との間のシール性が確保される。同様に、上流側シールリング40の外周面には、外側シール部材80が嵌合している。   Next, the upstream side seal mechanism S1 and the downstream side seal mechanism S2 will be described. As shown in FIGS. 3 and 4, the plasticizing screw 20 has a reduced diameter portion 50 that is reduced in diameter in the boundary region between the high-pressure kneading zone 22 and the decompression zone 23 as compared with a region adjacent to the boundary region. doing. A downstream seal ring 60 is externally fitted to the reduced diameter portion 50 in a loosely fitted state so as to be movable in the axial direction (front-rear direction) within the range of the reduced diameter portion 50. The reduced diameter portion 50 and the downstream seal ring 60 constitute a downstream seal mechanism S2. Similarly, in the boundary region between the plasticizing zone 21 and the high-pressure kneading zone 22, the reduced diameter portion 30 and the upstream seal ring 40 constitute an upstream seal mechanism S1. In the present embodiment, the upstream side seal mechanism S1 and the downstream side seal mechanism S2 have basically the same configuration. A metal outer seal member 70 is fitted on the outer peripheral surface of the downstream seal ring 60 so as to protrude from the outer peripheral surface of the downstream seal ring 60. Thereby, the sealing performance between the downstream seal ring 60 and the plasticizing cylinder 210 is ensured. Similarly, an outer seal member 80 is fitted on the outer peripheral surface of the upstream seal ring 40.

可塑化スクリュ20の縮径部50は、前方(下流)に向かって傾斜するテーパ面を有する円錐台部(シール部)51と、円錐台部51から連接し、軸方向に水平に延びる水平面を有する円筒部52とで構成されている。同様に、縮径部30も、円錐台部(シール部)31と、円筒部32から構成される。   The reduced diameter portion 50 of the plasticizing screw 20 includes a truncated cone portion (seal portion) 51 having a tapered surface inclined toward the front (downstream), and a horizontal plane that is connected to the truncated cone portion 51 and extends horizontally in the axial direction. And a cylindrical portion 52 having the same. Similarly, the reduced diameter portion 30 also includes a truncated cone portion (seal portion) 31 and a cylindrical portion 32.

図3に示すように、スクリュ20を正回転(反時計回り)させると、上流側及び下流側シールリング40、60はそれぞれ縮径部30、50の範囲を下流側に移動する。スクリュ20に対して下流側シールリング60が下流側に移動すると、縮径部50のシール部51と下流側シールリング60とが離間して、溶融樹脂及び加圧二酸化炭素の湯道となる隙間Gが形成され、これにより、高圧混練ゾーン22と減圧ゾーン23が連通する。同様に、スクリュ20を正回転(反時計回り)させると、上流側シール機構S1に隙間Gが形成され、可塑化ゾーン21と高圧混練ゾーン22が連通する。   As shown in FIG. 3, when the screw 20 is rotated forward (counterclockwise), the upstream side and downstream side seal rings 40 and 60 move to the downstream side in the range of the reduced diameter portions 30 and 50, respectively. When the downstream seal ring 60 moves downstream with respect to the screw 20, the seal portion 51 of the reduced diameter portion 50 and the downstream seal ring 60 are separated from each other, and a gap serving as a runway for the molten resin and pressurized carbon dioxide G is formed, whereby the high-pressure kneading zone 22 and the decompression zone 23 communicate with each other. Similarly, when the screw 20 is rotated forward (counterclockwise), a gap G is formed in the upstream side seal mechanism S1, and the plasticizing zone 21 and the high-pressure kneading zone 22 communicate with each other.

一方、図4に示すように、スクリュ20を所定回転数以上で逆回転(時計回り)させると、スクリュ20に対して下流側シールリング60が上流側に移動する。スクリュ20に対して下流側シールリング60が上流側に移動すると、縮径部50のシール部51と下流側シールリング60とが当接して、隙間Gは消滅する。これにより、高圧混練ゾーン22と減圧ゾーン23との連通が遮断される。同様に、スクリュ20を逆回転(時計回り)させると、上流側シール機構S1の隙間Gが消滅し、可塑化ゾーン21と高圧混練ゾーン22の連通が遮断される。   On the other hand, as shown in FIG. 4, when the screw 20 is rotated backward (clockwise) at a predetermined rotational speed or more, the downstream seal ring 60 moves upstream with respect to the screw 20. When the downstream seal ring 60 moves upstream with respect to the screw 20, the seal portion 51 of the reduced diameter portion 50 and the downstream seal ring 60 come into contact with each other, and the gap G disappears. Thereby, the communication between the high-pressure kneading zone 22 and the decompression zone 23 is blocked. Similarly, when the screw 20 is rotated in the reverse direction (clockwise), the gap G of the upstream side seal mechanism S1 disappears and the communication between the plasticizing zone 21 and the high-pressure kneading zone 22 is blocked.

<成形体の成形方法>
上で説明した図2に示す成形機1000を用いて、以下に説明する方法により成形体を成形した。まず、吸引用エアオペレートバルブ104を開放して、液体二酸化炭素ボンベ101から液体二酸化炭素を吸引する。次に、二酸化炭素用シリンジポンプ102の圧力制御により所定圧力まで液体二酸化炭素を加圧する。本実施例では、二酸化炭素用シリンジポンプ102のヘッドと途中の経路を10℃に冷却し、圧力が10MPa、温度が10℃の加圧二酸化炭素を調製した。
<Molding method of molded body>
Using the molding machine 1000 shown in FIG. 2 described above, a molded body was molded by the method described below. First, the suction air operated valve 104 is opened, and liquid carbon dioxide is sucked from the liquid carbon dioxide cylinder 101. Next, liquid carbon dioxide is pressurized to a predetermined pressure by pressure control of the carbon dioxide syringe pump 102. In this example, the head of the carbon dioxide syringe pump 102 and the intermediate path were cooled to 10 ° C. to prepare pressurized carbon dioxide having a pressure of 10 MPa and a temperature of 10 ° C.

