JP7005363B2 - Manufacturing method of plating film coating and pretreatment liquid - Google Patents

Manufacturing method of plating film coating and pretreatment liquid Download PDF

Info

Publication number
JP7005363B2
JP7005363B2 JP2018012860A JP2018012860A JP7005363B2 JP 7005363 B2 JP7005363 B2 JP 7005363B2 JP 2018012860 A JP2018012860 A JP 2018012860A JP 2018012860 A JP2018012860 A JP 2018012860A JP 7005363 B2 JP7005363 B2 JP 7005363B2
Authority
JP
Japan
Prior art keywords
base material
plating film
plating
film coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018012860A
Other languages
Japanese (ja)
Other versions
JP2019131839A (en
Inventor
敦 遊佐
孝一 水戸
寛紀 太田
朗子 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2018012860A priority Critical patent/JP7005363B2/en
Publication of JP2019131839A publication Critical patent/JP2019131839A/en
Application granted granted Critical
Publication of JP7005363B2 publication Critical patent/JP7005363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、メッキ膜被覆体の製造方法及び基材に無電解メッキ触媒を付与するための前処理液に関する。 The present invention relates to a method for producing a plating film coating and a pretreatment liquid for imparting an electroless plating catalyst to a base material.

絶縁性の基材に安価に金属膜を形成する方法として、無電解メッキが知られている。無電解メッキでは、まず、基材表面を粗化し、次に触媒付与処理により基材表面に無電解メッキ触媒を付与する。そして、無電解メッキ触媒を付与した基材を無電解メッキ液に浸漬し、基材表面に無電解メッキ膜を形成する。 Electroless plating is known as an inexpensive method for forming a metal film on an insulating base material. In electroless plating, the surface of the base material is first roughened, and then the electroless plating catalyst is applied to the surface of the base material by a catalyst application treatment. Then, the base material to which the electroless plating catalyst is applied is immersed in the electroless plating solution to form an electroless plating film on the surface of the base material.

触媒付与処理の主な方法として、センシタイザー・アクチベータ法と、キャタリスト・アクセラレータ法の2種類が知られている。センシタイザー・アクチベータ法では、スズコロイドを基材に吸着させた後(センシタイザー)、塩化パラジウム溶液に浸漬して(アクチベータ)、塩化第1スズで塩化パラジウムを還元して金属パラジウムを析出させる。キャタリスト・アクセラレータ法では、パラジウムスズコロイドを基材に吸着させた後(キャタリスト)、濃硫酸等で還元して金属パラジウムを析出させる(アクセラレータ)。これらの従来の触媒付与処理は、実際には、更に多くの工程が必要とされる。例えば、キャタリスト・アクセラレータ法では、基材の表面性向上のためのポストエッチングや、アクセラレータで除去しきれないスズの除去のためのポストアクセラレータが行われている。このため、従来の触媒付与処理では、工程数の削減が求められていた。 Two types are known as the main method of the catalyst application treatment, the sensitizer activator method and the catalyst accelerator method. In the sensitizer-activator method, tin colloid is adsorbed on a substrate (sensitizer), immersed in a palladium chloride solution (activator), and palladium chloride is reduced with stannous chloride to precipitate metallic palladium. In the catalyst / accelerator method, palladium tin colloid is adsorbed on a substrate (catalyst) and then reduced with concentrated sulfuric acid or the like to precipitate metallic palladium (accelerator). These conventional catalyst application treatments actually require more steps. For example, in the catalyst accelerator method, post-etching for improving the surface property of a base material and post-accelerator for removing tin that cannot be completely removed by the accelerator are performed. Therefore, in the conventional catalyst application treatment, it has been required to reduce the number of steps.

更に、従来の触媒付与処理は、以下のような課題も有している。キャタリスト・アクセラレータ法では、触媒であるパラジウムがコロイドであるため、不安定で沈降及び凝集し易い。このため、触媒使用量が多くなる。一方、センシタイザー・アクチベータ法では、触媒であるパラジウムは液中でイオン化しているため安定である。しかし、センシタイザー液は不安定なコロイド溶液であるため、連続処理が難しい。更に、センシタイザー液中のスズコロイドは吸着力が強い。例えば、基材を塩化ビニルで被覆した金属製の治具で保持した状態でセンシタイザー・アクチベータ法を用いて無電解メッキを行うと、メッキ膜を形成する対象である基材のみならず、基材を保持している治具にもメッキ膜が析出してしまう。このため、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要があり、スループット向上の妨げとなっていた。 Further, the conventional catalyst applying treatment also has the following problems. In the catalyst accelerator method, palladium, which is a catalyst, is a colloid, so that it is unstable and easily settles and aggregates. Therefore, the amount of catalyst used increases. On the other hand, in the sensitizer-activator method, palladium, which is a catalyst, is stable because it is ionized in the liquid. However, since the sensitizer solution is an unstable colloidal solution, continuous treatment is difficult. Furthermore, the tin colloid in the sensitizer solution has a strong adsorptive power. For example, when electroless plating is performed using the sensitizer-activator method while the base material is held by a metal jig coated with vinyl chloride, not only the base material on which the plating film is formed but also the base material is formed. The plating film also precipitates on the jig holding the material. Therefore, it is necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment, which hinders the improvement of throughput.

特許文献1では、触媒付与処理における工程数を削減すべく、塩酸等の無機酸含有の腐食剤と、パラジウムイオン等のイオノゲン活性剤と、酢酸等の有機酸とを含む第1溶液で基材を処理する方法が提案されている。特許文献1によれば、第1溶液でポリアミド基板の前処理を行うことで、基板上に良好なメッキ膜が形成される。 In Patent Document 1, in order to reduce the number of steps in the catalyst application treatment, a first solution containing an inorganic acid-containing corrosive agent such as hydrochloric acid, an ionogen activator such as palladium ion, and an organic acid such as acetic acid is used as a base material. A method of processing is proposed. According to Patent Document 1, a good plating film is formed on the substrate by pretreating the polyamide substrate with the first solution.

また、特許文献2では、基材(プラスチック)に対して、エッチング処理、触媒付与増強液の付与、無電解メッキ触媒の付与、及び無電解メッキをこの順に行うことにより、プラスチック表面に十分に密着したメッキ膜を形成でき、且つ治具にメッキ膜を析出させない方法が開示されている。触媒付与増強液は、基材(プラスチック)表面に露出した官能基に選択吸着性のある、窒素原子を含有する化合物を含有する。 Further, in Patent Document 2, the base material (plastic) is sufficiently adhered to the plastic surface by performing the etching treatment, the application of the catalyst-imparting enhancer, the application of the electroless plating catalyst, and the electroless plating in this order. A method is disclosed in which a plated film can be formed and the plating film is not deposited on a jig. The catalyst-imparting enhancer contains a compound containing a nitrogen atom, which is selectively adsorbable to the functional group exposed on the surface of the substrate (plastic).

特許第4109615号Patent No. 4109615 特開2008-31513号公報Japanese Unexamined Patent Publication No. 2008-31513

特許文献1に開示される第1溶液は、触媒をパラジウムイオンとして含むため、安定な溶液だと推測される。しかし、本発明者らの検討によれば、パラジウムイオンは、基材に対する吸着性が低いことがわかっている。例えば、ポリアミド等の成形体(基材)の表面は、場所により結晶性や樹脂密度が異なる場合がある。この場合、基材上においてパラジウムイオンの吸着ムラ、更に、これに起因する無電解メッキの反応にムラが生じる。この結果、均一で密着強度の高いメッキ膜を得ることが難しくなる。この現象は、特に複雑形状又は大型形状の基材において顕著である。更に、複雑形状又は大型形状の基材に無電解メッキを行う場合、無電解メッキの反応ムラを抑制するため、エアバブリング等により無電解メッキ液を激しく攪拌させながら無電解メッキが行われる。しかし、この方法では、基材からは触媒であるパラジウムイオンの脱落が発生し、むしろ無電解メッキの反応ムラが促進されてしまう。 Since the first solution disclosed in Patent Document 1 contains a catalyst as palladium ions, it is presumed to be a stable solution. However, according to the studies by the present inventors, it is known that palladium ions have low adsorptivity to a substrate. For example, the surface of a molded product (base material) such as polyamide may have different crystallinity and resin density depending on the location. In this case, uneven adsorption of palladium ions on the substrate and further unevenness in the reaction of electroless plating due to this occur. As a result, it becomes difficult to obtain a uniform plating film having high adhesion strength. This phenomenon is particularly remarkable in a substrate having a complicated shape or a large shape. Further, when electroless plating is performed on a substrate having a complicated shape or a large shape, electroless plating is performed while violently stirring the electroless plating solution by air bubbling or the like in order to suppress the reaction unevenness of the electroless plating. However, in this method, palladium ions, which are catalysts, are shed from the substrate, and rather, the reaction unevenness of electroless plating is promoted.

また、特許文献2には、基材を保持する治具にメッキ膜を析出させないメッキ方法が開示されているが、触媒付与処理には、従来のキャタリスト・アクセラレータ法が用いられている。したがって、工程数の多さ、処理液の不安定さ等の従来の触媒付与処理における課題を解決するに到っていない。 Further, Patent Document 2 discloses a plating method in which a plating film is not deposited on a jig holding a base material, but a conventional catalyst accelerator method is used for the catalyst application treatment. Therefore, the problems in the conventional catalyst-imparting treatment such as the large number of steps and the instability of the treatment liquid have not been solved yet.

本発明は、これらの課題を解決するものであり、安定な処理液を用いた簡易な方法で触媒付与処理を行い、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成でき、更に、治具の取り換えも不要なメッキ膜被覆体の製造方法を提供する。 The present invention solves these problems, and the catalyst application treatment is performed by a simple method using a stable treatment liquid, and even on a substrate having a complicated shape or a large shape, there is no uniform and high adhesion strength. Provided is a method for manufacturing a plating film coating film which can form an electrolytic plating film and does not require replacement of a jig.

本発明の第1の態様に従えば、メッキ膜被覆体の製造方法であって、基材の表面の少なくとも一部を粗化及び/又は膨潤させることと、粗化及び/又は膨潤した基材に、重量平均分子量1,000以上の窒素含有ポリマーを含む前処理液を接触させることと、前記前処理液を接触させた基材を洗浄することと、前記洗浄した基材に、金属塩を含むメッキ触媒液を接触させ、前記金属塩由来の金属イオンを前記基材に吸着させることと、前記メッキ触媒液を接触させた、前記金属イオンが吸着している基材に、無電解メッキ液を接触させることとを含むメッキ膜被覆体の製造方法が提供される。 According to the first aspect of the present invention, there is a method for producing a plating film coating, in which at least a part of the surface of a base material is roughened and / or swelled, and a roughened and / or swollen base material is used. A pretreatment liquid containing a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more is brought into contact with the base material, the base material to which the pretreatment liquid is brought into contact is washed, and a metal salt is added to the washed base material. Electroless plating is performed on the base material to which the metal ions derived from the metal salt are adsorbed by contacting the containing plating catalyst liquid and the metal ions adsorbing to the base material to which the plating catalyst liquid is in contact. A method for producing a plating film coating including contacting a liquid is provided.

本態様において、前記基材の表面の少なくとも一部にレーザー光を照射することにより、前記基材の表面の少なくとも一部を粗化してもよい。前記基材が脂肪族ポリアミドを含む場合には、前記基材の表面の少なくとも一部を塩酸に接触させることにより、前記基材の表面の少なくとも一部を粗化及び/又は膨潤させてもよい。また、前記基材がABS樹脂を含む場合には、前記基材の表面の少なくとも一部を過マンガン酸又はクロム酸に接触させることにより、前記基材の表面の少なくとも一部を粗化及び/又は膨潤させてもよい。 In this embodiment, at least a part of the surface of the base material may be roughened by irradiating at least a part of the surface of the base material with a laser beam. When the base material contains an aliphatic polyamide, at least a part of the surface of the base material may be roughened and / or swelled by contacting at least a part of the surface of the base material with hydrochloric acid. .. When the base material contains ABS resin, at least a part of the surface of the base material is roughened and / or by contacting at least a part of the surface of the base material with permanganate or chromic acid. Alternatively, it may be inflated.

前記窒素含有ポリマーが、ポリエチレンイミンであってもよい。前記窒素含有ポリマーの重量平均分子量が、1,000~100,000であってもよく、70,000~100,000であってもよい。また、前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/Lであってもよい。 The nitrogen-containing polymer may be polyethyleneimine. The weight average molecular weight of the nitrogen-containing polymer may be 1,000 to 100,000 or 70,000 to 100,000. Further, the blending amount of the nitrogen-containing polymer in the pretreatment liquid may be 0.01 g / L to 100 g / L.

本発明の第2の態様に従えば、メッキ膜被覆体の製造方法であって、基材の表面の少なくとも一部を粗化及び/又は膨潤させることと、粗化及び/又は膨潤した基材に、重量平均分子量1,000以上の窒素含有ポリマーを含む前処理液を接触させることと、前記前処理液を接触させた基材を洗浄することと、前記洗浄した基材に、金属塩を含むメッキ触媒液を接触させることと、前記メッキ触媒液を接触させた基材に、無電解メッキ液を接触させることとを含み、前記前処理液が、次亜リン酸カルシウムである還元剤を更に含む、メッキ膜被覆体の製造方法が提供される。
本態様において、前記前処理液中の前記還元剤の配合量が、1g/L~100g/Lであってもよい。
According to the second aspect of the present invention, in the method for producing a plating film coating, at least a part of the surface of the base material is roughened and / or swelled, and the roughened and / or swollen base material is used. A pretreatment liquid containing a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more is brought into contact with the base material, the base material to which the pretreatment liquid is brought into contact is washed, and a metal salt is added to the washed base material. The pretreatment liquid further contains a reducing agent which is calcium hypophosphite. , A method for manufacturing a plating film coating is provided.
In this embodiment, the blending amount of the reducing agent in the pretreatment liquid may be 1 g / L to 100 g / L.

前記メッキ触媒液の金属塩が、塩化パラジウムであってもよい。また、前記無電解メッキ液が、次亜リン酸ナトリウムを含む無電解ニッケルメッキ液であってもよい。 The metal salt of the plating catalyst solution may be palladium chloride. Further, the electroless plating solution may be an electroless nickel plating solution containing sodium hypophosphite.

