WO2018117160A1 - Method for producing plated molded body, and plated molded body - Google Patents

Method for producing plated molded body, and plated molded body Download PDF

Info

Publication number
WO2018117160A1
WO2018117160A1 PCT/JP2017/045758 JP2017045758W WO2018117160A1 WO 2018117160 A1 WO2018117160 A1 WO 2018117160A1 JP 2017045758 W JP2017045758 W JP 2017045758W WO 2018117160 A1 WO2018117160 A1 WO 2018117160A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
resin
electroless plating
cnf
pressure
Prior art date
Application number
PCT/JP2017/045758
Other languages
French (fr)
Japanese (ja)
Inventor
遊佐 敦
智史 山本
孝一 水戸
山口 靖雄
大嶋 正裕
Original Assignee
マクセルホールディングス株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社, 国立大学法人京都大学 filed Critical マクセルホールディングス株式会社
Publication of WO2018117160A1 publication Critical patent/WO2018117160A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal

Definitions

  • the present invention relates to a plated molded body and a method for manufacturing the plated molded body.
  • Electroless plating is known as a method for forming a metal film at low cost on a molded body.
  • a pretreatment for roughening the surface of the molded body is performed using an etching solution containing an oxidizing agent such as hexavalent chromic acid or permanganic acid. Therefore, an ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin) that is eroded by an etching solution has been mainly used for electroless plating.
  • the butadiene rubber component is selectively eroded by the etching solution, and irregularities are formed on the surface.
  • a plating grade in which a component that is selectively oxidized to an etching solution such as an ABS resin or an elastomer is mixed in order to enable electroless plating has a problem of high environmental load because hexavalent chromic acid or the like is used.
  • An electroless plating catalyst is applied to the surface of the roughened molded body, and then electroless plating is performed.
  • the electroless plating catalyst application to the plastic substrate two kinds of methods are mainly used. After adsorbing the tin colloid on the substrate (Sensitizer), immersing it in a palladium chloride solution (Activator), reducing and precipitating the palladium chloride with stannous chloride, and the palladium tin colloid as the substrate.
  • Activator a palladium chloride solution
  • the sensitizer / activator method has a problem that the mass productivity is low because the bath life of the tin colloid used in the sensitizer is short. For this reason, the catalyst accelerator method is mainly employed as an industrial electroless plating catalyst application method.
  • Patent Document 1 in order to reduce the number of steps in the plating pretreatment, molding is performed with one solution containing a corrosive agent containing an inorganic acid such as hydrochloric acid, an ionogenic activator such as palladium ion, and an organic acid such as acetic acid. Methods for treating the body have been proposed. According to Patent Document 1, it is not necessary to use hexavalent chromic acid having a high environmental load by performing the pretreatment of the polyamide substrate with the above-mentioned one solution, and a good plating film can be obtained.
  • a corrosive agent containing an inorganic acid such as hydrochloric acid, an ionogenic activator such as palladium ion, and an organic acid such as acetic acid.
  • Patent Document 2 proposes an electroless plating catalyst solution containing a complex of palladium ion and 2-aminoethylpyridine as an alternative to a sensitizer solution containing palladium-tin colloid used in the sensitizer / activator method.
  • the conventional sensitizer solution contains tin that has a high environmental load, and also has a problem that the palladium-tin colloid easily aggregates.
  • the proposed electroless plating catalyst solution does not contain tin, which has a high environmental load, and is more stable for a long time compared to conventional sensitizer solutions.
  • Patent Document 1 mainly uses a molded body made of polyamide. Therefore, there is a possibility that an electroless plating film having high adhesion strength cannot be formed on a molded body made of a thermoplastic resin other than polyamide. Moreover, since the method proposed in Patent Document 2 forms a new palladium complex, the cost of the electroless plating catalyst may increase.
  • the present invention solves these problems, and provides a method for producing a plated molded body in which an electroless plated film is formed on a molded body having high plating reactivity by a method having a low environmental load and low cost.
  • a plated molded body having a plating film with high adhesion strength and high heat cycle resistance is provided.
  • a method for producing a plated molded body in which a molded body is obtained by molding a thermoplastic resin containing cellulose nanofibers, and the molded body contains a metal salt. Contacting an electroplating catalyst solution, and contacting the electroless plating solution with the molded body contacted with the electroless plating catalyst solution to form an electroless plating film on the surface of the molded body.
  • a manufacturing method is provided.
  • the molded body Before the molded body is brought into contact with the electroless plating catalyst solution, the molded body may be subjected to a swelling process or an etching process.
  • the metal salt contained in the electroless plating catalyst solution may be one selected from the group consisting of palladium chloride, silver chloride, copper chloride, and silver nitrate.
  • the thermoplastic resin may include polyamide, polypropylene, or ABS resin.
  • Molding the molded body may include preparing resin pellets containing the thermoplastic resin and the cellulose nanofibers, and molding the resin pellets to obtain the molded body.
  • preparing the resin pellets obtains a mixture of a molten resin obtained by plasticizing and melting the thermoplastic resin and a slurry in which the cellulose nanofibers are dispersed in a solvent, and removing the solvent from the mixture And extruding the mixture from which the solvent has been removed to obtain an extrudate, and crushing the extrudate to obtain the resin pellets.
  • Preparing the resin pellets may further include adding water to the mixture of the molten resin and the slurry.
  • a plated molded body comprising a thermoplastic resin, a molded body containing cellulose nanofibers, and an electroless plating film formed on the surface of the molded body.
  • a shaped body is provided.
  • the molded body may be a foamed molded body having foam cells inside.
  • the thermoplastic resin may include polyamide, polypropylene, or ABS resin.
  • an electroless plating film can be formed on a molded body having high plating reactivity containing cellulose nanofibers by a method with low environmental load and low cost.
  • the plating molded object obtained by this invention has a plating film with high adhesive strength, and has high heat cycle tolerance.
  • FIG. 1 is a flowchart showing a method of manufacturing a plated molded body manufactured in the embodiment.
  • FIG. 2 is a schematic view of a resin pellet manufacturing apparatus used in Example 1.
  • FIG. 3 is a partially enlarged view of the manufacturing apparatus shown in FIG.
  • FIG. 4 is a schematic view of a production apparatus for producing the foam molded article used in Example 3.
  • a method for producing a plated molded body (molded body having a plated film) in the present embodiment will be described.
  • thermoplastic resin containing cellulose nanofibers is molded to obtain a molded body (step S1 in FIG. 1).
  • the thermoplastic resin include polyamide such as nylon, polypropylene, polymethyl methacrylate, polycarbonate, amorphous polyolefin, polyether imide, polyethylene terephthalate, polyether ether ketone, ABS resin, polyphenylene sulfide, polyamide imide, polylactic acid, polycaprolactone. Etc. can be used.
  • polyamide, polypropylene, and ABS resin are preferable as the thermoplastic resin used in the present embodiment.
  • Polyamide has a relatively high hydrophilicity and is suitable for forming an electroless plating film.
  • Polypropylene is inexpensive, lightweight and excellent in chemical resistance, and is preferable as a plated part for automobiles and the like. On the other hand, polypropylene does not easily penetrate the plating solution, but can be plated by mixing an extractant.
  • ABS resin has been used most frequently as a plated part and has a wide range of applications. Conventional plating on ABS resin requires etching using chromic acid or the like as a plating pretreatment, but as described later, etching using an organic solvent instead of chromic acid is also possible.
  • these thermoplastic resins one type of resin may be used alone, or two or more types may be mixed and used.
  • the cellulose nanofiber (hereinafter referred to as “CNF” as appropriate) is a material obtained by unraveling fibers of a material (for example, wood pulp) containing plant fibers to a nanosize level.
  • CNF is a fiber with a large aspect ratio having a diameter of 4 to 100 nm and a length of 1 ⁇ m or more.
  • the cellulose nanocrystal (CNC) which is a needle-like crystal is also included in CNF.
  • the present inventors adsorb metal ions that function as an electroless plating catalyst on the surface of the molded body in a subsequent electroless plating catalyst application step (step S2 in FIG. 1). As a result, it has been found that the electroless plating reactivity of the molded body is improved. That is, as a first effect of the present embodiment, CNF acts as an adsorbent for metal ions.
  • CNF inclusion of CNF in the molded body brings about the following advantages in addition to the above-described 1) improving the reactivity of electroless plating by adsorbing metal ions. 2) Since CNF is hydrophilic, the catalyst solution and the plating solution easily penetrate into the molded body containing CNF. Then, the plating film grows from the inside of the molded body with the CNF buried in the molded body as a base point, and the fibrous CNF suppresses the peeling of the plating film. Thereby, the adhesion strength of the plating film is improved. 3) CNF has a low specific gravity and a low thermal expansion coefficient and a high elastic modulus.
  • CNF is a nanofiber with a small diameter, it is hard to affect the external appearance of the surface of the molded object containing this. For this reason, the plating molded object with high designability can be manufactured. 5) CNF has a small anisotropy of filler orientation. For this reason, it is difficult to cause unevenness in the adsorption amount of metal ions on the surface of the molded body. 6) CNF has little adverse effect on the human body.
  • the specific surface area of the CNF preferably 70 ⁇ 300m 2 / g, more preferably 70 ⁇ 250m 2 / g, more preferably 100 ⁇ 200m 2 / g.
  • the specific surface area of CNF is large, the adsorptivity of metal ions and the strength of the molded body are improved.
  • the specific surface area is extremely large, the resin tends to aggregate in the resin. Therefore, the above-mentioned range is preferable for the specific surface area of CNF.
  • CNF is defibrated to the nano level, it is difficult to measure the fiber diameter and length using X-ray CT or the like, so it is difficult to analyze the dispersion state of CNF in the resin.
  • it is preferable to use CNF that has been defibrated to the nano level from the viewpoint of increasing the specific surface area of CNF to some extent within the above range.
  • the production method of CNF is not particularly limited, and may be produced by any production method, or a commercially available product may be used.
  • the surface modification of CNF may or may not be performed by a known method.
  • the surface modification of CNF has the advantage of improving the mechanical properties of the molded body, such as decreasing the thermal expansion coefficient of the molded body and increasing the elastic modulus, depending on the type of resin in which CNF is dispersed.
  • the surface modification of CNF is not a particularly necessary treatment. Rather, if CNF aggregation can be suppressed, it is better not to modify the surface of CNF.
  • CNF is contained in the thermoplastic resin in an amount of, for example, 0.1% to 50% by weight, preferably 0.5% to 20% by weight, and preferably 1% to 10% by weight. More preferred. CNF increases the plating reactivity of the molded body and improves the adhesion strength of the plating film. However, if the ratio to the thermoplastic resin is too high, the moldability may be significantly lowered due to the increase in viscosity. Therefore, the above range is preferable for the ratio of CNF to the thermoplastic resin.
  • a block copolymer containing a hydrophilic segment may be further mixed with the thermoplastic resin and molded to obtain a molded body.
  • the block copolymer used in the present embodiment has a hydrophilic segment, and further has another segment different from the hydrophilic segment (hereinafter referred to as “other segment” as appropriate).
  • the molded body contains the block copolymer, the surface of the molded body is hydrophilized, the catalyst solution and the plating solution are easily penetrated into the molded body, and the growth of the plating film is promoted.
  • a hydrophobic material such as an ABS resin is used as the thermoplastic resin, mixing of the block copolymer is particularly effective.
  • An anionic segment, a cationic segment, and a nonionic segment can be used as the hydrophilic segment of the block copolymer.
  • the anionic segment include polystyrene sulfonic acid
  • the cationic segment includes a quaternary ammonium base-containing acrylate polymer system
  • the nonionic segment includes a polyether ester amide system, a polyethylene oxide-epichlorohydrin system, and a polyether ester system. It is done.
  • the hydrophilic segment is a nonionic segment having a polyether structure because the heat resistance of the molded product is easily secured.
  • polyether structure examples include oxyalkylene groups having 2 to 4 carbon atoms such as oxyethylene group, oxypropylene group, oxytrimethylene group, and oxytetramethylene group, polyether diol, polyether diamine, and their modifications.
  • polyether-containing hydrophilic polymers with polyethylene oxide being particularly preferred.
  • the other segment of the block copolymer is arbitrary as long as it is more hydrophobic than the hydrophilic segment, but, for example, nylon, polyolefin or the like can be used.
  • the block copolymer When the block copolymer is mixed with the thermoplastic resin, the block copolymer may be contained in an amount of, for example, 0.5% to 10% by weight and 1% to 5% by weight with respect to the thermoplastic resin. More preferred.
  • the block copolymer promotes the growth of the plating film, but if the content in the molded body is too large, the mechanical strength of the molded body may be lowered. Therefore, the ratio of the block copolymer to the thermoplastic resin is preferably in the above range.
  • the thermoplastic resin may be further mixed with various inorganic fillers such as glass fiber, talc, and carbon fiber and molded to obtain a molded body.
  • various inorganic fillers such as glass fiber, talc, and carbon fiber
  • a filler is mixed with a thermoplastic resin
  • a commercially available resin in which an inorganic filler is mixed in advance a so-called inorganic filler reinforced resin
  • a general-purpose additive may be added to the thermoplastic resin to form a molded body.
  • the molding method of a molded object is not specifically limited, A general purpose method can be used.
  • resin pellets containing a thermoplastic resin and CNF may be prepared, and the resin pellets may be molded by a general-purpose method to obtain a molded body.
  • a good dispersion state of CNF can be maintained even in the molded body.
  • the composition of the resin pellet can be appropriately determined based on the composition of the molded article to be produced.
  • Resin pellets may be made in-house or commercially available.
  • the manufacturing method of the resin pellet is not particularly limited, and any method can be used.
  • a monomer constituting a thermoplastic resin (polyamide) and an aqueous dispersion of CNF (CNF aqueous slurry) are mixed to obtain a polymerization reaction.
  • the obtained resin composition may be taken out and pulverized to produce pellets. Or you may use the commercial item manufactured by the same method.
  • Kyoto process for example, New Energy and Industrial Technology Development Organization, News, National Research and Development Corporation, News, which disperses surface-modified cellulose into CNF in a twin-screw extruder while defibrating into CNF. Release, March 23, 2016, “Developing a resin composite material reinforced with high-performance nanofibers and a high-efficiency manufacturing process-A test plant for integrated manufacturing starts operation in Kyoto University”) Also good.
  • thermoplastic resin containing a block copolymer or the like As another method for producing resin pellets, for example, CNF, and if necessary, after extruding a thermoplastic resin containing a block copolymer or the like (hereinafter, appropriately described as “resin pellet material”), The extrudate may be cut to produce resin pellets.
  • CNF and thermoplastic resin may be mixed (dry blended) and then introduced into the plasticizing cylinder of the extruder.
  • the thermoplastic resin is first plasticized and melted in the plasticizing cylinder.
  • CNF may be introduced into the plasticizing cylinder later and mixed with the molten resin.
  • the form of CNF mixed with the thermoplastic resin is not particularly limited, and may be, for example, dry powder CNF or slurry CNF (CNF slurry) dispersed in a solvent such as water.
  • a CNF slurry dispersed in water When a CNF slurry dispersed in water is used for producing resin pellets, a mixture of a molten resin obtained by plasticizing and melting a thermoplastic resin and a CNF slurry is obtained in a plasticizing cylinder. At this time, it is preferable that the CNF slurry is sufficiently dispersed in the molten resin while maintaining the liquid phase. For this reason, it is preferable to maintain the pressure in the plasticizing cylinder of the extrusion molding machine at a high pressure at which the solvent of the CNF slurry can maintain the liquid body even in a high temperature state where the thermoplastic resin melts. When the temperature of the liquid becomes high, the density rapidly decreases and the function as a solvent for dissolving or dispersing the solute is lost.
  • the plasticizing cylinder of the extruder used for producing the resin pellets has a high-pressure kneading zone in which the molten resin and the CNF slurry can be mixed at high temperature and high pressure.
  • the temperature and pressure of the high-pressure kneading zone for mixing the molten resin and the CNF slurry can be determined according to the type of the thermoplastic resin and the type of the solvent of the CNF slurry, and are, for example, 150 ° C. to 280 ° C., 3 MPa to 20 MPa, Preferably, they are 180 ° C. to 230 ° C. and 7 MPa to 15 MPa.
  • the high-pressure kneading zone it is preferable to further mix water with the mixture of the molten resin and the CNF slurry.
  • the introduced water prevents the CNF slurry from drying in the high-pressure kneading zone, and further suppresses the aggregation of CNF in the molten resin. Since water is introduced into a mixture of a molten resin and a CNF slurry in a high temperature and pressure state, it is preferably in a pressure state.
