JP6810576B2 - Manufacturing method of plated molded product - Google Patents

Manufacturing method of plated molded product Download PDF

Info

Publication number
JP6810576B2
JP6810576B2 JP2016221815A JP2016221815A JP6810576B2 JP 6810576 B2 JP6810576 B2 JP 6810576B2 JP 2016221815 A JP2016221815 A JP 2016221815A JP 2016221815 A JP2016221815 A JP 2016221815A JP 6810576 B2 JP6810576 B2 JP 6810576B2
Authority
JP
Japan
Prior art keywords
molded product
molded body
electroless plating
plating
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016221815A
Other languages
Japanese (ja)
Other versions
JP2018080354A (en
Inventor
遊佐 敦
敦 遊佐
孝一 水戸
孝一 水戸
山口 靖雄
靖雄 山口
久保田 修司
修司 久保田
英王 阿曽
英王 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Toyobo Co Ltd
Original Assignee
Maxell Holdings Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd, Toyobo Co Ltd filed Critical Maxell Holdings Ltd
Priority to JP2016221815A priority Critical patent/JP6810576B2/en
Publication of JP2018080354A publication Critical patent/JP2018080354A/en
Application granted granted Critical
Publication of JP6810576B2 publication Critical patent/JP6810576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、メッキ成形体の製造方法に関する。 The present invention relates to a method for producing a plated molded product.

成形体に安価に金属膜を形成する方法として、無電解メッキが知られている。無電解メッキでは、金属膜の成形体への密着強度確保のため、六価クロム酸や過マンガン酸等の酸化剤を含むエッチング液を用いて成形体表面を粗化する前処理を行う。そのため、無電解メッキには、エッチング液により侵食されるABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)が主に用いられてきた。ABS樹脂は、ブタジエンゴム成分がエッチング液に選択的に侵食され、表面に凹凸が形成される。一方、ABS樹脂以外の樹脂、例えば、ポリカーボネート等では、無電解メッキを可能にするため、ABS樹脂やエラストマー等、エッチング液に選択的に酸化される成分を混合したメッキグレードが市販されている。しかし、このような無電解メッキの前処理は、六価クロム酸等を使用することから、環境負荷が高いという問題があった。 Electroless plating is known as a method for forming a metal film on a molded product at low cost. In electroless plating, in order to secure the adhesion strength of the metal film to the molded body, a pretreatment for roughening the surface of the molded body is performed using an etching solution containing an oxidizing agent such as hexavalent chromic acid or permanganate. Therefore, ABS resin (acrylonitrile-butadiene-styrene copolymer synthetic resin) that is eroded by the etching solution has been mainly used for electroless plating. In the ABS resin, the butadiene rubber component is selectively eroded by the etching solution to form irregularities on the surface. On the other hand, for resins other than ABS resin, such as polycarbonate, plating grades in which components that are selectively oxidized in the etching solution, such as ABS resin and elastomer, are mixed are commercially available in order to enable electroless plating. However, since such pretreatment of electroless plating uses hexavalent chromic acid or the like, there is a problem that the environmental load is high.

粗化された成形体の表面には、無電解メッキ触媒が付与される。プラスチック基材に対する無電解メッキ触媒付与としては、主には2種類の手法が用いられる。スズコロイドを基材に吸着させた後(センシタイザー)、塩化パラジウム溶液に浸漬して(アクチベーティング)、塩化第一スズで塩化パラジウムを還元および析出させるセンシタイザー−アクチベーティング法と、パラジウムスズコロイドを基材に吸着させた後(キャタリスト)、濃硫酸等で還元する(アクセレレータ)キャタリスト−アクセレレータ法である。これらの従来の触媒付与処理は、実際には、更に多くの工程が必要とされる。例えば、キャタリスト−アクセレレータ法では、成形体の表面性向上のためのポストエッチングや、アクセレレータで除去しきれないスズの除去のためのポストアクセレレータが行われている。 An electroless plating catalyst is applied to the surface of the roughened molded product. Two types of methods are mainly used for applying the electroless plating catalyst to the plastic base material. A sensitizer-activating method in which the tin colloid is adsorbed on a substrate (sensitizer) and then immersed in a palladium chloride solution (activating) to reduce and precipitate palladium chloride with stannous chloride, and palladium tin. This is a catalyst-accelerator method in which a colloid is adsorbed on a substrate (catalyst) and then reduced with concentrated sulfuric acid or the like (accelerator). These conventional catalyst application treatments actually require more steps. For example, in the catalyst-accelerator method, post-etching for improving the surface property of a molded product and post-accelerator for removing tin that cannot be completely removed by the accelerator are performed.

メッキ前処理における工程数を削減するため、特許文献1には、塩酸等の無機酸含有の腐食剤と、パラジウムイオン等のイオノゲン活性剤と、酢酸等の有機酸とを含む一溶液で成形体を処理する方法が提案されている。特許文献1によれば、上述の一溶液でポリアミド基板の前処理を行うことで、良好なメッキ膜が得られる。また、該方法によれば、環境負荷が高い六価クロム酸等を使用する必要もない。 In order to reduce the number of steps in the plating pretreatment, Patent Document 1 describes a molded product in one solution containing an inorganic acid-containing corrosive agent such as hydrochloric acid, an ionogen activator such as palladium ion, and an organic acid such as acetic acid. A method has been proposed to handle. According to Patent Document 1, a good plating film can be obtained by pretreating the polyamide substrate with the above-mentioned one solution. Further, according to the method, it is not necessary to use hexavalent chromic acid or the like, which has a high environmental load.

特許第4109615号Patent No. 4190615

しかし、ポリアミドの成形体表面は、場所により結晶構造が異なる場合がある。この場合、上述したメッキ前処理を施したとしても無電解メッキ反応にムラが生じ、結果として、均一で密着強度の高いメッキ膜を得ることが難しくなる。そして、この現象は、特に複雑な形状の成形体において顕著である。 However, the crystal structure of the surface of the polyamide molded product may differ depending on the location. In this case, even if the above-mentioned plating pretreatment is performed, the electroless plating reaction becomes uneven, and as a result, it becomes difficult to obtain a uniform plating film having high adhesion strength. And this phenomenon is remarkable especially in the molded article having a complicated shape.

本発明は、これらの課題を解決するものであり、高い密着強度を有すると共に、外観特性も優れる均一なメッキ膜を有するメッキ成形体の製造方法を提供する。 The present invention solves these problems and provides a method for producing a plated molded product having a uniform plating film having high adhesion strength and excellent appearance characteristics.

本発明に従えば、メッキ成形体の製造方法であって、メッキ成形体の製造方法であって、脂肪族ポリアミドと、平均粒子径が1μm以下であり、酸に可溶な無機粒子とを含み、前記無機粒子の含有量が0.5重量%〜10重量%である成形体を用意することと、塩化パラジウムと、塩酸とを含み、前記塩酸の濃度が1.0N〜3.0Nである無電解メッキ触媒液を前記成形体に接触させることと、前記成形体に前記無電解メッキ触媒液を接触させた後、前記成形体の膨潤処理と、前記成形体の表面の洗浄とを同時に施すことと、前記成形体に前記膨潤処理及び前記洗浄を施した後、前記成形体に無電解メッキ液を接触させて、メッキ膜を形成することとを含み、前記成形体の表面の洗浄により、前記成形体の表面近傍におけるパラジウム濃度が、0.01mg/dm 〜0.1mg/dm となる製造方法が提供される。 According to the present invention, it is a method for producing a plated molded article, which is a method for producing a plated molded article, and includes an aliphatic polyamide and inorganic particles having an average particle diameter of 1 μm or less and being soluble in acid. A molded product having an inorganic particle content of 0.5% by weight to 10% by weight is prepared, and the part contains palladium chloride and hydrochloric acid, and the concentration of the hydrochloric acid is 1.0N to 3.0N. After the electroless plating catalyst solution is brought into contact with the molded body and the electroless plating catalyst solution is brought into contact with the molded body, the swelling treatment of the molded body and the cleaning of the surface of the molded body are simultaneously performed. it and, after applying the swelling treatment and the washing to the molded body, wherein contacting the electroless plating solution in the molded body, looking containing and forming a plating film, the cleaning of the surface of the molded body palladium concentration in the vicinity of the surface of the molded body, 0.01mg / dm 2 ~0.1mg / dm 2 and comprising a manufacturing method is provided.

本発明において、前記無機粒子が炭酸カルシウムであってもよい。前記無電解メッキ触媒液中の塩化パラジウムの濃度が、5mg/L〜150mg/Lであってもよい。また、前記成形体の膨潤処理及び洗浄として、前記脂肪族ポリアミドのガラス転移点以上の温度の水に前記成形体を接触させてもよく、更に、前記成形体に接触させる水の温度が、50〜90℃であってもよい。 In the present invention, the inorganic particles may be calcium carbonate. The concentration of palladium chloride in the electroless plating catalyst solution may be 5 mg / L to 150 mg / L. Further, as the swelling treatment and washing of the molded product, the molded product may be brought into contact with water having a temperature equal to or higher than the glass transition point of the aliphatic polyamide, and the temperature of the water to be brought into contact with the molded product is 50. It may be ~ 90 ° C.

本発明において、前記無電解メッキ液が、無電解ニッケルリンメッキ液であってもよく、更に、前記無電解ニッケルリンメッキ液の温度が、50℃〜80℃であってもよい。また、前記無電解ニッケルリンメッキ液のpHが4.0〜6.0であってもよい。また、前記成形体の表面の洗浄により、前記成形体の最表面に吸着した塩化パラジウムが洗い流されてもよい In the present invention, the electroless plating solution may be an electroless nickel phosphorus plating solution, and the temperature of the electroless nickel phosphorus plating solution may be 50 ° C. to 80 ° C. Further, the pH of the electroless nickel phosphorus plating solution may be 4.0 to 6.0. Further, the palladium chloride adsorbed on the outermost surface of the molded product may be washed away by cleaning the surface of the molded product .

本発明は、特定のメッキ前処理を行うことにより、ポリアミドを含む成形体の無電解メッキ反応の均一性を向上させる。また、成形体内に酸に可溶な微細な無機粒子を含むことで、高い密着強度を有すると共に、均一で外観特性にも優れるメッキ膜を有するメッキ成形体を製造できる。 The present invention improves the uniformity of the electroless plating reaction of a molded product containing polyamide by performing a specific plating pretreatment. Further, by containing fine inorganic particles soluble in acid in the molded body, it is possible to produce a plated molded product having a plating film having high adhesion strength and a uniform and excellent appearance characteristics.

実施形態で製造するメッキ成形体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the plating compact manufactured in embodiment. 実施例1における無電解メッキ触媒液浸漬後の成形体表面のSEM写真である。3 is an SEM photograph of the surface of the molded product after immersion in the electroless plating catalyst solution in Example 1. 比較例1における無電解メッキ触媒液浸漬後の成形体表面のSEM写真である。3 is an SEM photograph of the surface of the molded product after immersion in the electroless plating catalyst solution in Comparative Example 1. 比較例3における無電解メッキ触媒液浸漬後の成形体表面のSEM写真である。3 is an SEM photograph of the surface of the molded product after immersion in the electroless plating catalyst solution in Comparative Example 3.

図1に従い、本実施形態におけるメッキ成形体(メッキ膜を有する成形体)の製造方法について説明する。 A method for producing a plated molded product (molded product having a plating film) in the present embodiment will be described with reference to FIG.