また、溶液用シリンジポンプ112側の吸引用エアオペレートバルブ114を開放して、溶液槽111から溶媒に金属微粒子を溶解させた溶液Cを常温で吸引し、溶液用シリンジポンプ112の圧力制御により所定圧力まで溶液Cを加圧する。本実施例では、溶液Cの溶媒としてパーフルオロトリペンチルアミン(シンクレスト・ラボラトリー社製,分子式:C15F33N,分子量:821.1,沸点:220℃)を用い、溶液Cを10MPaに加圧した。   Further, the suction air operated valve 114 on the solution syringe pump 112 side is opened, and the solution C in which metal fine particles are dissolved in the solvent is sucked from the solution tank 111 at room temperature, and the pressure is controlled by the solution syringe pump 112. Pressurize solution C to pressure. In this example, perfluorotripentylamine (manufactured by Sincrest Laboratories, Inc., molecular formula: C15F33N, molecular weight: 821.1, boiling point: 220 ° C.) was used as the solvent of the solution C, and the solution C was pressurized to 10 MPa.

次に、供給用エアオペレートバルブ105、115を開放した後、二酸化炭素用シリンジポンプ102及び溶液用シリンジポンプ112を圧力制御から流量制御に切替え、加圧二酸化炭素と加圧した溶液Cとを所定の流量比となるように流動させる。これにより、配管内で加圧二酸化炭素と溶液Cとが混合され、かつ、可塑化シリンダ210内に高圧流体を導入する導入バルブ212までの系内を加圧する。本実施例において、混合加圧流体中の金属微粒子の濃度は、飽和溶解度の10〜20%程度に制御した。   Next, after the supply air operated valves 105 and 115 are opened, the carbon dioxide syringe pump 102 and the solution syringe pump 112 are switched from pressure control to flow control, and the pressurized carbon dioxide and the pressurized solution C are predetermined. It is made to flow so that it may become the flow rate ratio. As a result, the pressurized carbon dioxide and the solution C are mixed in the pipe, and the system up to the introduction valve 212 for introducing the high-pressure fluid into the plasticizing cylinder 210 is pressurized. In this example, the concentration of the metal fine particles in the mixed pressurized fluid was controlled to about 10 to 20% of the saturation solubility.

一方、混練装置200において、樹脂供給用ホッパ211からポリアミド樹脂を供給し、可塑化ゾーン21の外壁面に設けられたバンドヒータ(図示せず)により可塑化ゾーン21を加熱し、スクリュ20を正回転させた。これにより、ポリアミド樹脂を加熱、混練し、溶融樹脂とした。本実施例では、溶融樹脂の温度が210〜240℃となるように可塑化シリンダ210の可塑化ゾーン21を加熱した。   On the other hand, in the kneading apparatus 200, the polyamide resin is supplied from the resin supply hopper 211, the plasticizing zone 21 is heated by a band heater (not shown) provided on the outer wall surface of the plasticizing zone 21, and the screw 20 is adjusted. Rotated. Thereby, the polyamide resin was heated and kneaded to obtain a molten resin. In this example, the plasticizing zone 21 of the plasticizing cylinder 210 was heated so that the temperature of the molten resin was 210 to 240 ° C.

スクリュ20を正回転することにより、溶融樹脂を可塑化ゾーン21から高圧混練ゾーン22に流動させた。そして、高圧混練ゾーン22と、減圧ゾーン23及び可塑化ゾーン21とを遮断するため、スクリュ20の回転を一旦停止した後、スクリュ20を逆回転させた。これにより、上流側及び下流側シールリング40、60を上流側に移動させて、上流側及び下流側シールリング40、60とスクリュ20の縮径部30、50との間の隙間Gを消滅させ、高圧混練ゾーン22を、減圧ゾーン23及び可塑化ゾーン21から遮断した。   By rotating the screw 20 forward, the molten resin was caused to flow from the plasticizing zone 21 to the high-pressure kneading zone 22. And in order to interrupt | block the high pressure kneading | mixing zone 22, the pressure reduction zone 23, and the plasticization zone 21, rotation of the screw 20 was once stopped, Then, the screw 20 was reversely rotated. As a result, the upstream and downstream seal rings 40 and 60 are moved upstream, and the gap G between the upstream and downstream seal rings 40 and 60 and the reduced diameter portions 30 and 50 of the screw 20 is eliminated. The high-pressure kneading zone 22 was cut off from the decompression zone 23 and the plasticizing zone 21.

上流側及び下流側シール機構S1、S2によって高圧混練ゾーン22をシールした後、シリンジポンプ102、112の駆動にあわせて導入バルブ212を開き、導入口202を介して可塑化シリンダ210に混合加圧流体を導入した。本実施例では、圧力10MPa、温度10℃とした混合加圧流体を、成形体1ショット(重量75g)に対し2.5wt%導入し、溶融樹脂に金属錯体を設定量で100ppm分散させた。   After the high-pressure kneading zone 22 is sealed by the upstream and downstream sealing mechanisms S 1 and S 2, the introduction valve 212 is opened in accordance with the driving of the syringe pumps 102 and 112, and mixed and pressurized to the plasticizing cylinder 210 through the introduction port 202. Fluid was introduced. In this example, a mixed pressurized fluid having a pressure of 10 MPa and a temperature of 10 ° C. was introduced at 2.5 wt% with respect to one shot (weight 75 g) of the molded body, and the metal complex was dispersed at a set amount by 100 ppm in the molten resin.