前記無電解メッキ液を撹拌させながら前記基材に接触させてもよい。前記基材を治具で保持した状態で、前記基材及び前記治具の両方に、前記前処理液を接触させ、前記洗浄を行い、前記メッキ触媒液を接触させ、前記無電解メッキ液を接触させてもよい。 The electroless plating solution may be brought into contact with the base material while being stirred. With the base material held by a jig, the pretreatment liquid is brought into contact with both the base material and the jig to perform the cleaning, and the plating catalyst liquid is brought into contact with the electroless plating liquid. May be contacted.

本発明の第の態様に従えば、基材に無電解メッキ触媒を付与するための前処理液であって、重量平均分子量1,000以上の窒素含有ポリマーと、水と、次亜リン酸カルシウムである還元剤とを含む前処理液が提供される。 According to the third aspect of the present invention, it is a pretreatment liquid for imparting an electroless plating catalyst to a substrate, and is composed of a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, water, and calcium hypophosphite. A pretreatment solution containing a reducing agent is provided.

本発明のメッキ膜被覆体の製造方法は、安定な処理液を用いた簡易な方法で触媒付与処理を行い、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成できる。また、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要がないため、スループットを向上できる。 In the method for producing a plating film coating film of the present invention, a catalyst is applied by a simple method using a stable treatment liquid, and even on a substrate having a complicated shape or a large shape, electroless plating with uniform and high adhesion strength is performed. A film can be formed. Further, since it is not necessary to replace the jig for holding the base material between the catalyst application treatment and the plating treatment, the throughput can be improved.

図1は、第1の実施形態のメッキ膜被覆体の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a plating film covering body according to the first embodiment. 図2は、第2の実施形態のメッキ膜被覆体の製造方法を示すフローチャートである。FIG. 2 is a flowchart showing a method of manufacturing the plating film covering body of the second embodiment.

[第1の実施形態]
第1の実施形態として、図1に示すフローチャートに従ってメッキ膜被覆体の製造方法について説明する。本実施形態のメッキ膜被覆体とは、基材の表面の少なくとも一部に、無電解メッキ膜が形成されている部材(部品)である。
[First Embodiment]
As the first embodiment, a method for manufacturing the plating film coating body will be described according to the flowchart shown in FIG. The plating film covering body of the present embodiment is a member (part) in which an electroless plating film is formed on at least a part of the surface of the base material.

(1)基材の粗化及び/又は膨潤
まず、基材の表面の少なくとも一部を粗化及び/又は膨潤させる(図1のステップS1)。
(1) Roughening and / or swelling of the base material First, at least a part of the surface of the base material is roughened and / or swelled (step S1 in FIG. 1).

基材は、市販品を用いてもよいし、又は汎用の方法により、基材を構成する材料を所望の形状に成形してもよい。基材の材料は、特に限定されず、例えば、樹脂、ガラス、金属、セラミック、木材等を用いることができる。樹脂としては、熱可塑性樹脂、熱硬化性樹脂が挙げられる。例えば、脂肪族ポリアミドは、吸水性が高いため、無電解メッキ液が浸透し易くメッキ膜が安定して成長するという利点を有する。更に、本発明者らは、脂肪族ポリアミドが、本実施形態において無電解メッキ触媒として用いる金属塩由来の金属イオンを吸着し易いことを見出した。脂肪族ポリアミドは、芳香環を有していなければ特に限定されず、例えば、ナイロン6(PA6)、ナイロン66(PA66)、ナイロン12(PA12)、ナイロン11(PA11)、ナイロン6・66共重合体、及びこれらを共重合化又はアロイ化した複合材料、並びに非晶質ナイロン等を用いることができる。中でも、メッキ膜を形成し易いという観点から、吸水性が高く膨潤し易いナイロン6及びナイロン66が好ましく、ナイロン6がより好ましい。また、上述した脂肪族ポリアミドと、ポリアミド以外の熱可塑性樹脂を共重合化又はアロイ化した複合材料を用いてもよい。このような複合材料としては、例えば、ナイロンとポリプロピレンのポリマーアロイ(PA/PP)や、ABS樹脂やポリカーボネート等とナイロンとのポリマーアロイが挙げられる。これらの樹脂は、単独で用いても、二種類以上を混合して用いてもよい。 As the base material, a commercially available product may be used, or the material constituting the base material may be molded into a desired shape by a general-purpose method. The material of the base material is not particularly limited, and for example, resin, glass, metal, ceramic, wood and the like can be used. Examples of the resin include thermoplastic resins and thermosetting resins. For example, since the aliphatic polyamide has high water absorption, it has an advantage that the electroless plating solution easily permeates and the plating film grows stably. Furthermore, the present inventors have found that the aliphatic polyamide easily adsorbs metal ions derived from a metal salt used as an electroless plating catalyst in the present embodiment. The aliphatic polyamide is not particularly limited as long as it does not have an aromatic ring, and for example, nylon 6 (PA6), nylon 66 (PA66), nylon 12 (PA12), nylon 11 (PA11), and nylon 6.66 co-weight. Combined materials, composite materials obtained by copolymerizing or alloying these, amorphous nylon, and the like can be used. Of these, nylon 6 and nylon 66, which have high water absorption and easily swell, are preferable, and nylon 6 is more preferable, from the viewpoint of easily forming a plating film. Further, a composite material obtained by copolymerizing or alloying the above-mentioned aliphatic polyamide with a thermoplastic resin other than polyamide may be used. Examples of such a composite material include a polymer alloy of nylon and polypropylene (PA / PP) and a polymer alloy of ABS resin, polycarbonate and the like with nylon. These resins may be used alone or in combination of two or more.

また、基材としては、例えば、ナイロン6T(PA6T)、ナイロン9T(PA9T)等の半芳香族ポリアミド、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリイミド等の耐熱性有する熱可塑性樹脂(耐熱樹脂)を用いることができる。これらの耐熱樹脂を含む基材は、ハンダリフロー耐性を有し、更に、高耐久性、高耐熱性、耐薬品性も有する。また、メッキ膜被覆体にハンダリフロー耐性が要求されない場合には、汎用エンプラであるABS樹脂、ポリカーボネート(PC)、ABS樹脂とPCとのポリマーアロイ(ABS/PC)、ポリプロピレン等を用いることができる。寸法安定性や剛性向上の観点から、これらの樹脂は、ガラスフィラーやミネラルフィラー等の無機フィラーを含有してもよい。また、これらの樹脂は、単独で用いてもよいし、2種類以上を混合して用いてもよい。また、基材は、これらの樹脂の発泡成形体であってもよい。また、基材としては、放熱性のある金属を用いることもでき、例えば、鉄、銅、アルミニウム、チタン、マグネシウム、ステンレス鋼(SUS)等が挙げられる。中でも、軽量化、放熱性及びコストの観点から、マグネシウム、アルミニウムを用いることが好ましい。これらの金属は、単独で用いてもよいし、2種類以上を混合して用いてもよい。 Further, as the base material, for example, semi-aromatic polyamide such as nylon 6T (PA6T) and nylon 9T (PA9T), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyetheretherketone (PEEK), polyimide and the like can be used. A thermoplastic resin having heat resistance (heat resistant resin) can be used. The base material containing these heat-resistant resins has solder reflow resistance, and also has high durability, high heat resistance, and chemical resistance. When the plating film coating is not required to have solder reflow resistance, general-purpose engineering plastics such as ABS resin, polycarbonate (PC), polymer alloy of ABS resin and PC (ABS / PC), polypropylene and the like can be used. .. From the viewpoint of improving dimensional stability and rigidity, these resins may contain an inorganic filler such as a glass filler or a mineral filler. Further, these resins may be used alone or in combination of two or more. Further, the base material may be a foam molded product of these resins. Further, as the base material, a metal having heat dissipation can be used, and examples thereof include iron, copper, aluminum, titanium, magnesium, and stainless steel (SUS). Above all, it is preferable to use magnesium and aluminum from the viewpoint of weight reduction, heat dissipation and cost. These metals may be used alone or in combination of two or more.

基材の粗化及び/又は膨潤により、基材の表面において、例えば、微細な凹凸が形成される、基材を形成する材料の化学結合が切断される、又は基材を形成する材料の分子間距離が広がる等により硬度が低下する等の変化が生じる。これにより、後工程で用いる窒素含有ポリマー、水、無電解メッキ触媒の基材への吸着及び浸透が促進され、この結果、基材の粗化及び/又は膨潤した部分のメッキ反応性が向上する。尚、基材の粗化と膨潤は、それぞれ単独で生じる場合もあるし、同時に生じる場合もある。 Roughening and / or swelling of the substrate causes, for example, fine irregularities to be formed on the surface of the substrate, chemical bonds of the material forming the substrate to be broken, or molecules of the material forming the substrate. Changes such as a decrease in hardness occur due to an increase in the distance. This promotes the adsorption and permeation of the nitrogen-containing polymer, water, and electroless plating catalyst used in the subsequent step into the substrate, and as a result, the roughening and / or the plating reactivity of the swollen portion of the substrate is improved. .. The roughening and swelling of the base material may occur independently or at the same time.

基材の粗化及び/又は膨潤は、任意の方法で行うことができ、例えば、レーザー光照射(レーザー描画)、化学エッチング、ドライエッチング、酸処理、サンドブラスト、研磨用粒子を含むスラリー状の液体を高速で噴射するウエットブラスト等により行うことができる。また、UV照射やプラズマ照射を用いて、基材を形成する材料の化学結合を切断してもよい。回路など微細なメッキ配線を形成する場合には、レーザー光照射により基材の粗化を行うことが好ましい。 The roughening and / or swelling of the substrate can be performed by any method, for example, a slurry-like liquid containing laser light irradiation (laser drawing), chemical etching, dry etching, acid treatment, sandblasting, and polishing particles. Can be performed by wet blasting or the like in which is jetted at high speed. Further, UV irradiation or plasma irradiation may be used to break the chemical bond of the material forming the base material. When forming fine plated wiring such as a circuit, it is preferable to roughen the base material by irradiating with laser light.

また、基材を粗化及び/又は膨潤させる方法は、基材の種類に応じて選択することが好ましい。例えば、基材がポリアミド樹脂を含む場合、塩酸、硫酸、硝酸等の酸を基材に接触させてもよい。酸としては、塩酸が好ましく、1~3Nの塩酸がより好ましい。また、例えば、基材がABS樹脂又はPC/ABS樹脂(PCとABS樹脂とのポリマーアロイ)を含む場合、過マンガン酸又はクロム酸により基材を化学エッチングしてもよい。ブタジエン成分が溶解し、基材表面に微細な凹凸を形成できる。また、例えば、基材が、金属やセラミック等の無機材料、又は木材である場合、サンドブラスト、ウエットブラスト等により、基材を粗化してもよい。 Further, the method for roughening and / or swelling the base material is preferably selected according to the type of the base material. For example, when the base material contains a polyamide resin, an acid such as hydrochloric acid, sulfuric acid, or nitric acid may be brought into contact with the base material. As the acid, hydrochloric acid is preferable, and 1 to 3N hydrochloric acid is more preferable. Further, for example, when the base material contains ABS resin or PC / ABS resin (polymer alloy of PC and ABS resin), the base material may be chemically etched with permanganic acid or chromic acid. The butadiene component is dissolved and fine irregularities can be formed on the surface of the base material. Further, for example, when the base material is an inorganic material such as metal or ceramic, or wood, the base material may be roughened by sandblasting, wet blasting, or the like.

粗化及び/又は膨潤は、基材の全表面に行ってもよいし、基材表面の一部のみに行ってもよい。基材の全表面を粗化及び/又は膨潤した場合、基材の全表面に無電解メッキ膜を形成できる。基材表面の一部のみを粗化及び/又は膨潤した場合には、粗化及び/又は膨潤した部分のみに、選択的に無電解メッキ膜を形成できる。例えば、レーザー光照射により、基材表面の一部のみを粗化できる。また、例えば、ポリプロピレン(PP)から形成される第1部分と、ポリアミドとポリプロピレンとのポリマーアロイ(PA/PP)から形成される第2部分とからなる2色成形体である基材を用意し、塩酸を基材に接触させてもよい。ポリプロピレンから形成される第1部分は、塩酸により粗化及び膨潤しないため、第2部分のみを粗化及び/又は膨潤させることができる。 Roughening and / or swelling may be performed on the entire surface of the substrate or only on a part of the surface of the substrate. When the entire surface of the substrate is roughened and / or swollen, an electroless plating film can be formed on the entire surface of the substrate. When only a part of the surface of the base material is roughened and / or swollen, an electroless plating film can be selectively formed only on the roughened and / or swollen part. For example, only a part of the surface of the base material can be roughened by laser light irradiation. Further, for example, a base material which is a two-color molded body composed of a first portion formed of polypropylene (PP) and a second portion formed of a polymer alloy (PA / PP) of polyamide and polypropylene is prepared. , Hydrochloric acid may be brought into contact with the substrate. Since the first portion formed of polypropylene is not roughened and swollen by hydrochloric acid, only the second portion can be roughened and / or swollen.

(2)触媒付与の前処理
次に、基材に無電解メッキ触媒を付与するための前処理として、重量平均分子量1,000以上の窒素含有ポリマーを含む前処理液を基材に接触させる(図1のステップS2)。
(2) Pretreatment for catalyst application Next, as a pretreatment for imparting an electroless plating catalyst to the substrate, a pretreatment liquid containing a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more is brought into contact with the substrate (). Step S2 in FIG. 1).

窒素含有ポリマーは、後工程で用いる無電解メッキ触媒である金属塩由来の金属イオンを吸着可能なポリマーであり、例えば、ポリアクリルアミド、ポリアリルアミン、ポリエチレンイミン等を用いることができ、中でもポリエチレンイミンが好ましい。ポリエチレンイミンは、1級、2級、3級のアミンを含み、分岐構造を有する反応性に優れたポリマーであり、金属イオンである無電解メッキ触媒を吸着する能力が高い。 The nitrogen-containing polymer is a polymer capable of adsorbing metal ions derived from a metal salt which is a electroless plating catalyst used in a subsequent step. For example, polyacrylamide, polyallylamine, polyethyleneimine and the like can be used, among which polyethyleneimine is used. preferable. Polyethyleneimine contains primary, secondary and tertiary amines, is a highly reactive polymer with a branched structure, and has a high ability to adsorb electroless plating catalysts, which are metal ions.