<成形体の用意>
まず、脂肪族ポリアミドと、平均粒子径が1μm以下であり、酸に可溶な無機粒子とを含む成形体を用意する(図1のステップS1)。脂肪族ポリアミドは吸水性が高いため、メッキ液の浸透が促されてメッキ膜が安定して成長する。また、脂肪族ポリアミドは剛性、耐熱性及び耐薬品性に優れるため、成形体の剛性、耐熱性及び耐薬品性が確保できる。前記脂肪族ポリアミドは、芳香環を有していなければ特に限定されず、例えば、ナイロン6(PA6)、ナイロン66(PA66)、ナイロン12(PA12)、ナイロン11(PA11)、ナイロン6・66共重合体、及びこれらを共重合化又はアロイ化した複合材料、並びに非晶質ナイロン等を用いることができる。中でも、メッキ膜の形成し易さから、吸水性が高く膨潤し易いナイロン6及びナイロン66が好ましく、ナイロン6が特に好ましい。また、上述した脂肪族ポリアミドと、ポリアミド以外の熱可塑性樹脂を共重合化又はアロイ化した複合材料を用いてもよい。このような複合材料としては、例えば、ナイロンとポリプロピレンのポリマーアロイ(PA/PP)や、ABS樹脂とナイロンのポリマーアロイが挙げられる。これらのポリアミドは、単独で用いても、二種類以上を混合して用いてもよい。
<Preparation of molded body>
First, a molded product containing an aliphatic polyamide and inorganic particles having an average particle diameter of 1 μm or less and being soluble in acid is prepared (step S1 in FIG. 1). Since the aliphatic polyamide has high water absorption, the permeation of the plating solution is promoted and the plating film grows stably. Further, since the aliphatic polyamide is excellent in rigidity, heat resistance and chemical resistance, the rigidity, heat resistance and chemical resistance of the molded product can be ensured. The aliphatic polyamide is not particularly limited as long as it does not have an aromatic ring, and for example, nylon 6 (PA6), nylon 66 (PA66), nylon 12 (PA12), nylon 11 (PA11), and nylon 6.66 are all used. A polymer, a composite material obtained by copolymerizing or alloying these, an amorphous nylon, or the like can be used. Among them, nylon 6 and nylon 66, which have high water absorption and easily swell, are preferable, and nylon 6 is particularly preferable, from the viewpoint of easy formation of a plating film. Further, a composite material obtained by copolymerizing or alloying the above-mentioned aliphatic polyamide with a thermoplastic resin other than polyamide may be used. Examples of such a composite material include a nylon and polypropylene polymer alloy (PA / PP) and an ABS resin and nylon polymer alloy. These polyamides may be used alone or in combination of two or more.

また、脂肪族ポリアミドの粘度は、25℃、96質量%硫酸中で測定される相対粘度(RV)が、好ましくは1.8〜4.0であり、より好ましくは2.0〜3.6であり、さらに好ましくは2.5〜3.6である。相対粘度(RV)が上記範囲内であると、脂肪族ポリアミド内での無機粒子の分散性が良好となり、かつ機械物性、特に耐衝撃性を維持することができる。 The viscosity of the aliphatic polyamide is preferably 1.8 to 4.0, more preferably 2.0 to 3.6, with a relative viscosity (RV) measured in 96% by mass sulfuric acid at 25 ° C. It is more preferably 2.5 to 3.6. When the relative viscosity (RV) is within the above range, the dispersibility of the inorganic particles in the aliphatic polyamide is improved, and the mechanical properties, particularly the impact resistance, can be maintained.

成形体は、脂肪族ポリアミド以外の熱可塑性樹脂を含有してもよいが、成形体の主成分は脂肪族ポリアミドが好ましい。成形体中に脂肪族ポリアミドは、30重量%〜99.5重量%含まれることが好ましく、60重量%〜95重量%含まれることがより好ましい。 The molded product may contain a thermoplastic resin other than the aliphatic polyamide, but the main component of the molded product is preferably an aliphatic polyamide. The aliphatic polyamide is preferably contained in the molded product in an amount of 30% by weight to 99.5% by weight, more preferably 60% by weight to 95% by weight.

本実施形態で用いる平均粒子径が1μm以下の無機粒子(以下、適宜「小粒子径無機粒子」と記載する)は、酸に可溶である。本願明細書において、小粒子径無機粒子が「酸に可溶である」とは、例えば、1gの小粒子径無機粒子を23℃の市販の塩酸(35〜37質量%)100mL中に1時間放置した後に、目視観察において小粒子径無機粒子の溶け残りが確認できないことを意味する。成形体中に酸に可能な小粒子径無機粒子を含有することで、後述するメッキ前処理において、成形体表面に微細な凹部(孔)を複数形成できる。これにより、成形体表面におけるメッキ反応ムラを緩和できる。また、成形体上に形成される無電解メッキ膜の密着強度及び外観特性を向上させることができる。同様の観点から、小粒子径無機粒子の粒子径は、100nm〜1μmが好ましい。小粒子径無機粒子の「平均粒子径」は、例えば、動的光散乱式粒子径分布測定装置を用いて、算術平均径として測定可能である。 Inorganic particles having an average particle diameter of 1 μm or less (hereinafter, appropriately referred to as “small particle diameter inorganic particles”) used in the present embodiment are soluble in acid. In the specification of the present application, the term "small particle size inorganic particles are soluble in acid" means, for example, that 1 g of small particle size inorganic particles is placed in 100 mL of commercially available hydrochloric acid (35 to 37% by mass) at 23 ° C. for 1 hour. It means that the undissolved residue of the small particle size inorganic particles cannot be confirmed by visual observation after being left to stand. By containing inorganic particles having a small particle size capable of acid in the molded body, a plurality of fine recesses (holes) can be formed on the surface of the molded body in the plating pretreatment described later. As a result, uneven plating reaction on the surface of the molded product can be alleviated. In addition, the adhesion strength and appearance characteristics of the electroless plating film formed on the molded body can be improved. From the same viewpoint, the particle size of the small particle size inorganic particles is preferably 100 nm to 1 μm. Small particle size The "average particle size" of the inorganic particles can be measured as an arithmetic mean size using, for example, a dynamic light scattering type particle size distribution measuring device.

小粒子径無機粒子は、平均粒子径が1μm以下であり、酸に可溶であれば、特に限定されないが、例えば、炭酸カルシウム、酸化亜鉛、炭酸マグネシウム、酸化錫、バリウムフェライト、炭酸バリウム、チタン酸バリウム等を用いることができる。中でも、酸への溶解性が良好である炭酸カルシウムが好ましい。 The small particle size inorganic particles are not particularly limited as long as they have an average particle size of 1 μm or less and are soluble in acid. For example, calcium carbonate, zinc oxide, magnesium carbonate, tin oxide, barium ferrite, barium carbonate, and titanium. Barium acid acid or the like can be used. Of these, calcium carbonate, which has good solubility in acid, is preferable.

小粒子径無機粒子の形状は、特に限定されないが、粒状又は略球状が好ましい。粒状又は略球状の粒子は、例えば、針状のファイバーと比較して、成形体中において目立たず、成形体の意匠性を高められる。 The shape of the small particle size inorganic particles is not particularly limited, but is preferably granular or substantially spherical. Granular or substantially spherical particles are less noticeable in the molded product than, for example, needle-shaped fibers, and can enhance the design of the molded product.

小粒子径無機粒子は、成形体中に0.5重量%〜10重量%含まれる。小粒子径無機粒子は、その含有量が0.5重量%〜10重量%と比較的小さくとも、粒子径が小さいため、成形体の成形過程において、成形体表面に効率よく偏析する(偏在化する)。これにより、成形体の表面近傍の小粒子径無機粒子の濃度が高まり、成形体表面におけるメッキ反応ムラが緩和され、メッキ膜の密着強度が向上する。また、小粒子径無機粒子の含有量が0.5重量%〜10重量%と比較的小さいため、無機粒子の溶解により成形体表面に凹部が形成されても、成形体表面が脆弱化しメッキ膜の密着強度が低下することはなく、また、メッキ膜の外観特性も影響を受けない。同様の観点から、成形体中の小粒子径無機粒子の含有量は、1重量%〜2重量%であることが好ましい。 The small particle size inorganic particles are contained in the molded product in an amount of 0.5% by weight to 10% by weight. Even if the content of the small particle size inorganic particles is relatively small, 0.5% by weight to 10% by weight, the particle size is small, so that the inorganic particles are efficiently segregated (unevenly distributed) on the surface of the molded body in the molding process of the molded body. To do). As a result, the concentration of small particle size inorganic particles near the surface of the molded body is increased, uneven plating reaction on the surface of the molded body is alleviated, and the adhesion strength of the plating film is improved. Further, since the content of the small particle diameter inorganic particles is relatively small, 0.5% by weight to 10% by weight, even if recesses are formed on the surface of the molded body due to the dissolution of the inorganic particles, the surface of the molded body becomes fragile and the plating film is formed. The adhesion strength of the plating film is not reduced, and the appearance characteristics of the plating film are not affected. From the same viewpoint, the content of the small particle size inorganic particles in the molded product is preferably 1% by weight to 2% by weight.

尚、成形体中の小粒子径無機粒子の含有量が0.5重量%未満であると、成形体表面においてメッキ反応ムラが発生する虞や、メッキ膜の密着強度が低下する虞がある。一方で成形体中の小粒子径無機粒子の含有量が10重量%を超えると、成形体の表面が必要以上に粗化され、その上に形成されるメッキ膜の外観特性が悪化し、同時に、成形体表面が脆弱化してメッキ膜の密着強度が低下する虞がある。 If the content of the small particle size inorganic particles in the molded body is less than 0.5% by weight, uneven plating reaction may occur on the surface of the molded body, and the adhesion strength of the plating film may decrease. On the other hand, when the content of the small particle size inorganic particles in the molded product exceeds 10% by weight, the surface of the molded product is roughened more than necessary, and the appearance characteristics of the plating film formed on the molded product deteriorate at the same time. , The surface of the molded body may be weakened and the adhesion strength of the plating film may be lowered.

また、一般に、樹脂材料に無機粒子を含有させる場合、樹脂材料と無機粒子との相溶性を高めるために、無機粒子の表面処理や相溶化剤の添加を行う場合がある。しかし、本実施形態では、小粒子径無機粒子の表面処理や相溶化剤の添加を行わない方が好ましい。即ち、脂肪族ポリアミドと小粒子径無機粒子の相溶性は低い方が好ましい。脂肪族ポリアミドと無機粒子の相溶性が低ければ、成形体の成形過程において、無機粒子を成形体表面に効率よく偏析させる(偏在化させる)ことができる。 Further, in general, when the resin material contains inorganic particles, the surface treatment of the inorganic particles or the addition of a compatibilizer may be performed in order to enhance the compatibility between the resin material and the inorganic particles. However, in the present embodiment, it is preferable not to perform surface treatment of small particle size inorganic particles or addition of a compatibilizer. That is, it is preferable that the compatibility between the aliphatic polyamide and the small particle size inorganic particles is low. If the compatibility between the aliphatic polyamide and the inorganic particles is low, the inorganic particles can be efficiently segregated (unevenly distributed) on the surface of the molded product in the molding process of the molded product.

本実施形態の成形体は、小粒子径無機粒子に加えて、更に、平均粒子径が2μm以上である無機粒子(以下、適宜「大粒子径無機粒子」と記載する)を含んでもよい。大粒子径無機粒子を含むことにより、成形体の反りを抑制し、剛性及び寸法安定性を向上させることができる。大粒子径無機粒子は、粒子径が大きすぎると成形体の表面外観を悪化させる虞があるため、その平均粒子径は50μm以下が好ましい。大粒子径無機粒子の「平均粒子径」は、小粒子径無機粒子と同様の方法により測定可能である。 In addition to the small particle diameter inorganic particles, the molded product of the present embodiment may further contain inorganic particles having an average particle diameter of 2 μm or more (hereinafter, appropriately referred to as “large particle diameter inorganic particles”). By containing the large particle size inorganic particles, it is possible to suppress the warp of the molded product and improve the rigidity and dimensional stability. If the particle size of the large particle size inorganic particles is too large, the surface appearance of the molded product may be deteriorated. Therefore, the average particle size of the inorganic particles is preferably 50 μm or less. The "average particle size" of the large particle size inorganic particles can be measured by the same method as that of the small particle size inorganic particles.

大粒子径無機粒子としては、例えば、ワラストナイト(珪灰石)、タルク、ケイ酸カルシウム、ガラスビーズ、ケイ酸アルミニウム、ケイ酸マグネシウム、二酸化ケイ素等のケイ酸塩、ケイ酸、酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、硫酸バリウム、炭酸バリウム、酸化チタン、チタン酸カリウム及びそれを含む化合物(鉱物)が挙げられる。中でも、成形物の表面性(外観)やコストの観点から、ワラストナイト、水酸化マグネシウム、酸化カルシウム、二酸化ケイ素が好ましい。 Examples of large particle size inorganic particles include silicates such as wallastonite (wollastonite), talc, calcium silicate, glass beads, aluminum silicate, magnesium silicate, and silicon dioxide, silicic acid, calcium oxide, and carbon dioxide. Examples thereof include calcium, magnesium oxide, magnesium hydroxide, barium sulfate, barium carbonate, titanium oxide, potassium titanate and compounds (minerals) containing the same. Of these, wallastonite, magnesium hydroxide, calcium oxide, and silicon dioxide are preferable from the viewpoint of surface properties (appearance) and cost of the molded product.

大粒子径無機粒子の形状は、特に限定されないが、小粒子径無機粒子と同様に、粒状又は略球状が好ましい。粒状又は略球状の粒子は、例えば、針状のファイバーと比較して、成形体中において目立たず、成形体の意匠性を高められる。 The shape of the large particle size inorganic particles is not particularly limited, but like the small particle size inorganic particles, it is preferably granular or substantially spherical. Granular or substantially spherical particles are less noticeable in the molded product than, for example, needle-shaped fibers, and can enhance the design of the molded product.