一方、減圧ゾーン23の圧力を減圧ゾーン圧力調整機構1により、一定の圧力に制御した。減圧ゾーン23の設定圧力は任意であるが、金属微粒子が加圧二酸化炭素に溶解する状態であると、加圧二酸化炭素と一緒にベント口203より排出されてしまうので、金属微粒子の溶解度以下の圧力であることが好ましい。また高圧になるほど、成形品が発泡するので、発泡を回避する目的であれば、圧力は低いほど望ましい。また、減圧ゾーン23の設定圧力が低すぎると、混合高圧流体を導入した際の圧力変化が大きくなり、ショット間のばらつきが大きくなる。金属微粒子が減圧ゾーン23において変質しない場合、以上を鑑みて、減圧ソーン23の適正圧力は0.5〜6MPaが好ましい。より好ましくは、1〜4MPaである。本実施例では、2MPaに背圧弁を設定し、減圧ゾーン23の圧力を、常時、2MPaに制御した。   On the other hand, the pressure in the decompression zone 23 was controlled to a constant pressure by the decompression zone pressure adjusting mechanism 1. The set pressure of the decompression zone 23 is arbitrary, but if the metal fine particles are dissolved in the pressurized carbon dioxide, they are discharged from the vent port 203 together with the pressurized carbon dioxide. A pressure is preferred. In addition, since the molded product foams as the pressure increases, the lower the pressure, the better for the purpose of avoiding foaming. On the other hand, when the set pressure in the decompression zone 23 is too low, the pressure change when the mixed high-pressure fluid is introduced becomes large, and the variation between shots becomes large. When the metal fine particles do not change in the reduced pressure zone 23, in view of the above, the appropriate pressure of the reduced pressure sone 23 is preferably 0.5 to 6 MPa. More preferably, it is 1-4 MPa. In this example, the back pressure valve was set to 2 MPa, and the pressure in the decompression zone 23 was always controlled to 2 MPa.

高圧混練ゾーン22に導入された混合加圧流体を、高圧混練ゾーン22で溶融樹脂中に高圧状態で分散させた後、スクリュ20を正回転(スクリュを可塑化する回転方向)する、又はスクリュ20の逆回転の回転数を低減させることで、高圧混練ゾーン22と減圧ゾーン23とを連通させた。本実施例では、スクリュ20の逆回転の回転数を低下させて、上流側及び下流側シールリング40、60を元の下流側の位置に戻し、上流側及び下流側シールリング40、60とスクリュ20の縮径部30、50とを離間させ、隙間Gを形成し、高圧混練ゾーン22と減圧ゾーン23を連通させた。次いで、スクリュ20を正回転に戻し、溶融樹脂を減圧ゾーン23へ流動させた。   After the mixed pressurized fluid introduced into the high-pressure kneading zone 22 is dispersed in the molten resin in a high-pressure state in the high-pressure kneading zone 22, the screw 20 is rotated forward (rotation direction in which the screw is plasticized), or the screw 20 The high-pressure kneading zone 22 and the decompression zone 23 were made to communicate with each other by reducing the number of reverse rotations. In this embodiment, the number of reverse rotations of the screw 20 is reduced, and the upstream and downstream seal rings 40 and 60 are returned to their original downstream positions, and the upstream and downstream seal rings 40 and 60 and the screw are returned to the original position. The 20 diameter-reduced portions 30 and 50 were separated from each other, a gap G was formed, and the high-pressure kneading zone 22 and the decompression zone 23 were communicated. Next, the screw 20 was returned to the normal rotation, and the molten resin was flowed to the decompression zone 23.

減圧ゾーン23へ流動した溶融樹脂及び混合加圧流体は、減圧ゾーンの設定圧力、2MPaまで圧力が低下した。これにより、余剰な加圧二酸化炭素はガス化して溶融樹脂から分離した後、可塑化シリンダ210のベント203を経て減圧ゾーン圧力調整機構1の排気口11より排出された。   The molten resin and mixed pressurized fluid that flowed to the decompression zone 23 were reduced in pressure to the set pressure of the decompression zone, 2 MPa. Thus, excess pressurized carbon dioxide was gasified and separated from the molten resin, and then discharged from the exhaust port 11 of the decompression zone pressure adjusting mechanism 1 through the vent 203 of the plasticizing cylinder 210.

次に、240℃に設定された再昇圧ゾーン24において、溶融樹脂を可塑化シリンダ210の先端部に送り、可塑化計量を完了した。その後、シャットオブバルブ36を開放して、キャビティ253内に溶融樹脂を射出充填し、金型に保圧をかけて成形体を得た。   Next, in the re-pressurization zone 24 set to 240 ° C., the molten resin was sent to the tip of the plasticizing cylinder 210 to complete the plasticizing measurement. Thereafter, the shut-off valve 36 was opened, molten resin was injected and filled into the cavity 253, and pressure was applied to the mold to obtain a molded body.

<メッキ前処理>
次に、得られた金属微粒子を含む成形体を6.0mol/Lの酢酸に40℃で10分間浸漬した。酢酸に浸漬後、成形体を純水で洗浄した。
<Plating pretreatment>
Next, the obtained compact containing the metal fine particles was immersed in 6.0 mol / L acetic acid at 40 ° C. for 10 minutes. After being immersed in acetic acid, the molded body was washed with pure water.