窒素含有ポリマーの重量平均分子量は、1,000以上である。窒素含有ポリマーは、基材の粗化及び/又は膨潤した部分に吸着及び/又は浸透する。そして、発明者らの検討によれば、窒素含有ポリマーの重量平均分子量を1,000以上とすることにより、後工程である洗浄工程(図1のステップS3)を経ても、粗化及び/又は膨潤した部分から窒素含有ポリマーが脱離し難いことが明らかになった。一方、窒素含有ポリマーの重量平均分子量が1,000未満であると、後工程である洗浄工程(図1のステップS3)において窒素含有ポリマーの脱離が進み、メッキ反応のムラが生じる虞がある。窒素含有ポリマーの基材からの脱離を更に抑制する観点から、窒素含有ポリマーの重量平均分子量は、例えば、70,000以上が好ましい。また、窒素含有ポリマーの重量平均分子量が大きすぎると、窒素含有ポリマーが基材の粗化及び/又は膨潤した部分に吸着及び/又は浸透し難くなり、基材のメッキ反応性が低下する虞があるが、一般的に市販されている重量平均分子量100,000程度の窒素含有ポリマーであれば、本実施形態の効果を奏する。したがって、実質的な観点から、窒素含有ポリマーの重量平均分子量は、例えば、100,000以下である。 The weight average molecular weight of the nitrogen-containing polymer is 1,000 or more. The nitrogen-containing polymer adsorbs and / or penetrates the roughened and / or swollen portion of the substrate. Then, according to the study by the inventors, by setting the weight average molecular weight of the nitrogen-containing polymer to 1,000 or more, roughening and / or roughening and / or even through a washing step (step S3 in FIG. 1) which is a subsequent step. It became clear that the nitrogen-containing polymer was difficult to desorb from the swollen portion. On the other hand, if the weight average molecular weight of the nitrogen-containing polymer is less than 1,000, the nitrogen-containing polymer may be desorbed in the subsequent cleaning step (step S3 in FIG. 1), resulting in uneven plating reaction. .. From the viewpoint of further suppressing the desorption of the nitrogen-containing polymer from the substrate, the weight average molecular weight of the nitrogen-containing polymer is preferably 70,000 or more, for example. Further, if the weight average molecular weight of the nitrogen-containing polymer is too large, it becomes difficult for the nitrogen-containing polymer to be adsorbed and / or permeated into the roughened and / or swollen portion of the base material, and the plating reactivity of the base material may decrease. However, a nitrogen-containing polymer having a weight average molecular weight of about 100,000, which is generally commercially available, is effective in this embodiment. Therefore, from a substantial point of view, the weight average molecular weight of the nitrogen-containing polymer is, for example, 100,000 or less.

前処理液中の窒素含有ポリマーの配合量(P)は、例えば、0.01g/L~100g/L、2g/L~50g/L、10g/L~50g/Lである。尚、窒素含有ポリマー及び前処理液の比重がほぼ等しいため、配合量(P)は、例えば、0.001重量%~10重量%、0.2重量%~5重量%、1重量%~5重量%である。無電解メッキ触媒として用いる金属イオンは水中で安定であるため、基材表面に吸着し難い。前処理液中の窒素含有ポリマーの配合量(P)を上記範囲内とすることで、金属イオンを基材上に吸着させるのに十分な量の窒素含有ポリマーを基材に付与できる。また、前処理液中の窒素含有ポリマーの配合量(P)を上記範囲内とすることで、洗浄工程(図1のステップS3)を経ても、粗化及び/又は膨潤した部分に十分な量の窒素含有ポリマーを残存させることができる。更に、前処理液中に窒素含有ポリマーが析出することを抑制し、前処理液を安定に保つことができる。 The blending amount (P) of the nitrogen-containing polymer in the pretreatment liquid is, for example, 0.01 g / L to 100 g / L, 2 g / L to 50 g / L, 10 g / L to 50 g / L. Since the specific gravity of the nitrogen-containing polymer and the pretreatment liquid are almost the same, the blending amount (P) is, for example, 0.001% by weight to 10% by weight, 0.2% by weight to 5% by weight, 1% by weight to 5. It is% by weight. Since the metal ions used as the electroless plating catalyst are stable in water, they are not easily adsorbed on the surface of the substrate. By setting the blending amount (P) of the nitrogen-containing polymer in the pretreatment liquid within the above range, a sufficient amount of nitrogen-containing polymer can be imparted to the substrate to adsorb the metal ions on the substrate. Further, by setting the blending amount (P) of the nitrogen-containing polymer in the pretreatment liquid within the above range, a sufficient amount for the roughened and / or swollen portion even after the washing step (step S3 in FIG. 1). Nitrogen-containing polymer can be retained. Further, it is possible to suppress the precipitation of the nitrogen-containing polymer in the pretreatment liquid and keep the pretreatment liquid stable.

窒素含有ポリマーを溶解させる前処理液の溶媒は、特に限定されず、窒素含有ポリマーの種類に応じて選択でき、例えば、水;エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトン、エチルメチルケトン等の有機溶媒;これらの混合溶媒が挙げられる。中でも、前処理液の溶媒は水であることが好ましい。この場合、窒素含有ポリマーは水溶性ポリマーであり、前処理液は、窒素含有ポリマーの水溶液であることが好ましい。また、溶媒の全てが水であってもよいし、溶媒の主成分が水であって、更にアルコール等の水溶性有機溶媒を含んでもよい。 The solvent of the pretreatment liquid for dissolving the nitrogen-containing polymer is not particularly limited and can be selected depending on the type of the nitrogen-containing polymer. For example, water; ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone and the like. Organic solvent; examples thereof include a mixed solvent thereof. Above all, the solvent of the pretreatment liquid is preferably water. In this case, the nitrogen-containing polymer is preferably a water-soluble polymer, and the pretreatment liquid is preferably an aqueous solution of the nitrogen-containing polymer. Further, all of the solvent may be water, or the main component of the solvent may be water and may further contain a water-soluble organic solvent such as alcohol.

前処理液は、還元剤を更に含んでもよい。前処理液中の還元剤は、窒素含有ポリマーと共に、基材の粗化及び/又は膨潤した部分に吸着及び/又は浸透する。そして、後工程で用いる金属イオンである無電解メッキ触媒を還元すると共に、基材への吸着を促進すると推測される。還元剤としては、例えば、次亜リン酸カルシウム、次亜リン酸ナトリウムを用いることができ、中でも次亜リン酸カルシウムが好ましい。次亜リン酸カルシウムは、水に対する溶解度が比較的低いため、基材の粗化及び/又は膨潤した部分に吸着及び/又は浸透し易いと推測される。 The pretreatment liquid may further contain a reducing agent. The reducing agent in the pretreatment liquid, together with the nitrogen-containing polymer, adsorbs and / or permeates the roughened and / or swollen portion of the substrate. Then, it is presumed that the electroless plating catalyst, which is a metal ion used in the subsequent process, is reduced and the adsorption to the substrate is promoted. As the reducing agent, for example, calcium hypophosphite and sodium hypophosphite can be used, and calcium hypophosphite is particularly preferable. Since calcium hypophosphite has a relatively low solubility in water, it is presumed that it easily adsorbs and / or permeates into the roughened and / or swollen portion of the substrate.

前処理液が還元剤を含有する場合、前処理液中の還元剤の配合量(R)は、例えば、1g/L~100g/L、10g/L~100g/L、10g/L~50g/Lである。前処理液中の窒素含有ポリマーの配合量(P)が上記範囲内であると、十分な量の還元剤を基材に付与でき、且つ前処理液中に還元剤が析出することを抑制し、前処理液を安定に保つことができる。 When the pretreatment liquid contains a reducing agent, the blending amount (R) of the reducing agent in the pretreatment liquid is, for example, 1 g / L to 100 g / L, 10 g / L to 100 g / L, 10 g / L to 50 g /. It is L. When the blending amount (P) of the nitrogen-containing polymer in the pretreatment liquid is within the above range, a sufficient amount of the reducing agent can be applied to the substrate, and the precipitation of the reducing agent in the pretreatment liquid is suppressed. , The pretreatment liquid can be kept stable.

前処理液は、必要に応じて、界面活性剤等の汎用の添加剤を更に含んでもよい。前処理液は、窒素含有ポリマー、溶媒、更に必要に応じて、還元剤、汎用の添加剤を任意の方法により混合して調製できる。 The pretreatment liquid may further contain a general-purpose additive such as a surfactant, if necessary. The pretreatment liquid can be prepared by mixing a nitrogen-containing polymer, a solvent, and if necessary, a reducing agent and a general-purpose additive by any method.

基材に前処理液を接触させる方法は任意であり、例えば、前処理液に基材全体を浸漬させてもよい。また、基材の一部分のみに前処理液を接触させてもよいが、この場合、基材の粗化及び/又は膨潤した部分を含む領域に前処理液を接触させる。また前処理液の温度及び前処理時間(基材に前処理液を接触させる時間)は、特に制限されない。前処理液の温度は、例えば、室温、又は、10℃~50℃であり、前処理時間は、例えば、1~10分である。前処理液の温度、及び前処理時間が上記範囲であれば、基材に十分な量の窒素含有ポリマーを吸着させることができ、また、前処理液の浸透による基材の劣化を抑制できる。 The method of bringing the pretreatment liquid into contact with the base material is arbitrary, and for example, the entire base material may be immersed in the pretreatment liquid. Further, the pretreatment liquid may be brought into contact with only a part of the base material, but in this case, the pretreatment liquid is brought into contact with the region including the roughened and / or swollen part of the base material. Further, the temperature of the pretreatment liquid and the pretreatment time (time for bringing the pretreatment liquid into contact with the substrate) are not particularly limited. The temperature of the pretreatment liquid is, for example, room temperature or 10 ° C to 50 ° C, and the pretreatment time is, for example, 1 to 10 minutes. When the temperature of the pretreatment liquid and the pretreatment time are within the above ranges, a sufficient amount of nitrogen-containing polymer can be adsorbed on the base material, and deterioration of the base material due to permeation of the pretreatment liquid can be suppressed.

(3)基材の洗浄
次に、前処理液を接触させた基材を洗浄する(図1のステップS3)。基材の洗浄により、基材の粗化及び/又は膨潤処理を施していない部分、即ち、無電解メッキ膜を形成しない部分に付着している窒素含有ポリマーを除去できる。また、基材を保持している治具に付着した窒素含有ポリマーを除去し、治具上のメッキ膜の形成を抑制できる。
(3) Cleaning of the base material Next, the base material to which the pretreatment liquid is in contact is washed (step S3 in FIG. 1). By cleaning the substrate, the nitrogen-containing polymer adhering to the portion of the substrate that has not been roughened and / or swelled, that is, the portion that does not form the electroless plating film can be removed. In addition, the nitrogen-containing polymer adhering to the jig holding the base material can be removed, and the formation of a plating film on the jig can be suppressed.

洗浄は、例えば、前処理液に含まれる窒素含有ポリマーを溶解可能な液体(洗浄液)に基材を浸漬することによって行うことができる。洗浄液としては、上述の前処理液の溶媒として挙げたものを用いることができ、水であることが好ましい。即ち、基材の洗浄として、基材を水洗することが好ましい。また、洗浄効果を上げるために、基材の洗浄中、基材を浸漬した洗浄液を攪拌してもよい。ここで、洗浄液の撹拌とは、例えば、エアバブリング、ポンプ等により洗浄液を撹拌、循環、流動等させることを意味する。 The cleaning can be performed, for example, by immersing the base material in a liquid (cleaning liquid) capable of dissolving the nitrogen-containing polymer contained in the pretreatment liquid. As the cleaning liquid, those listed as the solvent of the above-mentioned pretreatment liquid can be used, and water is preferable. That is, it is preferable to wash the base material with water as the washing of the base material. Further, in order to improve the cleaning effect, the cleaning liquid in which the substrate is immersed may be stirred during the cleaning of the substrate. Here, stirring the cleaning liquid means, for example, stirring, circulating, flowing, etc. the cleaning liquid by air bubbling, a pump, or the like.

洗浄液の温度及び洗浄時間(基材を洗浄液に浸漬している時間)は、特に制限されない。洗浄液の温度は、例えば、室温、又は、10℃~40℃であり、洗浄時間は、例えば、1~20分である。 The temperature of the cleaning liquid and the cleaning time (time during which the substrate is immersed in the cleaning liquid) are not particularly limited. The temperature of the cleaning liquid is, for example, room temperature or 10 ° C. to 40 ° C., and the cleaning time is, for example, 1 to 20 minutes.

(4)無電解メッキ触媒の付与
次に、基材に金属塩を含むメッキ触媒液を接触させる(図1のステップS4)。これにより、基材の粗化及び/又は膨潤した部分に、無電解メッキ触媒である金属塩由来の金属イオンが吸着する。
(4) Addition of electroless plating catalyst Next, a plating catalyst liquid containing a metal salt is brought into contact with the base material (step S4 in FIG. 1). As a result, metal ions derived from the metal salt, which is an electroless plating catalyst, are adsorbed on the roughened and / or swollen portion of the base material.

無電解メッキ触媒となるパラジウム等の金属イオンは、そのままでは樹脂等の基材表面に吸着し難い。そのため、センシタイザー・アクチベータ法やキャタリスト・アクセラレータ法等の従来の触媒付与処理では、パラジウムイオンを還元して酸化数0(ゼロ)の金属パラジウムとして基材に吸着させる。本実施形態では、基材の粗化及び/又は膨潤した部分に、金属イオンを吸着可能な窒素含有ポリマーが存在する。この窒素含有ポリマーにより、基材の粗化及び/又は膨潤した部分に、金属イオンを吸着させることができる。 Metal ions such as palladium, which is an electroless plating catalyst, are difficult to be adsorbed on the surface of a substrate such as resin as it is. Therefore, in the conventional catalyst application treatment such as the sensitizer activator method and the catalyst accelerator method, the palladium ion is reduced and adsorbed on the substrate as metallic palladium having an oxidation number of 0 (zero). In this embodiment, a nitrogen-containing polymer capable of adsorbing metal ions is present in the roughened and / or swollen portion of the substrate. With this nitrogen-containing polymer, metal ions can be adsorbed on the roughened and / or swollen portion of the substrate.