  • the mixture of the molten resin and the slurry is preferably decompressed before being extruded to remove the solvent and water of the slurry from the mixture. Therefore, it is preferable that the plasticizing cylinder of the extruder used for the production of the resin pellets has a reduced pressure zone that lowers the resin internal pressure of the molten resin and removes the solvent of the slurry from the molten resin. The removed solvent is discharged out of the plasticizing cylinder from a vent provided in the decompression zone. Further, when the molten resin containing a large amount of solvent is rapidly decompressed, the resin expands greatly, and so-called vent-up is likely to occur. In order to prevent sudden pressure reduction of the molten resin and suppress vent-up, it is preferable to provide a gradual pressure reducing section for gradually evacuating the mixture of the molten resin and the slurry upstream of the vent in the pressure reducing zone.
  • a mixture of molten resin and CNF slurry is extruded into a string shape, cooled, and then cut using a general-purpose cutting device such as a strand cutting device to obtain resin pellets. Extrusion molding, cooling and cutting are preferably performed continuously from the viewpoint of productivity of resin pellets.
  • the molding method of the molded body is not particularly limited.
  • the formed resin pellets may be molded by general-purpose molding such as injection molding or extrusion molding to obtain a molded body having a desired shape. Further, the produced resin pellets may be foam-molded to obtain a foam-molded body having foam cells inside.
  • the foam molded article tends to have a reduced mechanical strength.
  • the foam molded article contains CNF, so that the reduction in mechanical strength due to foaming can be partially offset by the reinforcing effect of CNF.
  • Foam molding is broadly divided into a chemical foaming method using a chemical foaming agent and a physical foaming method using a physical foaming agent, and the physical foaming method is preferable because the foaming agent is inexpensive and does not have an adverse effect of the foaming agent residue. .
  • foam molding using carbon dioxide or nitrogen as a physical foaming agent is preferable because the foamed cells become fine due to the foaming nucleating agent effect and the thickening effect of CNF.
  • the pressure of the physical foaming agent such as carbon dioxide or nitrogen is preferably not higher than the supercritical pressure. By setting the pressure to a supercritical pressure or lower, it is possible to suppress the appearance defect of the molded body called a swirl mark that occurs when the molded body is injection molded.
  • thermoplastic resin is mixed with CNF and, if necessary, inorganic filler, etc., and then molded by general-purpose injection molding, extrusion molding, etc., directly to the desired A shaped molded body may be obtained.
  • pre-plating treatment it is preferable that the molded body is first subjected to etching treatment or swelling treatment. Then, after that, an electroless plating catalyst solution containing a metal salt is brought into contact with the formed body (step S2 in FIG. 1). Thereby, the metal ion derived from the metal salt which functions as an electroless plating catalyst can be imparted to the surface of the molded body.
  • the etching treatment method and the swelling treatment method of the molded body can be appropriately selected depending on the type of thermoplastic resin used in the molded body. However, it is preferable not to use a reagent with a large environmental load such as chromic acid.
  • thermoplastic resin a molded body using a copolymer or a polymer alloy containing a rubber component such as an ABS resin has a surface tension of 36 mN / m or less and a solubility parameter (SP value) of 12.
  • SP value solubility parameter
  • the value of the surface tension of the solvent in this specification means the value of the surface tension at room temperature.
  • the solvent include ethylene glycol monobutyl ether, diethylene glycol monohexyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, and triethylene glycol monobutyl ether glycol ether. Can be mentioned. Of these, dipropylene glycol monomethyl ether is preferred.
  • extract materials that can be extracted with acid or water are included in the molded product in advance, and acid or water is used as the etching solution. By contacting the body, the extracted material may be extracted to etch the surface of the molded body.
  • the extraction material inorganic particles such as calcium hypophosphite, calcium carbonate, magnesium carbonate, magnesium sulfate, and magnesium oxide, high melting point organic compounds such as pentaerythritol, and the like can be used.
  • the acid include hydrochloric acid, sulfuric acid, and nitric acid, and can be appropriately selected depending on the extraction material.
  • thermoplastic resin for a molded body using an aliphatic polyamide such as polyamide 6 (PA6) or polyamide 66 (PA66) as the thermoplastic resin, after contacting the acid, hot water (hot water) is contacted.
  • hot water hot water
  • the molded body surface may be swollen.
  • the acid include hydrochloric acid.
  • the temperature of the hot water is preferably a temperature equal to or higher than the glass transition point of the aliphatic polyamide in the molded body in order to enhance the swelling effect of the molded body, for example, 50 to 90 ° C., preferably 60 to 75 ° C.
  • step S2 ⁇ Applying electroless plating catalyst> After the molded body is etched or swelled, the molded body is contacted with an electroless plating catalyst solution containing a metal salt (step S2 in FIG. 1). Thereby, the metal ion derived from the metal salt which functions as an electroless plating catalyst can be imparted to the surface of the molded body.
  • the metal salt contained in the electroless plating catalyst solution is a metal salt having electroless plating catalytic ability, and any metal salt can be used as long as it dissolves in water and generates metal ions.
  • salts such as Pd, Pt, Cu, Ni, and Ag can be mentioned, and Pd, Ag, and Cu are particularly preferable.
  • metal salts chlorides, sulfides, iodides, fluorides, bromides, etc. of these metals can be used, but chlorides are preferred from the viewpoint of stability, versatility, and cost, and copper chloride, silver chloride Palladium chloride is particularly preferred.
  • the concentration of the metal salt in the electroless plating catalyst solution can be adjusted as appropriate based on conditions such as the temperature of the electroless plating catalyst solution and the contact time between the electroless plating catalyst solution and the molded article. 500 mg / L, preferably 1 to 250 mg / L, more preferably 5 to 150 mg / L. If the concentration of the metal salt is lower than the above range, the amount of metal ions adsorbed on the molded product may be uneven, and defects in the plating film may occur. Further, when the concentration of the metal salt exceeds the above range, the amount of metal ions adsorbed on the surface of the molded body increases, the plating reaction on the outermost surface of the molded body becomes dominant, and the adhesion strength of the plating film may be reduced. There is.
  • the solvent of the electroless plating catalyst solution for dissolving the metal salt is not particularly limited and can be selected according to the type of the metal salt, for example, water; ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone. Organic solvents such as: mixed solvents thereof. Furthermore, in order to increase the solubility of the metal salt, hydrochloric acid, nitric acid, ammonia, sodium hydroxide, or the like may be added to adjust the pH of the liquid. As the electroless plating catalyst solution of this embodiment, an aqueous hydrochloric acid solution of palladium chloride is preferable.
  • the concentration of hydrochloric acid in the electroless plating catalyst solution is, for example, 0.1 to 12N, preferably 0.1 to 5N, and more preferably 1.0 to 4.0N. preferable.
  • the concentration of hydrochloric acid exceeds 12N, the appearance characteristics of the plating film and the mechanical strength of the molded body may be affected by dissolution of the molded body.
  • the electroless plating catalyst solution may be composed of only a metal salt and a solvent, or may contain a general-purpose additive as necessary.
  • the electroless plating catalyst solution may contain a surfactant, for example. By containing the surfactant, the surface tension of the electroless plating catalyst solution is reduced, the wettability to the surface of the molded body is improved, and the metal salt is easily adsorbed on the surface of the molded body.
  • a general-purpose surfactant such as an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.
  • the electroless plating catalyst solution may be prepared by mixing a metal salt, a solvent, and a general-purpose additive as necessary, or a commercially available product may be used.
  • a metal salt a metal salt
  • a solvent a solvent
  • a general-purpose additive a commercially available product
  • an aqueous hydrochloric acid solution of palladium chloride it can be prepared by adding palladium chloride to hydrochloric acid (aqueous hydrochloric acid solution) and stirring until the palladium chloride is dissolved.
  • the catalyzing processing agent (activator) used for a sensitizer activator method can be used, for example.
  • sensitizer In the usual sensitizer / activator method, a sensitizer treatment using a sensitivity imparting agent (sensitizer) containing Sn 2+ is required before the activator treatment using a catalytic treatment agent (activator) containing Pd 2+.
  • sensitizer processing is not necessary in this embodiment.
  • the electroless plating catalyst application method of the present embodiment can reduce the manufacturing cost and improve the throughput as compared with the sensitizer / activator method.
  • the method of bringing the electroless plating catalyst solution into contact with the molded body is arbitrary, and various methods can be used depending on the purpose.
  • the entire molded body may be immersed in the electroless plating catalyst solution, or only a part of the molded body may be brought into contact with the electroless plating catalyst solution.
  • the time for bringing the electroless plating catalyst solution into contact with the molded body is preferably, for example, 5 seconds to 15 minutes. If it is less than 5 seconds, there is a possibility that the amount of the metal salt adsorbed on the molded body may be uneven. Moreover, when it exceeds 15 minutes, there exists a possibility that the molded object may deteriorate with the electroless-plating catalyst liquid which osmose
  • the temperature of the electroless plating catalyst solution brought into contact with the molded body can be appropriately determined according to the kind of the thermoplastic resin, and is, for example, 10 ° C. to 50 ° C. If the temperature is less than 10 ° C., the amount of metal ions adsorbed on the surface of the molded article may be uneven. On the other hand, if the temperature of the electroless plating catalyst solution exceeds 50 ° C., the amount of metal ions adsorbed on the surface of the molded body increases, and the plating reaction on the outermost surface of the molded body may become dominant. Further, when the electroless plating catalyst solution contains hydrochloric acid, it may be difficult to stabilize the hydrochloric acid concentration due to generation of gas from hydrochloric acid or evaporation of water.
  • the metal ion derived from the metal salt is adsorbed to the compact by bringing the electroless plating catalyst solution into contact with the compact.
  • the metal ions function as an electroless plating catalyst in a subsequent electroless plating process (step S3 in FIG. 1). This mechanism is presumed as follows.
  • metal ions such as palladium that serve as an electroless plating catalyst are difficult to be adsorbed to a molded body as they are. Therefore, in the sensitizer activator method and catalyst accelerator method, which are general-purpose electroless plating catalyst application methods, first, the surface of the molded body is roughened, and further, palladium ions are reduced to reduce the oxidation number 0 (zero) metal. It is made to adsorb
  • the metal ions adsorbed on the molded body function as an electroless plating catalyst in an electroless plating step (step S3 in FIG. 1) in a subsequent step without using a reduction step.
  • a reducing agent such as sodium hypophosphite, dimethylamine borane and formalin contained in the electroless plating solution in the electroless plating process
  • an inexpensive metal salt solution can be used as the electroless plating catalyst solution, and the reduction treatment of the electroless plating catalyst (metal ions) can be omitted.
  • manufacturing cost can be reduced and throughput can be improved.
  • an electroless plating solution is brought into contact with the formed body that has been subjected to the plating pretreatment to form a plated film (step S3 in FIG. 1). Is obtained.
  • the electroless plating solution any general-purpose electroless plating solution can be used according to the purpose, for example, an electroless nickel phosphorus plating solution, an electroless copper plating solution, an electroless tin plating solution, Among these, an electroless nickel phosphorus plating solution is preferable from the viewpoint that the catalyst activity is high and the solution is stable.
  • the electroless plating temperature and the electroless plating time can be appropriately set according to the type of thermoplastic resin, the type of electroless plating solution, and the like.
  • the electroless plating temperature (temperature of the electroless plating solution) is, for example, 50 ° C. to 80 ° C., and preferably 50 ° C. to 70 ° C.
  • the electroless plating time (the time for which the electroless plating solution is brought into contact with the formed body) is, for example, 30 seconds to 30 minutes.
  • a plurality of different types of electroless plating films may be formed on the molded body on which the electroless plating film is formed for the purpose of improving the use and design of the molded body, or by electroplating. May be formed. Moreover, the molded body on which the electroless plating film is formed may be annealed after the electroless plating, or may be left to stand at room temperature to be naturally dried. Moreover, you may perform the following processes, such as forming an electrolytic plating film
  • the plated molded body obtained in the present embodiment contains CNF in the molded body, it has a plating film with high adhesion strength and has high heat cycle resistance. Moreover, since the molded object containing CNF has high water absorption in the state in which a plating film is not formed, swelling by water absorption etc. becomes a problem depending on a use.
  • the plated molded body of the present embodiment can be used for various purposes because the plated film formed on the surface of the molded body can suppress water absorption of the molded body.
  • Example 1 In this example, first, a resin pellet containing a thermoplastic resin, CNF, and a block copolymer was manufactured, and the manufactured resin pellet was molded to obtain a molded body. Then, the obtained molded body was subjected to etching, electroless plating catalyst application, and electroless plating in this order to obtain a plated component of this example.
  • thermoplastic resin ABS resin (Toyolac 125-X82, manufactured by Toray Industries, Inc.) is used. CNF water slurry) was used.
  • block copolymer a block copolymer of nylon and polyethylene oxide (manufactured by Sanyo Chemical Industries, Pelestat NC6321) was used.
  • the manufacturing apparatus 1000 used for manufacture of the resin pellet in a present Example is demonstrated.
  • the manufacturing apparatus 1000 includes an extruder 200 having a plasticizing cylinder 210, a supply mechanism 100 that supplies water (liquid A) to the plasticizing cylinder 210, and a control device (not shown).
  • the control device controls the operations of the extrusion molding machine 200 and the supply mechanism 100.
  • (A) Extruder molding machine In this embodiment, even at a high temperature at which the thermoplastic resin is plasticized and melted, the high viscosity slurry in which CNF is dispersed and the water added to the molten resin can be kneaded into the molten resin in a liquid state.
  • a molding machine 200 is used.
  • An extrusion molding machine 200 shown in FIG. 2 drives a plasticizing cylinder 210, a die 29 provided at the tip of the plasticizing cylinder 210, a screw 20 disposed rotatably in the plasticizing cylinder 210, and the screw 20.
  • a screw drive mechanism (not shown), an upstream seal mechanism S1 and a downstream seal mechanism S2 disposed in the plasticizing cylinder 210, and a vacuum pump P connected to the plasticizing cylinder 210.
  • the plasticizing cylinder 210 in the plasticizing cylinder 210, the plasticized and melted molten resin flows from the right hand to the left hand in FIG. Therefore, in the plasticizing cylinder 210 of this embodiment, the right hand in FIG. 2 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.
  • the extruder 200 of the present embodiment like the configuration of a conventionally known extruder, rotates the screw 20 counterclockwise when viewed from the rear side of the plasticizing cylinder 210. It is configured to perform forward rotation sent forward (nozzle side) and reverse rotation when rotated clockwise.
  • a resin supply port 201 for supplying thermoplastic resin to the plasticizing cylinder 210, an introduction port 202 for introducing liquid A into the plasticizing cylinder 210, A vent 203 for exhausting the solvent and liquid A of the CNF slurry gasified from the plasticizing cylinder 210 is formed.
  • the resin supply port 201 is provided with a resin supply hopper 211 via a feeder screw 121, and the introduction port 202 is provided with an introduction valve 212 incorporating a backflow prevention valve.
  • a vacuum pump P is connected via the container 213.
  • the introduction valve 212 is connected to the supply mechanism 100 provided outside the extrusion molding machine 200.
  • a band heater (not shown) is disposed on the outer wall surface of the plasticizing cylinder 210, whereby the plasticizing cylinder 210 is heated to plasticize the thermoplastic resin.
  • the thermoplastic resin and the CNF slurry are supplied from the resin supply port 201 into the plasticizing cylinder 210, and the thermoplastic resin is plasticized by the band heater to become a molten resin. It is sent downstream by rotating forward.
  • the molten resin sent to the vicinity of the inlet 202 is contact-kneaded with the introduced liquid A under high pressure.
  • the solvent of the gasified slurry and the liquid A are separated from the molten resin and are exhausted from the vent 203. Then, the molten resin sent further forward is pushed out from the die 29.
  • the plasticizing zone 21 that plasticizes the thermoplastic resin into the molten resin, and the molten resin and the liquid A introduced from the inlet 202 are contact-kneaded under high pressure.
  • a reduced-pressure zone 23 for exhausting the solvent and liquid A of the slurry separated from the molten resin from the vent 203 is formed.
  • a recompression zone 24 is provided downstream of the decompression zone 23.
  • the plasticizing zone 21 is provided with a feed portion 21A and a compression portion 21B from the upstream side.
  • the feed portion 21A is provided with a resin supply port 201 through which a resin pellet material is supplied, and gives residual heat to the resin pellet material supplied therefrom.
  • the resin pellet material to which the residual heat is applied is plasticized and melted.