<メッキ処理>
メッキ前処理を行った成形体を無電解ニッケルリンメッキ液(奥野製薬社製、トップニコロンRCH−LF)に、70〜90℃で15分間浸漬し、ニッケルリンメッキ膜を形成した。次に、ニッケルリンメッキ膜を形成した成形体を置換銅メッキ液(奥野製薬社製、ANCアクチ)に、常温で1分間浸漬し、銅メッキ膜を形成した。その後、銅メッキ膜を形成した成形体を電気炉に入れ、80℃で12時間のアニール処理を行った。
<Plating treatment>
The molded body that had been subjected to the plating pretreatment was immersed in an electroless nickel phosphorus plating solution (Okuno Pharmaceutical Co., Ltd., Top Nicolon RCH-LF) at 70 to 90 ° C. for 15 minutes to form a nickel phosphorus plating film. Next, the molded body on which the nickel phosphorus plating film was formed was immersed in a substitution copper plating solution (ANC Acti, manufactured by Okuno Pharmaceutical Co., Ltd.) for 1 minute at room temperature to form a copper plating film. Thereafter, the molded body on which the copper plating film was formed was placed in an electric furnace and annealed at 80 ° C. for 12 hours.

次に、活性化剤(奥野製薬社製、トップサン)を用い、濃度100g/Lの活性化剤溶液を調製した。調製した活性剤溶液に、アニール処理を行った成形体を常温で5分間浸漬し、成形体上の金属膜の活性化処理を行った。この処理によって、アニールによって成形体の最表面に形成された酸化膜が除去された。   Next, an activator solution having a concentration of 100 g / L was prepared using an activator (Okuno Pharmaceutical Co., Ltd., Topsun). The formed article subjected to the annealing treatment was immersed in the prepared activator solution at room temperature for 5 minutes, and the metal film on the formed article was activated. By this treatment, the oxide film formed on the outermost surface of the molded body by annealing was removed.

活性化処理を行った成形体上に、汎用の方法により20μmの銅メッキ膜を形成した。電解銅メッキ液には、硫酸銅、硫酸、塩酸及び光沢剤を含有する硫酸銅浴を使用し、浴温度は30℃、電流密度は3A/dmとした。更に、電解銅メッキ膜上に、汎用の方法により、20μmのニッケルメッキ膜を形成した。電解ニッケルメッキ液には、硫酸ニッケル、塩化ニッケル、ホウ酸及び光沢剤を含有するワット浴を使用し、浴温度は55℃、電流密度は3A/dmとした。 A 20 μm copper plating film was formed by a general-purpose method on the molded body subjected to the activation treatment. As the electrolytic copper plating solution, a copper sulfate bath containing copper sulfate, sulfuric acid, hydrochloric acid and a brightener was used, the bath temperature was 30 ° C., and the current density was 3 A / dm 2 . Furthermore, a 20 μm nickel plating film was formed on the electrolytic copper plating film by a general-purpose method. As the electrolytic nickel plating solution, a Watt bath containing nickel sulfate, nickel chloride, boric acid and a brightener was used, the bath temperature was 55 ° C., and the current density was 3 A / dm 2 .

上述のようにして電解メッキ膜を形成した成形体を電気炉に入れ、80℃で12時間のアニール処理を行い、本実施例の試料を得た。   The molded body on which the electrolytic plating film was formed as described above was placed in an electric furnace and annealed at 80 ° C. for 12 hours to obtain a sample of this example.

<試料の評価>
(1)高温高湿試験
80℃、相対湿度90%の環境下に、試料を1000時間放置する高温高湿試験を行い、試験後のメッキ膜の状態を目視により観察した。目視観察の結果を以下の評価基準に従って評価した。結果を表1に示す。
<Evaluation of sample>
(1) High-temperature and high-humidity test A high-temperature and high-humidity test was performed in which the sample was left for 1000 hours in an environment of 80 ° C and relative humidity of 90%, and the state of the plated film after the test was visually observed. The result of visual observation was evaluated according to the following evaluation criteria. The results are shown in Table 1.

高温高湿試験の評価基準:
○:メッキ膜に剥離、膜膨れ、又は割れが無い
×:メッキ膜に剥離、膜膨れ、又は割れがある
Evaluation criteria for high temperature and high humidity test:
○: There is no peeling, film swelling, or cracking in the plating film ×: There is peeling, film swelling, or cracking in the plating film

(2)密着強度測定
引っ張り試験機(島津製作所社製,AGS−100N)を用いて、JIS H8630に準拠し、角度90°、速度25mm/分の条件で、試料表面において長さ100mmに亘り、メッキ膜を試料からから引き剥がすときの力を測定した。この結果を初期の密着強度とした。結果を表1に示す。また、上述の高温高湿試験と同様の80℃、相対湿度90%の環境下に試料を放置し、250時間、500時間、750時間、1000時間経過後の密着強度についても、同様に測定した。結果を図5に示す。
(2) Measurement of adhesion strength Using a tensile tester (manufactured by Shimadzu Corp., AGS-100N), in accordance with JIS H8630, under the conditions of an angle of 90 ° and a speed of 25 mm / min over a length of 100 mm on the sample surface, The force when peeling the plating film from the sample was measured. This result was taken as the initial adhesion strength. The results are shown in Table 1. In addition, the sample was allowed to stand in an environment of 80 ° C. and 90% relative humidity as in the high-temperature and high-humidity test described above, and the adhesion strength after 250 hours, 500 hours, 750 hours, and 1000 hours was measured in the same manner. . The results are shown in FIG.