成形体中の大粒子径無機粒子の含有量は、成形物の表面性(外観)や機械強度、寸法安定性、成形性(成形のし易さ)等の観点から、10〜65重量%が好ましく、30〜50重量%がより好ましい。 The content of large particle size inorganic particles in the molded product is 10 to 65% by weight from the viewpoint of surface properties (appearance), mechanical strength, dimensional stability, moldability (easiness of molding), etc. of the molded product. It is preferably 30 to 50% by weight, more preferably.

本実施形態では、上述した脂肪族ポリアミド及び大粒子径無機粒子として、市販のミネラルを含有する脂肪族ポリアミドを用いてもよい。一般に、ミネラルを含有する熱可塑性樹脂は、「ミネラル強化樹脂」と呼ばれる。ミネラル強化樹脂の市販品としては、例えば、東洋紡製のミネラル強化樹脂T777‐02、宇部興産製のミネラル強化樹脂1013R、1013R1等がある。 In the present embodiment, a commercially available mineral-containing aliphatic polyamide may be used as the above-mentioned aliphatic polyamide and large particle size inorganic particles. Generally, a thermoplastic resin containing minerals is called a "mineral reinforced resin". Commercially available products of the mineral reinforced resin include, for example, the mineral reinforced resin T777-02 manufactured by Toyobo, the mineral reinforced resin 1013R and 1013R1 manufactured by Ube Industries, and the like.

本実施形態では、成形体が上述した脂肪族ポリアミド及び小粒子径無機粒子のみから構成されてもよいし、また、成形体が脂肪族ポリアミド、小粒子径無機粒子及び大粒子径無機粒子のみから構成されてもよい。成形体は、必要により、更に、その他の汎用の添加剤を含んでもよい。 In the present embodiment, the molded body may be composed of only the above-mentioned aliphatic polyamide and small particle size inorganic particles, or the molded body may be composed of only the aliphatic polyamide, small particle size inorganic particles and large particle size inorganic particles. It may be configured. If necessary, the molded product may further contain other general-purpose additives.

本実施形態の成形体は、市販品の成形体であってもよいし、上述した材料を成形して成形体を得てもよい。成形体の成形方法は、特に限定されない。例えば、脂肪族ポリアミド及び小粒子径無機粒子に、必要に応じて大粒子径無機粒子やその他汎用の添加剤を加えた樹脂材料を汎用の射出成形、押出成形等により成形して成形体を得てもよい。 The molded product of the present embodiment may be a commercially available molded product, or the above-mentioned material may be molded to obtain a molded product. The molding method of the molded product is not particularly limited. For example, a resin material obtained by adding large particle size inorganic particles and other general-purpose additives to aliphatic polyamide and small particle size inorganic particles as needed is molded by general-purpose injection molding, extrusion molding, or the like to obtain a molded product. You may.

成形体の成形において、小粒子径無機粒子と大粒子径無機粒子とは、同一の脂肪族ポリアミドに混合して成形し、成形体を得てもよい。また、小粒子径無機粒子を混合したポリアミド(第1の樹脂)と、大粒子径無機粒子を混合したポリアミド(第2の樹脂)とをそれぞれ用意し、これらをドライブレンド等により混合して成形し、成形体を得てもよい。第1のポリアミドと第2のポリアミドとは、同一のポリアミドであってもよいし、分子量や粘度の相違する、異なるポリアミドであってもよい。このような第1及び第2の樹脂を用いて成形体を製造する方法において、第1の樹脂は、マスターバッチであり、第2の樹脂は、マスターバッチが配合されるベース樹脂に相当する。マスターバッチとは、染料、顔料、その他の添加剤等の機能性材料を高濃度に含有した樹脂であり、機能性材料を含有しないベース樹脂に混合され、ベース樹脂と共に成形される。マスターバッチを用いると、機能性材料を直接ベース樹脂に添加して成形することと比較して、材料の取り扱い性が容易で秤量精度も向上する。本実施形態では、小粒子径無機粒子がマスターバッチの機能性材料に対応する。更に、本実施形態では、脂肪族ポリアミド及び小粒子径無機粒子を含む樹脂材料と、その他の樹脂材料とを二色成形により成形し、二色成形体を得てもよい。 In the molding of the molded product, the small particle size inorganic particles and the large particle size inorganic particles may be mixed with the same aliphatic polyamide and molded to obtain a molded product. Further, a polyamide (first resin) in which small particle size inorganic particles are mixed and a polyamide (second resin) in which large particle size inorganic particles are mixed are prepared, and these are mixed and molded by dry blending or the like. Then, a molded product may be obtained. The first polyamide and the second polyamide may be the same polyamide, or may be different polyamides having different molecular weights and viscosities. In the method of producing a molded product using the first and second resins, the first resin is a masterbatch, and the second resin corresponds to the base resin to which the masterbatch is blended. A masterbatch is a resin containing a high concentration of functional materials such as dyes, pigments, and other additives, and is mixed with a base resin containing no functional materials and molded together with the base resin. When a masterbatch is used, the handling of the material is easier and the weighing accuracy is improved as compared with molding by adding the functional material directly to the base resin. In this embodiment, the small particle size inorganic particles correspond to the functional material of the masterbatch. Further, in the present embodiment, a resin material containing an aliphatic polyamide and small particle size inorganic particles and another resin material may be molded by two-color molding to obtain a two-color molded product.

<メッキ前処理>
本実施形態では、無電解メッキ前に、(1)無電解メッキ触媒の付与、(2)成形体の膨潤処理を含むメッキ前処理を行う。
<Plating pretreatment>
In the present embodiment, prior to electroless plating, pre-plating treatment including (1) application of electroless plating catalyst and (2) swelling treatment of the molded product is performed.

(1)無電解メッキ触媒の付与
本実施形態では、成形体への無電解メッキ触媒の付与として、成形体に塩化パラジウム及び塩酸を含む無電解メッキ触媒液を接触させる(図1のステップS2)。無電解メッキ触媒液中の塩酸の濃度は、1.0N〜3.0Nである。
(1) Addition of electroless plating catalyst In the present embodiment, the electroless plating catalyst liquid containing palladium chloride and hydrochloric acid is brought into contact with the molded body as an application of the electroless plating catalyst to the molded body (step S2 in FIG. 1). .. The concentration of hydrochloric acid in the electroless plating catalyst solution is 1.0 N to 3.0 N.

塩酸の濃度が1.0N〜3.0Nである無電解メッキ触媒液は、成形体の表面近傍に含有される小粒子径無機粒子を溶解する。即ち、成形体の表面近傍から、小粒子径無機粒子が除去される。これにより、成形体の表面には、溶解した小粒子径無機粒子に対応する凹部(孔)が形成される。塩酸により成形体表面が膨潤し、更に表面に凹部が形成されることで、無電解メッキ触媒が成形体に浸透し易くなる。この結果、成形体表面における塩化パラジウムの吸着量のムラが緩和され、これにより、成形体表面におけるメッキ反応ムラを緩和できる。メッキ反応ムラを緩和することで、メッキ膜の欠陥の発生を抑制できる。また、成形体上に形成される無電解メッキ膜は、成形体の最表面ではなく、成形体の内部(表面近傍)から生成し、密着強度が向上する。更に、本実施形態で用いる小粒子径無機粒子の平均粒子径は1μm以下であるため、成形体表面に形成される凹部は、非常に微細である。したがって、成形体の表面の凹部は、その上に形成される無電解メッキ膜の表面形状に影響を与えない。この結果、メッキ膜の外観特性及びメッキ成形体の意匠性が向上する。 The electroless plating catalyst solution having a hydrochloric acid concentration of 1.0 N to 3.0 N dissolves small particle size inorganic particles contained in the vicinity of the surface of the molded product. That is, the small particle size inorganic particles are removed from the vicinity of the surface of the molded product. As a result, recesses (holes) corresponding to the dissolved small particle size inorganic particles are formed on the surface of the molded product. The surface of the molded product is swollen by hydrochloric acid, and recesses are formed on the surface, so that the electroless plating catalyst easily permeates the molded product. As a result, the unevenness of the adsorption amount of palladium chloride on the surface of the molded body is alleviated, and thereby the unevenness of the plating reaction on the surface of the molded body can be alleviated. By alleviating the uneven plating reaction, it is possible to suppress the occurrence of defects in the plating film. Further, the electroless plating film formed on the molded body is formed not from the outermost surface of the molded body but from the inside (near the surface) of the molded body, and the adhesion strength is improved. Further, since the average particle size of the small particle size inorganic particles used in the present embodiment is 1 μm or less, the recesses formed on the surface of the molded product are very fine. Therefore, the recesses on the surface of the molded body do not affect the surface shape of the electroless plating film formed on the recesses. As a result, the appearance characteristics of the plating film and the design of the plated molded product are improved.

また、塩酸の濃度が1.0N〜3.0Nと比較的低いため、成形体が大粒子径無機粒子を含有する場合であっても、大粒子径無機粒子は溶解しないか、又は、多少溶解したとしても成形体から除去されることは稀である。したがって、大粒子径無機粒子の溶解による成形体表面の粗化を抑制できる。また、塩化パラジウムは、塩酸の濃度が低下すると析出する虞があるが、無電解メッキ触媒液の塩酸の濃度を1.0N〜3.0Nとすることで、無電解メッキ触媒液中に塩化パラジウムを安定して溶解させることができる。無電解メッキ触媒液の塩酸の濃度は、好ましくは、1.0〜2.7Nであり、より好ましくは、1.5〜2.7Nである。 Further, since the concentration of hydrochloric acid is relatively low, 1.0N to 3.0N, even when the molded product contains large particle size inorganic particles, the large particle size inorganic particles do not dissolve or are slightly dissolved. Even if it does, it is rarely removed from the compact. Therefore, it is possible to suppress the roughening of the surface of the molded product due to the dissolution of the large particle diameter inorganic particles. Palladium chloride may precipitate when the concentration of hydrochloric acid decreases. However, by setting the concentration of hydrochloric acid in the electroless plating catalyst solution to 1.0N to 3.0N, palladium chloride is contained in the electroless plating catalyst solution. Can be stably dissolved. The concentration of hydrochloric acid in the electroless plating catalyst solution is preferably 1.0 to 2.7 N, more preferably 1.5 to 2.7 N.

尚、無電解メッキ触媒液の塩酸の濃度が1.0Nより低いと、小粒子径無機粒子の溶解が不十分となり、成形体表面においてメッキ反応ムラが発生する虞や、メッキ膜の密着強度が低下する虞がある。一方で、無電解メッキ触媒液の塩酸の濃度が3.0Nを超えると、成形体の表面が必要以上に粗化され、その上に形成されるメッキ膜の外観特性が悪化し、同時に、メッキ膜の密着強度が低下する虞がある。特に、成形体が大粒子径無機粒子を含有する場合、メッキ膜の外観特性が悪化や密着強度の低下が促進される。 If the concentration of hydrochloric acid in the electroless plating catalyst solution is lower than 1.0 N, the dissolution of small particle size inorganic particles becomes insufficient, and there is a risk that uneven plating reaction may occur on the surface of the molded body, and the adhesion strength of the plating film may increase. It may decrease. On the other hand, when the concentration of hydrochloric acid in the electroless plating catalyst solution exceeds 3.0 N, the surface of the molded body is roughened more than necessary, and the appearance characteristics of the plating film formed on the surface are deteriorated. The adhesion strength of the film may decrease. In particular, when the molded product contains large particle size inorganic particles, the appearance characteristics of the plating film are deteriorated and the adhesion strength is lowered.

塩化パラジウムは、後述する無電解メッキ工程(図1のステップS4)において、無電解メッキ触媒として機能する。塩化パラジウムは、無電解メッキ触媒液中に、例えば、0.05〜500mg/L、好ましくは、1〜250mg/L、より好ましくは、5〜150mg/L含まれる。塩化パラジウム濃度が0.05mg/L未満であると、成形体表面への塩化パラジウムの吸着量にムラができ、メッキ膜の欠陥ができる虞がある。また、塩化パラジウム濃度が500mg/Lを超えると、成形体表面への塩化パラジウムの吸着量が多くなり、成形体の最表面でのメッキ反応が支配的となり、メッキ膜の密着強度が低下する虞がある。 Palladium chloride functions as an electroless plating catalyst in the electroless plating step (step S4 in FIG. 1) described later. Palladium chloride is contained in the electroless plating catalyst solution, for example, 0.05 to 500 mg / L, preferably 1 to 250 mg / L, and more preferably 5 to 150 mg / L. If the concentration of palladium chloride is less than 0.05 mg / L, the amount of palladium chloride adsorbed on the surface of the molded product may be uneven, resulting in defects in the plating film. Further, when the palladium chloride concentration exceeds 500 mg / L, the amount of palladium chloride adsorbed on the surface of the molded body increases, the plating reaction on the outermost surface of the molded body becomes dominant, and the adhesion strength of the plating film may decrease. There is.