更に、無電解メッキ触媒は、通常、酸化数0(ゼロ)の金属状態において触媒活性を示す。このため、従来の触媒付与処理では、パラジウムを基材に吸着させつつ還元する。したがって、従来は、金属状態でないパラジウムイオンを基材に付与しても触媒活性を発現せず、無電解メッキ触媒として使用することは困難であった。しかし、本発明者らは、金属イオンの還元処理を行わずとも、無電解メッキ工程において無電解メッキ反応が生じることを見出した。この理由は定かではないが、本実施形態において、金属イオンは、無電解メッキ工程において、無電解メッキ液中に含まれる還元剤により還元されて、無電解メッキ触媒能を発揮すると推測される。したがって、本実施形態では、無電解メッキ工程前において、無電解メッキ触媒(金属イオン)の還元処理を省略できる。このため、製造コストを削減でき、スループットを向上できる。 Furthermore, electroless plating catalysts usually exhibit catalytic activity in a metallic state with an oxidation number of 0 (zero). Therefore, in the conventional catalyst application treatment, palladium is reduced while being adsorbed on the substrate. Therefore, conventionally, it has been difficult to use it as an electroless plating catalyst because it does not exhibit catalytic activity even if palladium ions that are not in a metallic state are applied to the substrate. However, the present inventors have found that an electroless plating reaction occurs in the electroless plating step without performing the reduction treatment of metal ions. Although the reason for this is not clear, in the present embodiment, it is presumed that the metal ions are reduced by the reducing agent contained in the electroless plating solution in the electroless plating step to exhibit the electroless plating catalytic ability. Therefore, in the present embodiment, the reduction treatment of the electroless plating catalyst (metal ion) can be omitted before the electroless plating step. Therefore, the manufacturing cost can be reduced and the throughput can be improved.

メッキ触媒液の含有する金属塩は、無電解触媒能を有する金属の塩であれば任意のものを用いることができる。例えば、Pd、Pt、Cu、Ni等の塩が挙げられ、中でも、触媒能の高いPdが好ましい。Pdの塩としては、例えば、塩化パラジウム、酢酸パラジウム、パラジウム錯体が挙げられ、中でも、安価で安定な塩化パラジウムが好ましい。 As the metal salt contained in the plating catalyst solution, any metal salt having electroless catalytic ability can be used. For example, salts of Pd, Pt, Cu, Ni and the like can be mentioned, and among them, Pd having high catalytic ability is preferable. Examples of the salt of Pd include palladium chloride, palladium acetate, and a palladium complex, and among them, inexpensive and stable palladium chloride is preferable.

メッキ触媒液中の金属塩の配合量(M)は、メッキ触媒液の温度、メッキ触媒液と基材との接触時間等の条件に基づき、適宜調整できるが、例えば、0.05mg/L~100g/L、好ましくは、1mg/L~20g/L、より好ましくは、5mg/L~10g/Lである。金属塩の濃度が上記範囲より低いと、基材への金属塩の吸着量にムラができ、メッキ膜の欠陥ができる虞がある。また、金属塩の濃度が上記範囲を超えると、基材の最表面でのメッキ反応が支配的となり、メッキ膜の密着強度が低下する虞がある。 The blending amount (M) of the metal salt in the plating catalyst solution can be appropriately adjusted based on conditions such as the temperature of the plating catalyst solution and the contact time between the plating catalyst solution and the substrate, and can be adjusted appropriately, for example, from 0.05 mg / L. It is 100 g / L, preferably 1 mg / L to 20 g / L, and more preferably 5 mg / L to 10 g / L. If the concentration of the metal salt is lower than the above range, the amount of the metal salt adsorbed on the substrate may be uneven, and the plating film may be defective. Further, if the concentration of the metal salt exceeds the above range, the plating reaction on the outermost surface of the base material becomes dominant, and the adhesion strength of the plating film may decrease.

金属塩を溶解させるメッキ触媒液の溶媒としては、特に限定されず、金属塩の種類に応じて選択でき、例えば、水;エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトン、エチルメチルケトン等の有機溶媒;これらの混合溶媒が挙げられる。更に、金属塩の溶解度を上げるために、塩酸、硝酸、アンモニア、水酸化ナトリウムなどを加えて、液体のpHを調整していてもよい。例えば、メッキ触媒液が塩酸を含む場合、メッキ触媒液中の塩酸の濃度は、例えば、0.1~12Nであり、0.1~5Nが好ましく、1.0~4.0Nがより好ましい。また、基材が炭酸カルシウム、ケイ酸カルシウム等の酸に溶解可能なミネラルを含む場合、メッキ触媒液に酸を用いることで、基材中のミネラルを溶解して基材表面に凹凸が形成され、金属塩の基材への吸着を促進できる。 The solvent of the plating catalyst solution for dissolving the metal salt is not particularly limited and can be selected depending on the type of the metal salt. For example, water; ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone and the like. Organic solvent; examples thereof include a mixed solvent thereof. Further, in order to increase the solubility of the metal salt, hydrochloric acid, nitric acid, ammonia, sodium hydroxide and the like may be added to adjust the pH of the liquid. For example, when the plating catalyst solution contains hydrochloric acid, the concentration of hydrochloric acid in the plating catalyst solution is, for example, 0.1 to 12N, preferably 0.1 to 5N, and more preferably 1.0 to 4.0N. When the base material contains minerals that are soluble in acids such as calcium carbonate and calcium silicate, by using an acid in the plating catalyst solution, the minerals in the base material are dissolved and irregularities are formed on the surface of the base material. , Can promote the adsorption of metal salts to the substrate.

メッキ触媒液は、金属塩及び溶媒のみから構成されても良いし、必要に応じて、汎用の添加剤を含んでもよい。メッキ触媒液は、例えば、界面活性剤を含んでも良い。界面活性剤を含有することでメッキ触媒液の表面張力が低下し、基材表面への濡れ性が向上して、金属塩が基材の内部へ浸透し易くなる。界面活性剤は、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、及び両性界面活性剤等、汎用の界面活性剤を使用できる。 The plating catalyst liquid may be composed only of a metal salt and a solvent, or may contain a general-purpose additive, if necessary. The plating catalyst liquid may contain, for example, a surfactant. By containing the surfactant, the surface tension of the plating catalyst liquid is lowered, the wettability to the surface of the base material is improved, and the metal salt easily penetrates into the inside of the base material. As the surfactant, a general-purpose surfactant such as an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.

メッキ触媒液は、金属塩と、溶媒と、更に必要に応じて汎用の添加剤等を混合して調製してもよいし、市販品を用いてもよい。市販品としては、例えば、センシタイザー・アクチベータ法に用いる触媒化処理剤(アクチベータ)を用いることができる。通常のセンシタイザー・アクチベータ法では、Pd2+を含む触媒化処理剤(アクチベータ)を用いるアクチベータ処理の前に、不安定なコロイド溶液である感応性付与剤(センシタイザー)を用いたセンシタイザー処理が必要であるが、本実施形態ではコロイド溶液を用いた処理は不要である。このため、本実施形態の無電解メッキ触媒付与処理は、センシタイザー・アクチベータ法よりもスループットを向上できる。 The plating catalyst solution may be prepared by mixing a metal salt, a solvent, and if necessary, a general-purpose additive or the like, or a commercially available product may be used. As a commercially available product, for example, a catalytic treatment agent (activator) used in the sensitizer-activator method can be used. In the usual sensitizer-activator method, a sensitizer treatment using a sensitivity-imparting agent (sensitizer), which is an unstable colloidal solution, is performed before the activator treatment using a catalytic treatment agent (activator) containing Pd 2+ . However, in this embodiment, the treatment with the colloidal solution is not necessary. Therefore, the electroless plating catalyst application treatment of the present embodiment can improve the throughput as compared with the sensitizer activator method.

基材にメッキ触媒液を接触させる方法は任意であり、例えば、メッキ触媒液に基材全体を浸漬させてもよい。また、基材の一部分のみにメッキ触媒液を接触させてもよいが、この場合、基材の粗化及び/又は膨潤した部分を含む領域にメッキ触媒液を接触させる。また、メッキ触媒液の温度及び基材にメッキ触媒液を接触させる時間は、特に制限されない。メッキ触媒液の温度は、例えば、室温、又は、40℃~85℃であり、メッキ触媒液を接触させる時間は、例えば、5秒~30分が好ましい。メッキ触媒液の温度、及び接触時間が上記範囲であれば、基材に均一に無電解メッキ触媒を吸着させることができ、また、メッキ触媒液の浸透による基材の劣化、及び基材の粗化及び/又は膨潤した部分以外への触媒の付着を抑制できる。 The method of bringing the plating catalyst liquid into contact with the base material is arbitrary, and for example, the entire base material may be immersed in the plating catalyst liquid. Further, the plating catalyst liquid may be brought into contact with only a part of the base material, but in this case, the plating catalyst liquid is brought into contact with the region including the roughened and / or swollen part of the base material. Further, the temperature of the plating catalyst liquid and the time for contacting the plating catalyst liquid with the substrate are not particularly limited. The temperature of the plating catalyst liquid is, for example, room temperature or 40 ° C. to 85 ° C., and the contact time of the plating catalyst liquid is preferably, for example, 5 seconds to 30 minutes. If the temperature of the plating catalyst liquid and the contact time are within the above ranges, the electroless plating catalyst can be uniformly adsorbed on the base material, and the base material is deteriorated due to the permeation of the plating catalyst liquid, and the base material is rough. It is possible to suppress the adhesion of the catalyst to other than the plated and / or swollen portion.

(5)無電解メッキ
次に、メッキ触媒液を接触させた基材に、無電解メッキ液を接触させる(図1のステップS5)。上述のように、基材の粗化及び/又は膨潤した部分には、窒素含有ポリマーにより、金属イオンが吸着している。このような基材に無電解メッキ液を接触させることで、基材の粗化及び/又は膨潤した部分に無電解メッキ膜が形成でき、メッキ膜被覆体が得られる。
(5) Electroless plating Next, the electroless plating solution is brought into contact with the base material which has been brought into contact with the plating catalyst solution (step S5 in FIG. 1). As described above, metal ions are adsorbed on the roughened and / or swollen portion of the base material by the nitrogen-containing polymer. By bringing the electroless plating solution into contact with such a base material, an electroless plating film can be formed on the roughened and / or swollen portion of the base material, and a plating film coating film can be obtained.

無電解メッキ液としては、目的に応じて任意の汎用の無電解メッキ液を使用しできる。無電解メッキ液は、例えば、次亜リン酸ナトリウム、ホルマリン等の還元剤を含有する。無電解メッキ液としては、無電解ニッケルメッキ液、無電解ニッケルリンメッキ液、無電解銅メッキ液、無電解パラジウムメッキ液等を用いることができ、中でも無電解メッキ触媒(金属イオン)の還元効果の高い次亜リン酸ナトリウムを還元剤として含み、メッキ液が安定な無電解ニッケルメッキ液が好ましい。 As the electroless plating solution, any general-purpose electroless plating solution can be used depending on the purpose. The electroless plating solution contains, for example, a reducing agent such as sodium hypophosphite and formalin. As the electroless plating solution, an electroless nickel plating solution, an electroless nickel phosphorus plating solution, an electroless copper plating solution, an electroless palladium plating solution, or the like can be used, and among them, the reducing effect of the electroless plating catalyst (metal ion). An electroless nickel plating solution containing a high sodium hypophosphite as a reducing agent and having a stable plating solution is preferable.

無電解メッキ液の温度、無電解メッキ時間(基材に無電解メッキ液を接触させる時間)は、無電解メッキ液及び基材の種類等に応じて適宜決定できる。例えば、無電解メッキ液の温度は、50℃~80℃であり、無電解メッキ時間は、1分~1時間である。 The temperature of the electroless plating solution and the electroless plating time (time for contacting the electroless plating solution with the base material) can be appropriately determined according to the type of the electroless plating solution and the base material. For example, the temperature of the electroless plating solution is 50 ° C. to 80 ° C., and the electroless plating time is 1 minute to 1 hour.

また、無電解メッキ液を撹拌させながら基材に接触させて、無電解メッキを行ってもよい。無電解メッキ液を撹拌させることで、無電解メッキ液の温度及びメッキ反応性を均一化できる。これにより、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成できる。本実施形態では、窒素含有ポリマーにより、基材に無電解メッキ触媒が比較的強固に吸着している。このため、無電解メッキ液を撹拌させても無電解メッキ触媒が基材から脱離せず、メッキ反応のムラが生じ難い。ここで、無電解メッキ液の撹拌とは、例えば、エアバブリング、ポンプ等により無電解メッキ液を撹拌、循環、流動等させることを意味する。 Further, the electroless plating may be performed by contacting the base material with the electroless plating solution while stirring. By stirring the electroless plating solution, the temperature and plating reactivity of the electroless plating solution can be made uniform. This makes it possible to form an electroless plating film that is uniform and has high adhesion strength even on a substrate having a complicated shape or a large shape. In the present embodiment, the electroless plating catalyst is relatively strongly adsorbed on the substrate by the nitrogen-containing polymer. Therefore, even if the electroless plating solution is stirred, the electroless plating catalyst does not separate from the base material, and unevenness of the plating reaction is unlikely to occur. Here, the stirring of the electroless plating solution means that the electroless plating solution is stirred, circulated, flowed, etc. by, for example, air bubbling, a pump, or the like.

無電解メッキ膜上には、メッキ膜被覆体の用途及び意匠性向上等の目的から、更に異なる種類の無電解メッキ膜を複数層形成してもよいし、電解メッキにより電解メッキ膜を形成してもよい。また、無電解メッキ膜が形成された基材は、無電解メッキ後にアニール処理を施してもよいし、室温で放置して自然乾燥してもよい。また、アニール処理や自然乾燥を行わず、連続して電解メッキ膜を形成する等の次の工程を行ってもよい。 A plurality of different types of electroless plating films may be formed on the electroless plating film for the purpose of improving the use and design of the plating film coating, or the electroless plating film may be formed by electrolytic plating. You may. Further, the base material on which the electroless plating film is formed may be annealed after electroless plating, or may be left at room temperature to be naturally dried. Further, the next step such as continuously forming an electrolytic plating film may be performed without performing annealing treatment or natural drying.