[実施例2]
実施例2では、1.5mol/Lのリン酸を用いてメッキ前処理を行った以外は、実施例1と同様の材料を用い、同様の方法によりメッキ膜を有する成形体(試料)を製造した。得られた試料について、高温高湿試験及び密着強度測定を実施例1と同様に行った。結果を表1および図5に示す。
[Example 2]
In Example 2, a molded body (sample) having a plating film was produced by the same method as in Example 1 except that the plating pretreatment was performed using 1.5 mol / L phosphoric acid. did. The obtained sample was subjected to a high temperature and high humidity test and an adhesion strength measurement in the same manner as in Example 1. The results are shown in Table 1 and FIG.

[比較例1]
比較例1では、3.0mol/Lの塩酸を用いてメッキ前処理を行った以外は、実施例1と同様の材料を用い、同様の方法によりメッキ膜を有する成形体(試料)を製造した。得られた試料について、高温高湿試験及び密着強度測定を実施例1と同様に行った。結果を表1および図5に示す。
[Comparative Example 1]
In Comparative Example 1, a molded body (sample) having a plating film was produced by the same method as in Example 1 except that the plating pretreatment was performed using 3.0 mol / L hydrochloric acid. . The obtained sample was subjected to a high temperature and high humidity test and an adhesion strength measurement in the same manner as in Example 1. The results are shown in Table 1 and FIG.

[比較例2]
比較例2では、3.0mol/Lの硝酸を用いてメッキ前処理を行った以外は、実施例1と同様の材料を用い、同様の方法によりメッキ膜を有する成形体(試料)を製造した。得られた試料について、高温高湿試験及び密着強度測定を実施例1と同様に行った。結果を表1および図5に示す。
[Comparative Example 2]
In Comparative Example 2, a molded body (sample) having a plating film was produced by the same method as in Example 1 except that the plating pretreatment was performed using 3.0 mol / L nitric acid. . The obtained sample was subjected to a high temperature and high humidity test and an adhesion strength measurement in the same manner as in Example 1. The results are shown in Table 1 and FIG.

Figure 2013227617
Figure 2013227617

表1及び図5に示すように、メッキ前処理に酢酸を用いた実施例1、及びリン酸を用いた実施例2のメッキ膜は、初期の密着強度が高く、高温高湿環境下に放置後も密着強度は低下しなかった。また、高温高湿試験後に、メッキ膜の剥離、膜膨れ、又は割れ等の外観不良も発生しなかった。   As shown in Table 1 and FIG. 5, the plating films of Example 1 using acetic acid for plating pretreatment and Example 2 using phosphoric acid have high initial adhesion strength and are left in a high temperature and high humidity environment. Even after that, the adhesion strength did not decrease. Further, after the high-temperature and high-humidity test, appearance defects such as peeling of the plating film, film swelling, and cracking did not occur.

一方、メッキ前処理に塩酸を用いた比較例1、及び硝酸を用いた比較例2のメッキ膜は、初期の密着強度は実施例1及び2と同等であったが、高温高湿環境下に放置後、密着強度が低下した。また、高温高湿試験後に、メッキ膜の剥離、膜膨れ、又は割れ等の外観不良が発生した。   On the other hand, the plating films of Comparative Example 1 using hydrochloric acid for plating pretreatment and Comparative Example 2 using nitric acid had initial adhesion strengths equivalent to those of Examples 1 and 2, but in a high temperature and high humidity environment. After standing, the adhesion strength decreased. Further, after the high temperature and high humidity test, appearance defects such as peeling of the plating film, film swelling, or cracking occurred.

更に、比較例1及び2では、高温高湿試験後のメッキ膜に腐食(錆び)が観察され、メッキ膜の形成されている成形体表面にも腐食(脆化)が観察された。これは、メッキ前処理に使用した塩酸又は硝酸が、純水で洗浄を行ったにもかかわらず、成形体の表面又は内部に残存していたことが原因と考えられる。残存した酸が高温高湿環境下で徐々にメッキ膜及び成形体表面を腐食させたため、メッキ膜の密着強度が低下し、剥離、膜膨れ、割れ等の外観不良が発生したと推測される。   Further, in Comparative Examples 1 and 2, corrosion (rust) was observed on the plated film after the high-temperature and high-humidity test, and corrosion (embrittlement) was also observed on the surface of the formed body on which the plated film was formed. This is presumably because the hydrochloric acid or nitric acid used in the pretreatment for plating remained on the surface or inside of the molded product even though it was washed with pure water. Since the remaining acid gradually corroded the plating film and the surface of the molded body in a high temperature and high humidity environment, the adhesion strength of the plating film was lowered, and it was estimated that appearance defects such as peeling, film swelling and cracking occurred.

一方、実施例1及び2においても、成形体の表面又は内部にメッキ前処理で使用した酸が残存すると考えられるが、弱酸であるため、高温高湿環境下に放置後もメッキ膜及び成形体に影響を与えなかったと推測される。この結果から、実施例1及び2の成形体は、初期特性としての高い密着強度を有すると共に、長期間に亘る耐久性及び信頼性も有することが確認できた。更に、実施例1及び実施例2では、メッキ前処理に使用する酸が弱酸であるので、強酸と比較して作業者の危険性が下がり、作業性が向上した。   On the other hand, in Examples 1 and 2, it is considered that the acid used in the pretreatment for plating remains on the surface or inside of the molded body. However, since it is a weak acid, the plated film and molded body are left after being left in a high temperature and high humidity environment. It is presumed that it did not affect. From these results, it was confirmed that the molded bodies of Examples 1 and 2 had high adhesion strength as an initial characteristic, and also had durability and reliability over a long period of time. Furthermore, in Example 1 and Example 2, since the acid used for the plating pretreatment is a weak acid, the operator's risk is reduced as compared with a strong acid, and the workability is improved.