  • the screw 20 located in the compression part 21B has a structure in which the screw flight depth becomes shallower as it goes downstream. Due to the structure of the screw 20, in the compression part 21B, the molten resin is pressurized as it flows downstream.
  • An upstream seal mechanism S1 and a downstream seal mechanism S2 are disposed on the upstream side and the downstream side of the high-pressure kneading zone 22, respectively.
  • the upstream seal mechanism S1 any seal mechanism can be used as long as the backflow of the resin to the upstream side can be suppressed.
  • a seal ring used for conventional foam molding or the like is employed.
  • the downstream seal mechanism S2 can cause the molten resin to flow to the downstream decompression zone 23 in the upstream high pressure kneading zone 22 with the pressure of the molten resin adjusted to be substantially constant. The detailed structure and function of the downstream side seal mechanism S2 will be described later.
  • a slow decompression part 23A and a starvation decompression part 23B are provided from the upstream side.
  • the screw 20 located in the slow pressure reduction part 23A the part with a shallow screw flight depth and a deep part are arrange
  • the sudden pressure reduction of molten resin can be prevented and the vent up from the vent 203 provided in the starvation pressure reduction part 23B can be suppressed.
  • the starvation state of molten resin is accelerated
  • the “starvation state” means a state in which the molten resin is not filled in the starvation decompression portion 23B and is not full.
  • the supply mechanism 100 is connected to the introduction valve 212 of the extrusion molding machine 200 and supplies the liquid A to the molding machine 200.
  • the supply mechanism 100 includes a storage container (liquid phase tank) 10 for the liquid A, a double plunger pump 11 that can suck the liquid A from the storage container 10 and then pressurize the liquid A to a predetermined pressure.
  • the back pressure valve 12 adjusts the pressure of the liquid A sent from the double plunger pump 11 before being supplied to the molding machine 200.
  • pressure gauges 13 and 14 are provided on the upstream side (double plunger pump 11 side) and the downstream side (extrusion machine 200 side) of the back pressure valve 12, respectively.
  • the pressure gauge 13 indicates the pressure of the solution A upstream from the back pressure valve 12 (pressure on the double plunger pump 11 side, primary pressure) adjusted by the back pressure valve 12, and the pressure gauge 14 is adjusted by the back pressure valve 12.
  • the pressure of the downstream solution A pressure on the molding machine 200 side, secondary pressure
  • the downstream side sealing mechanism S2 provided in the extrusion molding machine 200 will be described.
  • the downstream seal mechanism S2 is provided in a boundary region between the high-pressure kneading zone 22 and the decompression zone 23 (gradual decompression unit 23A).
  • the downstream-side seal mechanism S2 is a pressure holding mechanism that allows the molten resin to flow from the high-pressure kneading zone 22 to the decompression zone 23 in a state where the pressure of the molten resin in the high-pressure kneading zone 22 is adjusted to be substantially constant.
  • the screw 20 has a pressure holding portion 20 ⁇ / b> A in which a screw internal flow path 30 in which a molten resin can flow is formed in the boundary region between the high pressure kneading zone 22 and the decompression zone 23.
  • the downstream seal mechanism S2 includes the pressure holding portion 20A, the half seal ring 31 provided on the outer periphery of the pressure holding portion 20A, and the flow of the molten resin that is provided inside the screw 20 and flows through the flow passage 30 in the screw. It is mainly composed of a poppet valve 33 that serves as a resistor and a disc spring 34 that is provided inside the screw 20 and biases the poppet valve 33 upstream.
  • the in-screw flow path 30 communicates the high pressure kneading zone 22 and the decompression zone 23.
  • the half seal ring 31 prevents the molten resin from flowing from the high-pressure kneading zone 22 to the decompression zone 23 through the outside of the pressure holding unit 20A (screw 20). Therefore, in the downstream seal mechanism S2, the molten resin tends to flow from the high-pressure kneading zone 22 to the pressure-reducing zone 23 through the screw flow path 30 formed in the pressure holding portion 20A.
  • the molten resin pressurizes the poppet valve 33 in the downstream direction (left direction in FIG. 3) with a pressure equal to or higher than the spring force of the disc spring 34. 30 is opened. As a result, the molten resin can flow from the high-pressure kneading zone 22 to the decompression zone 23.
  • the downstream side seal mechanism S2 opens the in-screw flow path 30 only when the high-pressure kneading zone 22 reaches a certain pressure, and causes the molten resin to flow from the high-pressure kneading zone 22 in the decompression zone 23.
  • the screw flow path 30 is again blocked by the povet valve 33.
  • the downstream seal mechanism S2 can maintain the pressure of the molten resin in the high-pressure kneading zone 22 at a high pressure with little pressure fluctuation.
  • the downstream side sealing mechanism S2 is designed so that the high-pressure kneading zone 22 can be maintained at 8 to 10 MPa.
  • the feed section 21A is 220 ° C.
  • the compression section 21B is 240 ° C.
  • the high pressure kneading zone 22 is 190 ° C.
  • the decompression zone 23 is 220 ° C.
  • the recompression zone 24 is 220 ° C. by a band heater (not shown). Adjusted.
  • the high-pressure kneading zone 22 the liquid A is introduced, and the viscosity of the molten resin rapidly decreases.
  • the high-pressure kneading zone 22 was set at a lower temperature than the other zones.
  • ABS resin, block copolymer, and CNF slurry (CNF concentration: 10% by weight) are mixed at a ratio of 100 parts by weight, 3 parts by weight, and 40 parts by weight (CNF: 4 parts by weight), and then water ( The solvent of the CNF slurry was partially dried. Thereafter, the mixture (resin pellet material) was supplied to the extrusion molding machine 200 from the resin supply hopper 211. The resin pellet material was supplied to the extrusion molding machine 200 while the supply amount was suppressed by the feeder screw 121. By suppressing the supply amount, in the feed portion 21A, the resin pellet material was maintained in an unfilled state (starved state).
  • liquid A water
  • introduction pressure 8 to 11 MPa (about 10 MPa).
  • the amount of liquid A introduced was adjusted so that liquid A was about 10% by weight with respect to the resin pellet material.
  • the pressure in the high-pressure kneading zone 22 is adjusted to a predetermined pressure by the downstream seal mechanism S2, and is maintained in the range of 8 to 10 MPa by a pressure sensor (not shown) provided at a position facing the inlet port 202. I confirmed.
  • the pressure for stably maintaining the liquid phase (water) is about 3 to 5 MPa. Therefore, in the high-pressure kneading zone adjusted to 8 to 10 MPa, the CNF slurry could be mixed with the molten resin while maintaining its liquid phase. Furthermore, CNF aggregation was suppressed by mixing liquid A (water) with the molten resin.
  • the molten resin is allowed to pass from the high-pressure kneading zone 22 through the downstream-side seal mechanism S2 while the high-pressure kneading zone 22 is maintained at a predetermined pressure (8 to 10 MPa).
  • a predetermined pressure 8 to 10 MPa.
  • the molten resin is gradually depressurized while flowing from the slow depressurization unit 23A to the starvation depressurization unit 23B, and the solvent (water) and liquid A (water) of the slurry contained in the molten resin are gasified in the starvation depressurization unit 23B.
  • Gasified water (water vapor) is sucked by the vacuum pump P, discharged from the vent 203 through the vent container 213 to the outside of the plasticizing cylinder 210, and recovered in a recovery container (not shown) connected to the vacuum pump P. It was done.
  • the molten resin is further flowed to the downstream recompression zone 24, and then extruded from a die 29 provided at the tip of the plasticizing cylinder 210 to obtain a string-like molded body. It was.
  • the obtained string-like extruded product was pelletized with a pelletizer (not shown) to obtain resin pellets.
  • the obtained molded body was immersed in dipropylene glycol monomethyl ether (DPGM) at 40 ° C. for 10 minutes, and then washed with water. Micropores were formed on the surface of the molded body. This is presumably because the butanediene component of the ABS resin contained in the molded body was eluted.
  • DPGM dipropylene glycol monomethyl ether
  • Electroless plating An electroless nickel phosphorus plating solution (Okuno Pharmaceutical Co., Ltd., Top Nicolon HMB) in which 0.2% by weight of a surfactant (sodium lauryl sulfate) is dissolved is adjusted to 70 ° C. It was immersed for 1 minute (electroless plating time 10 minutes) to form an electroless nickel phosphorus plating film having a thickness of 1 ⁇ m. The electroless plating film was formed on the entire surface of the molded body.
  • a surfactant sodium lauryl sulfate
  • the molded body on which the electroless nickel phosphorous film is formed is immersed in a replacement copper plating solution (ANC Acti, manufactured by Okuno Pharmaceuticals Industries Co., Ltd.) for 1 minute at a room temperature, and further, a film thickness of 40 ⁇ m is obtained by a general electrolytic copper plating method A copper plating film was formed to obtain a plated molded body of this example.
  • a replacement copper plating solution ANC Acti, manufactured by Okuno Pharmaceuticals Industries Co., Ltd.
  • the adhesion strength of the plating film of the obtained plated molded body was measured using a tensile tester.
  • the adhesion strength of the plating film was 8 N / cm. This result was a value close to 10 N / cm, which is the target value of the adhesion strength of the plating film formed on the molded body.
  • Comparative Example 1 In this comparative example, an ABS resin and a block copolymer drive-driven are injection-molded, and the obtained molded body is etched, electroless-plated catalyst applied, and electroless by the same method as in Example 1. Plating was performed in this order to obtain a plated part.
  • the same ABS resin and block copolymer as in Example 1 were used in the same ratio. That is, in this comparative example, a molded body having the same composition as that of Example 1 was formed except that CNF was not contained in the molded body, and a plated part was manufactured by the same method as in Example 1.
  • the electroless plating film was formed only about 60% to 80% of the surface of the molded body. Further, the adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 3 N / cm.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, it was confirmed that the plating reactivity and the adhesion strength of the plating film were improved by containing CNF in the molded body. It was also found that the plating reactivity and the adhesion strength of the plating film were improved even when CNF was somewhat aggregated in the molded body as in the plated molded body of Example 1.
  • Example 2 resin pellets (manufactured by Unitika) containing CNF were molded, and an electroless plating catalyst was applied to the obtained molded body and electroless plating was performed in this order to obtain a plated part.
  • an electroless plating catalyst was applied to the obtained molded body and electroless plating was performed in this order to obtain a plated part.
  • no block copolymer was used, and the molded product was not etched.
  • the CNF-containing resin pellets used in this example are resin pellets produced by dispersing CNF in the monomer polymerization reaction process of polyamide 6 (PA6) by the method disclosed in JP 2013-79334 A. Contains about 2% by weight of CNF.
  • PA6 which is a thermoplastic resin, can disperse CNF that is not surface-modified, and CNF contained in the resin pellets of this example is not surface-modified.
  • the electroless plating catalyst was prepared in the same manner as in Example 1 except that the electroless plating time was 5 minutes shorter than that of Example 1.
  • Application, electroless plating, displacement copper plating and electrolytic copper plating were performed to obtain a plated molded body.
  • the electroless plating film was formed on the entire surface of the molded body.
  • the adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 15 N / cm. This result was a high value significantly exceeding 10 N / cm, which is the target value of the adhesion strength of the plating film formed on the molded body.
  • a heat shock test was conducted by alternately repeating 100 times (100 cycles) holding the molded body at a high temperature of 90 ° C. for 30 minutes and holding at a low temperature of ⁇ 35 ° C. for 30 minutes. As a result of the heat shock test, the plating film did not swell or crack.
  • the electroless plating film was not formed on the entire surface of the molded body, and a portion where the plating film was not molded partially occurred at the end of the molded body. Further, the adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 7 N / cm. Further, a heat shock test was performed in the same manner as in Example 2. As a result, the plated molded body of this comparative example was swollen in the plated film in the fifth cycle of the heat shock test.
  • Example 2 From a comparison between Example 2 and Comparative Example 2, it was confirmed that heat cycle resistance was improved along with plating reactivity and adhesion strength of the plating film by containing CNF in the molded body.
  • Example 3 the resin pellets (manufactured by Unitika) used in Example 2 were subjected to foam molding using pressurized nitrogen as a physical foaming agent. Application of an electroless plating catalyst and electroless plating were performed in this order on the obtained foamed molded article to obtain a plated part of this example.
  • a foam molded body is manufactured using a manufacturing apparatus (injection molding apparatus) 2000 shown in FIG.
  • the manufacturing apparatus 2000 mainly includes a plasticizing cylinder 410 in which a screw (plasticizing screw) 40 can be rotated and moved forward and backward, and a cylinder that is a physical foaming agent supply mechanism that supplies a physical foaming agent to the plasticizing cylinder 410. 400, a mold clamping unit (not shown) provided with a mold, and a control device (not shown) for controlling the operation of the plasticizing cylinder 410 and the mold clamping unit.
  • the plasticizing cylinder 410 of this embodiment the right hand in FIG. 4 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.
  • a physical foaming agent for introducing a resin supply port 401 for supplying a thermoplastic resin to the plasticizing cylinder 410 and a physical foaming agent into the plasticizing cylinder 410 in order from the upstream side.
  • An introduction port 402 is formed.
  • the resin supply port 401 and the physical foaming agent introduction port 402 are provided with a resin supply hopper 411 and a container 412, respectively.
  • the cylinder 400 is connected to the container 412 via a pressure reducing valve 451 and a pressure gauge 452.
  • the nozzle tip 49 of the plasticizing cylinder 410 is provided with a shut-off valve 48 that opens and closes by driving the air cylinder, so that the inside of the plasticizing cylinder 410 can be held at a high pressure.
  • a die (not shown) is in close contact with the nozzle tip 49, and molten resin is injected and filled from the nozzle tip 49 into a cavity formed by the die.
  • a feed part 41, a compression part 42, a flow rate adjustment part 43, a starvation part 44, and a recompression part 45 are formed in order from the upstream side, and between the compression part 42 and the flow rate adjustment part 43.
  • a resin supply port 401 is formed in the feed unit 41, and the resin pellets supplied from the resin supply port 401 to the feed unit 41 are plasticized and melted and pressurized in the compression unit 42.
  • the screw 40 located in the compression part 42 has a structure in which the screw flight depth becomes shallower as it goes downstream.
  • the compression portion 42 is pressurized while the molten resin flows, and the amount of resin supplied downstream is limited.
  • the molten resin is starved in the downstream starvation unit 44.
  • a physical foaming agent pressurized nitrogen
  • the molten resin infiltrated with the physical foaming agent is repressurized by the recompression unit 45 and then injected and filled into a mold to obtain a foamed molded product.
  • a constant pressure physical foaming agent (pressurized nitrogen) is always supplied from the physical foaming agent inlet 402 to a space where no molten resin exists. Contact with.
  • the physical foaming agent dissolves in the molten resin while pressurizing the molten resin at a constant pressure.
  • the physical foaming agent and the resin are not kneaded with a high shearing force, but the low-density molten resin is contacted with the physical foaming agent to The physical blowing agent can be dissolved to saturation solubility.
  • the depth of the screw flight of the starvation part 44 was set deeper than other parts, and the starvation state of the molten resin was promoted.
  • the starvation part 44 it is preferable to send the molten resin downstream at a higher flow rate than the compression part 42 and the like in order to make the molten resin starved. For this reason, in the starvation part 44, although the contact area of molten resin and a physical foaming agent increases, contact time is shortened. In order to compensate for the contact time between the molten resin and the physical foaming agent and sufficiently dissolve the physical foaming agent in the molten resin, in the molding apparatus 2000 of the present embodiment, the flow rate adjusting unit 43 is provided upstream of the starvation unit 44. . In the flow rate adjusting unit 43, the screw 40 located there is provided with a portion where the depth of the screw flight is shallow and a portion where the depth is deep. This screw structure becomes the flow resistance of the molten resin, and the flow rate adjusting unit 43 decreases the flow rate of the molten resin, and the contact time between the molten resin and the physical foaming agent can be extended.
  • the plastic pellets were plasticized and melted and measured under the conditions of a screw rotation speed of 50 rpm, a resin temperature of 250 to 280 ° C., and a back pressure of 5 MPa.
  • resin pellets were supplied from the resin supply port 401 of the plasticizing cylinder 410 to the feed unit 41, and plasticized, melted and pressurized by the compression unit 42. Thereafter, the molten resin was caused to flow to the flow rate adjusting unit 43 and the starvation unit 44 by the rotation of the screw 40.
  • the physical foaming agent was infiltrated into the molten resin by bringing a physical foaming agent having a constant pressure (2 MPa) into contact with the molten resin.
  • the molten resin in the molding apparatus 2000 is indicated as R (the hatched area in the plasticizing cylinder 410 in FIG. 4).