本実施形態の無電解メッキ触媒液は、塩化パラジウム及び塩酸のみから構成されてもよいし、必要に応じて、他の添加剤や溶媒を含んでもよい。無電解メッキ触媒液は、例えば、界面活性剤を含んでもよい。界面活性剤を含有することで無電解メッキ触媒液の表面張力が低下し、成形体表面への濡れ性が向上して、塩化パラジウム由来のパラジウムイオンが成形体の内部へ浸透し易くなる。界面活性剤は、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、及び両性界面活性剤等、汎用の界面活性剤を使用できる。一方で、本実施形態の無電解メッキ触媒液は、臭気による作業性の低下を回避するため、酢酸等の有機酸は含有しないことが好ましい。 The electroless plating catalyst solution of the present embodiment may be composed of only palladium chloride and hydrochloric acid, or may contain other additives and solvents as required. The electroless plating catalyst solution may contain, for example, a surfactant. By containing the surfactant, the surface tension of the electroless plating catalyst solution is lowered, the wettability to the surface of the molded body is improved, and the palladium ions derived from palladium chloride easily permeate into the molded body. As the surfactant, a general-purpose surfactant such as an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used. On the other hand, the electroless plating catalyst solution of the present embodiment preferably does not contain an organic acid such as acetic acid in order to avoid deterioration of workability due to odor.

成形体に無電解メッキ触媒液を接触させる時間は、5秒〜15分が好ましい。5秒未満であると、成形体表面への塩化パラジウムの吸着量にムラができ、無電解メッキ反応を均一に開始できない虞がある。また、15分を超えると、成形体へ浸透した塩酸による成形体の劣化、メッキ膜の腐食の虞がある。 The time for contacting the electroless plating catalyst solution with the molded product is preferably 5 seconds to 15 minutes. If it is less than 5 seconds, the amount of palladium chloride adsorbed on the surface of the molded product may be uneven, and the electroless plating reaction may not be started uniformly. Further, if it exceeds 15 minutes, there is a risk of deterioration of the molded product and corrosion of the plating film due to hydrochloric acid permeating the molded product.

また、成形体に接触させる無電解メッキ触媒液の温度は10℃〜50℃が好ましい。10℃未満であると、成形体表面への塩化パラジウムの吸着量にムラができ、無電解メッキ反応を均一に開始できない虞がある。また、無電解メッキ触媒液の温度が10℃未満であると、成形体の温度も低温となる。このため、次の工程である成形体の膨潤処理の処理温度にも影響を与え、十分な膨潤効果を得られない虞もある。また、無電解メッキ触媒液の温度が50℃を超えると、成形体表面への塩化パラジウムの吸着量が多くなり、成形体の最表面でのメッキ反応が支配的となる虞がある。また、塩酸からのガスの発生や水の蒸発により、塩酸濃度の安定化が難しくなる虞もある。更に、本実施形態の成形体に含まれる小粒子径無機粒子は、粒子径が小さいため、常温の無電解メッキ触媒液にも容易に溶解し、その結果として成形体表面に凹部(孔)が形成されて塩化パラジウムが吸着し易くなる。このため、本実施形態では、無電解メッキ触媒液の温度を20℃〜25℃の常温としても、十分な量の塩化パラジウムを成形体に付与することができる。 The temperature of the electroless plating catalyst solution in contact with the molded product is preferably 10 ° C. to 50 ° C. If the temperature is lower than 10 ° C., the amount of palladium chloride adsorbed on the surface of the molded product may be uneven, and the electroless plating reaction may not be started uniformly. Further, when the temperature of the electroless plating catalyst liquid is less than 10 ° C., the temperature of the molded product is also low. Therefore, the treatment temperature of the swelling treatment of the molded product, which is the next step, may be affected, and a sufficient swelling effect may not be obtained. Further, when the temperature of the electroless plating catalyst solution exceeds 50 ° C., the amount of palladium chloride adsorbed on the surface of the molded product increases, and the plating reaction on the outermost surface of the molded product may become dominant. In addition, it may be difficult to stabilize the hydrochloric acid concentration due to the generation of gas from hydrochloric acid and the evaporation of water. Further, since the small particle size inorganic particles contained in the molded body of the present embodiment have a small particle size, they are easily dissolved in the electroless plating catalyst solution at room temperature, and as a result, recesses (holes) are formed on the surface of the molded body. It is formed and easily adsorbs palladium chloride. Therefore, in the present embodiment, even if the temperature of the electroless plating catalyst solution is set to room temperature of 20 ° C. to 25 ° C., a sufficient amount of palladium chloride can be applied to the molded product.

成形体に無電解メッキ触媒液を接触させる方法は任意であり、目的に応じて種々の方法を用いることができる。例えば、無電解メッキ触媒液に成形体全体を浸漬させてもよい。また、成形体の一部分のみメッキ処理する場合には、メッキ処理が予定される部分のみを無電解メッキ触媒液と接触させてもよい。 The method of bringing the electroless plating catalyst solution into contact with the molded body is arbitrary, and various methods can be used depending on the purpose. For example, the entire molded product may be immersed in the electroless plating catalyst solution. Further, when only a part of the molded product is plated, only the part scheduled to be plated may be brought into contact with the electroless plating catalyst solution.

以上説明した無電解メッキ触媒の付与工程により、無電解メッキ触媒液中の塩酸は脂肪族ポリアミドを含む成形体表面をエッチングし、塩化パラジウムは成形体に吸着及び浸透する。また、無電解メッキ触媒液は、成形体の表面近傍に含有される小粒子径無機粒子を溶解し、成形体表面に微小な凹部を形成する。これにより、成形体表面上に形成されるメッキ膜の密着強度と外観特性を両立できる。また、本発明者らの検討によれば、塩化パラジウムはポリアミドのアミド基に特異的に吸着し、ポリアミド以外の樹脂には吸着し難いことがわかった。したがって、脂肪族ポリアミドを含む本実施形態の成形体には、無電解メッキ触媒である塩化パラジウムを十分に付与できる。 According to the step of applying the electroless plating catalyst described above, hydrochloric acid in the electroless plating catalyst solution etches the surface of the molded product containing the aliphatic polyamide, and palladium chloride is adsorbed and permeated into the molded product. Further, the electroless plating catalyst solution dissolves small particle size inorganic particles contained in the vicinity of the surface of the molded body to form minute recesses on the surface of the molded body. As a result, it is possible to achieve both the adhesion strength of the plating film formed on the surface of the molded product and the appearance characteristics. Further, according to the study by the present inventors, it was found that palladium chloride specifically adsorbs to the amide group of polyamide and is difficult to adsorb to resins other than polyamide. Therefore, palladium chloride, which is an electroless plating catalyst, can be sufficiently applied to the molded product of the present embodiment containing the aliphatic polyamide.

尚、本実施形態では、樹脂材料ごとの塩化パラジウムの吸着量の相違を利用して、二色成形体の脂肪族ポリアミドを含有する部分のみに、無電解メッキ触媒を付与できる。例えば、まず、小粒子径無機粒子及び脂肪族ポリアミドを含む第1の部分と、芳香族ポリアミドを含む第2の部分とからなる二色成形体を用意する。塩化パラジウムは、芳香族ポリアミドにも吸着するが、芳香族ポリアミドは酸に浸食され難いため、脂肪族ポリアミドと比較して塩化パラジウムの吸着量が低い。無電解メッキ触媒の付与工程の条件を調整することにより、脂肪族ポリアミドを含む第1の部分に優先的に塩化パラジウムを吸着させることができる。二色成形体の第1の部分に優先的に塩化パラジウムを吸着させることで、第1の部分のみに無電解メッキ膜を形成できる。 In the present embodiment, the electroless plating catalyst can be applied only to the portion of the two-color molded product containing the aliphatic polyamide by utilizing the difference in the adsorption amount of palladium chloride for each resin material. For example, first, a two-color molded product including a first portion containing small particle size inorganic particles and an aliphatic polyamide and a second portion containing an aromatic polyamide is prepared. Palladium chloride is also adsorbed on aromatic polyamides, but since aromatic polyamides are not easily eroded by acids, the amount of palladium chloride adsorbed is lower than that of aliphatic polyamides. By adjusting the conditions of the process of applying the electroless plating catalyst, palladium chloride can be preferentially adsorbed on the first portion containing the aliphatic polyamide. By preferentially adsorbing palladium chloride on the first portion of the two-color molded product, an electroless plating film can be formed only on the first portion.

(2)膨潤処理
次に、無電解メッキ触媒液を接触させた成形体に膨潤処理を施す(図1のステップS3)。膨潤処理は、例えば、成形体を膨潤させる処理溶媒を成形体に接触させることにより行う。処理溶媒としては、常温以上の温度の水(湯)が好ましい。処理溶媒の温度は、成形体の膨潤効果を高めるために、成形体中に含まれる脂肪族ポリアミドのガラス転移点以上が好ましく、例えば50℃〜90℃、好ましくは60℃〜75℃である。本実施形態の成形体は、比較的ガラス転移点の低い脂肪族ポリアミドを含有する。このため、50℃〜90℃の水(湯)を接触させることにより、十分な膨潤処理を行える。
(2) Swelling Treatment Next, a swelling treatment is performed on the molded product that has been brought into contact with the electroless plating catalyst solution (step S3 in FIG. 1). The swelling treatment is performed, for example, by bringing a treatment solvent for swelling the molded product into contact with the molded product. As the treatment solvent, water (hot water) having a temperature of room temperature or higher is preferable. The temperature of the treatment solvent is preferably equal to or higher than the glass transition point of the aliphatic polyamide contained in the molded product in order to enhance the swelling effect of the molded product, and is, for example, 50 ° C. to 90 ° C., preferably 60 ° C. to 75 ° C. The molded product of the present embodiment contains an aliphatic polyamide having a relatively low glass transition point. Therefore, sufficient swelling treatment can be performed by bringing water (hot water) at 50 ° C. to 90 ° C. into contact with each other.

また、水等の処理溶媒は循環され、常に清浄な状態に保つことが好ましい。処理溶媒は撹拌されてもよく、例えば、エアーによる撹拌、強制的な水流の流れを設けてもよい。また、成形体を十分に膨潤させる観点から、成形体に処理溶媒を接触させる時間は、例えば、30秒〜30分とすることができる。 Further, it is preferable that the treatment solvent such as water is circulated and kept in a clean state at all times. The treatment solvent may be agitated, and for example, agitation by air or a forced flow of water may be provided. Further, from the viewpoint of sufficiently swelling the molded product, the time for bringing the treatment solvent into contact with the molded product can be, for example, 30 seconds to 30 minutes.

以上説明した膨潤処理により、ポリアミドの結晶構造の相違に基づく成形体の表面性のムラは緩和され、無電解メッキ反応が均一に生じ易い環境とすることができる。そして、無電解メッキ反応が均一に生じることで、均一で外観特性に優れるメッキ膜を形成できる。 By the swelling treatment described above, unevenness in the surface of the molded product due to the difference in the crystal structure of the polyamide can be alleviated, and an environment in which the electroless plating reaction is likely to occur uniformly can be created. Then, the electroless plating reaction occurs uniformly, so that a uniform plating film having excellent appearance characteristics can be formed.

また、成形体が膨潤することで、塩酸によるエッチングにより生じた成形体表面の微小な隙間に塩化パラジウムを良好に固定できる。また、成形体が膨潤することで、無電解メッキ触媒は成形体内部へ浸透し易くなり、また、後述する無電解メッキ工程(図1のステップS4)において無電解メッキ液も成形体に浸透し易くなる。これにより、成形体の内部からのメッキ膜の成長が促進され、密着強度の強いメッキ膜を形成できる。 Further, by swelling the molded body, palladium chloride can be satisfactorily fixed in the minute gaps on the surface of the molded body generated by etching with hydrochloric acid. Further, the swelling of the molded body facilitates the penetration of the electroless plating catalyst into the molded body, and the electroless plating solution also penetrates into the molded body in the electroless plating step (step S4 of FIG. 1) described later. It will be easier. As a result, the growth of the plating film from the inside of the molded body is promoted, and a plating film having strong adhesion strength can be formed.