[実施例3]
本実施例では、成形体に用いるポリアミド樹脂として、酸化カルシウム、二酸化ケイ素を含むミネラルを40vol%混合したナイロン6(東洋紡製、ミネラル強化樹脂T777‐02)を用いた以外は、実施例1と同様の材料を用い、同様の方法によりメッキ膜を有する成形体(試料)を製造した。
[Example 3]
In this example, the same as Example 1 except that nylon 6 (Toyobo, mineral reinforced resin T777-02) mixed with 40 vol% of a mineral containing calcium oxide and silicon dioxide was used as the polyamide resin used in the molded body. Using this material, a molded body (sample) having a plating film was manufactured by the same method.

試料のニッケルリンメッキ膜の表面を目視で観察し、試料の表面全体に存在するメッキ未着部の数をカウントして平均し、単位面積(cm)当たりのメッキ未着部の数を求めた。結果を表2に示す。また、ニッケルリンメッキ膜の表面をレーザー顕微鏡にて観察した。レーザー顕微鏡写真を図6(a)に示す。 The surface of the nickel phosphorous plating film of the sample is visually observed, the number of unplated portions present on the entire surface of the sample is counted and averaged, and the number of unplated portions per unit area (cm 2 ) is obtained. It was. The results are shown in Table 2. The surface of the nickel phosphorus plating film was observed with a laser microscope. A laser micrograph is shown in FIG.

[比較例3]
本比較例では、3.0mol/Lの塩酸を用いてメッキ前処理を行った以外は、実施例3と同様の材料を用い、同様の方法によりメッキ膜を有する成形体(試料)を製造した。
[Comparative Example 3]
In this comparative example, a molded body (sample) having a plating film was manufactured by the same method as in Example 3 except that the plating pretreatment was performed using 3.0 mol / L hydrochloric acid. .

実施例3と同様に、試料のニッケルリンメッキ膜の表面を目視で観察し、単位面積(cm)当たりのメッキ未着部の数を求めた。結果を表2に示す。また、ニッケルリンメッキ膜の表面をレーザー顕微鏡にて観察した。レーザー顕微鏡写真を図6(b)に示す。更に、試料のメッキ未着部分付近の断面をSEM(走査型電子顕微鏡)により観察した。SEM写真を図7に示す。 In the same manner as in Example 3, the surface of the nickel phosphorous plating film of the sample was visually observed, and the number of unplated portions per unit area (cm 2 ) was determined. The results are shown in Table 2. The surface of the nickel phosphorus plating film was observed with a laser microscope. A laser micrograph is shown in FIG. Further, the cross section near the unplated portion of the sample was observed with an SEM (scanning electron microscope). A SEM photograph is shown in FIG.

Figure 2013227617
Figure 2013227617

表2に示すように、メッキ前処理に酢酸を用いた実施例3の試料は、目視で確認できるメッキ未着部が殆ど存在しなかった。レーザー顕微鏡観察によって確認された未着部は、図6(a)に示すように直径が100μm以下と小さく、外観不良となるものではなかった。   As shown in Table 2, the sample of Example 3 in which acetic acid was used for the plating pretreatment had almost no unplated portion that could be visually confirmed. As shown in FIG. 6A, the unattached portion confirmed by the laser microscope observation was as small as 100 μm or less, and the appearance was not defective.

一方、メッキ前処理に塩酸を用いた比較例3の試料は、目視で確認できるメッキ未着部が多数観察された。図6(b)に示すように、未着部の大きさも図(a)に示す実施例3の未着部と比較して大きかった。   On the other hand, in the sample of Comparative Example 3 in which hydrochloric acid was used for the pretreatment for plating, many unplated portions that could be visually confirmed were observed. As shown in FIG. 6 (b), the size of the unattached portion was also larger than that of the unattached portion of Example 3 shown in FIG. 6 (a).

比較例3の試料におけるメッキ膜形成領と、メッキ未着部とを比較すると、図7に示すように、メッキ膜形成領域501では、成形体表面近傍に、ポリアミド樹脂とニッケルリンからなる金属領域との混合層503が形成され、混合層503上に、ニッケルリンメッキ膜504が成長していた。これに対し、メッキ未着部502では、成形体表面上にニッケルリン粒子の析出が認められるが、メッキ膜を形成するには至っておらず、また、成形体の表面近傍に、ポリアミド樹脂と金属領域との混合層も認められなかった。   Comparing the plating film formation area and the unplated portion in the sample of Comparative Example 3, as shown in FIG. 7, in the plating film formation area 501, a metal area made of polyamide resin and nickel phosphorus is formed in the vicinity of the molded body surface. The mixed layer 503 was formed, and the nickel phosphorus plating film 504 was grown on the mixed layer 503. On the other hand, in the plating non-attached portion 502, nickel phosphorus particles are deposited on the surface of the molded body, but no plating film has been formed, and a polyamide resin and a metal are formed near the surface of the molded body. A mixed layer with the region was not observed.

比較例3において、このようなメッキ未着部が発生する原因は定かではないが、メッキ前処理に塩酸等の強酸を用いることで、強酸と成形体内に含まれるミネラルが反応しガスを発生する等、何らかのメッキ反応に悪影響を与える現象が生じていると推察される。実施例3では、メッキ前処理に、弱酸である酢酸を用いることで、ミネラルが混合されたポリアミド樹脂からなる成形体に対して、メッキ未着部が発生しておらず、外観特性に優れたメッキ膜を形成できることが確認できた。   In Comparative Example 3, the cause of the occurrence of such an unplated portion is not clear, but by using a strong acid such as hydrochloric acid for the plating pretreatment, the strong acid and the mineral contained in the molded body react to generate gas. It is speculated that a phenomenon that adversely affects some plating reaction occurs. In Example 3, by using acetic acid, which is a weak acid, for plating pretreatment, no plating non-adhered portion was generated on the molded body made of polyamide resin mixed with minerals, and the appearance characteristics were excellent. It was confirmed that a plating film can be formed.