  • the molten resin infiltrated with the physical foaming agent was sent to the recompression unit 45 and recompressed, and the molten resin for one shot was measured at the tip of the plasticizing cylinder 410. Thereafter, the shut-off valve 48 is opened, and the molten resin is injected and filled into the cavity of the mold so as to have a filling rate of 90% of the volume of the cavity, and without holding pressure, 60 mm ⁇ 80 mm ⁇ 2 mm.
  • a flat foam molded article was molded (short shot method).
  • the swirl mark confirmed on the surface of the obtained foamed molded product was small, and it was confirmed that the adverse effect of foam molding on the appearance of the molded product was small. Moreover, the cross section of the molded object was observed with SEM. As a result, the average cell diameter was as fine as about 30 ⁇ m.
  • the electroless plating catalyst was prepared in the same manner as in Example 1 except that the electroless plating time was 3 minutes shorter than that of Example 1.
  • Application, electroless plating, displacement copper plating and electrolytic copper plating were performed to obtain a plated molded body.
  • the electroless plating film was formed on the entire surface of the molded body.
  • the adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 10 N / cm. Although this result is a lower value than Example 2, it is practically sufficient strength. According to the study by the present inventors, the adhesive strength of the plating film formed on the surface of the foamed molded product tends to be lower than that of the non-foamed molded product regardless of the presence or absence of CNF. The cause of this is not clear, but is presumed as follows.
  • the method for producing a plated molded body of the present invention can provide a molded body having high plating reactivity, an electroless plated film can be formed by a method with low environmental burden and cost. Furthermore, the obtained plated molded body has a plating film with high adhesion strength and has high heat cycle resistance. Therefore, the plated molded body produced according to the present invention can be widely used for applications requiring high durability.

Abstract

Provided is a method for producing a plated molded body, which forms an electroless plating film on a molded body having high plating reactivity by a low-cost method that places only a little burden on the environment. This method for producing a plated molded body comprises: a process for obtaining a molded body by molding a thermoplastic resin that contains cellulose nanofibers; a process for bringing an electroless plating catalyst liquid that contains a metal salt into contact with the molded body; and a process for forming an electroless plating film on the surface of the molded body by bringing an electroless plating liquid into contact with the molded body, which has been brought into contact with the electroless plating catalyst liquid.

Description

メッキ成形体の製造方法及びメッキ成形体Method for producing plated molded body and plated molded body
 本発明は、メッキ成形体及びメッキ成形体の製造方法に関する。 The present invention relates to a plated molded body and a method for manufacturing the plated molded body.
 成形体に安価に金属膜を形成する方法として、無電解メッキが知られている。無電解メッキでは、金属膜の成形体への密着強度確保のため、六価クロム酸や過マンガン酸等の酸化剤を含むエッチング液を用いて成形体表面を粗化する前処理を行う。そのため、無電解メッキには、エッチング液により侵食されるABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)が主に用いられてきた。ABS樹脂は、ブタジエンゴム成分がエッチング液に選択的に侵食され、表面に凹凸が形成される。一方、ABS樹脂以外の樹脂、例えば、ポリカーボネート等では、無電解メッキを可能にするため、ABS樹脂やエラストマー等、エッチング液に選択的に酸化される成分を混合したメッキグレードが市販されている。しかし、このような無電解メッキの前処理は、六価クロム酸等を使用することから、環境負荷が高いという問題があった。 Electroless plating is known as a method for forming a metal film at low cost on a molded body. In electroless plating, in order to secure the adhesion strength of the metal film to the molded body, a pretreatment for roughening the surface of the molded body is performed using an etching solution containing an oxidizing agent such as hexavalent chromic acid or permanganic acid. Therefore, an ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin) that is eroded by an etching solution has been mainly used for electroless plating. In the ABS resin, the butadiene rubber component is selectively eroded by the etching solution, and irregularities are formed on the surface. On the other hand, for a resin other than the ABS resin, for example, polycarbonate, a plating grade in which a component that is selectively oxidized to an etching solution such as an ABS resin or an elastomer is mixed in order to enable electroless plating. However, such a pretreatment of electroless plating has a problem of high environmental load because hexavalent chromic acid or the like is used.
 粗化された成形体の表面には、無電解メッキ触媒が付与され、その後、無電解メッキが行なわれる。プラスチック基材に対する無電解メッキ触媒付与としては、主には2種類の手法が用いられる。スズコロイドを基材に吸着させた後(センシタイザー)、塩化パラジウム溶液に浸漬して(アクチベータ)、塩化第一スズで塩化パラジウムを還元および析出させるセンシタイザー・アクチベータ法と、パラジウムスズコロイドを基材に吸着させた後(キャタリスト)、濃硫酸等で還元する(アクセレータ)キャタリスト・アクセレータ法である。センシタイザー・アクチベータ法は、センシタイザーに用いるスズコロイドの浴寿命が短いことから、量産性が低いという課題がある。このため、工業的な無電解メッキ触媒付与方法としては、主に、キャタリスト・アクセレータ法が採用されている。 An electroless plating catalyst is applied to the surface of the roughened molded body, and then electroless plating is performed. As the electroless plating catalyst application to the plastic substrate, two kinds of methods are mainly used. After adsorbing the tin colloid on the substrate (Sensitizer), immersing it in a palladium chloride solution (Activator), reducing and precipitating the palladium chloride with stannous chloride, and the palladium tin colloid as the substrate This is a catalyst / accelerator method in which the catalyst is adsorbed (catalyst) and then reduced with concentrated sulfuric acid (accelerator). The sensitizer / activator method has a problem that the mass productivity is low because the bath life of the tin colloid used in the sensitizer is short. For this reason, the catalyst accelerator method is mainly employed as an industrial electroless plating catalyst application method.
 一方で、改良された無電解メッキの前処理方法も提案されている。例えば、特許文献1では、メッキ前処理における工程数を削減するため、塩酸等の無機酸含有の腐食剤と、パラジウムイオン等のイオノゲン活性剤と、酢酸等の有機酸とを含む一溶液で成形体を処理する方法が提案されている。特許文献1によれば、上述の一溶液でポリアミド基板の前処理を行うことで、環境負荷が高い六価クロム酸等を使用する必要がなく、良好なメッキ膜が得られる。また、特許文献2では、センシタイザー・アクチベータ法で用いる、パラジウム-スズコロイドを含むセンシタイザー液の代替として、パラジウムイオンと2-アミノエチルピリジンの錯体を含有する無電解メッキ触媒液が提案されている。従来のセンシタイザー液は、環境負荷の高いスズを含み、また、パラジウム-スズコロイドが凝集し易いという課題を有していた。特許文献2によれば、提案する無電解メッキ触媒液は、環境負荷が高いスズを含まず、更に、従来のセンシタイザー液と比較して長時間安定である。 On the other hand, an improved pretreatment method for electroless plating has also been proposed. For example, in Patent Document 1, in order to reduce the number of steps in the plating pretreatment, molding is performed with one solution containing a corrosive agent containing an inorganic acid such as hydrochloric acid, an ionogenic activator such as palladium ion, and an organic acid such as acetic acid. Methods for treating the body have been proposed. According to Patent Document 1, it is not necessary to use hexavalent chromic acid having a high environmental load by performing the pretreatment of the polyamide substrate with the above-mentioned one solution, and a good plating film can be obtained. Patent Document 2 proposes an electroless plating catalyst solution containing a complex of palladium ion and 2-aminoethylpyridine as an alternative to a sensitizer solution containing palladium-tin colloid used in the sensitizer / activator method. . The conventional sensitizer solution contains tin that has a high environmental load, and also has a problem that the palladium-tin colloid easily aggregates. According to Patent Document 2, the proposed electroless plating catalyst solution does not contain tin, which has a high environmental load, and is more stable for a long time compared to conventional sensitizer solutions.
特許第4109615号Japanese Patent No. 4109615 特開2015-48529号公報JP 2015-48529 A
 しかし、特許文献1において提案されている方法は、ポリアミドからなる成形体を主な処理対象としている。したがって、ポリアミド以外の熱可塑性樹脂からなる成形体に対しては、高い密着強度を有する無電解メッキ膜を形成できない虞もある。また、特許文献2において提案されている方法は、新たなパラジウム錯体を形成するため、無電解メッキ触媒のコストが上昇する虞がある。 However, the method proposed in Patent Document 1 mainly uses a molded body made of polyamide. Therefore, there is a possibility that an electroless plating film having high adhesion strength cannot be formed on a molded body made of a thermoplastic resin other than polyamide. Moreover, since the method proposed in Patent Document 2 forms a new palladium complex, the cost of the electroless plating catalyst may increase.
 本発明は、これらの課題を解決するものであり、メッキ反応性の高い成形体に、環境負荷及びコストの低い方法で無電解メッキ膜を形成するメッキ成形体の製造方法を提供する。また、密着強度の高いメッキ膜を有し、ヒートサイクル耐性の高いメッキ成形体を提供する。 The present invention solves these problems, and provides a method for producing a plated molded body in which an electroless plated film is formed on a molded body having high plating reactivity by a method having a low environmental load and low cost. In addition, a plated molded body having a plating film with high adhesion strength and high heat cycle resistance is provided.
 本発明の第1の態様に従えば、メッキ成形体の製造方法であって、セルロースナノファイバーを含む熱可塑性樹脂を成形して、成形体を得ることと、前記成形体に金属塩を含む無電解メッキ触媒液を接触させることと、前記無電解メッキ触媒液を接触させた前記成形体に、無電解メッキ液を接触させて、前記成形体の表面に無電解メッキ膜を形成することとを含む製造方法が提供される。 According to the first aspect of the present invention, there is provided a method for producing a plated molded body, in which a molded body is obtained by molding a thermoplastic resin containing cellulose nanofibers, and the molded body contains a metal salt. Contacting an electroplating catalyst solution, and contacting the electroless plating solution with the molded body contacted with the electroless plating catalyst solution to form an electroless plating film on the surface of the molded body. A manufacturing method is provided.
 前記成形体を前記無電解メッキ触媒液に接触させる前に、前記成形体に膨潤処理、又はエッチング処理を施してもよい。前記無電解メッキ触媒液に含まれる金属塩が、塩化パラジウム、塩化銀、塩化銅、及び硝酸銀からなる群から選択される1つであってもよい。また、前記熱可塑性樹脂が、ポリアミド、ポリプロピレン、又はABS樹脂を含んでもよい。 Before the molded body is brought into contact with the electroless plating catalyst solution, the molded body may be subjected to a swelling process or an etching process. The metal salt contained in the electroless plating catalyst solution may be one selected from the group consisting of palladium chloride, silver chloride, copper chloride, and silver nitrate. Further, the thermoplastic resin may include polyamide, polypropylene, or ABS resin.
 前記成形体を成形することが、前記熱可塑性樹脂と、前記セルロースナノファイバーとを含む樹脂ペレットを用意することと、前記樹脂ペレットを成形して、前記成形体を得ることとを含んでもよい。また、前記樹脂ペレットを用意することが、前記熱可塑性樹脂を可塑化溶融した溶融樹脂と、前記セルロースナノファイバーが溶媒に分散したスラリーとの混合物を得ることと、前記混合物から、前記溶媒を除去することと、前記溶媒を除去した前記混合物を押出成形して、押出成形体を得ることと、前記押出成形体を粉砕して、前記樹脂ペレットを得ることとを含でもよい。前記樹脂ペレットを用意することが、前記溶融樹脂と前記スラリーとの前記混合物に、水を加えることを更に含んでもよい。 Molding the molded body may include preparing resin pellets containing the thermoplastic resin and the cellulose nanofibers, and molding the resin pellets to obtain the molded body. In addition, preparing the resin pellets obtains a mixture of a molten resin obtained by plasticizing and melting the thermoplastic resin and a slurry in which the cellulose nanofibers are dispersed in a solvent, and removing the solvent from the mixture And extruding the mixture from which the solvent has been removed to obtain an extrudate, and crushing the extrudate to obtain the resin pellets. Preparing the resin pellets may further include adding water to the mixture of the molten resin and the slurry.
 本発明の第2の態様に従えば、メッキ成形体であって、熱可塑性樹脂と、セルロースナノファイバーとを含む成形体と、前記成形体の表面に形成された無電解メッキ膜とを含むメッキ成形体が提供される。 According to the second aspect of the present invention, a plated molded body comprising a thermoplastic resin, a molded body containing cellulose nanofibers, and an electroless plating film formed on the surface of the molded body. A shaped body is provided.
 前記成形体が、内部に発泡セルを有する発泡成形体であってもよい。また、前記熱可塑性樹脂が、ポリアミド、ポリプロピレン、又はABS樹脂を含んでもよい。 The molded body may be a foamed molded body having foam cells inside. Further, the thermoplastic resin may include polyamide, polypropylene, or ABS resin.
 本発明は、セルロースナノファイバーを含むメッキ反応性の高い成形体に、環境負荷及びコストの低い方法で無電解メッキ膜を形成できる。また、本発明で得られるメッキ成形体は、密着強度の高いメッキ膜を有し、高いヒートサイクル耐性を有する。 In the present invention, an electroless plating film can be formed on a molded body having high plating reactivity containing cellulose nanofibers by a method with low environmental load and low cost. Moreover, the plating molded object obtained by this invention has a plating film with high adhesive strength, and has high heat cycle tolerance.
図1は、実施形態で製造するメッキ成形体の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method of manufacturing a plated molded body manufactured in the embodiment. 図2は、実施例1で用いた樹脂ペレットの製造装置の概略図である。FIG. 2 is a schematic view of a resin pellet manufacturing apparatus used in Example 1. 図3は、図2に示す製造装置の一部拡大図である。FIG. 3 is a partially enlarged view of the manufacturing apparatus shown in FIG. 図4は、実施例3で用いた発泡成形体を製造する製造装置の概略図である。FIG. 4 is a schematic view of a production apparatus for producing the foam molded article used in Example 3.
 図1に従い、本実施形態におけるメッキ成形体(メッキ膜を有する成形体)の製造方法について説明する。 Referring to FIG. 1, a method for producing a plated molded body (molded body having a plated film) in the present embodiment will be described.
(1)成形体の成形
 まず、セルロースナノファイバーを含む熱可塑性樹脂を成形して、成形体を得る(図1のステップS1)。熱可塑性樹脂としては、例えば、ナイロン等のポリアミド、ポリプロピレン、ポリメチルメタクリレート、ポリカーボネート、アモルファスポリオレフィン、ポリエーテルイミド、ポリエチレンテレフタレート、ポリエーテルエーテルケトン、ABS樹脂、ポリフェニレンサルファイド、ポリアミドイミド、ポリ乳酸、ポリカプロラクトン等を用いることできる。中でも、ポリアミド、ポリプロピレン、ABS樹脂は、本実施形態で用いる熱可塑性樹脂として好ましい。ポリアミドは、親水性が比較的高いため、無電解メッキ膜の形成に適している。ポリプロピレンは安価な上、軽量で耐薬品に優れており、自動車等のメッキ部品として好ましい。一方で、ポリプロピレンは、メッキ液が浸透し難いが、抽出剤を混合すること等によりメッキ可能である。ABS樹脂は、従来からメッキ部品として最も多く使われており、応用範囲が広い。従来のABS樹脂へのメッキは、メッキ前処理として、クロム酸等を用いたエッチングが必要であったが、後述するように、クロム酸に代えて有機溶媒を用いたエッチングも可能である。これらの熱可塑性樹脂は、1種類の樹脂を単独で用いてもよいし、2種類以上を混合して用いてもよい。
(1) Molding of molded body First, a thermoplastic resin containing cellulose nanofibers is molded to obtain a molded body (step S1 in FIG. 1). Examples of the thermoplastic resin include polyamide such as nylon, polypropylene, polymethyl methacrylate, polycarbonate, amorphous polyolefin, polyether imide, polyethylene terephthalate, polyether ether ketone, ABS resin, polyphenylene sulfide, polyamide imide, polylactic acid, polycaprolactone. Etc. can be used. Among these, polyamide, polypropylene, and ABS resin are preferable as the thermoplastic resin used in the present embodiment. Polyamide has a relatively high hydrophilicity and is suitable for forming an electroless plating film. Polypropylene is inexpensive, lightweight and excellent in chemical resistance, and is preferable as a plated part for automobiles and the like. On the other hand, polypropylene does not easily penetrate the plating solution, but can be plated by mixing an extractant. ABS resin has been used most frequently as a plated part and has a wide range of applications. Conventional plating on ABS resin requires etching using chromic acid or the like as a plating pretreatment, but as described later, etching using an organic solvent instead of chromic acid is also possible. As these thermoplastic resins, one type of resin may be used alone, or two or more types may be mixed and used.