更に、本実施形態の膨潤処理では、成形体の最表面に吸着した塩化パラジウムは洗い流され、成形体の最表面でのメッキ反応が抑制される。成形体の最表面でのメッキ反応が抑制されることにより、成形体の内部からのメッキ膜の成長が更に促進され、より密着強度の強いメッキ膜を形成できる。このように、本実施形態における膨潤処理は、成形体表面を膨潤すると共に、同時に成形体表面の洗浄も行う処理である。即ち、本実施形態では、成形体の膨潤処理と洗浄とを同一の工程において行う。 Further, in the swelling treatment of the present embodiment, the palladium chloride adsorbed on the outermost surface of the molded product is washed away, and the plating reaction on the outermost surface of the molded product is suppressed. By suppressing the plating reaction on the outermost surface of the molded body, the growth of the plating film from the inside of the molded body is further promoted, and a plating film having stronger adhesion strength can be formed. As described above, the swelling treatment in the present embodiment is a treatment that swells the surface of the molded body and at the same time cleans the surface of the molded body. That is, in the present embodiment, the swelling treatment and cleaning of the molded product are performed in the same process.

成形体の最表面に吸着した塩化パラジウムが洗い流されることにより、成形体の表面近傍(例えば、表面から100μmまでの深さの領域)におけるパラジウム濃度は、0.01mg/dm〜0.1mg/dmとなることが好ましく、0.01mg/dm〜0.05mg/dmとなることがより好ましい。従来のメッキ前処理後の成形体と比較して、本実施形態のメッキ前処理後の成形体は、表面近傍におけるパラジウム濃度が低い。本実施形態の成形体は、メッキ前処理により、成形体の最表面でのメッキ反応が抑制され、且つ無電解メッキ触媒及び無電解メッキ液が成形体に浸透し易くなるため、成形体の内部からのメッキ膜の成長が促進される。この結果、成形体の表面近傍におけるパラジウム濃度が低くとも、成形体のメッキ反応性は高く、メッキ膜の密着強度が向上すると推測される。尚、成形体の表面近傍におけるパラジウム濃度は、メッキ前処理における諸条件を調整することにより制御できる。 By washing away the palladium chloride adsorbed on the outermost surface of the molded body, the palladium concentration in the vicinity of the surface of the molded body (for example, the region at a depth of 100 μm from the surface) is 0.01 mg / dm 2 to 0.1 mg /. it is preferable that the dm 2, and more preferably a 0.01mg / dm 2 ~0.05mg / dm 2 . Compared with the conventional molded product after the pre-plating treatment, the molded product after the pre-plating treatment of the present embodiment has a lower palladium concentration in the vicinity of the surface. In the molded product of the present embodiment, the plating reaction on the outermost surface of the molded product is suppressed by the plating pretreatment, and the electroless plating catalyst and the electroless plating liquid easily permeate into the molded product. The growth of the plating film from is promoted. As a result, it is presumed that even if the palladium concentration near the surface of the molded body is low, the plating reactivity of the molded body is high and the adhesion strength of the plating film is improved. The palladium concentration in the vicinity of the surface of the molded product can be controlled by adjusting various conditions in the plating pretreatment.

成形体の表面近傍におけるパラジウム濃度は、例えば、以下のようにして測定できる。メッキ前処理を施した成形体を乾燥し、成形体の所定面積において表面から100μmの厚さの樹脂を機械的に削り取る。削り取った樹脂中に含まれているパラジウム重量を求めて所定面積で除し、単位面積当たりのパラジウム重量(パラジウム濃度)を求める。削り取った樹脂中に含まれているパラジウム重量は、例えば、削り取った樹脂の重量を測定した後、溶解処理し、ICP(誘導結合プラズマ、Inductively Coupled Plasma)発光分析法により計測できる。 The palladium concentration in the vicinity of the surface of the molded product can be measured, for example, as follows. The pre-plated molded product is dried, and a resin having a thickness of 100 μm is mechanically scraped from the surface in a predetermined area of the molded product. The weight of palladium contained in the scraped resin is obtained and divided by a predetermined area to obtain the weight of palladium per unit area (palladium concentration). The weight of palladium contained in the scraped resin can be measured by, for example, the weight of the scraped resin, the dissolution treatment, and the ICP (inductively coupled plasma) luminescence analysis method.

尚、上述のように、本実施形態では、成形体の膨潤処理と洗浄とを同一の工程において行う。メッキ前処理における工程数を削減する観点からは、成形体の膨潤処理と洗浄は同時に行った方が好ましいが、本実施形態は、必ずしもこれに限定されず、成形体の膨潤処理と洗浄とを別々の工程として実施してもよい。また、上述のように、本実施形態では、処理溶媒を成形体に接触させることにより成形体の洗浄を行うが、本実施形態はこれに限定されない。例えば、成形体の表面近傍におけるパラジウム濃度を低下させ、好ましくは0.01mg/dm〜0.1mg/dmとする成形体の表面処理は、本実施形態における成形体の「洗浄」に含まれる。 As described above, in the present embodiment, the swelling treatment and cleaning of the molded product are performed in the same step. From the viewpoint of reducing the number of steps in the pre-plating treatment, it is preferable to perform the swelling treatment and cleaning of the molded product at the same time, but the present embodiment is not necessarily limited to this, and the swelling treatment and cleaning of the molded product are performed. It may be carried out as a separate step. Further, as described above, in the present embodiment, the molded body is washed by bringing the treatment solvent into contact with the molded body, but the present embodiment is not limited to this. For example, reducing the palladium concentration in the vicinity of the surface of the molded body, preferably a surface treatment of the molded body to be 0.01mg / dm 2 ~0.1mg / dm 2 is included in the "washing" of the molded body in the present embodiment Is done.

<無電解メッキ>
次に、メッキ前処理を行った成形体に無電解メッキ液を接触させて、メッキ膜を形成し(図1のステップS4)、本実施形態のメッキ成形体(メッキ膜を有する成形体)を得る。無電解メッキ液としては、目的に応じて任意の汎用の無電解メッキ液を使用しできるが、触媒活性が高く液が安定であるという点から、無電解ニッケルリンメッキ液が好ましい。
<Electroless plating>
Next, the electroless plating solution is brought into contact with the pre-plated molded body to form a plating film (step S4 in FIG. 1), and the plated molded body (molded body having the plated film) of the present embodiment is formed. obtain. As the electroless plating solution, any general-purpose electroless plating solution can be used depending on the purpose, but an electroless nickel phosphorus plating solution is preferable from the viewpoint of high catalytic activity and stability of the solution.

無電解メッキ触媒は、通常、酸化数0(ゼロ)の金属状態において触媒活性を示す。このため、従来から知られた汎用の無電解メッキ触媒付与方法であるセンシタイザー−アクチベーティング法及びキャタリスト−アクセレレータ法のどちらの方法においても、パラジウムを基材に吸着させつつ還元する。したがって、従来は、金属状態でない塩化パラジウムを基材に付与しても触媒活性を発現せず、無電解メッキ触媒として使用することは困難であった。また、塩化パラジウムは、プラスチック基材表面に吸着し難いという問題も有していた。しかし、本発明者らは、ポリアミドを含む成形体を基材とし、且つ無電解ニッケルリンメッキ液等の無電解メッキ液を用いることで、塩化パラジウムの還元処理を行わずとも無電解メッキ反応が生じることを見出した。この原因は定かではないが、ポリアミドを基材に用いることで塩化パラジウムが基材に吸着し易くなり、更に無電解メッキ液中に含まれる次亜リン酸ナトリウム等の還元剤が塩化パラジウムを還元するためだと推測される。本実施形態では、無電解メッキ触媒の還元処理の省略が可能となるため、製造コストを削減でき、スループットを向上できる。 Electroless plating catalysts usually exhibit catalytic activity in a metallic state with an oxidation number of 0 (zero). Therefore, in both the sensitizer-activating method and the catalyst-accelerator method, which are conventionally known general-purpose electroless plating catalyst application methods, palladium is reduced while being adsorbed on the substrate. Therefore, conventionally, it has been difficult to use it as an electroless plating catalyst because it does not exhibit catalytic activity even if palladium chloride, which is not in a metallic state, is applied to the base material. Further, palladium chloride has a problem that it is difficult to be adsorbed on the surface of a plastic base material. However, by using a molded product containing polyamide as a base material and using an electroless plating solution such as an electroless nickel phosphorus plating solution, the present inventors can perform an electroless plating reaction without performing a reduction treatment of palladium chloride. Found to occur. Although the cause of this is not clear, the use of polyamide as the base material facilitates the adsorption of palladium chloride on the base material, and the reducing agent such as sodium hypophosphite contained in the electroless plating solution reduces palladium chloride. It is presumed that this is to do. In the present embodiment, since the reduction treatment of the electroless plating catalyst can be omitted, the manufacturing cost can be reduced and the throughput can be improved.

無電解メッキ液として無電解ニッケルリンメッキ液を用いる場合、還元剤である次亜リン酸ナトリウムの濃度が高く、形成されるメッキ膜中のリン濃度が7〜12重量%程度となる中〜高リンタイプの酸性ニッケルリンメッキ液を用いることが好ましい。このようなニッケルリンメッキ液は、還元力が強く、且つポリアミド中への浸透性も高いため、成形体の表面近傍における塩化パラジウム濃度が低い場合であっても、塩化パラジウムを還元しつつ、ポリアミド中で無電解メッキ反応を進行させると推測される。無電解ニッケルリンメッキ液のpHは、例えば、4.0〜6.0であり、好ましくは、4.5〜5.0である。メッキ液のpHが低過ぎると、メッキ液の活性度が低下してメッキ膜の均一性が乏しくなり、膜抜けなどの外観不良をもたらす虞がある。一方、pHが高過ぎると、メッキ液の活性度が高くなり過ぎて成形体の最表面でメッキの膜化が開始され、メッキ膜の密着強度が低下する虞がある。また、pHの高いメッキ液は安定性が低く、分解が生じ易い。このため、最悪の場合、メッキ液の交換が必要となり、コストの増加につながる。メッキ液のpHを例えば、4.0〜6.0の範囲とすることで、これらの不都合を抑制できる。また、無電解メッキ液中のリン濃度は、5重量%以上が好ましい。リン濃度を高くすることにより、メッキ膜の耐食性も向上する。 When an electroless nickel phosphorus plating solution is used as the electroless plating solution, the concentration of sodium hypophosphite, which is a reducing agent, is high, and the phosphorus concentration in the formed plating film is about 7 to 12% by weight. It is preferable to use a phosphorus-type acidic nickel phosphorus plating solution. Since such a nickel phosphorus plating solution has a strong reducing power and a high permeability into the polyamide, even when the palladium chloride concentration near the surface of the molded product is low, the polyamide while reducing the palladium chloride. It is presumed that the electroless plating reaction proceeds inside. The pH of the electroless nickel-phosphorus plating solution is, for example, 4.0 to 6.0, preferably 4.5 to 5.0. If the pH of the plating solution is too low, the activity of the plating solution is lowered and the uniformity of the plating film is poor, which may lead to poor appearance such as film loss. On the other hand, if the pH is too high, the activity of the plating solution becomes too high, and film formation of the plating is started on the outermost surface of the molded product, which may reduce the adhesion strength of the plating film. In addition, a plating solution having a high pH has low stability and is prone to decomposition. Therefore, in the worst case, it is necessary to replace the plating solution, which leads to an increase in cost. By setting the pH of the plating solution to, for example, the range of 4.0 to 6.0, these inconveniences can be suppressed. The phosphorus concentration in the electroless plating solution is preferably 5% by weight or more. By increasing the phosphorus concentration, the corrosion resistance of the plating film is also improved.