以上、本発明のメッキ膜を有する成形体の製造方法を実施例により具体的に説明してきたが、本発明はこれらの実施例に限定されない。例えば、実施例1〜3では、メッキ前処理に酢酸、リン酸を用いたが、それ以外の酸、例えば、ギ酸、酪酸、ラウリン酸、乳酸、リンゴ酸、クエン酸、オレイン酸、リノール酸、安息香酸、シュウ酸、コハク酸、マロン酸、マレイン酸、酒石酸、アミノ酸等のカルボン酸全般、およびホウ酸、次亜塩素酸、フッ化水素、硫化水素等の本明細書における弱酸を用いても、同様の効果を奏すると推測される。また、実施例3では、ミネラルとして、酸化カルシウム、二酸化ケイ素を含有したポリアミド樹脂を用いたが、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム等のケイ酸塩、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、硫酸バリウム、及びこれらを含む化合物(鉱石)からなる群から選択される少なくとも一種のミネラルを含有するポリアミド樹脂を用いても、同様の効果を奏すると推測される。   As mentioned above, although the manufacturing method of the molded object which has a plating film of this invention has been concretely demonstrated by the Example, this invention is not limited to these Examples. For example, in Examples 1 to 3, acetic acid and phosphoric acid were used for the plating pretreatment, but other acids such as formic acid, butyric acid, lauric acid, lactic acid, malic acid, citric acid, oleic acid, linoleic acid, Even with carboxylic acids such as benzoic acid, oxalic acid, succinic acid, malonic acid, maleic acid, tartaric acid, amino acids, etc., and weak acids in this specification such as boric acid, hypochlorous acid, hydrogen fluoride, hydrogen sulfide, etc. It is presumed that the same effect is produced. In Example 3, a polyamide resin containing calcium oxide and silicon dioxide was used as a mineral. However, silicates such as calcium silicate, aluminum silicate, and magnesium silicate, calcium carbonate, magnesium oxide, and hydroxide It is presumed that the same effect can be obtained even when a polyamide resin containing at least one mineral selected from the group consisting of magnesium, barium sulfate, and a compound (ore) containing these is used.

本発明のメッキ膜を有する成形体の製造方法は、初期特性としての高い密着強度を有すると共に、長期間に亘る耐久性及び信頼性を有し、更に外観特性にも優れるメッキ膜を有する成形体を製造することができる。したがって、本発明により製造されるメッキ膜を有する成形体は、高い耐久性が要求される装飾用途にも対応可能である。   The method for producing a molded body having a plated film according to the present invention has a high adhesion strength as an initial characteristic, a durability and reliability over a long period of time, and a molded body having an excellent appearance characteristic. Can be manufactured. Therefore, the molded body having a plated film manufactured according to the present invention can be used for decorative purposes that require high durability.

1000 成形機
100 加圧流体供給装置
250 型締めユニット
200 混練装置
210 可塑化シリンダ
20 スクリュ
S1 上流側シール機構
S2 下流側シール機構
501 メッキ膜形成領域
502 メッキ未着部
503 ポリアミド樹脂とニッケルリンからなる金属領域との混合層
504 ニッケルリンメッキ膜
1000 Molding Machine 100 Pressurized Fluid Supply Device 250 Clamping Unit 200 Kneading Device 210 Plasticizing Cylinder 20 Screw S1 Upstream Seal Mechanism S2 Downstream Seal Mechanism 501 Plating Film Forming Area 502 Unplated Part 503 Made of Polyamide Resin and Nickel Phosphorus Mixed layer 504 with metal region Nickel phosphorus plating film

Claims (9)