無電解メッキ膜は導電性を有していてもよい。この場合、無電解メッキ膜は、配線パターン、電気回路、アンテナ等として機能でき、メッキ膜被覆体は、電子部品として機能する。また、無電解メッキ膜は、基材の一面のみに平面的に形成させてもよいし、基材の複数の面に亘って立体的に形成されてもよい。また、基材が球面等を含む立体形状の表面を有する場合には、無電解メッキ膜は、その立体形状の表面に沿って立体的に形成されてもよい。無電解メッキ膜が成形体の複数の面に亘って、又は球面等を含む立体形状の表面に沿って立体的に形成され、且つ導電性を有する場合、無電解メッキ膜は立体電気回路として機能し、このような所定パターンのメッキ膜を有するメッキ膜被覆体は、立体回路成形部品(MID:Molded Interconnect Device)として機能する。 The electroless plating film may have conductivity. In this case, the electroless plating film can function as a wiring pattern, an electric circuit, an antenna, or the like, and the plating film coating film functions as an electronic component. Further, the electroless plating film may be formed flatly on only one surface of the base material, or may be formed three-dimensionally over a plurality of surfaces of the base material. When the base material has a three-dimensional surface including a spherical surface, the electroless plating film may be formed three-dimensionally along the three-dimensional surface. When the electroless plating film is three-dimensionally formed over a plurality of surfaces of the molded body or along the surface of a three-dimensional shape including a spherical surface and has conductivity, the electroless plating film functions as a three-dimensional electric circuit. However, the plating film coating body having such a plating film having a predetermined pattern functions as a three-dimensional circuit molding component (MID: Molded Interconductor Device).

以上説明したように、本実施形態の製造方法では、粗化及び/又は膨潤した基材に、特定の重量平均分子量を有する窒素含有ポリマーを含む前処理液を接触させて、触媒付与の前処理を行う。これにより、安定なメッキ触媒液である、金属塩を含むメッキ触媒液用いて、基材に無電解メッキ触媒を付与できる。本実施形態では、従来、行われていた、無電解メッキ触媒(金属イオン)の還元処理を省略できる。このため、製造コストを削減でき、スループットを向上できる。また、本実施形態では、無電解メッキ液を撹拌させながら無電解メッキを行ってもよい。このため、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成できる。また、本実施形態では、治具上のメッキ膜の形成を抑制できるため、基材を治具で保持した状態で、基材及び治具の両方に、前処理液を接触させ、洗浄を行い、メッキ触媒液を接触させ、そして無電解メッキ液を接触させてもよい。即ち、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要がない。このため、スループットを更に向上できる。また、本実施形態では、基材表面の一部のみを粗化及び/又は膨潤させてもよい。これにより、粗化及び/又は膨潤した部分のみに、選択的に無電解メッキ膜を形成できる。 As described above, in the production method of the present embodiment, the roughened and / or swollen substrate is brought into contact with a pretreatment liquid containing a nitrogen-containing polymer having a specific weight average molecular weight to pretreat the catalyst. I do. Thereby, the electroless plating catalyst can be applied to the base material by using the plating catalyst solution containing a metal salt, which is a stable plating catalyst solution. In the present embodiment, the reduction treatment of the electroless plating catalyst (metal ion), which has been conventionally performed, can be omitted. Therefore, the manufacturing cost can be reduced and the throughput can be improved. Further, in the present embodiment, electroless plating may be performed while stirring the electroless plating solution. Therefore, an electroless plating film having a uniform shape and high adhesion strength can be formed even on a base material having a complicated shape or a large shape. Further, in the present embodiment, since the formation of the plating film on the jig can be suppressed, the pretreatment liquid is brought into contact with both the base material and the jig while the base material is held by the jig to perform cleaning. , The plating catalyst solution may be contacted, and the electroless plating solution may be contacted. That is, it is not necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment. Therefore, the throughput can be further improved. Further, in the present embodiment, only a part of the surface of the base material may be roughened and / or swelled. This makes it possible to selectively form an electroless plating film only on the roughened and / or swollen portion.

上述したように、本実施形態の製造方法では、無電解メッキ触媒(金属イオン)の還元処理(還元工程)を別途設ける必要がない。換言すれば、本実施形態の製造方法では、基材と接触する液体のうち、無電解メッキ液のみが還元剤を含有してもよく、又は、無電解メッキ液及び前処理液のみが還元剤を含有してもよい。 As described above, in the production method of the present embodiment, it is not necessary to separately provide a reduction treatment (reduction step) of the electroless plating catalyst (metal ion). In other words, in the production method of the present embodiment, of the liquids in contact with the base material, only the electroless plating solution may contain a reducing agent, or only the electroless plating solution and the pretreatment liquid are reducing agents. May be contained.

[第2の実施形態]
第2の実施形態として、図2に示すフローチャートに従ってメッキ膜被覆体の製造方法について説明する。本実施形態では、基材の表面の少なくとも一部を粗化及び/又は膨潤させる前に、基材表面に触媒失活剤を付与する(図2のステップS11)。それ以外は、第1の実施形態と同様の方法により、メッキ膜被覆体を製造する。
[Second Embodiment]
As a second embodiment, a method for manufacturing the plating film coating body will be described according to the flowchart shown in FIG. In this embodiment, a catalytic deactivating agent is applied to the surface of the substrate before roughening and / or swelling at least a part of the surface of the substrate (step S11 in FIG. 2). Other than that, the plating film coating body is manufactured by the same method as in the first embodiment.

基材としては、第1の実施形態と同様のものを用いることができる。触媒失活剤としては、無電解メッキ触媒が触媒能を発揮することを妨げ、結果として、無電解メッキの反応を抑制する物質であれば、任意の物質を用いることができる。触媒失活剤は、無電解メッキ触媒と直接反応して無電解メッキ触媒を被毒するか、又は無電解メッキ触媒と直接反応せずとも、無電解メッキ触媒が触媒能を発揮することを妨げると推測される。このような触媒失活剤としては、例えば、亜鉛(Zn)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、アンチモン(Sb)等のメッキ触媒毒となる重金属及びその化合物、ヨウ素及びその化合物、過酸化物等の酸化剤等が挙げられる。中でも、亜鉛(Zn)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、アンチモン(Sb)及びその化合物は、無電解メッキ触媒に対しての被毒性が強いという点で好ましく、ヨウ素は、基材への浸透性が高い点で好ましい。これらの触媒失活剤は、例えば、特許第5902853号に開示される方法により、基材へ付与できる。基材に付与されたこれらの触媒失活剤は、基材に浸透するか、又は強固に吸着すると推測される。 As the base material, the same material as in the first embodiment can be used. As the catalyst deactivating agent, any substance can be used as long as it is a substance that prevents the electroless plating catalyst from exerting its catalytic ability and, as a result, suppresses the reaction of electroless plating. The catalyst deactivating agent directly reacts with the electroless plating catalyst to poison the electroless plating catalyst, or prevents the electroless plating catalyst from exerting its catalytic ability even if it does not directly react with the electroless plating catalyst. It is presumed. Examples of such catalyst deactivating agents include heavy metals such as zinc (Zn), lead (Pb), tin (Sn), bismuth (Bi), antimony (Sb) and other heavy metals and compounds thereof, iodine and the like. Examples thereof include the compound, an oxidizing agent such as a peroxide, and the like. Among them, zinc (Zn), lead (Pb), tin (Sn), bismuth (Bi), antimony (Sb) and their compounds are preferable in that they are highly toxic to electroless plating catalysts, and iodine is preferable. , It is preferable in that it has high permeability to the base material. These catalytic deactivating agents can be applied to the substrate by, for example, the method disclosed in Japanese Patent No. 5902853. It is presumed that these catalytic deactivating agents applied to the substrate permeate the substrate or strongly adsorb to the substrate.

また、触媒失活剤を含む触媒活性妨害層(以下、適宜、単に「妨害層」と記載する)を基材の表面に形成することにより、触媒失活剤を基材の表面に付与してもよい。例えば、上述したヨウ素等の触媒失活剤と、バインダとなる樹脂とを含む妨害層を形成する。バインダとなる樹脂を用いることで、触媒失活剤が直接、吸着又は浸透し難い基材の表面にも触媒失活剤を留めることができる。 Further, by forming a catalytic activity interfering layer containing a catalytic deactivating agent (hereinafter, appropriately simply referred to as “interfering layer”) on the surface of the substrate, the catalytic deactivating agent is applied to the surface of the substrate. May be good. For example, it forms an interfering layer containing the above-mentioned catalytic deactivating agent such as iodine and a resin serving as a binder. By using a resin that serves as a binder, the catalyst deactivating agent can be retained even on the surface of the substrate on which the catalyst deactivating agent is difficult to directly adsorb or permeate.

また、触媒失活剤として、触媒活性を妨害する樹脂を用いてもよい。樹脂である触媒失活剤は、妨害層として基材上に付与できる。樹脂である触媒失活剤としては、側鎖にアミド基及びジチオカルバメート基を有するポリマーが好ましい。側鎖のアミド基及びジチオカルバメート基が無電解メッキ触媒となる金属イオンに作用し、触媒能を発揮することを妨げると推測される。また、樹脂である触媒失活剤は、デンドリマー、ハイパーブランチポリマー等のデンドリティックポリマーが好ましい。触媒活性を妨害する樹脂としては、例えば、特開2017‐160518号公報に開示されるポリマーを用いることができ、また、同特許公開公報に開示される方法により、基材表面に妨害層を形成できる。 Further, as the catalyst deactivating agent, a resin that interferes with the catalytic activity may be used. The catalyst deactivating agent, which is a resin, can be applied onto the substrate as an interfering layer. As the catalyst deactivating agent which is a resin, a polymer having an amide group and a dithiocarbamate group in the side chain is preferable. It is presumed that the amide group and dithiocarbamate group of the side chain act on the metal ion serving as the electroless plating catalyst and hinder the exertion of the catalytic ability. Further, as the catalyst deactivating agent which is a resin, a dendritic polymer such as a dendrimer or a hyperbranched polymer is preferable. As the resin that interferes with the catalytic activity, for example, the polymer disclosed in JP-A-2017-160518 can be used, and the interfering layer is formed on the surface of the substrate by the method disclosed in JP-A. can.

次に、図2に示すように、第1の実施形態と同様の以下の工程を行う。まず、触媒失活剤が付与された基材の表面の少なくとも一部を粗化及び/又は膨潤させる(図2のステップS1)。本実施形態では、基材表面にレーザー描画(レーザー光照射)を行う。レーザー描画により、基材の表面には、レーザー描画部分と、非レーザー描画部分が形成される。レーザー描画部分では、基材表面が粗化され、そして、触媒失活剤は除去されるか、変性又は変質して触媒失活剤として作用しなくなる。 Next, as shown in FIG. 2, the following steps similar to those of the first embodiment are performed. First, at least a part of the surface of the substrate to which the catalyst deactivating agent is applied is roughened and / or swelled (step S1 in FIG. 2). In this embodiment, laser drawing (laser light irradiation) is performed on the surface of the base material. By laser drawing, a laser drawing portion and a non-laser drawing portion are formed on the surface of the base material. In the laser drawing portion, the surface of the substrate is roughened, and the catalyst deactivating agent is removed or modified or denatured so as not to act as the catalyst deactivating agent.

次に、第1の実施形態と同様に、触媒付与の前処理(図2のステップS2)、基材の洗浄(図2のステップS3)、無電解メッキ触媒の付与(図2のステップS4)及び無電解メッキ(図2のステップS5)をこの順に行う。これにより、レーザー描画部分に無電解メッキ膜が形成されたメッキ膜被覆体が得られる。 Next, as in the first embodiment, pretreatment for applying the catalyst (step S2 in FIG. 2), cleaning of the substrate (step S3 in FIG. 2), and application of the electroless plating catalyst (step S4 in FIG. 2). And electroless plating (step S5 in FIG. 2) is performed in this order. As a result, a plating film covering body in which an electroless plating film is formed on the laser drawing portion can be obtained.

本実施形態の製造方法では、第1の実施形態と同様の効果を奏することができ、基材のレーザー描画部分のみに選択的に無電解メッキ膜が形成される。また、本実施形態では、非レーザー描画部分に残存する触媒失活剤により、非レーザー描画部分におけるメッキ膜の形成をより確実に抑制できる。これにより、基材の表面において、無電解メッキ膜が形成される部分と形成されない部分とのコントラストをより明確にできる。特に、無電解メッキ液の触媒活性が高い場合には、非レーザー描画部分におけるメッキ膜の形成をより確実に抑制するために、基材に触媒失活剤を付与することが好ましい。例えば、無電解メッキ液中の還元剤濃度や無電解メッキ液の温度が高い場合、又は浴負荷が低い場合に、無電解メッキ液の触媒活性は高くなる。また、一般的には、無電解ニッケルリンメッキ液の方が、無電解銅メッキ液よりも、強い還元剤を含むため、触媒活性が高い。 In the manufacturing method of the present embodiment, the same effect as that of the first embodiment can be obtained, and the electroless plating film is selectively formed only on the laser drawing portion of the base material. Further, in the present embodiment, the catalyst deactivating agent remaining in the non-laser drawing portion can more reliably suppress the formation of the plating film in the non-laser drawing portion. Thereby, on the surface of the base material, the contrast between the portion where the electroless plating film is formed and the portion where the electroless plating film is not formed can be made clearer. In particular, when the catalytic activity of the electroless plating solution is high, it is preferable to add a catalytic deactivating agent to the base material in order to more reliably suppress the formation of the plating film in the non-laser drawing portion. For example, when the concentration of the reducing agent in the electroless plating solution, the temperature of the electroless plating solution is high, or the bath load is low, the catalytic activity of the electroless plating solution becomes high. Further, in general, the electroless nickel phosphorus plating solution contains a stronger reducing agent than the electroless copper plating solution, and therefore has higher catalytic activity.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples and Comparative Examples.

実施例1~9及び比較例1~4において、メッキ膜被覆体を製造した。各実施例及び比較例で用いた基材の種類、基材の粗化及び/又は膨潤処理の方法、触媒付与の前処理液の組成、無電解メッキ触媒又はその付与方法について、表1に示す。 In Examples 1 to 9 and Comparative Examples 1 to 4, plating film coatings were produced. Table 1 shows the types of the base material used in each Example and Comparative Example, the method of roughening and / or swelling of the base material, the composition of the pretreatment liquid for applying the catalyst, the electroless plating catalyst or the method of applying the catalyst. ..

[実施例1]
本実施例では、基材として、ガラス繊維を含有するポリアミド6(PA6)からなる成形体を用いた。また、塩化ビニルで被覆した銅製の治具で基材を保持した状態で、以下に説明する各工程を実施して、メッキ膜被覆体を製造した。
[Example 1]
In this example, a molded product made of polyamide 6 (PA6) containing glass fiber was used as the base material. Further, while the base material was held by a copper jig coated with vinyl chloride, each step described below was carried out to manufacture a plating film coating body.