 本実施形態において、セルロースナノファイバー(以下、適宜、「CNF」と記載する)とは、植物繊維を含む材料(例えば、木材パルプ等)の繊維をナノサイズレベルまで解きほぐしたものである。CNFは、直径4~100nm、長さ1μm以上のアスペクト比の大きい繊維である。本明細書では、針状結晶であるセルロースナノクリスタル(CNC)も、CNFに包含する。本発明者らは、成形体にCNFを含有させることにより、後工程の無電解メッキ触媒付与工程(図1のステップS2)において、無電解メッキ触媒として機能する金属イオンが成形体表面に吸着し易くなり、結果として、成形体の無電解メッキ反応性が向上することを見出した。即ち、本実施形態の第1の効果として、CNFは、金属イオンの吸着剤として作用する。 In this embodiment, the cellulose nanofiber (hereinafter referred to as “CNF” as appropriate) is a material obtained by unraveling fibers of a material (for example, wood pulp) containing plant fibers to a nanosize level. CNF is a fiber with a large aspect ratio having a diameter of 4 to 100 nm and a length of 1 μm or more. In this specification, the cellulose nanocrystal (CNC) which is a needle-like crystal is also included in CNF. By including CNF in the molded body, the present inventors adsorb metal ions that function as an electroless plating catalyst on the surface of the molded body in a subsequent electroless plating catalyst application step (step S2 in FIG. 1). As a result, it has been found that the electroless plating reactivity of the molded body is improved. That is, as a first effect of the present embodiment, CNF acts as an adsorbent for metal ions.
 CNFを成形体中に含有させることは、上述した1)金属イオンを吸着することにより、無電解メッキの反応性が向上すること以外に、更に以下の利点をもたらす。2)CNFは親水性であるため、CNFを含有する成形体の内部に触媒液やメッキ液が浸透し易くなる。そして、成形体中に埋没したCNFを基点にして成形体内部よりメッキ膜が成長し、繊維状のCNFがメッキ膜の剥離を抑制する。これにより、メッキ膜の密着強度が向上する。3)CNFは、比重及び熱膨張係数が低く、且つ弾性率が高い。成形体がCNFを含有することで、成形体の熱膨張係数が低減し、弾性率が向上する。これにより、ヒートショック試験等の熱衝撃試験においても成形体とメッキ膜との高い密着性が維持され(ヒートサイクル耐性向上)、メッキ成形体の信頼性が高まる。尚、成形体中に、ガラス繊維等を含有させることによっても、同様の効果を得られるが、ガラス繊維は比重が大きいため、メッキ成形体の表面性を悪化させる虞がある。これに対して、CNFは比重が小さいため、メッキ成形体の信頼性と表面性を共に向上させることができる。4)CNFは、直径が細いナノファイバーであるため、これを含有する成形体表面の外観に影響を与え難い。このため、意匠性の高いメッキ成形体を製造できる。5)CNFは、フィラー配向の異方性が小さい。このため、成形体表面において、金属イオンの吸着量のムラができ難い。そして、6)CNFは、人体に対する悪影響が小さい。 Inclusion of CNF in the molded body brings about the following advantages in addition to the above-described 1) improving the reactivity of electroless plating by adsorbing metal ions. 2) Since CNF is hydrophilic, the catalyst solution and the plating solution easily penetrate into the molded body containing CNF. Then, the plating film grows from the inside of the molded body with the CNF buried in the molded body as a base point, and the fibrous CNF suppresses the peeling of the plating film. Thereby, the adhesion strength of the plating film is improved. 3) CNF has a low specific gravity and a low thermal expansion coefficient and a high elastic modulus. When a molded object contains CNF, the thermal expansion coefficient of a molded object reduces and an elasticity modulus improves. Thereby, also in heat shock tests, such as a heat shock test, the high adhesiveness of a molded object and a plating film is maintained (heat cycle tolerance improvement), and the reliability of a plating molded object increases. In addition, although the same effect is acquired also by including glass fiber etc. in a molded object, since glass fiber has large specific gravity, there exists a possibility of deteriorating the surface property of a plating molded object. On the other hand, since the specific gravity of CNF is small, it is possible to improve both the reliability and surface properties of the plated molded body. 4) Since CNF is a nanofiber with a small diameter, it is hard to affect the external appearance of the surface of the molded object containing this. For this reason, the plating molded object with high designability can be manufactured. 5) CNF has a small anisotropy of filler orientation. For this reason, it is difficult to cause unevenness in the adsorption amount of metal ions on the surface of the molded body. 6) CNF has little adverse effect on the human body.
 CNFの比表面積としては、70~300m/gが好ましく、70~250m/gがより好ましく、100~200m/gが更に好ましい。CNFの比表面積が大きいと、金属イオンの吸着性や成形体の強度が向上するが、極端に大きすぎると、樹脂中で凝集し易くなる。そのため、CNFの比表面積は、上記範囲が好ましい。CNFがナノレベルに解繊されている場合、X線CT等を用いて、その繊維径や長さを測定することは困難なため、樹脂中におけるCNFの分散状態を分析することは難しい。しかし、ナノレベルに解繊されたCNFを用いることは、CNFの比表面積をある程度大きくし、上記範囲内とする観点から好ましい。 The specific surface area of the CNF, preferably 70 ~ 300m 2 / g, more preferably 70 ~ 250m 2 / g, more preferably 100 ~ 200m 2 / g. When the specific surface area of CNF is large, the adsorptivity of metal ions and the strength of the molded body are improved. However, when the specific surface area is extremely large, the resin tends to aggregate in the resin. Therefore, the above-mentioned range is preferable for the specific surface area of CNF. When CNF is defibrated to the nano level, it is difficult to measure the fiber diameter and length using X-ray CT or the like, so it is difficult to analyze the dispersion state of CNF in the resin. However, it is preferable to use CNF that has been defibrated to the nano level from the viewpoint of increasing the specific surface area of CNF to some extent within the above range.
 CNFの製造方法は特に限定されず、任意の製造方法によって製造してもよいし、市販品を用いてもよい。また、熱可塑性樹脂への分散性を高めるために、公知の方法により、CNFの表面修飾を行ってもよいし、行わなくてもよい。CNFの表面修飾は、CNFを分散させる樹脂の種類によっては、成形体の熱膨張係数を低下させ、弾性率を高める等の成形体の機械特性を向上させる利点がある。一方で、メッキ触媒となる金属イオンの吸着能力の観点からは、CNFの表面修飾は、特に必要な処理ではなく、むしろ、CNFの凝集を抑制できるならば、CNFの表面修飾は行なわない方が好ましい。CNFの表面修飾を行わない場合、製造コストの低減及び製造時間の短縮という利点がある。また、表面修飾によりCNFの表面状態が変化するが、金属イオンの吸着能力は変わらないか、又は低下する虞があるからである。 The production method of CNF is not particularly limited, and may be produced by any production method, or a commercially available product may be used. Moreover, in order to improve the dispersibility to a thermoplastic resin, the surface modification of CNF may or may not be performed by a known method. The surface modification of CNF has the advantage of improving the mechanical properties of the molded body, such as decreasing the thermal expansion coefficient of the molded body and increasing the elastic modulus, depending on the type of resin in which CNF is dispersed. On the other hand, from the viewpoint of the ability to adsorb metal ions serving as a plating catalyst, the surface modification of CNF is not a particularly necessary treatment. Rather, if CNF aggregation can be suppressed, it is better not to modify the surface of CNF. preferable. When the surface modification of CNF is not performed, there are advantages in that the manufacturing cost is reduced and the manufacturing time is shortened. Moreover, although the surface state of CNF changes by surface modification, there exists a possibility that the adsorption | suction ability of a metal ion may not change or may fall.
 CNFは、熱可塑性樹脂に対して、例えば、0.1重量%~50重量%含まれ、0.5重量%~20重量%含まれることが好ましく、1重量%~10重量%含まれることがより好ましい。CNFは、成形体のメッキ反応性を高め、メッキ膜の密着強度を向上させるが、熱可塑性樹脂に対する割合が高すぎると、高粘度化により成形性が著しく低下する虞がある。そのため、熱可塑性樹脂に対するCNFの割合は、上記範囲が好ましい。 CNF is contained in the thermoplastic resin in an amount of, for example, 0.1% to 50% by weight, preferably 0.5% to 20% by weight, and preferably 1% to 10% by weight. More preferred. CNF increases the plating reactivity of the molded body and improves the adhesion strength of the plating film. However, if the ratio to the thermoplastic resin is too high, the moldability may be significantly lowered due to the increase in viscosity. Therefore, the above range is preferable for the ratio of CNF to the thermoplastic resin.
 本実施形態では、熱可塑性樹脂に、更に、親水性セグメントを含むブロック共重合体(以下、適宜「ブロック共重合体」と記載する)を混合して成形し、成形体を得てもよい。本実施形態で用いるブロック共重合体は、親水性セグメントを有し、更に、親水性セグメントとは異なる他のセグメント(以下、適宜「他のセグメント」と記載する)を有する。成形体がブロック共重合体を含有することで、成形体の表面が親水化され、成形体に触媒液やメッキ液が浸透し易くなり、メッキ膜の成長が促進される。熱可塑性樹脂として、ABS樹脂等の疎水性の材料を用いる場合、ブロック共重合体の混合は、特に有効である。 In this embodiment, a block copolymer containing a hydrophilic segment (hereinafter referred to as “block copolymer” as appropriate) may be further mixed with the thermoplastic resin and molded to obtain a molded body. The block copolymer used in the present embodiment has a hydrophilic segment, and further has another segment different from the hydrophilic segment (hereinafter referred to as “other segment” as appropriate). When the molded body contains the block copolymer, the surface of the molded body is hydrophilized, the catalyst solution and the plating solution are easily penetrated into the molded body, and the growth of the plating film is promoted. When a hydrophobic material such as an ABS resin is used as the thermoplastic resin, mixing of the block copolymer is particularly effective.
 ブロック共重合体の親水性セグメントとしては、アニオン性セグメント、カチオン性セグメント、ノニオン性セグメントを用いることができる。アニオン性セグメントとしては、ポリスチレンスルホン酸系、カチオン性セグメントとしては、四級アンモニウム塩基含有アクリレート重合体系、ノニオン性セグメントとしては、ポリエーテルエステルアミド系、ポリエチレンオキシド-エピクロルヒドリン系、ポリエーテルエステル系が挙げられる。本実施形態で用いるブロック共重合体としては、成形体の耐熱性を確保しやすいことから、親水性セグメントがポリエーテル構造を有するノニオン性セグメントであることが好ましい。ポリエーテル構造としては、例えば、オキシエチレン基、オキシプロピレン基、オキシトリメチレン基、オキシテトラメチレン基等の炭素数が2~4のオキシアルキレン基、ポリエーテルジオール、ポリエーテルジアミン、及びこれらの変性物、並びにポリエーテル含有親水性ポリマーが含まれ、特にポリエチレンオキシドが好ましい。 An anionic segment, a cationic segment, and a nonionic segment can be used as the hydrophilic segment of the block copolymer. Examples of the anionic segment include polystyrene sulfonic acid, the cationic segment includes a quaternary ammonium base-containing acrylate polymer system, and the nonionic segment includes a polyether ester amide system, a polyethylene oxide-epichlorohydrin system, and a polyether ester system. It is done. As the block copolymer used in the present embodiment, it is preferable that the hydrophilic segment is a nonionic segment having a polyether structure because the heat resistance of the molded product is easily secured. Examples of the polyether structure include oxyalkylene groups having 2 to 4 carbon atoms such as oxyethylene group, oxypropylene group, oxytrimethylene group, and oxytetramethylene group, polyether diol, polyether diamine, and their modifications. As well as polyether-containing hydrophilic polymers, with polyethylene oxide being particularly preferred.
 本実施形態において、ブロック共重合体の他のセグメントは、親水性セグメントよりも疎水性であれば任意であるが、例えば、ナイロン、ポリオレフィン等を用いることができる。 In the present embodiment, the other segment of the block copolymer is arbitrary as long as it is more hydrophobic than the hydrophilic segment, but, for example, nylon, polyolefin or the like can be used.
 熱可塑性樹脂にブロック共重合体を混合する場合、ブロック共重合体は、熱可塑性樹脂に対して、例えば0.5重量%~10重量%含まれ、1重量%~5重量%含まれることがより好ましい。ブロック共重合体は、メッキ膜の成長を促進するが、成形体中の含有量が多すぎると、成形体の機械的強度が低下する虞がある。そのため、成熱可塑性樹脂に対するブロック共重合体の割合は、上記範囲が好ましい。 When the block copolymer is mixed with the thermoplastic resin, the block copolymer may be contained in an amount of, for example, 0.5% to 10% by weight and 1% to 5% by weight with respect to the thermoplastic resin. More preferred. The block copolymer promotes the growth of the plating film, but if the content in the molded body is too large, the mechanical strength of the molded body may be lowered. Therefore, the ratio of the block copolymer to the thermoplastic resin is preferably in the above range.
 本実施形態では、熱可塑性樹脂に、更に、ガラス繊維、タルク、カーボン繊維等、各種無機フィラー等を混合して成形し、成形体を得てもよい。熱可塑性樹脂にフィラーを混合する場合、熱可塑性樹脂として、予め無機フィラーが混合されている市販品の樹脂、所謂、無機フィラー強化樹脂を用いてもよい。その他、必要に応じて、汎用の添加剤を熱可塑性樹脂に加えて成形体を成形してもよい。 In the present embodiment, the thermoplastic resin may be further mixed with various inorganic fillers such as glass fiber, talc, and carbon fiber and molded to obtain a molded body. When a filler is mixed with a thermoplastic resin, a commercially available resin in which an inorganic filler is mixed in advance, a so-called inorganic filler reinforced resin, may be used as the thermoplastic resin. In addition, if necessary, a general-purpose additive may be added to the thermoplastic resin to form a molded body.
<樹脂ペレットの製造方法>
 成形体の成形方法は、特に限定されず、汎用の方法を用いることができる。例えば、まず、熱可塑性樹脂及びCNFを含む樹脂ペレットを用意し、その樹脂ペレットを汎用の方法により成形して成形体を得てもよい。熱可塑性樹脂中に均一にCNFが分散している樹脂ペレットを用いて成形体を製造することで、成形体中においてもCNFの良好な分散状態を維持することができる。樹脂ペレットの組成は、製造する成形体の組成に基づいて適宜決定できる。
<Production method of resin pellet>
The molding method of a molded object is not specifically limited, A general purpose method can be used. For example, first, resin pellets containing a thermoplastic resin and CNF may be prepared, and the resin pellets may be molded by a general-purpose method to obtain a molded body. By producing a molded body using resin pellets in which CNF is uniformly dispersed in a thermoplastic resin, a good dispersion state of CNF can be maintained even in the molded body. The composition of the resin pellet can be appropriately determined based on the composition of the molded article to be produced.
 樹脂ペレットは、自家製造してもよいし、市販品を用いてもよい。樹脂ペレットの製造方法は、特に限定されず、任意の方法を用いることができる。例えば、特開2013‐79334号公報に開示されるように、熱可塑性樹脂(ポリアミド)を構成するモノマーと、CNFとの水分散液(CNF水スラリー)とを混合して重合反応を行い、得られた樹脂組成物を取り出して、粉砕してペレットを製造してもよい。または、同様の方法により製造された市販品を用いてもよい。または、二軸押出機中にて、表面修飾されたセルロースをCNFに解繊しながら、溶融樹脂中に分散させる所謂、京都プロセス(例えば、国立研究開発法人新エネルギー・産業技術総合開発機構、News Release、2016年3月23日「高性能ナノ繊維で強化した樹脂複合材料と高効率製造プロセスを開発―京都大学内で一貫製造用テストプラントが稼働開始―」参照)により樹脂ペレットを製造してもよい。 Resin pellets may be made in-house or commercially available. The manufacturing method of the resin pellet is not particularly limited, and any method can be used. For example, as disclosed in JP 2013-79334 A, a monomer constituting a thermoplastic resin (polyamide) and an aqueous dispersion of CNF (CNF aqueous slurry) are mixed to obtain a polymerization reaction. The obtained resin composition may be taken out and pulverized to produce pellets. Or you may use the commercial item manufactured by the same method. Alternatively, the so-called Kyoto process (for example, New Energy and Industrial Technology Development Organization, News, National Research and Development Corporation, News, which disperses surface-modified cellulose into CNF in a twin-screw extruder while defibrating into CNF. Release, March 23, 2016, “Developing a resin composite material reinforced with high-performance nanofibers and a high-efficiency manufacturing process-A test plant for integrated manufacturing starts operation in Kyoto University”) Also good.