また、次亜リン酸塩の還元力は、温度が低いほど低下する。したがって、市販の還元剤濃度が高い中〜高リンタイプの無電解ニッケルリンメッキ液の使用温度は85℃〜90℃と高い場合が多い。しかし、85℃〜90℃の処理温度で樹脂成形体のメッキを行うと、成形体自身が変形する虞がある。また、成形体が膨張した状態でメッキが行われて、メッキ後に冷却されて成形体が収縮するため、成形体の収縮に対応できずにメッキ膜に割れが生じる虞もある。本実施形態では、成形体のメッキ反応性が高いため、メッキ処理温度を80℃以下としても、密着強度が高く、外観特性に優れたメッキ膜を形成できる。したがって、無電解ニッケルリンメッキ液を用いる場合、無電解メッキの処理温度(無電解メッキ液の温度)は、例えば、50℃〜80℃であり、好ましくは、50℃〜70℃である。また、無電解メッキ液の温度をこの範囲とすると、無電解メッキ浴槽にプラスチック浴槽等の安価な浴槽を用いることができ、設備コストを低減できる。また、成形体に無電解メッキ液を接触させる時間は、例えば、30秒〜30分である。 In addition, the reducing power of hypophosphate decreases as the temperature decreases. Therefore, the operating temperature of a commercially available medium to high phosphorus type electroless nickel phosphorus plating solution having a high concentration of a reducing agent is often as high as 85 ° C. to 90 ° C. However, if the resin molded product is plated at a processing temperature of 85 ° C. to 90 ° C., the molded product itself may be deformed. Further, since plating is performed in a state where the molded body is expanded and the molded body is cooled after plating and the molded body shrinks, there is a possibility that the plating film may be cracked because it cannot cope with the shrinkage of the molded body. In the present embodiment, since the plating reactivity of the molded product is high, it is possible to form a plating film having high adhesion strength and excellent appearance characteristics even when the plating treatment temperature is 80 ° C. or lower. Therefore, when the electroless nickel phosphorus plating solution is used, the processing temperature of the electroless plating (temperature of the electroless plating solution) is, for example, 50 ° C. to 80 ° C., preferably 50 ° C. to 70 ° C. Further, when the temperature of the electroless plating solution is within this range, an inexpensive bathtub such as a plastic bathtub can be used for the electroless plating bathtub, and the equipment cost can be reduced. The time for contacting the electroless plating solution with the molded product is, for example, 30 seconds to 30 minutes.

無電解メッキ膜を形成した成形体上には、成形体の用途及び意匠性向上等の目的から、更に異なる種類の無電解メッキ膜を複数層形成してもよいし、電解メッキにより電解メッキ膜を形成してもよい。また、無電解メッキ膜が形成された成形体は、無電解メッキ後にアニール処理を施してもよいし、室温で放置して自然乾燥してもよい。また、アニール処理や自然乾燥を行わず、連続して電解メッキ膜を形成する等の次の工程を行ってもよい。 A plurality of different types of electroless plating films may be formed on the molded body on which the electroless plating film is formed for the purpose of improving the use and design of the molded body, or the electroless plating film may be formed by electroplating. May be formed. Further, the molded product on which the electroless plating film is formed may be annealed after electroless plating, or may be left at room temperature for natural drying. Further, the following steps such as continuously forming an electrolytic plating film may be performed without performing annealing treatment or natural drying.

<超音波照射>
本実施形態のメッキ成形体の製造方法は、成形体を液中に浸漬して成形体に超音波を照射する工程を更に設けてもよい。本実施形態では、無電解メッキ膜の密着強度向上のため、メッキ前処理により成形体を膨潤させる。このとき、成形体の表面の一部が膨潤して突出し、凸欠陥となる場合がある。また、無電解メッキ触媒の付与工程において、小粒子径無機粒子の溶解時に生じた樹脂の残渣が、成形体に付着する場合がある。成形体に超音波を照射することにより、成形体表面からこのような凸欠陥や樹脂の残渣を取り除くことができ、この上に形成されるメッキ膜の外観特性を向上させることができる。
<Ultrasonic irradiation>
In the method for producing a plated molded product of the present embodiment, a step of immersing the molded product in a liquid and irradiating the molded product with ultrasonic waves may be further provided. In this embodiment, in order to improve the adhesion strength of the electroless plating film, the molded body is swollen by pre-plating treatment. At this time, a part of the surface of the molded product may swell and protrude, resulting in a convex defect. Further, in the step of applying the electroless plating catalyst, the resin residue generated when the small particle size inorganic particles are dissolved may adhere to the molded product. By irradiating the molded body with ultrasonic waves, such convex defects and resin residues can be removed from the surface of the molded body, and the appearance characteristics of the plating film formed on the molded body can be improved.

成形体への超音波の照射は、メッキ前処理の結果生じる凸欠陥や樹脂の残渣の除去を目的とする場合は、膨潤処理中か、又は膨潤処理の後に行うことが好ましい。例えば、膨潤処理において、50〜90℃の水(湯)等の処理溶媒に成形体を浸漬させた状態で超音波を照射してもよいし、無電解メッキ処理において、無電解メッキ液中に成形体を浸漬させた状態で超音波を照射してもよい。更に、無電解メッキ処理の前、又は無電解メッキ処理の後に、新たな工程として超音波照射工程を設けてもよい。 When the purpose is to remove convex defects and resin residues resulting from the pre-plating treatment, the ultrasonic irradiation of the molded product is preferably performed during the swelling treatment or after the swelling treatment. For example, in the swelling treatment, ultrasonic waves may be irradiated while the molded product is immersed in a treatment solvent such as water (hot water) at 50 to 90 ° C., or in the electroless plating treatment, the molded product is placed in the electroless plating solution. Ultrasonic waves may be applied while the molded product is immersed. Further, an ultrasonic irradiation step may be provided as a new step before the electroless plating treatment or after the electroless plating treatment.

超音波の照射条件は適宜決定することが可能だが、例えば、周波数は、28kHz〜950kHz、強度は、40W〜500W、照射時間は、30秒〜30分とすることができる。また、新たな工程として超音波照射工程を設ける場合、成形体を浸漬する液は、環境負荷が低い水が好ましく、液の温度は、25℃〜50℃が好ましい。 The ultrasonic irradiation conditions can be appropriately determined. For example, the frequency can be 28 kHz to 950 kHz, the intensity can be 40 W to 500 W, and the irradiation time can be 30 seconds to 30 minutes. When an ultrasonic irradiation step is provided as a new step, the liquid for immersing the molded product is preferably water having a low environmental load, and the temperature of the liquid is preferably 25 ° C to 50 ° C.

尚、成形体に付着している樹脂の残渣の除去に関しては、超音波照射の代わりに、エアーのバブリングや噴流を基材表面に当てることによっても除去可能である。 It should be noted that the resin residue adhering to the molded product can be removed by applying air bubbling or jet to the surface of the base material instead of ultrasonic irradiation.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples and Comparative Examples.

[実施例1]
本実施例では、まず、脂肪族ポリアミドを含む成形体を成形し、得られた成形体にメッキ前処理及びメッキ処理を施してメッキ成形体を製造した。
[Example 1]
In this example, first, a molded product containing an aliphatic polyamide was molded, and the obtained molded product was subjected to a plating pretreatment and a plating treatment to produce a plated molded product.

(1)成形体の成形
小粒子径無機粒子として、平均粒子径0.2μmの炭酸カルシウムを用い、脂肪族ポリアミドとして、高粘度のポリアミド6(DSM製、F−130、相対粘度RV=3.5)及び平均粒子径3μmのワラストナイトを40重量%含有するポリアミド6(東洋紡製、グラマイトT777−02)を用いた。ワラストナイトは、上記実施形態で説明した大粒子径無機粒子に相当する。
(1) Molding of molded product Calcium carbonate having an average particle diameter of 0.2 μm was used as the small particle size inorganic particles, and the high viscosity polyamide 6 (manufactured by DSM, F-130, relative viscosity RV = 3.) As the aliphatic polyamide. Polyamide 6 (Glamite T777-02, manufactured by Toyo Boseki Co., Ltd.) containing 40% by weight of 5) and wallastnite having an average particle size of 3 μm was used. Wallastnite corresponds to the large particle size inorganic particles described in the above embodiment.

まず、炭酸カルシウムと高粘度ポリアミド6とを(炭酸カルシウム):(高粘度ポリアミド6)=40:60の重量比で混合して、第1の樹脂(マスターバッチ)とした。次に、第1の樹脂と、ワラストナイト含有ポリアミド6(第2の樹脂、ベース樹脂)とを(第1の樹脂):(第2の樹脂)=5:95の重量比で混合し、汎用の射出成形機(日本製鋼所製、J180AD−2M)を用いて、8cm×8cm×0.2cmの平板形状の成形体を射出成形した。即ち、成形体中に含有される炭酸カルシウムを2重量%とした。金型にはサイドゲート方式の金型を用い、成形条件は、金型温度90℃、樹脂温度270℃、射出速度20mm/sとした。 First, calcium carbonate and high-viscosity polyamide 6 were mixed at a weight ratio of (calcium carbonate): (high-viscosity polyamide 6) = 40:60 to obtain a first resin (master batch). Next, the first resin and the wallastnite-containing polyamide 6 (second resin, base resin) were mixed at a weight ratio of (first resin) :( second resin) = 5:95. A flat plate-shaped molded body of 8 cm × 8 cm × 0.2 cm was injection-molded using a general-purpose injection molding machine (J180AD-2M manufactured by Japan Steel Works, Ltd.). That is, the calcium carbonate contained in the molded product was set to 2% by weight. A side gate type mold was used as the mold, and the molding conditions were a mold temperature of 90 ° C., a resin temperature of 270 ° C., and an injection speed of 20 mm / s.

(2)メッキ前処理
(a)無電解メッキ触媒の付与
30℃の無電解メッキ触媒液に成形体を30秒間浸漬した。無電解メッキ触媒液としては、塩化パラジウムを17mg/L含有した2.1Nの塩酸を用いた。成形体を無電解メッキ触媒液から取り出した後、純水で洗浄した。
(2) Plating pretreatment (a) Application of electroless plating catalyst The molded product was immersed in an electroless plating catalyst solution at 30 ° C. for 30 seconds. As the electroless plating catalyst solution, 2.1N hydrochloric acid containing 17 mg / L of palladium chloride was used. The molded product was taken out from the electroless plating catalyst solution and then washed with pure water.

(b)膨潤処理
次に、70℃の純水に成形体を1分間浸漬した。
(B) Swelling treatment Next, the molded product was immersed in pure water at 70 ° C. for 1 minute.

(3)メッキ処理
メッキ前処理を行った成形体を65℃の酸性(pH=4.8)の無電解ニッケルリンメッキ液(奥野製薬工業社製、トップニコロンHMB−LF)に5分間浸漬し、膜厚1μmの無電解ニッケルリンメッキ膜を形成した。
(3) Plating treatment The pre-plated molded product is immersed in an acidic (pH = 4.8) electroless nickel phosphorus plating solution (Top Nicolon HMB-LF manufactured by Okuno Pharmaceutical Co., Ltd.) at 65 ° C. for 5 minutes. Then, an electroless nickel-phosphorus plating film having a thickness of 1 μm was formed.

ニッケルリンメッキ膜を形成した直後に、スルファミン酸ニッケルを主体とした55℃のスルファミン酸ニッケル浴(奥野製薬工業製)に成形体を浸漬し電解メッキをすることにより、ニッケルリンメッキ膜上に膜厚1μmの電解ストライクメッキ膜を形成した。酸化し易いニッケルリンメッキ膜を形成直後に電解ストライクメッキ膜で被覆することにより、ニッケルリンメッキ膜とその直上の電解ストライクメッキ膜との密着性を保つことができた。また、スルファミン酸ニッケル浴を用いて形成するメッキ膜は内部応力が極めて低いため、応力による成形体とメッキ膜との密着強度の低下を抑制できた。 Immediately after forming the nickel phosphorus plating film, the molded body is immersed in a nickel sulfamate bath (manufactured by Okuno Pharmaceutical Co., Ltd.) at 55 ° C., which is mainly composed of nickel sulfamate, and electrolytic plating is performed to form a film on the nickel phosphorus plating film. An electrolytic strike plating film having a thickness of 1 μm was formed. By coating the nickel phosphorus plating film, which is easily oxidized, with the electrolytic strike plating film immediately after the formation, the adhesion between the nickel phosphorus plating film and the electrolytic strike plating film immediately above the nickel phosphorus plating film could be maintained. In addition, since the plating film formed by using the nickel sulfamate bath has extremely low internal stress, it was possible to suppress a decrease in the adhesion strength between the molded body and the plating film due to stress.

次に、ストライクメッキを行った成形体上に、汎用の電解メッキ法により20μmの電解銅メッキ膜を形成した。電解銅メッキ液には、硫酸銅、硫酸、塩酸及び光沢剤(奥野製薬工業製、トップルチナ2000)を含有する硫酸銅浴を使用し、浴温度は30℃、電流密度は3A/dmとした。更に、電解銅メッキ膜上に、汎用の方法により、20μmの電解ニッケルメッキ膜を形成した。電解ニッケルメッキ液には、硫酸ニッケル、塩化ニッケル、ホウ酸及び光沢剤を含有するワット浴を使用し、浴温度は55℃、電流密度は3A/dmとした。 Next, a 20 μm electrolytic copper plating film was formed on the strike-plated molded body by a general-purpose electrolytic plating method. As the electrolytic copper plating solution, a copper sulfate bath containing copper sulfate, sulfuric acid, hydrochloric acid and a brightener (manufactured by Okuno Pharmaceutical Co., Ltd., Toplucina 2000) was used, and the bath temperature was 30 ° C. and the current density was 3 A / dm 2 . .. Further, a 20 μm electrolytic nickel plating film was formed on the electrolytic copper plating film by a general-purpose method. A watt bath containing nickel sulfate, nickel chloride, boric acid and a brightener was used as the electrolytic nickel plating solution, and the bath temperature was 55 ° C. and the current density was 3 A / dm 2 .