メッキ膜を有する成形体の製造方法であって、
金属微粒子を含むポリアミド樹脂からなる成形体を用意することと、
前記成形体に弱酸を接触させることと、
前記弱酸を接触させた前記成形体に、無電解メッキ液を接触させてメッキ膜を形成することを含むメッキ膜を有する成形体の製造方法。
A method for producing a molded body having a plating film,
Preparing a molded body made of a polyamide resin containing fine metal particles;
Bringing a weak acid into contact with the molded article;
The manufacturing method of the molded object which has a plating film including forming the plating film | membrane by making an electroless plating liquid contact the said molded object which contacted the said weak acid.
前記弱酸が、ポリアミド樹脂を溶解する酸である請求項1に記載のメッキ膜を有する成形体の製造方法。   The method for producing a molded body having a plated film according to claim 1, wherein the weak acid is an acid that dissolves a polyamide resin. 前記弱酸が、酢酸、ギ酸、酪酸、ラウリン酸、乳酸、リンゴ酸、クエン酸、オレイン酸、リノール酸、安息香酸、シュウ酸、コハク酸、マロン酸、マレイン酸、酒石酸、リン酸、ホウ酸、次亜塩素酸、フッ化水素、および硫化水素からなる群から選択される一種である請求項1又は請求項2に記載のメッキ膜を有する成形体の製造方法。   The weak acid is acetic acid, formic acid, butyric acid, lauric acid, lactic acid, malic acid, citric acid, oleic acid, linoleic acid, benzoic acid, oxalic acid, succinic acid, malonic acid, maleic acid, tartaric acid, phosphoric acid, boric acid, The method for producing a molded body having a plating film according to claim 1 or 2, which is a kind selected from the group consisting of hypochlorous acid, hydrogen fluoride, and hydrogen sulfide. 前記弱酸が、酢酸又はリン酸である請求項3に記載のメッキ膜を有する成形体の製造方法。   The method for producing a molded body having a plating film according to claim 3, wherein the weak acid is acetic acid or phosphoric acid. 前記ポリアミド樹脂が、ナイロンである請求項1〜4のいずれか一項に記載のメッキ膜を有する成形体の製造方法。   The said polyamide resin is nylon, The manufacturing method of the molded object which has a plating film as described in any one of Claims 1-4. 前記成形体が、更にミネラルを含む請求項1〜5のいずれか一項に記載のメッキ膜を有する成形体の製造方法。   The manufacturing method of the molded object which has a plating film as described in any one of Claims 1-5 in which the said molded object contains a mineral further. 前記ミネラルが、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、硫酸バリウム及びこれらを含む化合物からなる群から選択される少なくとも一種である請求項6に記載のメッキ膜を有する成形体の製造方法。   The mineral is at least one selected from the group consisting of calcium silicate, aluminum silicate, magnesium silicate, silicon dioxide, calcium oxide, calcium carbonate, magnesium oxide, magnesium hydroxide, barium sulfate and compounds containing these. The manufacturing method of the molded object which has a plating film of Claim 6. 前記金属微粒子が、パラジウムを含む請求項1〜7のいずれか一項に記載のメッキ膜を有する成形体の製造方法。   The manufacturing method of the molded object which has a plating film as described in any one of Claims 1-7 in which the said metal microparticle contains palladium. 前記成形体を用意することが、
前記金属微粒子を加圧二酸化炭素に溶解又は分散することと、
前記金属微粒子が溶解した加圧二酸化炭素を前記ポリアミド樹脂に接触させることを含む成形体の製造方法によって、前記成形体を製造することである請求項1〜8のいずれか一項に記載のメッキ膜を有する成形体の製造方法。
Preparing the molded body,
Dissolving or dispersing the metal fine particles in pressurized carbon dioxide;
The plating according to any one of claims 1 to 8, wherein the molded body is manufactured by a method of manufacturing a molded body including bringing the pressurized carbon dioxide in which the metal fine particles are dissolved into contact with the polyamide resin. The manufacturing method of the molded object which has a film | membrane.
JP2012100105A 2012-04-25 2012-04-25 Method for manufacturing formed body having plating film Pending JP2013227617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100105A JP2013227617A (en) 2012-04-25 2012-04-25 Method for manufacturing formed body having plating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100105A JP2013227617A (en) 2012-04-25 2012-04-25 Method for manufacturing formed body having plating film

Publications (1)

Publication Number Publication Date
JP2013227617A true JP2013227617A (en) 2013-11-07

Family

ID=49675534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100105A Pending JP2013227617A (en) 2012-04-25 2012-04-25 Method for manufacturing formed body having plating film

Country Status (1)

Country Link
JP (1) JP2013227617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125414A (en) * 2013-12-27 2015-07-06 富士ゼロックス株式会社 Tubular body, tubular unit, intermediate transfer body, image forming apparatus, and process cartridge
JP2015221917A (en) * 2014-05-22 2015-12-10 日立マクセル株式会社 Production method of compact having plating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125414A (en) * 2013-12-27 2015-07-06 富士ゼロックス株式会社 Tubular body, tubular unit, intermediate transfer body, image forming apparatus, and process cartridge
JP2015221917A (en) * 2014-05-22 2015-12-10 日立マクセル株式会社 Production method of compact having plating film

Similar Documents

Publication Publication Date Title
US9421704B2 (en) Method for producing molded product, method for producing molded product having plating film, method for producing resin pellet, foam molded product having plating film, foam injection molding method, nozzle unit, and injection molding apparatus
US20070264451A1 (en) Method of manufacturing polymer member and polymer member
WO2012120637A1 (en) Kneading device, and method for producing thermoplastic resin molded body
JP2013213276A (en) Method for manufacturing molded body having plating film, method for manufacturing resin pellet, foamed molded body having plating film and molded body having plating film
JP5070152B2 (en) Manufacturing method of resin molding
JP2013227617A (en) Method for manufacturing formed body having plating film
JP2011001577A (en) Method for manufacturing polymer member having plating film
JP4160623B2 (en) Production method and production apparatus for polymer member
WO2018117160A1 (en) Method for producing plated molded body, and plated molded body
JP4092364B1 (en) Method for forming plating film and electroless plating solution
JP3926835B1 (en) Formation method of plating film
JP5138394B2 (en) Polymer parts
JP4092360B1 (en) Polymer member and manufacturing method thereof
JP2016125075A (en) Method for plating thermoplastic resin and thermoplastic resin pellet dispersed with metal fine particles
JP6318001B2 (en) Method for producing molded body having plated film
JP2009073994A (en) Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
JP4105214B1 (en) Plating film forming method, polymer member and manufacturing method thereof
JP2016125123A (en) Manufacturing method of compact having plated film
JP2015036432A (en) Production method of compact having plating film
JP2008174840A5 (en) Polymer parts
JP2014105361A (en) Production method of compact having plating film
JP6715681B2 (en) Method of manufacturing plated parts
JP2016098415A (en) Production method of compact having plating film
JP2013166304A (en) Manufacturing method for resin molding having plating film and resin molding having plating film
JP6810576B2 (en) Manufacturing method of plated molded product