 その他の樹脂ペレットの製造方法としては、例えば、CNF、更に必要に応じて、ブロック共重合体等を含む熱可塑性樹脂(以下、適宜、「樹脂ペレット材料」と記載する)を押出成形した後、押出成形体を裁断して樹脂ペレットを製造してもよい。CNF及び熱可塑性樹脂等は、混合(ドライブレンド)してから、押出成形機の可塑化シリンダ内に導入してもよいし、先に可塑化シリンダ内で、熱可塑性樹脂を可塑化溶融しておき、後からCNFを可塑化シリンダ内に導入して溶融樹脂に混合してもよい。熱可塑性樹脂に混合するCNFの形態は、特に限定されず、例えば、乾燥状態の粉末状のCNFでもよいし、水等の溶媒に分散されたスラリー状のCNF(CNFスラリー)でもよい。 As another method for producing resin pellets, for example, CNF, and if necessary, after extruding a thermoplastic resin containing a block copolymer or the like (hereinafter, appropriately described as “resin pellet material”), The extrudate may be cut to produce resin pellets. CNF and thermoplastic resin may be mixed (dry blended) and then introduced into the plasticizing cylinder of the extruder. Alternatively, the thermoplastic resin is first plasticized and melted in the plasticizing cylinder. Alternatively, CNF may be introduced into the plasticizing cylinder later and mixed with the molten resin. The form of CNF mixed with the thermoplastic resin is not particularly limited, and may be, for example, dry powder CNF or slurry CNF (CNF slurry) dispersed in a solvent such as water.
 樹脂ペレットの製造に水に分散したCNFスラリーを用いる場合、可塑化シリンダ内において、熱可塑性樹脂を可塑化溶融した溶融樹脂と、CNFスラリーとの混合物が得られる。このとき、CNFスラリーが液相を維持したまま、溶融樹脂に十分に分散することが好ましい。このため、押出成形機の可塑化シリンダ内の圧力は、熱可塑性樹脂が溶融する高温状態であっても、CNFスラリーの溶媒が液体状体を維持できる高圧力に保つことが好ましい。液体は高温になると密度が急激に低下し、溶質を溶解又は分散させる溶媒としての機能を失うが、圧力を高くすることで、溶媒の溶媒密度の低下を防ぎ、CNFの析出及び凝集を抑制できる。したがって、樹脂ペレットの製造に用いる押出成形機の可塑化シリンダは、溶融樹脂とCNFスラリーを高温及び高圧力で混合可能な高圧混練ゾーンを有することか好ましい。溶融樹脂とCNFスラリーとを混合する高圧混練ゾーンの温度及び圧力は、熱可塑性樹脂の種類と、CNFスラリーの溶媒の種類によって決定できるが、例えば、150℃~280℃、3MPa~20MPaであり、好ましくは、180℃~230℃、7MPa~15MPaである。 When a CNF slurry dispersed in water is used for producing resin pellets, a mixture of a molten resin obtained by plasticizing and melting a thermoplastic resin and a CNF slurry is obtained in a plasticizing cylinder. At this time, it is preferable that the CNF slurry is sufficiently dispersed in the molten resin while maintaining the liquid phase. For this reason, it is preferable to maintain the pressure in the plasticizing cylinder of the extrusion molding machine at a high pressure at which the solvent of the CNF slurry can maintain the liquid body even in a high temperature state where the thermoplastic resin melts. When the temperature of the liquid becomes high, the density rapidly decreases and the function as a solvent for dissolving or dispersing the solute is lost. However, by increasing the pressure, the decrease in the solvent density of the solvent can be prevented, and the precipitation and aggregation of CNF can be suppressed. . Therefore, it is preferable that the plasticizing cylinder of the extruder used for producing the resin pellets has a high-pressure kneading zone in which the molten resin and the CNF slurry can be mixed at high temperature and high pressure. The temperature and pressure of the high-pressure kneading zone for mixing the molten resin and the CNF slurry can be determined according to the type of the thermoplastic resin and the type of the solvent of the CNF slurry, and are, for example, 150 ° C. to 280 ° C., 3 MPa to 20 MPa, Preferably, they are 180 ° C. to 230 ° C. and 7 MPa to 15 MPa.
 また、高圧混練ゾーンにおいて、溶融樹脂とCNFスラリーの混合物に、更に水を混合することが好ましい。導入された水は、高圧混練ゾーンにおいて、CNFスラリーの乾燥を防止し、溶融樹脂内のCNFの凝集を更に抑制する。水は、高温加圧状態の溶融樹脂とCNFスラリーとの混合物に導入するため、加圧状態であることが好ましい。 In the high-pressure kneading zone, it is preferable to further mix water with the mixture of the molten resin and the CNF slurry. The introduced water prevents the CNF slurry from drying in the high-pressure kneading zone, and further suppresses the aggregation of CNF in the molten resin. Since water is introduced into a mixture of a molten resin and a CNF slurry in a high temperature and pressure state, it is preferably in a pressure state.
 溶融樹脂及びCNFスラリーを十分に混合した後、溶融樹脂とスラリーとの混合物は、押出成形される前に減圧され、混合物からスラリーの溶媒及び水が除去されることが好ましい。したがって、樹脂ペレットの製造に用いる押出成形機の可塑化シリンダは、溶融樹脂の樹脂内圧を低下させて、溶融樹脂からスラリーの溶媒等を除去する減圧ゾーンを有することが好ましい。除去した溶媒は、減圧ゾーンに設けられたベントから、可塑化シリンダの外部へ排出される。また、溶媒を多く含む溶融樹脂を急減圧すると樹脂が大きく膨張し、所謂、ベントアップを生じ易くなる。溶融樹脂の急減圧を防止してベントアップを抑制するために、減圧ゾーンのベントの上流側には、溶融樹脂とスラリーとの混合物を徐減圧する徐減圧部を設けることが好ましい。 After sufficiently mixing the molten resin and the CNF slurry, the mixture of the molten resin and the slurry is preferably decompressed before being extruded to remove the solvent and water of the slurry from the mixture. Therefore, it is preferable that the plasticizing cylinder of the extruder used for the production of the resin pellets has a reduced pressure zone that lowers the resin internal pressure of the molten resin and removes the solvent of the slurry from the molten resin. The removed solvent is discharged out of the plasticizing cylinder from a vent provided in the decompression zone. Further, when the molten resin containing a large amount of solvent is rapidly decompressed, the resin expands greatly, and so-called vent-up is likely to occur. In order to prevent sudden pressure reduction of the molten resin and suppress vent-up, it is preferable to provide a gradual pressure reducing section for gradually evacuating the mixture of the molten resin and the slurry upstream of the vent in the pressure reducing zone.
 溶融樹脂とCNFスラリーとの混合物を紐状に押出成形し、冷却後、ストランドカット装置等の汎用の裁断装置を用いて裁断して樹脂ペレットを得る。押出成形、冷却及び裁断は、連続して行うことが樹脂ペレットの生産性の観点から好ましい。 A mixture of molten resin and CNF slurry is extruded into a string shape, cooled, and then cut using a general-purpose cutting device such as a strand cutting device to obtain resin pellets. Extrusion molding, cooling and cutting are preferably performed continuously from the viewpoint of productivity of resin pellets.
<成形体の成形方法>
 成形体の成形方法は、特に限定されない。射出成形、押出成形等の汎用の成形により、製造した樹脂ペレットを成形して所望の形状の成形体を得てもよい。また、製造した樹脂ペレットを発泡成形して、内部に発泡セルを有する発泡成形体を得てもよい。発泡成形体は、一般に、機械的強度が低下する傾向にあるが、発泡成形体がCNFを含有することで、CNFの補強効果により、発泡による機械的強度の低下を一部相殺できる。発泡成形は、化学発泡剤を用いる化学発泡法と、物理発泡剤を用いる物理発泡法とに大別されるが、発泡剤が安価で、且つ発泡剤の残渣の悪影響が無い物理発泡法が好ましい。特に、物理発泡剤として、二酸化炭素や窒素を用いた発泡成形は、CNFの発泡核剤効果や増粘効果により、発泡セルが微細化するため好ましい。また、二酸化炭素や窒素の物理発泡剤の圧力は、超臨界圧力以下であることが好ましい。超臨界圧力以下とすることで、成形体を射出成形する場合に発生するスワールマークと呼ばれる成形体の外観不良の発生を抑制できる。
<Molding method of molded body>
The molding method of the molded body is not particularly limited. The formed resin pellets may be molded by general-purpose molding such as injection molding or extrusion molding to obtain a molded body having a desired shape. Further, the produced resin pellets may be foam-molded to obtain a foam-molded body having foam cells inside. In general, the foam molded article tends to have a reduced mechanical strength. However, the foam molded article contains CNF, so that the reduction in mechanical strength due to foaming can be partially offset by the reinforcing effect of CNF. Foam molding is broadly divided into a chemical foaming method using a chemical foaming agent and a physical foaming method using a physical foaming agent, and the physical foaming method is preferable because the foaming agent is inexpensive and does not have an adverse effect of the foaming agent residue. . In particular, foam molding using carbon dioxide or nitrogen as a physical foaming agent is preferable because the foamed cells become fine due to the foaming nucleating agent effect and the thickening effect of CNF. The pressure of the physical foaming agent such as carbon dioxide or nitrogen is preferably not higher than the supercritical pressure. By setting the pressure to a supercritical pressure or lower, it is possible to suppress the appearance defect of the molded body called a swirl mark that occurs when the molded body is injection molded.
 以上、熱可塑性樹脂及びCNFを含む樹脂ペレットを用意し、その樹脂ペレットを汎用の方法により成形して成形体を得る方法について説明したが、本実施形態は、これに限定されない。例えば、CNFを含有する樹脂ペレットは用いずに、熱可塑性樹脂に、CNF、更に必要に応じて、無機フィラー等を混合し、汎用の射出成形、押出成形等により成形して、直接、所望の形状の成形体を得てもよい。 As mentioned above, although the resin pellet containing a thermoplastic resin and CNF was prepared and the resin pellet was shape | molded by the general purpose method and demonstrated, the method of obtaining a molded object was demonstrated, but this embodiment is not limited to this. For example, without using resin pellets containing CNF, thermoplastic resin is mixed with CNF and, if necessary, inorganic filler, etc., and then molded by general-purpose injection molding, extrusion molding, etc., directly to the desired A shaped molded body may be obtained.
(2)メッキ前処理
 本実施形態では、メッキ前処理として、まず、成形体をエッチング処理又は、膨潤処理することが好ましい。そして、その後、成形体に金属塩を含む無電解メッキ触媒液を接触させる(図1のステップS2)。これにより、無電解メッキ触媒として機能する金属塩由来の金属イオンを成形体表面に付与できる。
(2) Pre-plating treatment In the present embodiment, as the pre-plating treatment, it is preferable that the molded body is first subjected to etching treatment or swelling treatment. Then, after that, an electroless plating catalyst solution containing a metal salt is brought into contact with the formed body (step S2 in FIG. 1). Thereby, the metal ion derived from the metal salt which functions as an electroless plating catalyst can be imparted to the surface of the molded body.
<成形体のエッチング処理又は膨潤処理>
 成形体に触媒液を接触させる前に、成形体をエッチング処理又は膨潤処理することが好ましい。成形体をエッチング処理すると、成形体の最表面に露出するCNFの量が増加し、無電解メッキ触媒として機能する金属イオンが成形体表面により吸着し易くなる。また、成形体を膨潤処理すると、成形体内に触媒液と共に金属イオンが浸透し易くなり、成形体内部(表面近傍)のCNFによって吸着される。このように、成形体をエッチング処理又は膨潤処理すると、成形体に吸着する金属イオンが増加し、成形体の無電解メッキ反応性がより向上する。
<Etching treatment or swelling treatment of molded article>
Before bringing the catalyst solution into contact with the molded body, it is preferable to subject the molded body to an etching treatment or a swelling treatment. When the molded body is etched, the amount of CNF exposed on the outermost surface of the molded body increases, and metal ions that function as an electroless plating catalyst are more easily adsorbed on the surface of the molded body. In addition, when the molded body is subjected to swelling treatment, metal ions easily penetrate into the molded body together with the catalyst solution, and are adsorbed by CNF inside the molded body (near the surface). Thus, when the molded body is etched or swelled, metal ions adsorbed on the molded body are increased, and the electroless plating reactivity of the molded body is further improved.
 成形体のエッチング処理方法及び膨潤処理方法は、成形体に用いられる熱可塑性樹脂の種類に応じて適宜選択できる。但し、クロム酸等の環境負荷の大きな試薬は用いないことが好ましい。 The etching treatment method and the swelling treatment method of the molded body can be appropriately selected depending on the type of thermoplastic resin used in the molded body. However, it is preferable not to use a reagent with a large environmental load such as chromic acid.
 例えば、熱可塑性樹脂として、ABS樹脂のようなゴム成分を配合する共重合体やポリマーアロイを用いた成形体に対しては、表面張力36mN/m以下で、且つ溶解度パラメータ(SP値)が12以下である溶剤を含むエッチング液を成形体に接触させることにより、成形体の表面をエッチングしてもよい。表面張力が36mN/m以下であれば、成形体表面を十分に濡らすことができ、また、SP値が12以下であれば、エッチング液のSP値とABS樹脂のブタジエン成分等とのSP値とが近い値となる。このような溶剤を含むエッチング液を接触させることにより、成形体の表面に微細孔を形成できる。尚、本願明細書における溶剤の表面張力の値は、室温における表面張力の値を意味する。具体的な溶剤としては、例えば、エチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル及びトリエチレングリコールモノブチルエーテルのグリコールエーテルが挙げられる。中でも、ジプロピレングリコールモノメチルエーテルが好ましい。 For example, as a thermoplastic resin, a molded body using a copolymer or a polymer alloy containing a rubber component such as an ABS resin has a surface tension of 36 mN / m or less and a solubility parameter (SP value) of 12. You may etch the surface of a molded object by making the etching liquid containing the solvent which is the following contact a molded object. If the surface tension is 36 mN / m or less, the surface of the molded body can be sufficiently wetted. If the SP value is 12 or less, the SP value of the etching solution and the SP value of the butadiene component of the ABS resin Is a close value. By bringing an etching solution containing such a solvent into contact, micropores can be formed on the surface of the molded body. In addition, the value of the surface tension of the solvent in this specification means the value of the surface tension at room temperature. Specific examples of the solvent include ethylene glycol monobutyl ether, diethylene glycol monohexyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, and triethylene glycol monobutyl ether glycol ether. Can be mentioned. Of these, dipropylene glycol monomethyl ether is preferred.
 熱可塑性樹脂として、化学的に安定なポリロピレン等の材料を用いた成形体に対しては、予め酸や水で抽出可能な抽出材料を成形体中に含有させ、酸や水をエッチング液として成形体に接触させることにより、抽出材料を抽出して成形体表面をエッチングしてもよい。抽出材料としては、次亜燐酸カルシウム、炭酸カルシウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等の無機粒子やペンタエリスリトール等の高融点の有機化合物等を用いることができる。酸としては、例えば、塩酸や硫酸、硝酸が挙げられ、抽出材料に応じて適宜選択できる。 For molded products using chemically stable materials such as polypropylene, etc. as thermoplastic resins, extract materials that can be extracted with acid or water are included in the molded product in advance, and acid or water is used as the etching solution. By contacting the body, the extracted material may be extracted to etch the surface of the molded body. As the extraction material, inorganic particles such as calcium hypophosphite, calcium carbonate, magnesium carbonate, magnesium sulfate, and magnesium oxide, high melting point organic compounds such as pentaerythritol, and the like can be used. Examples of the acid include hydrochloric acid, sulfuric acid, and nitric acid, and can be appropriately selected depending on the extraction material.
 また、熱可塑性樹脂として、ポリアミド6(PA6)やポリアミド66(PA66)のような脂肪族ポリアミドを用いた成形体に対しては、酸を接触させた後に、温水(湯)を接触させることにより、成形体表面を膨潤させてもよい。酸としては、例えば、塩酸が挙げられる。温水の温度は、成形体の膨潤効果を高めるために、成形体中の脂肪族ポリアミドのガラス転移点以上の温度が好ましく、例えば、50~90℃、好ましくは60~75℃である。 In addition, for a molded body using an aliphatic polyamide such as polyamide 6 (PA6) or polyamide 66 (PA66) as the thermoplastic resin, after contacting the acid, hot water (hot water) is contacted. The molded body surface may be swollen. Examples of the acid include hydrochloric acid. The temperature of the hot water is preferably a temperature equal to or higher than the glass transition point of the aliphatic polyamide in the molded body in order to enhance the swelling effect of the molded body, for example, 50 to 90 ° C., preferably 60 to 75 ° C.