(1)基材の成形
ガラス繊維を30重量%含有するポリアミド6(東洋紡製、グラマイドT-402)を射出成形し、100mm×200mm×2mmの板状の基材を得た。射出成形において、樹脂温度は280℃、金型温度は80℃とした。
(1) Molding of base material Polyamide 6 (Glamide T-402 manufactured by Toyobo Co., Ltd.) containing 30% by weight of glass fiber was injection-molded to obtain a plate-shaped base material having a size of 100 mm × 200 mm × 2 mm. In injection molding, the resin temperature was 280 ° C. and the mold temperature was 80 ° C.

(2)基材の粗化及び/又は膨潤処理
35℃に調整した3.0Nの塩酸に、基材を5分浸漬した。浸漬後、基材の表面は白濁していた。これから、塩酸により基材表面が粗化及び/又は膨潤したことが確認できた。基材を塩酸から取り出した後、エアバブリングにより撹拌した常温の水に5分間浸漬して洗浄した。同様の洗浄を更にもう1回行った。
(2) Roughening and / or swelling treatment of the base material The base material was immersed in 3.0 N hydrochloric acid adjusted to 35 ° C. for 5 minutes. After the immersion, the surface of the substrate was cloudy. From this, it was confirmed that the surface of the substrate was roughened and / or swollen by hydrochloric acid. After the substrate was taken out from hydrochloric acid, it was washed by immersing it in water at room temperature stirred by air bubbling for 5 minutes. The same wash was performed once more.

(3)触媒付与の前処理
水に、窒素含有ポリマーとして、重量平均分子量70,000のポリエチレンイミン(PEI)(和光純薬製、30重量%濃度溶液)、還元剤として、次亜リン酸カルシウム(大道製薬製)を混合し、ポリエチレンイミンの配合量(固形分濃度)が30g/L、次亜リン酸カルシウムの配合量が50g/Lとなるように前処理液を調製した。調製した室温の前処理液に基材を5分間浸漬した。
(3) Pretreatment for catalysis In water, polyethyleneimine (PEI) (manufactured by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) having a weight average molecular weight of 70,000 as a nitrogen-containing polymer, and calcium hypophosphite (road) as a reducing agent. (Pharmaceutical) was mixed, and a pretreatment solution was prepared so that the blending amount (solid content concentration) of polyethyleneimine was 30 g / L and the blending amount of calcium hypophosphite was 50 g / L. The substrate was immersed in the prepared pretreatment liquid at room temperature for 5 minutes.

(4)基材の洗浄
エアバブリングにより撹拌した常温の水に基材を5分間浸漬して洗浄した。同様の洗浄を更にもう1回行った。
(4) Cleaning of the base material The base material was washed by immersing the base material in water at room temperature stirred by air bubbling for 5 minutes. The same wash was performed once more.

(5)無電解メッキ触媒の付与
35℃に調整した市販の塩化パラジウム(PdCl)水溶液(奥野製薬工業製、アクチベータ、塩化パラジウム濃度:150ppm)に基材を3分浸漬した。基材を塩化パラジウム水溶液から取り出した後、エアバブリングにより撹拌した常温の水に5分間浸漬して洗浄した。同様の洗浄を更にもう1回行った。
(5) Addition of electroless plating catalyst The substrate was immersed in a commercially available aqueous solution of palladium chloride (PdCl 2 ) adjusted to 35 ° C. (manufactured by Okuno Pharmaceutical Co., Ltd., activator, palladium chloride concentration: 150 ppm) for 3 minutes. After the substrate was taken out from the aqueous solution of palladium chloride, it was washed by immersing it in water at room temperature stirred by air bubbling for 5 minutes. The same wash was performed once more.

(6)基材の膨潤処理
65℃に調整した水(温水)に基材を5分間浸漬した。基材の膨潤処理は、後工程の無電解メッキ処理において、脂肪族ポリアミドへの無電解メッキ液の浸透を高めるために行った。
(7)無電解メッキ
65℃に調整した無電解ニッケルメッキ液(奥野製薬工業製、トップニコロンHMB)に、基材を10分間浸漬した。無電解メッキ中、エアバブリング及びポンプにより、無電解メッキ液を激しく撹拌した。基材表面に無電解ニッケルメッキ膜を約1μm成長させ、本実施例のメッキ膜被覆体を得た。
(6) Substrate swelling treatment The substrate was immersed in water (warm water) adjusted to 65 ° C. for 5 minutes. The swelling treatment of the base material was performed in order to enhance the penetration of the electroless plating solution into the aliphatic polyamide in the electroless plating treatment in the subsequent step.
(7) Electroless plating The substrate was immersed in an electroless nickel plating solution (manufactured by Okuno Pharmaceutical Industry Co., Ltd., Top Nicolon HMB) adjusted to 65 ° C. for 10 minutes. During the electroless plating, the electroless plating solution was vigorously stirred by air bubbling and a pump. An electroless nickel plating film was grown on the surface of the substrate by about 1 μm to obtain a plating film coating film of this example.

[実施例2]
本実施例では、触媒付与の前処理において、窒素含有ポリマーとして、重量平均分子量100,000のポリエチレンイミン(和光純薬製、30重量%濃度溶液)を用いた以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 2]
In this example, the same as in Example 1 except that polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., 30% by weight solution) having a weight average molecular weight of 100,000 was used as the nitrogen-containing polymer in the pretreatment for applying the catalyst. A plating film coating was produced by the method.

[実施例3]
本実施例では、触媒付与の前処理において、窒素含有ポリマーとして、重量平均分子量1,000のポリエチレンイミン(和光純薬製、30重量%濃度溶液)を用いた以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 3]
In this example, the same as in Example 1 except that polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., 30% by weight solution) having a weight average molecular weight of 1,000 was used as the nitrogen-containing polymer in the pretreatment for applying the catalyst. A plating film coating was produced by the method.

[実施例4]
本実施例では、触媒付与の前処理において、前処理液が還元剤を含まない以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 4]
In this example, in the pretreatment for applying the catalyst, a plating film coating was produced by the same method as in Example 1 except that the pretreatment liquid did not contain a reducing agent.

[実施例5]
本実施例では、触媒付与の前処理において、前処理液中の窒素含有ポリマーの配合量(固形分濃度)を2g/Lとした以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 5]
In this example, in the pretreatment for applying the catalyst, the plating film coating was carried out by the same method as in Example 1 except that the blending amount (solid content concentration) of the nitrogen-containing polymer in the pretreatment liquid was 2 g / L. Manufactured.

[実施例6]
本実施例では、基材として、タルクを20重量%含有したポリプロピレン(PP)(プライムポリマー製、J105G)から形成される第1部分と、無機フィラーを含有したポリアミドとポリプロピレンとのポリマーアロイ(PA6/PP)(東洋紡製、グラマイドNB777-03)から形成される第2部分とからなる2色成形体を用いた。また、基材の粗化及び/又は膨潤処理に2.0Nの塩酸を用いた。それ以外、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 6]
In this embodiment, as a base material, a first portion formed of polypropylene (PP) containing 20% by weight of talc (manufactured by Prime Polymer Co., Ltd., J105G), and a polymer alloy of polyamide and polypropylene containing an inorganic filler (PA6). / PP) (Toyobo, Glamide NB777-03) was used as a two-color polymer composed of a second portion. Further, 2.0N hydrochloric acid was used for roughening and / or swelling treatment of the base material. Other than that, a plating film coating was produced by the same method as in Example 1.

尚、本実施例では、2色成形体である基材において、ポリアミドを含む基材の第2部分のみが塩酸により粗化及び/又は膨潤された。また、第2部分に混合された無機フィラーは塩酸に溶解するものであった。このため、第2部分においてポリプロピレン(PP)のドメインが多く、粗化及び/又は膨潤され難い領域においても、無機フィラーが塩酸により抽出されることで粗化が促進された。 In this example, in the base material which is a two-color molded product, only the second portion of the base material containing polyamide was roughened and / or swollen with hydrochloric acid. In addition, the inorganic filler mixed in the second portion was dissolved in hydrochloric acid. Therefore, even in the region where the polypropylene (PP) domain is abundant in the second portion and it is difficult to roughen and / or swell, the inorganic filler is extracted with hydrochloric acid to promote the roughening.

[実施例7]
本実施例では、基材として、ABS樹脂とポリカーボネートとのポリマーアロイ(ABS/PC)(帝人製、MK-1000A、メッキグレード)からなる成形体を用い、以下に説明する方法により、基材の粗化及び/又は膨潤処理を行った。また、無電解メッキ処理の前に基材の膨潤処理は行わなかった。それ以外は、実施例1と同様の方法によりメッキ膜被覆体を製造した。
[Example 7]
In this embodiment, a molded body made of a polymer alloy (ABS / PC) (manufactured by Teijin, MK-1000A, plating grade) of ABS resin and polycarbonate is used as the base material, and the base material is prepared by the method described below. Roughening and / or swelling treatment was performed. Moreover, the swelling treatment of the base material was not performed before the electroless plating treatment. Other than that, a plating film coating was produced by the same method as in Example 1.

(1)基材の粗化及び/又は膨潤処理
基材に対して、一般的なABS樹脂のメッキ前処理として、脱脂、クロム酸エッチング、中和をこの順に行った。クロム酸エッチングでは、まず、水に、クロム酸400g/L、濃硫酸400g/L、三価クロム10g/Lを混合して、エッチング液を調製した。そして、60℃に調整したエッチング液に基材を10分間浸漬した。以上説明したメッキ前処理(エッチング)により、基材中のブタジエン成分が溶解し、基材上に微細な凹凸が形成された。
(1) Roughening and / or swelling treatment of the base material The base material was subjected to degreasing, chromic acid etching, and neutralization in this order as a general pretreatment for plating ABS resin. In the chromic acid etching, first, 400 g / L of chromic acid, 400 g / L of concentrated sulfuric acid, and 10 g / L of trivalent chromium were mixed with water to prepare an etching solution. Then, the base material was immersed in the etching solution adjusted to 60 ° C. for 10 minutes. By the plating pretreatment (etching) described above, the butadiene component in the substrate was dissolved and fine irregularities were formed on the substrate.

(2)触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキ
エッチングした基材に対して、実施例1と同様の方法により、触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキをこの順で行った。
(2) Pretreatment for applying catalyst, cleaning of base material, application of electroless plating catalyst and electroless plating For the etched base material, pretreatment for applying catalyst and base material by the same method as in Example 1. Cleaning, electroless plating catalyst application and electroless plating were performed in this order.

[実施例8]
本実施例では、基材として、ポリフェニレンサルファイド(PPS)(DIC製、Z230)からなる成形体を用いた。また、以下に説明するように、触媒失活剤を含む触媒活性妨害層を基材の表面に形成し、その後、レーザー光照射(レーザー描画)により、基材の粗化を行った。また、無電解メッキ処理の前に基材の膨潤処理は行わなかった。それ以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 8]
In this example, a molded product made of polyphenylene sulfide (PPS) (manufactured by DIC, Z230) was used as the base material. Further, as described below, a catalytic activity interfering layer containing a catalytic deactivating agent was formed on the surface of the substrate, and then the substrate was roughened by laser light irradiation (laser drawing). Moreover, the swelling treatment of the base material was not performed before the electroless plating treatment. Other than that, a plating film coating was produced by the same method as in Example 1.

(1)触媒失活剤の付与
基材の表面に、触媒失活剤である下記式(1)で表されるハイパーブランチポリマーを含む触媒活性妨害層を形成した。下記式(1)で表されるハイパーブランチポリマーは、特開2017‐160518号公報に開示される方法により合成した。
(1) Application of catalyst deactivating agent A catalytic activity blocking layer containing a hyperbranched polymer represented by the following formula (1), which is a catalytic deactivating agent, was formed on the surface of the substrate. The hyperbranched polymer represented by the following formula (1) was synthesized by the method disclosed in JP-A-2017-160518.

Figure 0007005363000001
Figure 0007005363000001

合成した式(1)で表されるポリマーをメチルエチルケトンに溶解して、ポリマー濃度0.3重量%のポリマー溶液を調製した。室温のポリマー溶液に基材を5秒間浸漬し、その後、85℃乾燥機中で5分間乾燥した。これにより、基材表面に膜厚約100nmの触媒活性妨害層が形成された。 The synthesized polymer represented by the formula (1) was dissolved in methyl ethyl ketone to prepare a polymer solution having a polymer concentration of 0.3% by weight. The substrate was immersed in a polymer solution at room temperature for 5 seconds and then dried in an 85 ° C. dryer for 5 minutes. As a result, a catalytically active interfering layer having a film thickness of about 100 nm was formed on the surface of the substrate.

(2)レーザー描画
触媒活性妨害層を形成した基材にYVOレーザー(キーエンス製、MD-V9929WA、波長1064nm)を用いて、0.2mm角の格子パターンによって形成されたライン(1mm×50mm)をスペース0.5mmにて5本描画した。レーザー描画後、基材の脱脂処理及び洗浄を行った。
(2) Laser drawing A line (1 mm × 50 mm) formed by a 0.2 mm square lattice pattern using a YVO4 laser (manufactured by KEYENCE, MD-V9929WA, wavelength 1064 nm) on a substrate on which a catalytically active interfering layer is formed. Was drawn with a space of 0.5 mm. After drawing with the laser, the substrate was degreased and washed.

(3)触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキ
レーザー描画した基材に対して、実施例1と同様の方法により、触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキをこの順で行った。
(3) Pretreatment for applying catalyst, cleaning of base material, application of electroless plating catalyst and electroless plating For the base material drawn by laser, pretreatment for applying catalyst and base material by the same method as in Example 1. Cleaning, electroless plating catalyst application, and electroless plating were performed in this order.

[実施例9]
本実施例では、基材として、窒化アルミニウム(AlN)のセラミック基材(直径50cmの円板状の板材)を用いた。実施例8と同様に、触媒失活剤を含む触媒活性妨害層を基材の表面に形成し、その後、レーザー光照射(レーザー描画)により、基材の粗化を行った。また、無電解メッキ処理の前に基材の膨潤処理は行わなかった。それ以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Example 9]
In this example, a ceramic base material of aluminum nitride (AlN) (a disk-shaped plate material having a diameter of 50 cm) was used as the base material. Similar to Example 8, a catalytically active interfering layer containing a catalytic deactivating agent was formed on the surface of the substrate, and then the substrate was roughened by laser light irradiation (laser drawing). Moreover, the swelling treatment of the base material was not performed before the electroless plating treatment. Other than that, a plating film coating was produced by the same method as in Example 1.