次に、電解ニッケルメッキを行った成形体上に、膜厚0.2μmの電解3価クロムメッキ膜を形成した。電解3価クロムメッキには、硫酸クロム(3価クロム塩)を主成分としたクロムメッキ添加剤(奥野製薬工業製、トップファインクロム)を用いた。以上説明したメッキ前処理及びメッキ処理により、6価クロムを一切使用せずに、メッキ成形体を製造した。 Next, an electrolytic trivalent chromium-plated film having a film thickness of 0.2 μm was formed on the molded body subjected to electrolytic nickel plating. For electrolytic trivalent chromium plating, a chromium plating additive (manufactured by Okuno Pharmaceutical Co., Ltd., Top Fine Chromium) containing chromium sulfate (trivalent chromium salt) as a main component was used. By the plating pretreatment and the plating treatment described above, a plated molded product was produced without using any hexavalent chromium.

[実施例2]
本実施例では、成形体中における炭酸カルシウム(小粒子径無機粒子)の含有量が1重量%となるように、第1の樹脂(マスターバッチ)と第2の樹脂の配合比を調整し、それ以外は、実施例1と同様の方法によりメッキ成形体を製造した。
[Example 2]
In this embodiment, the blending ratio of the first resin (masterbatch) and the second resin is adjusted so that the content of calcium carbonate (small particle size inorganic particles) in the molded product is 1% by weight. Except for this, a plated molded product was produced by the same method as in Example 1.

[実施例3]
本実施例では、成形体中における炭酸カルシウム(小粒子径無機粒子)の含有量が10重量%となるように、第1の樹脂(マスターバッチ)と第2の樹脂の配合比を調整し、それ以外は、実施例1と同様の方法によりメッキ成形体を製造した。
[Example 3]
In this embodiment, the blending ratio of the first resin (master batch) and the second resin is adjusted so that the content of calcium carbonate (small particle size inorganic particles) in the molded product is 10% by weight. Except for this, a plated molded product was produced by the same method as in Example 1.

[比較例1]
本比較例では、高粘度ポリアミド6に炭酸カルシウム(小粒子径無機粒子)を混合しなかったこと以外は、実施例1と同様の方法によりメッキ成形体を製造した。即ち、本比較例の成形体中の炭酸カルシウム(小粒子径無機粒子)の含有量は、0重量%であった。
[Comparative Example 1]
In this comparative example, a plated molded product was produced by the same method as in Example 1 except that calcium carbonate (small particle size inorganic particles) was not mixed with the high-viscosity polyamide 6. That is, the content of calcium carbonate (small particle size inorganic particles) in the molded product of this comparative example was 0% by weight.

[比較例2]
本比較例では、成形体中における炭酸カルシウム(小粒子径無機粒子)の含有量が15重量%となるように、第1の樹脂(マスターバッチ)と第2の樹脂の配合比を調整し、それ以外は、実施例1と同様の方法によりメッキ成形体を製造した。
[Comparative Example 2]
In this comparative example, the blending ratio of the first resin (master batch) and the second resin is adjusted so that the content of calcium carbonate (small particle size inorganic particles) in the molded product is 15% by weight. Except for this, a plated molded product was produced by the same method as in Example 1.

[比較例3]
本比較例では、無電解メッキ触媒液の塩酸濃度を3.1Nとした以外は、実施例1と同様の方法によりメッキ成形体を製造した。
[Comparative Example 3]
In this comparative example, a plated molded product was produced by the same method as in Example 1 except that the hydrochloric acid concentration of the electroless plating catalyst solution was 3.1N.

[比較例4]
本比較例では、無電解メッキ触媒液の塩酸濃度を0.5Nとした以外は、実施例1と同様の方法によりメッキ成形体を製造した。
[Comparative Example 4]
In this comparative example, a plated molded product was produced by the same method as in Example 1 except that the hydrochloric acid concentration of the electroless plating catalyst solution was 0.5 N.

[メッキ成形体の評価]
実施例1〜3及び比較例1〜4で製造したメッキ成形体について、以下の(1)〜(4)の評価項目について評価を行った。
[Evaluation of plated molded product]
The plated molded articles produced in Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated for the following evaluation items (1) to (4).

(1)メッキ膜の密着強度
実施例1〜3及び比較例1〜4で製造したメッキ成形体とは別に、密着強度測定用の試料を作製し、メッキ膜の密着強度を測定した。密着強度測定用の試料は、実施例1〜3及び比較例1〜4それぞれにおいて、成形体上に形成した無電解ニッケルリンメッキ膜上に、50μmの電解銅メッキ膜を形成して作製した。密着強度測定用の試料において、引っ張り試験機(島津製作所社製,AGS−100N)を用いて、JIS H8630に準拠し、角度90°、速度25mm/分の条件で、試料表面において長さ40mmに亘り、メッキ膜を試料からから引き剥がすときの力を測定し、密着強度とした。結果を表1に示す。
(1) Adhesion Strength of Plating Film A sample for measuring adhesion strength was prepared separately from the plated compacts produced in Examples 1 to 3 and Comparative Examples 1 to 4, and the adhesion strength of the plating film was measured. The samples for measuring the adhesion strength were prepared by forming a 50 μm electrolytic copper plating film on the electroless nickel phosphorus plating film formed on the molded body in Examples 1 to 3 and Comparative Examples 1 to 4, respectively. In the sample for adhesion strength measurement, using a tensile tester (manufactured by Shimadzu Corporation, AGS-100N), the length is 40 mm on the sample surface under the conditions of an angle of 90 ° and a speed of 25 mm / min in accordance with JIS H8630. The force when the plating film was peeled off from the sample was measured and used as the adhesion strength. The results are shown in Table 1.

(2)メッキ反応ムラの評価
実施例1〜3及び比較例1〜4において、無電解ニッケルリンメッキ膜の成膜過程を目視にて観察し、以下の評価基準に従ってメッキ反応ムラを評価した。結果を表1に示す。
(2) Evaluation of Plating Reaction Unevenness In Examples 1 to 3 and Comparative Examples 1 to 4, the film formation process of the electroless nickel-phosphorus plating film was visually observed, and the plating reaction unevenness was evaluated according to the following evaluation criteria. The results are shown in Table 1.

<メッキ反応ムラの評価基準>
○:メッキ膜の生成開始から、成形体全体にメッキ膜が形成されるまでの時間が、30秒未満であった。
×:メッキ膜の生成開始から、成形体全体にメッキ膜が形成されるまでの時間が、30秒以上であった。
<Evaluation criteria for uneven plating reaction>
◯: The time from the start of formation of the plating film to the formation of the plating film on the entire molded body was less than 30 seconds.
X: The time from the start of formation of the plating film to the formation of the plating film on the entire molded body was 30 seconds or more.

(3)メッキ膜の外観の評価
実施例1〜3及び比較例1〜4で製造したメッキ成形体を目視にて観察し、以下の評価基準に従ってメッキ膜の外観を評価した。結果を表1に示す。
(3) Evaluation of Appearance of Plating Film The appearance of the plating film was evaluated according to the following evaluation criteria by visually observing the plated compacts produced in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 1.

<メッキ膜の外観の評価基準>
○:メッキ膜に梨地状の凹凸や輝点等の微小欠陥が生じず、鏡面状のメッキ膜が成長した。
×:メッキ膜に梨地状の凹凸や輝点等の微小欠陥が視認された。
<Evaluation criteria for the appearance of the plating film>
◯: The plating film did not have minute defects such as satin-like irregularities and bright spots, and the mirror-like plating film grew.
X: Small defects such as satin-like irregularities and bright spots were visually recognized on the plating film.

表1に示すように、平均粒子径1μm以下の炭酸カルシウム(小粒子径無機粒子)を成形体中に0.5重量%〜10重量%の範囲で含み、無電解メッキ触媒液の塩酸濃度が1.0N〜3.0Nの範囲内であった実施例1〜3は、(1)メッキ膜の密着強度が14N/cm以上と高く、(2)メッキ反応ムラの評価結果及び(3)メッキ膜の外観の評価結果が良好であった。 As shown in Table 1, calcium carbonate (small particle size inorganic particles) having an average particle size of 1 μm or less is contained in the molded body in the range of 0.5% by weight to 10% by weight, and the hydrochloric acid concentration of the electroless plating catalyst solution is high. In Examples 1 to 3 which were in the range of 1.0 N to 3.0 N, (1) the adhesion strength of the plating film was as high as 14 N / cm or more, (2) the evaluation result of plating reaction unevenness and (3) plating. The evaluation result of the appearance of the film was good.

一方、平均粒子径1μm以下の炭酸カルシウム(小粒子径無機粒子)を成形体中に含まない比較例1では、成形体の側面(8cm×0.2cmの面)でのメッキ反応が遅く、メッキ反応ムラの評価結果が不良であった。また、実施例1〜3と比較して、メッキ膜の密着強度がやや低かった。比較例1では、成形体中に炭酸カルシウムを含まないため、実施例1〜3と比較して、成形体表面への塩化パラジウムの吸着量が少なく、成形体表面上において塩化パラジウム吸着量のムラが発生したと推測される。また、平均粒子径1μm以下の炭酸カルシウム(小粒子径無機粒子)を成形体中に15重量%含む比較例2では、メッキ膜に輝点が発生し、メッキ膜の外観の評価結果が不良であった。また、実施例1〜3と比較して、メッキ膜の密着強度が低かった。比較例2では、成形体中の炭酸カルシウムの含有量が高過ぎるため、成形体の表面が必要以上に粗化され、その上に形成されるメッキ膜の外観特性が悪化し、同時に、成形体表面が脆弱化してメッキ膜の密着強度が低下したと推測される。 On the other hand, in Comparative Example 1 in which calcium carbonate (small particle size inorganic particles) having an average particle diameter of 1 μm or less is not contained in the molded body, the plating reaction on the side surface (8 cm × 0.2 cm surface) of the molded body is slow and plating is performed. The evaluation result of reaction unevenness was poor. Further, the adhesion strength of the plating film was slightly lower than that of Examples 1 to 3. In Comparative Example 1, since calcium carbonate is not contained in the molded body, the amount of palladium chloride adsorbed on the surface of the molded body is smaller than that of Examples 1 to 3, and the amount of palladium chloride adsorbed on the surface of the molded body is uneven. Is presumed to have occurred. Further, in Comparative Example 2 in which calcium carbonate (small particle size inorganic particles) having an average particle diameter of 1 μm or less is contained in the molded body in an amount of 15% by weight, bright spots are generated on the plating film, and the evaluation result of the appearance of the plating film is poor. there were. In addition, the adhesion strength of the plating film was lower than that of Examples 1 to 3. In Comparative Example 2, since the content of calcium carbonate in the molded product is too high, the surface of the molded product is roughened more than necessary, and the appearance characteristics of the plating film formed on the surface of the molded product are deteriorated. It is presumed that the surface became fragile and the adhesion strength of the plating film decreased.

無電解メッキ触媒液の塩酸濃度が3.1Nであった比較例3では、メッキ膜の外観の評価結果が不良であった。また、実施例1〜3と比較して、メッキ膜の密着強度が低かった。比較例3では、無電解メッキ触媒液の塩酸濃度が高過ぎるため、成形体の表面が必要以上に粗化され、その上に形成されるメッキ膜の外観特性が悪化し、同時に、成形体表面が脆弱化してメッキ膜の密着強度が低下したと推測される。無電解メッキ触媒液の塩酸濃度が0.5Nであった比較例4では、メッキ反応ムラの評価結果が不良であった。また、実施例1〜3と比較して、メッキ膜の密着強度がやや低かった。比較例4では、無電解メッキ触媒液の塩酸濃度が低過ぎるため、炭酸カルシウムの溶解が不十分となり、成形体表面への塩化パラジウムの吸着量が少なくなり、成形体表面上において塩化パラジウム吸着量のムラが発生したと推測される。 In Comparative Example 3 in which the hydrochloric acid concentration of the electroless plating catalyst solution was 3.1 N, the evaluation result of the appearance of the plating film was poor. In addition, the adhesion strength of the plating film was lower than that of Examples 1 to 3. In Comparative Example 3, since the hydrochloric acid concentration of the electroless plating catalyst solution was too high, the surface of the molded body was roughened more than necessary, and the appearance characteristics of the plating film formed on the surface were deteriorated. It is presumed that the plating film became fragile and the adhesion strength of the plating film decreased. In Comparative Example 4 in which the hydrochloric acid concentration of the electroless plating catalyst solution was 0.5 N, the evaluation result of uneven plating reaction was poor. Further, the adhesion strength of the plating film was slightly lower than that of Examples 1 to 3. In Comparative Example 4, since the hydrochloric acid concentration of the electroless plating catalyst solution was too low, the dissolution of calcium carbonate was insufficient, the amount of palladium chloride adsorbed on the surface of the molded body was small, and the amount of palladium chloride adsorbed on the surface of the molded body. It is presumed that unevenness occurred.