<無電解メッキ触媒の付与>
 成形体をエッチング処理又は膨潤処理した後、成形体に金属塩を含む無電解メッキ触媒液を接触させる(図1のステップS2)。これにより、無電解メッキ触媒として機能する金属塩由来の金属イオンを成形体表面に付与できる。
<Applying electroless plating catalyst>
After the molded body is etched or swelled, the molded body is contacted with an electroless plating catalyst solution containing a metal salt (step S2 in FIG. 1). Thereby, the metal ion derived from the metal salt which functions as an electroless plating catalyst can be imparted to the surface of the molded body.
 無電解メッキ触媒液が含有する金属塩は、無電解メッキ触媒能を有する金属の塩であり、水に溶解して金属イオンを生成する金属塩であれば任意のものを用いることができる。例えば、Pd、Pt、Cu、Ni、Ag等の塩が挙げられ、特にPd、Ag、Cuが好ましい。金属塩としては、これら金属の塩化物、硫化物、ヨウ化物、フッ化物、臭化物等を用いることができるが、安定性、汎用性、コストの面から、塩化物が好ましく、塩化銅、塩化銀、塩化パラジウムが特に好ましい。 The metal salt contained in the electroless plating catalyst solution is a metal salt having electroless plating catalytic ability, and any metal salt can be used as long as it dissolves in water and generates metal ions. For example, salts such as Pd, Pt, Cu, Ni, and Ag can be mentioned, and Pd, Ag, and Cu are particularly preferable. As metal salts, chlorides, sulfides, iodides, fluorides, bromides, etc. of these metals can be used, but chlorides are preferred from the viewpoint of stability, versatility, and cost, and copper chloride, silver chloride Palladium chloride is particularly preferred.
 無電解メッキ触媒液中の金属塩の濃度は、無電解メッキ触媒液の温度、無電解メッキ触媒液と成形体との接触時間等の条件に基づき、適宜調整できるが、例えば、0.05~500mg/L、好ましくは、1~250mg/L、より好ましくは、5~150mg/Lである。金属塩の濃度が上記範囲より低いと、成形体への金属イオンの吸着量にムラができ、メッキ膜の欠陥ができる虞がある。また、金属塩の濃度が上記範囲を超えると、成形体表面への金属イオンの吸着量が多くなり、成形体の最表面でのメッキ反応が支配的となり、メッキ膜の密着強度が低下する虞がある。 The concentration of the metal salt in the electroless plating catalyst solution can be adjusted as appropriate based on conditions such as the temperature of the electroless plating catalyst solution and the contact time between the electroless plating catalyst solution and the molded article. 500 mg / L, preferably 1 to 250 mg / L, more preferably 5 to 150 mg / L. If the concentration of the metal salt is lower than the above range, the amount of metal ions adsorbed on the molded product may be uneven, and defects in the plating film may occur. Further, when the concentration of the metal salt exceeds the above range, the amount of metal ions adsorbed on the surface of the molded body increases, the plating reaction on the outermost surface of the molded body becomes dominant, and the adhesion strength of the plating film may be reduced. There is.
 金属塩を溶解させる無電解メッキ触媒液の溶媒としては、特に限定されず、金属塩の種類に応じて選択でき、例えば、水;エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトン、エチルメチルケトン等の有機溶媒;これらの混合溶媒が挙げられる。更に、金属塩の溶解度を上げるために、塩酸、硝酸、アンモニア、水酸化ナトリウムなどを加えて、液体のpHを調整していてもよい。本実施形態の無電解メッキ触媒液としては、塩化パラジウムの塩酸水溶液が好ましい。無電解メッキ触媒液が塩酸を含む場合、無電解メッキ触媒液中の塩酸の濃度は、例えば、0.1~12Nであり、0.1~5Nが好ましく、1.0~4.0Nがより好ましい。特に、塩化パラジウムは、塩酸の濃度が低下すると析出する虞があるため、塩酸濃度を0.1N以上とすることでパラジウムイオンの状態を安定に維持できる。一方、塩酸の濃度が12Nを超えると、成形体の溶解等により、メッキ膜の外観特性や成形体の機械的強度に影響を与える虞がある。 The solvent of the electroless plating catalyst solution for dissolving the metal salt is not particularly limited and can be selected according to the type of the metal salt, for example, water; ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone. Organic solvents such as: mixed solvents thereof. Furthermore, in order to increase the solubility of the metal salt, hydrochloric acid, nitric acid, ammonia, sodium hydroxide, or the like may be added to adjust the pH of the liquid. As the electroless plating catalyst solution of this embodiment, an aqueous hydrochloric acid solution of palladium chloride is preferable. When the electroless plating catalyst solution contains hydrochloric acid, the concentration of hydrochloric acid in the electroless plating catalyst solution is, for example, 0.1 to 12N, preferably 0.1 to 5N, and more preferably 1.0 to 4.0N. preferable. In particular, since palladium chloride may be precipitated when the concentration of hydrochloric acid is lowered, the state of palladium ions can be stably maintained by setting the hydrochloric acid concentration to 0.1 N or more. On the other hand, if the concentration of hydrochloric acid exceeds 12N, the appearance characteristics of the plating film and the mechanical strength of the molded body may be affected by dissolution of the molded body.
 無電解メッキ触媒液は、金属塩及び溶媒のみから構成されても良いし、必要に応じて、汎用の添加剤を含んでもよい。無電解メッキ触媒液は、例えば、界面活性剤を含んでも良い。界面活性剤を含有することで無電解メッキ触媒液の表面張力が低下し、成形体表面への濡れ性が向上して、金属塩が成形体表面に吸着し易くなる。界面活性剤は、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、及び両性界面活性剤等、汎用の界面活性剤を使用できる。 The electroless plating catalyst solution may be composed of only a metal salt and a solvent, or may contain a general-purpose additive as necessary. The electroless plating catalyst solution may contain a surfactant, for example. By containing the surfactant, the surface tension of the electroless plating catalyst solution is reduced, the wettability to the surface of the molded body is improved, and the metal salt is easily adsorbed on the surface of the molded body. As the surfactant, a general-purpose surfactant such as an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.
 無電解メッキ触媒液は、金属塩と、溶媒と、更に必要に応じて汎用の添加剤等を混合して調製してもよいし、市販品を用いてもよい。例えば、無電解メッキ触媒液として、塩化パラジウムの塩酸水溶液を用いる場合には、塩化パラジウムを塩酸(塩酸水溶液)に添加し、塩化パラジウムが溶解するまで撹拌することによって調製できる。また、市販品としては、例えば、センシタイザー・アクチベータ法に用いる触媒化処理剤(アクチベータ)を用いることができる。通常のセンシタイザー・アクチベータ法では、Pd2+を含む触媒化処理剤(アクチベータ)を用いるアクチベータ処理の前に、Sn2+を含む感応性付与剤(センシタイザー)を用いたセンシタイザー処理が必要であるが、本実施形態ではセンシタイザー処理は不要である。このため、本実施形態の無電解メッキ触媒付与方法は、センシタイザー・アクチベータ法よりも製造コストを削減でき、スループットを向上できる。 The electroless plating catalyst solution may be prepared by mixing a metal salt, a solvent, and a general-purpose additive as necessary, or a commercially available product may be used. For example, when an aqueous hydrochloric acid solution of palladium chloride is used as the electroless plating catalyst solution, it can be prepared by adding palladium chloride to hydrochloric acid (aqueous hydrochloric acid solution) and stirring until the palladium chloride is dissolved. Moreover, as a commercial item, the catalyzing processing agent (activator) used for a sensitizer activator method can be used, for example. In the usual sensitizer / activator method, a sensitizer treatment using a sensitivity imparting agent (sensitizer) containing Sn 2+ is required before the activator treatment using a catalytic treatment agent (activator) containing Pd 2+. However, the sensitizer processing is not necessary in this embodiment. For this reason, the electroless plating catalyst application method of the present embodiment can reduce the manufacturing cost and improve the throughput as compared with the sensitizer / activator method.
 成形体に無電解メッキ触媒液を接触させる方法は任意であり、目的に応じて種々の方法を用いることができる。例えば、無電解メッキ触媒液に成形体全体を浸漬させてもよいし、成形体の一部分のみを無電解メッキ触媒液と接触させてもよい。 The method of bringing the electroless plating catalyst solution into contact with the molded body is arbitrary, and various methods can be used depending on the purpose. For example, the entire molded body may be immersed in the electroless plating catalyst solution, or only a part of the molded body may be brought into contact with the electroless plating catalyst solution.
 成形体に無電解メッキ触媒液を接触させる時間は、例えば、5秒~15分が好ましい。5秒未満であると、成形体への金属塩の吸着量にムラができる虞がある。また、15分を超えると、成形体へ浸透した無電解メッキ触媒液による成形体の劣化の虞がある。 The time for bringing the electroless plating catalyst solution into contact with the molded body is preferably, for example, 5 seconds to 15 minutes. If it is less than 5 seconds, there is a possibility that the amount of the metal salt adsorbed on the molded body may be uneven. Moreover, when it exceeds 15 minutes, there exists a possibility that the molded object may deteriorate with the electroless-plating catalyst liquid which osmose | permeated the molded object.
 また、成形体に接触させる無電解メッキ触媒液の温度は、熱可塑性樹脂の種類等に応じて適宜決定でき、例えば、10℃~50℃である。10℃未満であると、成形体表面への金属イオンの吸着量にムラができる虞がある。また、無電解メッキ触媒液の温度が50℃を超えると、成形体表面への金属イオンの吸着量が多くなり、成形体の最表面でのメッキ反応が支配的となる虞がある。また、無電解メッキ触媒液が塩酸を含む場合、塩酸からのガスの発生や水の蒸発により、塩酸濃度を安定化することが難しくなる虞もある。 Further, the temperature of the electroless plating catalyst solution brought into contact with the molded body can be appropriately determined according to the kind of the thermoplastic resin, and is, for example, 10 ° C. to 50 ° C. If the temperature is less than 10 ° C., the amount of metal ions adsorbed on the surface of the molded article may be uneven. On the other hand, if the temperature of the electroless plating catalyst solution exceeds 50 ° C., the amount of metal ions adsorbed on the surface of the molded body increases, and the plating reaction on the outermost surface of the molded body may become dominant. Further, when the electroless plating catalyst solution contains hydrochloric acid, it may be difficult to stabilize the hydrochloric acid concentration due to generation of gas from hydrochloric acid or evaporation of water.
 本実施形態では、成形体に無電解メッキ触媒液を接触させることにより、成形体に金属塩由来の金属イオンが吸着する。そして、その金属イオンは、後工程の無電解メッキ工程(図1のステップS3)において、無電解メッキ触媒として機能する。このメカニズムは、以下のように推測される。 In this embodiment, the metal ion derived from the metal salt is adsorbed to the compact by bringing the electroless plating catalyst solution into contact with the compact. The metal ions function as an electroless plating catalyst in a subsequent electroless plating process (step S3 in FIG. 1). This mechanism is presumed as follows.
 一般に、無電解メッキ触媒となるパラジウム等の金属イオンは、そのままでは成形体に吸着し難い。そのため、汎用の無電解メッキ触媒付与方法であるセンシタイザー・アクチベータ法やキャタリスト・アクセレータ法では、まず、成形体表面を粗化し、更に、パラジウムイオンを還元して酸化数0(ゼロ)の金属パラジウムとして成形体に吸着させている。したがって、従来は、金属状態でないパラジウム等の金属イオンを含む液体を成形体に接触させても、金属イオンは成形体表面に吸着し難く、更に、成形体表面に吸着したとしても、金属イオンの状態では触媒活性を発現しないため、無電解メッキ触媒として使用することは困難であった。 Generally, metal ions such as palladium that serve as an electroless plating catalyst are difficult to be adsorbed to a molded body as they are. Therefore, in the sensitizer activator method and catalyst accelerator method, which are general-purpose electroless plating catalyst application methods, first, the surface of the molded body is roughened, and further, palladium ions are reduced to reduce the oxidation number 0 (zero) metal. It is made to adsorb | suck to a molded object as palladium. Therefore, conventionally, even when a liquid containing metal ions such as palladium that is not in a metallic state is brought into contact with the molded body, the metal ions are hardly adsorbed on the surface of the molded body. Since the catalyst activity was not exhibited in the state, it was difficult to use as an electroless plating catalyst.
 本実施形態では、成形体がCNFを含有するため、成形体表面に金属イオンが吸着し易くなる。CNFがこの様な特性を有する理由は定かではないが、高い比表面積を有することが一因であると推測される。更に、本実施形態では、成形体に吸着する金属イオンは、別途、還元工程を用いなくとも、後工程の無電解メッキ工程(図1のステップS3)において、無電解メッキ触媒として機能する。これは、成形体に吸着した金属イオンが、無電解メッキ工程において、無電解メッキ液中に含まれる、次亜燐酸ナトリウム、ジメチルアミンボラン、ホルマリン等の還元剤により還元され、無電解メッキ触媒能を発揮するためと推測される。 In this embodiment, since the molded body contains CNF, metal ions are easily adsorbed on the surface of the molded body. The reason why CNF has such characteristics is not clear, but it is speculated that it is due to having a high specific surface area. Furthermore, in this embodiment, the metal ions adsorbed on the molded body function as an electroless plating catalyst in an electroless plating step (step S3 in FIG. 1) in a subsequent step without using a reduction step. This is because the metal ions adsorbed on the compact are reduced by a reducing agent such as sodium hypophosphite, dimethylamine borane and formalin contained in the electroless plating solution in the electroless plating process, It is estimated that
 このように、本実施形態では、無電解メッキ触媒液として、安価な金属塩溶液を用いることが可能であり、且つ無電解メッキ触媒(金属イオン)の還元処理を省略できる。これにより、製造コストを削減でき、スループットを向上できる。 Thus, in this embodiment, an inexpensive metal salt solution can be used as the electroless plating catalyst solution, and the reduction treatment of the electroless plating catalyst (metal ions) can be omitted. Thereby, manufacturing cost can be reduced and throughput can be improved.
(3)無電解メッキ
 次に、メッキ前処理を行った成形体に無電解メッキ液を接触させて、メッキ膜を形成し(図1のステップS3)、本実施形態のメッキ成形体(メッキ膜を有する成形体)を得る。無電解メッキ液としては、目的に応じて任意の汎用の無電解メッキ液を使用しでき、例えば、無電解ニッケルリンメッキ液、無電解銅メッキ液、無電解錫メッキ液を用いることができ、中でも、触媒活性が高く液が安定であるという点から、無電解ニッケルリンメッキ液が好ましい。
(3) Electroless plating Next, an electroless plating solution is brought into contact with the formed body that has been subjected to the plating pretreatment to form a plated film (step S3 in FIG. 1). Is obtained. As the electroless plating solution, any general-purpose electroless plating solution can be used according to the purpose, for example, an electroless nickel phosphorus plating solution, an electroless copper plating solution, an electroless tin plating solution, Among these, an electroless nickel phosphorus plating solution is preferable from the viewpoint that the catalyst activity is high and the solution is stable.
 無電解メッキ温度及び無電解メッキ時間は、熱可塑性樹脂の種類、無電解メッキ液の種類等に応じて、適宜、設定できる。無電解メッキ温度(無電解メッキ液の温度)は、例えば、50℃~80℃であり、好ましくは、50℃~70℃である。また、無電解メッキ時間(成形体に無電解メッキ液を接触させる時間)は、例えば、30秒~30分である。 The electroless plating temperature and the electroless plating time can be appropriately set according to the type of thermoplastic resin, the type of electroless plating solution, and the like. The electroless plating temperature (temperature of the electroless plating solution) is, for example, 50 ° C. to 80 ° C., and preferably 50 ° C. to 70 ° C. Further, the electroless plating time (the time for which the electroless plating solution is brought into contact with the formed body) is, for example, 30 seconds to 30 minutes.