(1)触媒失活剤の付与及びレーザー描画
実施例8と同様の方法により、基材の表面に、触媒失活剤である式(1)で表されるハイパーブランチポリマーを含む触媒活性妨害層を形成し、その後、レーザー描画を行った。
(1) Application of catalyst deactivating agent and laser drawing By the same method as in Example 8, a catalytic activity interfering layer containing a hyperbranched polymer represented by the formula (1), which is a catalytic deactivating agent, on the surface of the substrate. Was formed, and then laser drawing was performed.

(2)触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキ
レーザー描画した基材に対して、実施例1と同様の方法により、触媒付与の前処理、基材の洗浄、無電解メッキ触媒の付与及び無電解メッキをこの順で行った。
(2) Pretreatment for applying catalyst, cleaning of base material, application of electroless plating catalyst and electroless plating For the base material drawn by laser, pretreatment for applying catalyst and base material by the same method as in Example 1. Cleaning, electroless plating catalyst application, and electroless plating were performed in this order.

[比較例1]
本比較例では、触媒付与の前処理、即ち、基材に窒素含有ポリマーを含む前処理液を接触させる処理を行わなかった。それ以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Comparative Example 1]
In this comparative example, the pretreatment for applying the catalyst, that is, the treatment for contacting the base material with the pretreatment liquid containing the nitrogen-containing polymer was not performed. Other than that, a plating film coating was produced by the same method as in Example 1.

[比較例2]
本比較例では、触媒付与の前処理において、窒素含有ポリマーとして、重量平均分子量300のポリエチレンイミン(和光純薬製、30重量%濃度溶液)を用いた。それ以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Comparative Example 2]
In this comparative example, polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) having a weight average molecular weight of 300 was used as the nitrogen-containing polymer in the pretreatment for applying the catalyst. Other than that, a plating film coating was produced by the same method as in Example 1.

[比較例3]
本比較例では、従来のキャタリスト・アクセラレータ法(C/A法)により、基材に無電解メッキ触媒を付与した。それ以外は、実施例1と同様の方法により、メッキ膜被覆体を製造した。
[Comparative Example 3]
In this comparative example, an electroless plating catalyst was applied to the substrate by the conventional catalyst accelerator method (C / A method). Other than that, a plating film coating was produced by the same method as in Example 1.

[比較例4]
本比較例では、触媒付与の前処理、即ち、基材に窒素含有ポリマーを含む前処理液を接触させる処理を行わなかった以外は、実施例8と同様の方法により、メッキ膜被覆体を製造した。即ち、本比較例では、基材として、ポリフェニレンサルファイド(PPS)(DIC製、Z230)からなる成形体を用い、触媒失活剤を含む触媒活性妨害層を基材の表面に形成し、その後、レーザー光照射(レーザー描画)により、基材の粗化を行った。
[Comparative Example 4]
In this comparative example, the plating film coating is produced by the same method as in Example 8 except that the pretreatment for applying the catalyst, that is, the treatment for contacting the base material with the pretreatment liquid containing the nitrogen-containing polymer is not performed. did. That is, in this comparative example, a molded body made of polyphenylene sulfide (PPS) (manufactured by DIC, Z230) is used as the base material, and a catalytic activity interfering layer containing a catalytic deactivating agent is formed on the surface of the base material, and then The substrate was roughened by laser light irradiation (laser drawing).

[実施例1~9及び比較例1~4で得られたメッキ膜被覆体の評価]
(1)メッキの反応性
実施例1~9及び比較例1~4で得られたメッキ膜被覆体の表面を目視にて観察し、以下の評価基準に従って評価した。結果を表1に示す。
[Evaluation of Plated Film Covers Obtained in Examples 1-9 and Comparative Examples 1-4]
(1) Plating reactivity The surfaces of the plating film coatings obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were visually observed and evaluated according to the following evaluation criteria. The results are shown in Table 1.

<メッキ反応性の評価基準>
○:基材の粗化及び/又は膨潤させた部分の全面に、メッキ膜が均一に形成されている。
△:基材の粗化及び/又は膨潤させた部分に、メッキ膜のムラがある。
×:基材の粗化及び/又は膨潤させた部分に、メッキ膜が形成されていない。
<Evaluation criteria for plating reactivity>
◯: A plating film is uniformly formed on the entire surface of the roughened and / or swollen portion of the base material.
Δ: There is unevenness in the plating film in the roughened and / or swollen portion of the base material.
X: No plating film is formed on the roughened and / or swollen portion of the base material.

(2)メッキ膜の密着強度
実施例1~9及び比較例1~4で得られたメッキ膜被覆体の無電解メッキ膜上に、40μmの電解銅メッキを形成して、メッキ膜の密着強度の測定用試料を作製した。垂直引っ張り試験により、測定用試料のメッキ膜の密着強度を測定した。結果を表1に示す。
(2) Adhesion strength of plating film Adhesion strength of plating film is formed by forming 40 μm electrolytic copper plating on the electroless plating film of the plating film coatings obtained in Examples 1 to 9 and Comparative Examples 1 to 4. A sample for measurement was prepared. The adhesion strength of the plating film of the measurement sample was measured by a vertical tensile test. The results are shown in Table 1.

(3)治具上のメッキ膜の成長の有無
実施例1~9及び比較例1~4において、メッキ膜被覆体の製造後に、基材を保持していた治具の表面を目視で観察し、治具上の無電解メッキ膜の有無を以下の評価基準に従って評価した。結果を表1に示す。
(3) Presence or absence of growth of the plating film on the jig In Examples 1 to 9 and Comparative Examples 1 to 4, the surface of the jig holding the base material was visually observed after the plating film coating was manufactured. The presence or absence of the electroless plating film on the jig was evaluated according to the following evaluation criteria. The results are shown in Table 1.

<治具上のメッキ膜の成長の有無の評価基準>
○:治具上に無電解メッキ膜は成長していない。
×:治具上に無電解メッキ膜が成長している。
<Evaluation criteria for the presence or absence of growth of the plating film on the jig>
◯: The electroless plating film has not grown on the jig.
X: An electroless plating film is growing on the jig.

Figure 0007005363000002
Figure 0007005363000002

表1に示すように、実施例1~9では、メッキ反応性が良好であった。実施例1~5及び7では、基材全面が粗化及び/又は膨潤されたため、基材全面に均一に無電解メッキ膜が形成された。実施例6では、2色成形体である基材において、ポリアミドを含む基材の第2部分のみが塩酸により粗化及び/又は膨潤されたため、第2部分のみに選択的に無電解メッキ膜が形成された。また、実施例8及び9では、レーザー描画された部分にのみに選択的に無電解メッキ膜が形成された。 As shown in Table 1, in Examples 1 to 9, the plating reactivity was good. In Examples 1 to 5 and 7, since the entire surface of the substrate was roughened and / or swollen, an electroless plating film was uniformly formed on the entire surface of the substrate. In Example 6, in the substrate which is a two-color molded product, only the second portion of the substrate containing the polyamide was roughened and / or swollen by hydrochloric acid, so that the electroless plating film was selectively formed only on the second portion. Been formed. Further, in Examples 8 and 9, an electroless plating film was selectively formed only on the laser-drawn portion.

また、実施例1~9において、メッキ膜の密着強度は、実用上、特に問題の無いレベルであった。触媒付与の前処理液中の窒素含有ポリマーの重量平均分子量のみが異なり、他の条件が同一である実施例1~3を比較する。実施例1~3のメッキ膜の密着強度は、全て、一般的な樹脂メッキの目標値である10N/cm以上であるが、重量平均分子量が70,000以上である実施例1及び2方の密着強度が、より高かった。また、触媒付与の前処理液中の還元剤の有無以外の条件が同一である実施例1及び4を比較すると、前処理液中に還元剤を含む実施例1のメッキ膜の密着強度が、より高かった。また、実施例8のような細線の樹脂メッキの一般的な目標値は、5N/cmである。実施例8では、目標値を超える高い密着強度が得られた。また、実施例9では、高熱伝導率で絶縁性材料であるセラミックの基材に、直接、メッキ膜による電気配線を形成できること、更に、形成した配線(メッキ膜)が配線として使用可能な最低限の密着強度を有することを確認できた。 Further, in Examples 1 to 9, the adhesion strength of the plating film was at a level at which there was no particular problem in practical use. Examples 1 to 3 in which only the weight average molecular weight of the nitrogen-containing polymer in the catalyst-imparted pretreatment liquid is different and the other conditions are the same are compared. The adhesion strengths of the plating films of Examples 1 to 3 are all 10 N / cm or more, which is a target value for general resin plating, but the weight average molecular weight is 70,000 or more of Examples 1 and 2. The adhesion strength was higher. Further, comparing Examples 1 and 4 in which the conditions other than the presence or absence of the reducing agent in the catalyst-imparted pretreatment liquid are the same, the adhesion strength of the plating film of Example 1 containing the reducing agent in the pretreatment liquid is higher. It was higher. Further, the general target value for resin plating of thin wires as in Example 8 is 5 N / cm. In Example 8, a high adhesion strength exceeding the target value was obtained. Further, in the ninth embodiment, the electric wiring by the plating film can be directly formed on the ceramic base material which is a high thermal conductivity and insulating material, and the formed wiring (plating film) can be used as the minimum wiring. It was confirmed that it has the adhesion strength of.

また、実施例1~9では、無電解メッキ液を激しく攪拌しながら無電解メッキ処理を行ったにもかかわらず、メッキ反応性が良好で、且つ表1に示す密着強度を有していた。この結果から、実施例1~9と同様の製造方法により、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成できると推測される。 Further, in Examples 1 to 9, despite the electroless plating treatment being performed while vigorously stirring the electroless plating solution, the plating reactivity was good and the adhesion strength shown in Table 1 was obtained. From this result, it is presumed that an electroless plating film having a uniform shape and high adhesion strength can be formed even on a substrate having a complicated shape or a large shape by the same manufacturing method as in Examples 1 to 9.

更に、実施例1~9において、基材を保持していた治具上にメッキ膜成長は確認されなかった。したがって、実施例1~9の製造方法において、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要がない。 Further, in Examples 1 to 9, no plating film growth was confirmed on the jig holding the base material. Therefore, in the manufacturing methods of Examples 1 to 9, it is not necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment.

一方、触媒付与の前処理を行わなかった比較例1では、メッキ反応性が低く、基材表面の約10%にメッキ膜が析出しなかった。メッキ膜の未析出は、基材(成形体)のエッジ部分や、金型のゲート近傍に対応する部分に集中していた。これらの部分は、基材の結晶性が高く、水の浸透性が低いため、無電解メッキ触媒が吸着し難い。このため、基材の洗浄により、成形体のエッジ部分等を中心に無電解メッキ触媒が脱離したと推測される。また、触媒付与の前処理において、重量平均分子量1000未満の窒素含有ポリマーを用いた比較例2では、メッキ反応性が低く、基材表面の約5%にメッキ膜が析出しなかった。重量平均分子量の低い窒素含有ポリマーは、基材の粗化及び/又は膨潤した部分への吸着力が十分ではなく、基材の洗浄により基材からの脱離が進んだと推測される。また、無電解メッキ触媒の付与をキャタリスト・アクセラレータ法(C/A法)により行った比較例3では、治具上に無電解メッキ膜が成長した。キャタリスト・アクセラレータ法では、無電解メッキ触媒として金属イオンではなく、パラジウムコロイドを用い、更に、別途、還元工程を行う。このため、治具上にも無電解メッキ触媒が強固に吸着し、無電解メッキ膜が発生したと推測される。 On the other hand, in Comparative Example 1 in which the pretreatment for applying the catalyst was not performed, the plating reactivity was low, and the plating film did not precipitate on about 10% of the surface of the substrate. The unprecipitated plating film was concentrated on the edge portion of the base material (molded body) and the portion corresponding to the vicinity of the gate of the mold. Since these portions have high crystallinity of the base material and low water permeability, the electroless plating catalyst is difficult to adsorb. Therefore, it is presumed that the electroless plating catalyst was desorbed around the edge portion of the molded product by cleaning the base material. Further, in Comparative Example 2 in which a nitrogen-containing polymer having a weight average molecular weight of less than 1000 was used in the pretreatment for applying the catalyst, the plating reactivity was low and the plating film did not precipitate on about 5% of the surface of the substrate. It is presumed that the nitrogen-containing polymer having a low weight average molecular weight did not have sufficient adsorption power to the roughened and / or swollen portion of the base material, and was desorbed from the base material by washing the base material. Further, in Comparative Example 3 in which the electroless plating catalyst was applied by the catalyst accelerator method (C / A method), the electroless plating film grew on the jig. In the catalyst accelerator method, palladium colloid is used as the electroless plating catalyst instead of metal ions, and a reduction step is performed separately. Therefore, it is presumed that the electroless plating catalyst was strongly adsorbed on the jig and the electroless plating film was generated.

また、基材としてポリフェニレンサルファイド(PPS)を用い、触媒付与の前処理を行わなかった比較例4では、レーザー描画部分に無電解メッキ膜が形成されなかった。この原因は、PPS等の非極性材料に対して、無電解メッキ触媒(金属イオン)が吸着し難いためだと推測される。一方、上述したように、PPSの基材を用いた実施例8では、レーザー描画部分に十分な密着強度を有する無電解メッキ膜を形成できた。実施例8と比較例4との比較から、PPS等の非極性材料の基材に対しても、触媒付与の前処理により、無電解メッキ触媒(金属イオン)の吸着量を増加させ、無電解メッキ膜が形成可能なことが確認できた。 Further, in Comparative Example 4 in which polyphenylene sulfide (PPS) was used as a base material and no pretreatment for catalyst application was performed, an electroless plating film was not formed on the laser drawing portion. It is presumed that this is because the electroless plating catalyst (metal ion) is difficult to adsorb to non-polar materials such as PPS. On the other hand, as described above, in Example 8 using the PPS substrate, an electroless plating film having sufficient adhesion strength could be formed on the laser drawing portion. From the comparison between Example 8 and Comparative Example 4, the adsorption amount of the electroless plating catalyst (metal ion) is increased by the pretreatment for applying the catalyst even to the base material of the non-polar material such as PPS, and the electroless plating catalyst (metal ion) is not electrolyzed. It was confirmed that a plating film could be formed.