(4)無電解メッキ触媒液浸漬後の成形体の表面観察
実施例1、比較例1及び3において、無電解メッキ触媒液浸漬後の成形体の表面をSEM観察した。
(4) Surface Observation of Molded Body After Immersion in Electroless Plating Catalyst Solution In Example 1, Comparative Examples 1 and 3, the surface of the molded body after immersion in the electroless plating catalyst solution was observed by SEM.

図2に示す、平均粒子径0.2μmの炭酸カルシウム(小粒子径無機粒子)を成形体中に2重量%含む実施例1の成形体の表面には、濃い黒色の小さな点として観察される微細な孔が複数確認された。一方、図3に示す炭酸カルシウムを成形体中に含まない比較例1の成形体の表面には、微細な孔は、ほとんど確認されなかった。実施例1のSEM写真と比較例1のSEM写真との比較から、実施例1の成形体の表面の微細な孔は、炭酸カルシウムが無電解メッキ触媒液に溶解して形成された凹部(孔)だと推測される。また、実施例1及び比較例1の両方の成形体表面に、白色の比較的大きい粒子が多数確認されたが、これらは、成形体中に含まれる平均粒子径3μmのワラストナイト(大粒子径無機粒子)である。ワラストナイトは濃度の高い酸には溶解する場合がある。しかし、実施例1及び比較例1では、比較的低い塩酸濃度(2.1N)の無電解メッキ触媒液を用いたため、ワラストナイトの溶解は進まず、大きな凹部が成形体表面に形成されなかったと推測される。 On the surface of the molded product of Example 1 containing 2% by weight of calcium carbonate (small particle diameter inorganic particles) having an average particle diameter of 0.2 μm shown in FIG. 2, it is observed as small dark black dots. Multiple fine holes were confirmed. On the other hand, on the surface of the molded product of Comparative Example 1 in which the calcium carbonate shown in FIG. 3 was not contained in the molded product, almost no fine pores were confirmed. From the comparison between the SEM photograph of Example 1 and the SEM photograph of Comparative Example 1, the fine pores on the surface of the molded body of Example 1 are recesses (pores) formed by dissolving calcium carbonate in the electroless plating catalyst solution. ) Is presumed. In addition, a large number of relatively large white particles were confirmed on the surfaces of the molded products of both Example 1 and Comparative Example 1, and these were wallastnite (large particles) having an average particle diameter of 3 μm contained in the molded product. Diameter inorganic particles). Wallastonite may dissolve in high concentrations of acid. However, in Example 1 and Comparative Example 1, since the electroless plating catalyst solution having a relatively low hydrochloric acid concentration (2.1N) was used, the dissolution of wallastonite did not proceed and large recesses were not formed on the surface of the molded product. It is presumed that it was.

図4に示す無電解メッキ触媒液の塩酸濃度が3.1Nであった比較例3の成形体表面には、大きな凹部が多数形成されていた。比較例3では、無電解メッキ触媒液の塩酸濃度が高過ぎるため、成形体の表面が必要以上に粗化されたと推測される。また、比較例4では、成形体中に含まれるワラストナイト(大粒子径無機粒子)が無電解メッキ触媒液に溶解し、成形体表面の粗化が促進されたと推測される。 A large number of large recesses were formed on the surface of the molded product of Comparative Example 3 in which the hydrochloric acid concentration of the electroless plating catalyst solution shown in FIG. 4 was 3.1 N. In Comparative Example 3, it is presumed that the surface of the molded product was roughened more than necessary because the hydrochloric acid concentration of the electroless plating catalyst solution was too high. Further, in Comparative Example 4, it is presumed that the wallastnite (large particle diameter inorganic particles) contained in the molded body was dissolved in the electroless plating catalyst solution to promote the roughening of the surface of the molded body.

成形体の表面観察により、実施例1では、成形体中に適当な含有量の炭酸カルシウム(小粒子径無機粒子)を含み、適当な塩酸濃度の無電解メッキ触媒液によってメッキ前処理を行うことにより、成形体の表面を必要以上に粗化して脆弱させることなく、成形体表面に微細な凹部を複数形成できたことが確認できた。これにより、成形体表面におけるメッキ反応ムラが緩和され、また、成形体上に形成される無電解メッキ膜の密着強度及び外観特性が向上したと推測される。 By observing the surface of the molded product, in Example 1, plating pretreatment is performed with an electroless plating catalyst solution containing an appropriate content of calcium carbonate (small particle size inorganic particles) in the molded product and having an appropriate hydrochloric acid concentration. As a result, it was confirmed that a plurality of fine recesses could be formed on the surface of the molded product without making the surface of the molded product unnecessarily roughened and fragile. It is presumed that this alleviated the uneven plating reaction on the surface of the molded product, and improved the adhesion strength and appearance characteristics of the electroless plating film formed on the molded product.

本発明のメッキ成形体の製造方法は、高い密着強度を有すると共に、外観特性にも優れるメッキ膜を有するメッキ成形体を製造できる。したがって、本発明により製造されるメッキ成形体は、高い耐久性が要求される装飾用途にも対応可能である。 The method for producing a plated molded product of the present invention can produce a plated molded product having a plating film having high adhesion strength and excellent appearance characteristics. Therefore, the plated molded product produced by the present invention can also be used for decorative purposes where high durability is required.

Claims (9)

メッキ成形体の製造方法であって、
脂肪族ポリアミドと、平均粒子径が1μm以下であり、酸に可溶な無機粒子とを含み、前記無機粒子の含有量が0.5重量%〜10重量%である成形体を用意することと、
塩化パラジウムと、塩酸とを含み、前記塩酸の濃度が1.0N〜3.0Nである無電解メッキ触媒液を前記成形体に接触させることと、
前記成形体に前記無電解メッキ触媒液を接触させた後、前記成形体の膨潤処理と、前記成形体の表面の洗浄とを同時に施すことと、
前記成形体に前記膨潤処理及び前記洗浄を施した後、前記成形体に無電解メッキ液を接触させて、メッキ膜を形成することとを含み、
前記成形体の表面の洗浄により、前記成形体の表面近傍におけるパラジウム濃度が、0.01mg/dm 〜0.1mg/dm となる製造方法。
It is a method of manufacturing a plated molded product.
To prepare a molded product containing an aliphatic polyamide and inorganic particles having an average particle diameter of 1 μm or less and being soluble in acid, and having an content of the inorganic particles of 0.5% by weight to 10% by weight. ,
An electroless plating catalyst solution containing palladium chloride and hydrochloric acid and having a concentration of hydrochloric acid of 1.0 N to 3.0 N is brought into contact with the molded product.
After the electroless plating catalyst solution is brought into contact with the molded body, the swelling treatment of the molded body and the cleaning of the surface of the molded body are simultaneously performed.
After having been subjected to the swelling treatment and the washing to the molded body, wherein contacting the electroless plating solution in the molded body, looking containing and forming a plating film,
By washing of a surface of the molded body, the manufacturing method palladium concentration in the vicinity of the surface of the molded body, a 0.01mg / dm 2 ~0.1mg / dm 2 .
前記無機粒子が炭酸カルシウムであることを特徴とする請求項1に記載の製造方法。 The production method according to claim 1, wherein the inorganic particles are calcium carbonate. 前記無電解メッキ触媒液中の塩化パラジウムの濃度が、5mg/L〜150mg/Lであることを特徴とする請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the concentration of palladium chloride in the electroless plating catalyst solution is 5 mg / L to 150 mg / L. 前記成形体の膨潤処理及び洗浄として、前記脂肪族ポリアミドのガラス転移点以上の温度の水に前記成形体を接触させることを特徴とする請求項1〜3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the molded product is brought into contact with water having a temperature equal to or higher than the glass transition point of the aliphatic polyamide as the swelling treatment and washing of the molded product. .. 前記成形体に接触させる水の温度が、50〜90℃であることを特徴とする請求項4に記載の製造方法。 The production method according to claim 4, wherein the temperature of the water in contact with the molded product is 50 to 90 ° C. 前記無電解メッキ液が、無電解ニッケルリンメッキ液であることを特徴とする請求項1〜5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the electroless plating solution is an electroless nickel phosphorus plating solution. 前記無電解ニッケルリンメッキ液の温度が、50℃〜80℃であることを特徴とする請求項6に記載の製造方法。 The production method according to claim 6, wherein the temperature of the electroless nickel phosphorus plating solution is 50 ° C to 80 ° C. 前記無電解ニッケルリンメッキ液のpHが4.0〜6.0であることを特徴とする請求項6又は7に記載の製造方法。 The production method according to claim 6 or 7, wherein the pH of the electroless nickel phosphorus plating solution is 4.0 to 6.0. 前記成形体の表面の洗浄により、前記成形体の最表面に吸着した塩化パラジウムが洗い流される請求項1〜8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the palladium chloride adsorbed on the outermost surface of the molded product is washed away by cleaning the surface of the molded product.
JP2016221815A 2016-11-14 2016-11-14 Manufacturing method of plated molded product Active JP6810576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221815A JP6810576B2 (en) 2016-11-14 2016-11-14 Manufacturing method of plated molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221815A JP6810576B2 (en) 2016-11-14 2016-11-14 Manufacturing method of plated molded product

Publications (2)

Publication Number Publication Date
JP2018080354A JP2018080354A (en) 2018-05-24
JP6810576B2 true JP6810576B2 (en) 2021-01-06

Family

ID=62197541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221815A Active JP6810576B2 (en) 2016-11-14 2016-11-14 Manufacturing method of plated molded product

Country Status (1)

Country Link
JP (1) JP6810576B2 (en)

Also Published As

Publication number Publication date
JP2018080354A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP5869153B2 (en) Method for preparing aluminum alloy resin composite and aluminum alloy resin composite obtained thereby
JP5960847B2 (en) Aluminum alloy resin composite and method for preparing the same
JP5969053B2 (en) Aluminum alloy resin composite and preparation method thereof
US8394289B2 (en) Composition for etching treatment of resin molded article
TW201008750A (en) Composite injection molded article of aluminum alloy and resin and method for production thereof
JP2020526658A (en) Articles containing polymers and metal plating
KR100953432B1 (en) Metal coating method for plastic material and modeling plastic material thereof
JP6810576B2 (en) Manufacturing method of plated molded product
JP6671583B2 (en) Metal plating method
JP7005363B2 (en) Manufacturing method of plating film coating and pretreatment liquid
WO2019045047A1 (en) Plating pretreatment method for abs resin surface, plating treatment method for abs resin surface, and abs resin plated product
TWI475132B (en) Surface-treated metal, metal-resin composite and method for preparing the same
JP2016125123A (en) Manufacturing method of compact having plated film
JP2010031306A (en) Method of plating on resin base material
US20110318596A1 (en) High peel strength article comprising a thermoplastic-metal interpenetrated volume
JP6551563B1 (en) Pre-plating method for ABS resin surface, plating method for ABS resin surface, and ABS resin plating product
JP2017036486A (en) Manufacturing method of metal plating compact
JP2019065101A (en) Resin material for plating, plated resin component, method for producing resin material for plating, and method for producing plated resin component
JP4870804B2 (en) Ozone gas treatment method
JPH0627350B2 (en) Method for plating of polyamide resin molded products
JP4372491B2 (en) Method for producing plating-coated member
CN116648527A (en) Ozone acid washing
JP2007191742A (en) Plating method for polylactic acid resin molding
WO2019171741A1 (en) Hydrophilization method for polypropylene resin
JP2022099719A (en) Polypropylene resin composition, polypropylene resin object to be plated, polypropylene resin product having metal layer, method for manufacturing the same, polypropylene resin wiring base material and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201211

R150 Certificate of patent or registration of utility model

Ref document number: 6810576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250