本発明のメッキ膜被覆体の製造方法によれば、安定な処理液を用いた簡易な方法で触媒付与処理を行い、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成できる。また、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要がないため、スループットを向上できる。 According to the method for producing a plating film coating film of the present invention, the catalyst application treatment is performed by a simple method using a stable treatment liquid, and even on a substrate having a complicated shape or a large shape, there is no uniform and high adhesion strength. An electrolytic plating film can be formed. Further, since it is not necessary to replace the jig for holding the base material between the catalyst application treatment and the plating treatment, the throughput can be improved.

Claims (20)

メッキ膜被覆体の製造方法であって、
基材の表面の少なくとも一部を粗化及び/又は膨潤させることと、
粗化及び/又は膨潤した基材に、重量平均分子量1,000以上の窒素含有ポリマーを含む前処理液を接触させることと、
前記前処理液を接触させた基材を洗浄することと、
前記洗浄した基材に、金属塩を含むメッキ触媒液を接触させ、前記金属塩由来の金属イオンを前記基材に吸着させることと、
前記メッキ触媒液を接触させた、前記金属イオンが吸着している基材に、無電解メッキ液を接触させることとを含むメッキ膜被覆体の製造方法。
It is a method of manufacturing a plating film coating,
Roughening and / or swelling at least a portion of the surface of the substrate,
Contacting the roughened and / or swollen substrate with a pretreatment solution containing a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more.
Cleaning the base material that has been brought into contact with the pretreatment liquid, and
A plating catalyst solution containing a metal salt is brought into contact with the washed base material to adsorb metal ions derived from the metal salt to the base material .
A method for producing a plating film coating body, which comprises contacting an electroless plating solution with a substrate on which the metal ions are adsorbed, which is in contact with the plating catalyst solution.
前記基材の表面の少なくとも一部にレーザー光を照射することにより、前記基材の表面の少なくとも一部を粗化することを特徴とする請求項1に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to claim 1, wherein at least a part of the surface of the base material is roughened by irradiating at least a part of the surface of the base material with a laser beam. 前記基材が脂肪族ポリアミドを含み、
前記基材の表面の少なくとも一部を塩酸に接触させることにより、前記基材の表面の少なくとも一部を粗化及び/又は膨潤させることを特徴とする請求項1に記載のメッキ膜被覆体の製造方法。
The substrate contains an aliphatic polyamide and contains
The plating film coating material according to claim 1, wherein at least a part of the surface of the base material is brought into contact with hydrochloric acid to roughen and / or swell at least a part of the surface of the base material. Production method.
前記基材がABS樹脂を含み、
前記基材の表面の少なくとも一部を過マンガン酸又はクロム酸に接触させることにより、前記基材の表面の少なくとも一部を粗化及び/又は膨潤させることを特徴とする請求項1に記載のメッキ膜被覆体の製造方法。
The base material contains ABS resin and contains
The first aspect of claim 1, wherein at least a part of the surface of the base material is brought into contact with permanganate or chromic acid to roughen and / or swell at least a part of the surface of the base material. A method for manufacturing a plated film coating.
前記窒素含有ポリマーが、ポリエチレンイミンであることを特徴とする請求項1~4のいずれか一項に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to any one of claims 1 to 4, wherein the nitrogen-containing polymer is polyethyleneimine. 前記窒素含有ポリマーの重量平均分子量が、1,000~100,000であることを特徴とする請求項1~5のいずれか一項に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to any one of claims 1 to 5, wherein the nitrogen-containing polymer has a weight average molecular weight of 1,000 to 100,000. 前記窒素含有ポリマーの重量平均分子量が、70,000~100,000であることを特徴とする請求項6に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to claim 6, wherein the nitrogen-containing polymer has a weight average molecular weight of 70,000 to 100,000. 前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/Lであることを特徴とする請求項1~7のいずれか一項に記載のメッキ膜被覆体の製造方法。 The production of the plating film coating body according to any one of claims 1 to 7, wherein the blending amount of the nitrogen-containing polymer in the pretreatment liquid is 0.01 g / L to 100 g / L. Method. メッキ膜被覆体の製造方法であって、 It is a method of manufacturing a plating film coating,
基材の表面の少なくとも一部を粗化及び/又は膨潤させることと、 Roughening and / or swelling at least a portion of the surface of the substrate,
粗化及び/又は膨潤した基材に、重量平均分子量1,000以上の窒素含有ポリマーを含む前処理液を接触させることと、 Contacting the roughened and / or swollen substrate with a pretreatment solution containing a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more.
前記前処理液を接触させた基材を洗浄することと、 Cleaning the base material that has been brought into contact with the pretreatment liquid, and
前記洗浄した基材に、金属塩を含むメッキ触媒液を接触させることと、 By contacting the washed substrate with a plating catalyst solution containing a metal salt,
前記メッキ触媒液を接触させた基材に、無電解メッキ液を接触させることとを含み、 Including contacting the electroless plating liquid with the base material to which the plating catalyst liquid has been brought into contact, including contacting the electroless plating liquid.
前記前処理液が、次亜リン酸カルシウムである還元剤を更に含む、メッキ膜被覆体の製造方法。 A method for producing a plating film coating, wherein the pretreatment liquid further contains a reducing agent which is calcium hypophosphite.
前記前処理液中の前記還元剤の配合量が、1g/L~100g/Lであることを特徴とする請求項9に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to claim 9, wherein the blending amount of the reducing agent in the pretreatment liquid is 1 g / L to 100 g / L. 前記メッキ触媒液の金属塩が、塩化パラジウムであることを特徴とする請求項1~10のいずれか一項に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to any one of claims 1 to 10 , wherein the metal salt of the plating catalyst solution is palladium chloride. 前記無電解メッキ液が、次亜リン酸ナトリウムを含む無電解ニッケルメッキ液であることを特徴とする請求項1~11のいずれか一項に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to any one of claims 1 to 11 , wherein the electroless plating solution is an electroless nickel plating solution containing sodium hypophosphite. 前記無電解メッキ液を撹拌させながら前記基材に接触させることを特徴とする請求項1~12のいずれか一項に記載のメッキ膜被覆体の製造方法。 The method for producing a plating film coating according to any one of claims 1 to 12 , wherein the electroless plating solution is brought into contact with the base material while being stirred. 前記基材を治具で保持した状態で、前記基材及び前記治具の両方に、前記前処理液を接触させ、前記洗浄を行い、前記メッキ触媒液を接触させ、前記無電解メッキ液を接触させることを特徴とする請求項1~13のいずれか一項に記載のメッキ膜被覆体の製造方法。 With the base material held by a jig, the pretreatment liquid is brought into contact with both the base material and the jig to perform the cleaning, and the plating catalyst liquid is brought into contact with the electroless plating liquid. The method for producing a plating film coating according to any one of claims 1 to 13 , wherein the plating film coating is brought into contact with each other. 前記基材の表面に触媒失活剤を付与することを更に含み、
前記触媒失活剤を付与した基材の表面の少なくとも一部を粗化することを特徴とする請求項1~14のいずれか一項に記載のメッキ膜被覆体の製造方法。
Further comprising applying a catalytic deactivating agent to the surface of the substrate.
The method for producing a plating film coating according to any one of claims 1 to 14 , wherein at least a part of the surface of the base material to which the catalyst deactivating agent is applied is roughened.
基材に無電解メッキ触媒を付与するための前処理液であって、
重量平均分子量1,000以上の窒素含有ポリマーと、
水と
次亜リン酸カルシウムである還元剤とを含む前処理液。
A pretreatment liquid for applying an electroless plating catalyst to a substrate.
Nitrogen-containing polymers with a weight average molecular weight of 1,000 or more,
With water
A pretreatment liquid containing a reducing agent which is calcium hypophosphite .
前記窒素含有ポリマーが、ポリエチレンイミンであることを特徴とする請求項16に記載の前処理液。 The pretreatment liquid according to claim 16 , wherein the nitrogen-containing polymer is polyethyleneimine. 前記窒素含有ポリマーの重量平均分子量が、1,000~100,000であることを特徴とする請求項16又は17に記載の前処理液。 The pretreatment liquid according to claim 16 or 17 , wherein the nitrogen-containing polymer has a weight average molecular weight of 1,000 to 100,000. 前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/Lであることを特徴とする請求項16~18のいずれか一項に記載の前処理液。 The pretreatment liquid according to any one of claims 16 to 18 , wherein the blending amount of the nitrogen-containing polymer in the pretreatment liquid is 0.01 g / L to 100 g / L. 前記前処理液中の前記還元剤の配合量が、1g/L~100g/Lであることを特徴とする請求項16~19のいずれか一項に記載の前処理液。 The pretreatment liquid according to any one of claims 16 to 19, wherein the blending amount of the reducing agent in the pretreatment liquid is 1 g / L to 100 g / L.
JP2018012860A 2018-01-29 2018-01-29 Manufacturing method of plating film coating and pretreatment liquid Active JP7005363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012860A JP7005363B2 (en) 2018-01-29 2018-01-29 Manufacturing method of plating film coating and pretreatment liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012860A JP7005363B2 (en) 2018-01-29 2018-01-29 Manufacturing method of plating film coating and pretreatment liquid

Publications (2)

Publication Number Publication Date
JP2019131839A JP2019131839A (en) 2019-08-08
JP7005363B2 true JP7005363B2 (en) 2022-01-21

Family

ID=67547237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012860A Active JP7005363B2 (en) 2018-01-29 2018-01-29 Manufacturing method of plating film coating and pretreatment liquid

Country Status (1)

Country Link
JP (1) JP7005363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127334A (en) * 2019-07-24 2022-03-01 麦克赛尔株式会社 Method for producing plated member and pretreatment liquid for imparting electroless plating catalyst
CN112831775A (en) * 2021-01-22 2021-05-25 镇江阿尔法特种镀膜科技有限公司 Surface metallization roughening process and equipment for carbon fiber reinforced epoxy resin composite material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197221A (en) 2002-12-18 2004-07-15 Enthone Inc Method of activating substrate for electroplating synthetic substance
JP2010121143A (en) 2008-11-17 2010-06-03 Okuno Chem Ind Co Ltd Post-processing agent of etching for resin-formed body, post-processing method using the same, and plating method for resin-formed body
JP2012136769A (en) 2010-12-10 2012-07-19 Sankyo Kasei Co Ltd Method for manufacturing molded circuit component
JP2013216746A (en) 2012-04-06 2013-10-24 Hitachi Maxell Ltd Method for manufacturing molded product
JP2014528515A (en) 2011-09-29 2014-10-27 マクダーミッド アキューメン インコーポレーテッド Treatment of plastic surfaces after etching in nitric acid-containing media.
JP2015025198A (en) 2013-06-21 2015-02-05 Dic株式会社 Electroless plating catalyst, metal film using the same and method for manufacturing metal film
JP2015030884A (en) 2013-08-02 2015-02-16 日本カニゼン株式会社 Electroless nickel plating solution and electroless nickel plating method using the same
JP2017226890A (en) 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197221A (en) 2002-12-18 2004-07-15 Enthone Inc Method of activating substrate for electroplating synthetic substance
JP2010121143A (en) 2008-11-17 2010-06-03 Okuno Chem Ind Co Ltd Post-processing agent of etching for resin-formed body, post-processing method using the same, and plating method for resin-formed body
JP2012136769A (en) 2010-12-10 2012-07-19 Sankyo Kasei Co Ltd Method for manufacturing molded circuit component
JP2014528515A (en) 2011-09-29 2014-10-27 マクダーミッド アキューメン インコーポレーテッド Treatment of plastic surfaces after etching in nitric acid-containing media.
JP2013216746A (en) 2012-04-06 2013-10-24 Hitachi Maxell Ltd Method for manufacturing molded product
JP2015025198A (en) 2013-06-21 2015-02-05 Dic株式会社 Electroless plating catalyst, metal film using the same and method for manufacturing metal film
JP2015030884A (en) 2013-08-02 2015-02-16 日本カニゼン株式会社 Electroless nickel plating solution and electroless nickel plating method using the same
JP2017226890A (en) 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component

Also Published As

Publication number Publication date
JP2019131839A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5585980B2 (en) Pretreatment method of electroless plating for resin molding, plating method for resin molding, and pretreatment agent
JP6201153B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6145681B2 (en) Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
EP1942207A1 (en) Pre-treatment solution and method of forming a layer of a coating metal on a plastics surface containing substrate
JP4843164B2 (en) Method for forming copper-resin composite material
EP3168326B2 (en) Resin plating method
JP4617445B2 (en) Plating method for resin molding
WO2008012984A1 (en) Process for metallization of plastic surfaces
JP7005363B2 (en) Manufacturing method of plating film coating and pretreatment liquid
US9551073B2 (en) Method for depositing a first metallic layer onto non-conductive polymers
CN104364421B (en) Make the method for nonconductive plastic material surface metalation
KR20200134345A (en) Composition for pretreatment for electroless plating, pretreatment method for electroless plating, and electroless plating method
JP4109615B2 (en) Method for activating substrate for synthetic electroplating
JP2010121143A (en) Post-processing agent of etching for resin-formed body, post-processing method using the same, and plating method for resin-formed body
MX2015000850A (en) Electroless nickel coatings and compositions and methods for forming the coatings.
JP5517275B2 (en) Post-treatment agent for etching treatment with chromic acid-sulfuric acid mixture
JP7360155B2 (en) Electroless nickel plating film and pretreatment method for forming the electroless nickel plating film
JP6666529B1 (en) Manufacturing method of plated parts
JP2010031306A (en) Method of plating on resin base material
JP7455859B2 (en) Method of activating the surface of a non-conductive or carbon fiber-containing substrate for metallization
JP4740711B2 (en) Pd / Sn colloidal catalyst adsorption promoter
JP7160306B2 (en) Electroless plating pretreatment composition, electroless plating pretreatment method, electroless plating method
JP2017186635A (en) Electroless copper gilding method and producing method for print wire plate by this method
JP2023539602A (en) Method of activating the surface of a non-conductive or carbon fiber-containing substrate for metallization
JP2023008204A (en) Ni CATALYST SOLUTION FOR ELECTROLESS Ni-P PLATING AND METHOD OF FORMING ELECTROLESS Ni-P PLATING FILM USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211102

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150