 無電解メッキ膜を形成した成形体上には、成形体の用途及び意匠性向上等の目的から、更に異なる種類の無電解メッキ膜を複数層形成してもよいし、電解メッキにより電解メッキ膜を形成してもよい。また、無電解メッキ膜が形成された成形体は、無電解メッキ後にアニール処理を施してもよいし、室温で放置して自然乾燥してもよい。また、アニール処理や自然乾燥を行わず、連続して電解メッキ膜を形成する等の次の工程を行ってもよい。 A plurality of different types of electroless plating films may be formed on the molded body on which the electroless plating film is formed for the purpose of improving the use and design of the molded body, or by electroplating. May be formed. Moreover, the molded body on which the electroless plating film is formed may be annealed after the electroless plating, or may be left to stand at room temperature to be naturally dried. Moreover, you may perform the following processes, such as forming an electrolytic plating film | membrane continuously, without performing annealing treatment and natural drying.
 本実施形態で得られるメッキ成形体は、成形体中にCNFを含有するため、密着強度の高いメッキ膜を有し、高いヒートサイクル耐性を有する。また、CNFを含有する成形体は、メッキ膜が形成されない状態では、吸水性が高いため、用途によっては、吸水による膨潤等が問題となる。本実施形態のメッキ成形体は、成形体表面に形成したメッキ膜により、成形体の吸水を抑制できるため、様々な用途に使用可能である。 Since the plated molded body obtained in the present embodiment contains CNF in the molded body, it has a plating film with high adhesion strength and has high heat cycle resistance. Moreover, since the molded object containing CNF has high water absorption in the state in which a plating film is not formed, swelling by water absorption etc. becomes a problem depending on a use. The plated molded body of the present embodiment can be used for various purposes because the plated film formed on the surface of the molded body can suppress water absorption of the molded body.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited by the following examples and comparative examples.
 [実施例1]
 本実施例では、まず、熱可塑性樹脂と、CNFと、更にブロック共重合体を含有する樹脂ペレットを製造し、製造した樹脂ペレットを成形して成形体を得た。そして、得られた成形体に、エッチング、無電解メッキ触媒の付与、及び無電解メッキをこの順を行い、本実施例のメッキ部品を得た。
[Example 1]
In this example, first, a resin pellet containing a thermoplastic resin, CNF, and a block copolymer was manufactured, and the manufactured resin pellet was molded to obtain a molded body. Then, the obtained molded body was subjected to etching, electroless plating catalyst application, and electroless plating in this order to obtain a plated component of this example.
 熱可塑性樹脂としては、ABS樹脂(東レ製、トヨラック125‐X82)を用い、CNFとしては、水中対向衝突法により作製されたCNF(中越パルプ製、竹漂白パルプB解繊、CNF10重量%含有のCNF水スラリー)を用いた。また、ブロック共重合体としては、ナイロンとポリエチレンオキシドのブロック共重合体(三洋化成工業製、ペレスタットNC6321)を用いた。 As the thermoplastic resin, ABS resin (Toyolac 125-X82, manufactured by Toray Industries, Inc.) is used. CNF water slurry) was used. As the block copolymer, a block copolymer of nylon and polyethylene oxide (manufactured by Sanyo Chemical Industries, Pelestat NC6321) was used.
(1)樹脂ペレットの製造装置
 まず、本実施例で樹脂ペレットの製造に用いた製造装置1000について説明する。図2に示すように、製造装置1000は、可塑化シリンダ210を有する押出成形機200と、水(液体A)を可塑化シリンダ210に供給する供給機構100と、制御装置(不図示)を備える。制御装置は、押出成形機200と、供給機構100の動作を制御する。
(1) Resin pellet manufacturing apparatus First, the manufacturing apparatus 1000 used for manufacture of the resin pellet in a present Example is demonstrated. As shown in FIG. 2, the manufacturing apparatus 1000 includes an extruder 200 having a plasticizing cylinder 210, a supply mechanism 100 that supplies water (liquid A) to the plasticizing cylinder 210, and a control device (not shown). . The control device controls the operations of the extrusion molding machine 200 and the supply mechanism 100.
(a)押出成形機
 本実施例では、熱可塑性樹脂が可塑化溶融する高温下においても、CNFの分散した高粘度スラリー及び溶融樹脂に添加した水を液体の状態で溶融樹脂に混練可能な押出成形機200を用いる。図2に示す押出成形機200は、可塑化シリンダ210と、可塑化シリンダ210の先端に設けられるダイ29と、可塑化シリンダ210内に回転自在に配設されたスクリュ20と、スクリュ20を駆動させるスクリュ駆動機構(不図示)と、可塑化シリンダ210内に配置される上流側シール機構S1及び下流側シール機構S2と、可塑化シリンダ210に接続する真空ポンプPを備える。本実施例では、可塑化シリンダ210内において、可塑化溶融された溶融樹脂は、図2における右手から左手に向かって流動する。したがって、本実施例の可塑化シリンダ210の内部においては、図2における右手を「上流」又は「後方」、左手を「下流」又は「前方」と定義する。尚、本実施例の押出成形機200は、従来公知の押出成形機の構成と同様に、可塑化シリンダ210の後方側から見た場合に、スクリュ20を反時計回りに回転させると溶融樹脂を前方(ノズル部側)に送る正回転をし、時計回りに回転させると逆回転するように構成されている。
(A) Extruder molding machine In this embodiment, even at a high temperature at which the thermoplastic resin is plasticized and melted, the high viscosity slurry in which CNF is dispersed and the water added to the molten resin can be kneaded into the molten resin in a liquid state. A molding machine 200 is used. An extrusion molding machine 200 shown in FIG. 2 drives a plasticizing cylinder 210, a die 29 provided at the tip of the plasticizing cylinder 210, a screw 20 disposed rotatably in the plasticizing cylinder 210, and the screw 20. A screw drive mechanism (not shown), an upstream seal mechanism S1 and a downstream seal mechanism S2 disposed in the plasticizing cylinder 210, and a vacuum pump P connected to the plasticizing cylinder 210. In the present embodiment, in the plasticizing cylinder 210, the plasticized and melted molten resin flows from the right hand to the left hand in FIG. Therefore, in the plasticizing cylinder 210 of this embodiment, the right hand in FIG. 2 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”. Note that the extruder 200 of the present embodiment, like the configuration of a conventionally known extruder, rotates the screw 20 counterclockwise when viewed from the rear side of the plasticizing cylinder 210. It is configured to perform forward rotation sent forward (nozzle side) and reverse rotation when rotated clockwise.
 可塑化シリンダ210の上部側面には、上流側から順に、熱可塑性樹脂を可塑化シリンダ210に供給するための樹脂供給口201、液体Aを可塑化シリンダ210内に導入するための導入口202、及び可塑化シリンダ210内からガス化したCNFスラリーの溶媒及び液体Aを排気するためのベント203が形成されている。樹脂供給口201には、フィーダースクリュ121を介して樹脂供給用ホッパ211が、導入口202には逆流防止弁を内蔵する導入バルブ212が、それぞれ、配設されており、ベント203には、ベント容器213を介して、真空ポンプPが接続されている。また導入バルブ212は、押出成形機200の外に設けられる供給機構100と接続される。可塑化シリンダ210の外壁面には、バンドヒータ(不図示)が配設されており、これにより可塑化シリンダ210が加熱されて、熱可塑性樹脂が可塑化される。 On the upper side surface of the plasticizing cylinder 210, in order from the upstream side, a resin supply port 201 for supplying thermoplastic resin to the plasticizing cylinder 210, an introduction port 202 for introducing liquid A into the plasticizing cylinder 210, A vent 203 for exhausting the solvent and liquid A of the CNF slurry gasified from the plasticizing cylinder 210 is formed. The resin supply port 201 is provided with a resin supply hopper 211 via a feeder screw 121, and the introduction port 202 is provided with an introduction valve 212 incorporating a backflow prevention valve. A vacuum pump P is connected via the container 213. The introduction valve 212 is connected to the supply mechanism 100 provided outside the extrusion molding machine 200. A band heater (not shown) is disposed on the outer wall surface of the plasticizing cylinder 210, whereby the plasticizing cylinder 210 is heated to plasticize the thermoplastic resin.
 このような構造の押出成形機200では、樹脂供給口201から可塑化シリンダ210内に熱可塑性樹脂及びCNFスラリーが供給され、熱可塑性樹脂がバンドヒータによって可塑化されて溶融樹脂となり、スクリュ20が正回転することにより下流に送られる。そして、導入口202近傍まで送られた溶融樹脂は、導入された液体Aと高圧下、接触混練される。次いで、液体Aと接触混練された溶融樹脂の樹脂内圧を低下させることにより、ガス化したスラリーの溶媒、及び液体Aが溶融樹脂から分離し、ベント203から排気される。そして、さらに前方に送られた溶融樹脂は、ダイ29から押し出される。 In the extrusion molding machine 200 having such a structure, the thermoplastic resin and the CNF slurry are supplied from the resin supply port 201 into the plasticizing cylinder 210, and the thermoplastic resin is plasticized by the band heater to become a molten resin. It is sent downstream by rotating forward. The molten resin sent to the vicinity of the inlet 202 is contact-kneaded with the introduced liquid A under high pressure. Next, by reducing the internal pressure of the molten resin that has been kneaded with the liquid A, the solvent of the gasified slurry and the liquid A are separated from the molten resin and are exhausted from the vent 203. Then, the molten resin sent further forward is pushed out from the die 29.
 これにより、可塑化シリンダ210内では、上流側から順に、熱可塑性樹脂を可塑化して溶融樹脂とする可塑化ゾーン21、溶融樹脂と導入口202から導入される液体Aを高圧下、接触混練する高圧混練ゾーン22、及び溶融樹脂の樹脂内圧を低下させることにより、溶融樹脂から分離されたスラリーの溶媒及び液体Aをベント203から排気する減圧ゾーン23が形成される。更に、減圧ゾーン23の下流には、再圧縮ゾーン24が設けられる。 As a result, in the plasticizing cylinder 210, in order from the upstream side, the plasticizing zone 21 that plasticizes the thermoplastic resin into the molten resin, and the molten resin and the liquid A introduced from the inlet 202 are contact-kneaded under high pressure. By reducing the internal pressure of the high-pressure kneading zone 22 and the molten resin, a reduced-pressure zone 23 for exhausting the solvent and liquid A of the slurry separated from the molten resin from the vent 203 is formed. Further, a recompression zone 24 is provided downstream of the decompression zone 23.
 以下に各ゾーンについて、更に説明する。可塑化ゾーン21には、上流側から、フィード部21Aと、圧縮部21Bが設けられる。フィード部21Aには、樹脂ペレット材料が供給される樹脂供給口201が設けられており、そこから供給される樹脂ペレット材料に余熱を与える。圧縮部21Bでは、余熱が与えられた樹脂ペレット材料が可塑化溶融される。圧縮部21Bに位置するスクリュ20は、下流に向かうに伴ってスクリュフライト深さが浅くなる構造を有する。このスクリュ20の構造により、圧縮部21Bでは、溶融樹脂は、下流に流動するに伴い加圧される。 The following describes each zone further. The plasticizing zone 21 is provided with a feed portion 21A and a compression portion 21B from the upstream side. The feed portion 21A is provided with a resin supply port 201 through which a resin pellet material is supplied, and gives residual heat to the resin pellet material supplied therefrom. In the compression part 21B, the resin pellet material to which the residual heat is applied is plasticized and melted. The screw 20 located in the compression part 21B has a structure in which the screw flight depth becomes shallower as it goes downstream. Due to the structure of the screw 20, in the compression part 21B, the molten resin is pressurized as it flows downstream.
 高圧混練ゾーン22の上流側及び下流側には、それぞれ、上流側シール機構S1及び下流側シール機構S2が配設されている。上流側シール機構S1は、樹脂の上流側への逆流を抑制できれば任意のシール機構を用いることができ、本実施例では、従来の発泡成形等に用いるシールリングを採用した。下流側シール機構S2は、上流側の高圧混練ゾーン22において、溶融樹脂の圧力をほぼ一定に調整した状態で、下流側の減圧ゾーン23へ溶融樹脂を流動させることができる。下流側シール機構S2の詳細な構造及び機能については後述する。 An upstream seal mechanism S1 and a downstream seal mechanism S2 are disposed on the upstream side and the downstream side of the high-pressure kneading zone 22, respectively. As the upstream seal mechanism S1, any seal mechanism can be used as long as the backflow of the resin to the upstream side can be suppressed. In this embodiment, a seal ring used for conventional foam molding or the like is employed. The downstream seal mechanism S2 can cause the molten resin to flow to the downstream decompression zone 23 in the upstream high pressure kneading zone 22 with the pressure of the molten resin adjusted to be substantially constant. The detailed structure and function of the downstream side seal mechanism S2 will be described later.
 減圧ゾーン23には、上流側から、徐減圧部23Aと、飢餓減圧部23Bとが設けられる。徐減圧部23Aに位置するスクリュ20は、スクリュフライト深さが浅い部分と、深い部分とが交互に配置され、徐減圧部23Aの下流側に続く飢餓減圧部23Bでは、そこに位置するスクリュ20のスクリュフライトの深さが深い。徐減圧部23A及び飢餓減圧部23Bのスクリュ20の形状により、徐減圧部23Aから飢餓減圧部23Bへ流動する溶融樹脂は、徐減圧部23Aにおいて、徐々に圧力が低下する。これにより、溶融樹脂の急減圧を防ぎ、飢餓減圧部23Bに設けられたベント203からのベントアップを抑制できる。また、スクリュフライトの深さが深い飢餓減圧部23Bでは、溶融樹脂の飢餓状態が促進され、これによってもベントアップが抑制される。ここで、「飢餓状態」とは、溶融樹脂が飢餓減圧部23B内に充満せずに未充満となる状態を意味する。 In the decompression zone 23, a slow decompression part 23A and a starvation decompression part 23B are provided from the upstream side. As for the screw 20 located in the slow pressure reduction part 23A, the part with a shallow screw flight depth and a deep part are arrange | positioned alternately, and in the starvation pressure reduction part 23B continuing downstream of the slow pressure reduction part 23A, the screw 20 located there The depth of screw flight is deep. Due to the shape of the screw 20 of the gradual decompression unit 23A and the starvation decompression unit 23B, the pressure of the molten resin flowing from the gradual decompression unit 23A to the starvation decompression unit 23B gradually decreases in the gradual decompression unit 23A. Thereby, the sudden pressure reduction of molten resin can be prevented and the vent up from the vent 203 provided in the starvation pressure reduction part 23B can be suppressed. Moreover, in the starvation decompression part 23B where the depth of a screw flight is deep, the starvation state of molten resin is accelerated | stimulated and this also suppresses vent up. Here, the “starvation state” means a state in which the molten resin is not filled in the starvation decompression portion 23B and is not full.
(b)液体Aの供給機構
 次に、図2に示す液体Aの供給機構100について説明する。供給機構100は、押出成形機200の導入バルブ212に接続しており、液体Aを成形機200に供給する。供給機構100は、液体Aの収容容器(液相タンク)10と、収容容器10から液体Aを吸引後、所定の圧力に昇圧し、更に流量一定で液送可能なダブルプランジャーポンプ11と、ダブルプランジャーポンプ11から送られる液体Aを成形機200に供給する前に圧力調整する背圧弁12とから構成される。更に、背圧弁12の上流側(ダブルプランジャーポンプ11側)と下流側(押出成形機200側)には、それぞれ、圧力計13及び14が設けられている。圧力計13は、背圧弁12によって調整される、背圧弁12より上流側の溶液Aの圧力(ダブルプランジャーポンプ11側の圧力、1次圧力)を示し、圧力計14は、背圧弁12により下流側の溶液Aの圧力(成形機200側の圧力、2次圧力)を示す。
(B) Liquid A Supply Mechanism Next, the liquid A supply mechanism 100 shown in FIG. 2 will be described. The supply mechanism 100 is connected to the introduction valve 212 of the extrusion molding machine 200 and supplies the liquid A to the molding machine 200. The supply mechanism 100 includes a storage container (liquid phase tank) 10 for the liquid A, a double plunger pump 11 that can suck the liquid A from the storage container 10 and then pressurize the liquid A to a predetermined pressure. The back pressure valve 12 adjusts the pressure of the liquid A sent from the double plunger pump 11 before being supplied to the molding machine 200. Further, pressure gauges 13 and 14 are provided on the upstream side (double plunger pump 11 side) and the downstream side (extrusion machine 200 side) of the back pressure valve 12, respectively. The pressure gauge 13 indicates the pressure of the solution A upstream from the back pressure valve 12 (pressure on the double plunger pump 11 side, primary pressure) adjusted by the back pressure valve 12, and the pressure gauge 14 is adjusted by the back pressure valve 12. The pressure of the downstream solution A (pressure on the molding machine 200 side, secondary pressure) is shown.
(c)下流側シール機構
 押出成形機200に備えられる下流側シール機構S2について説明する。下流側シール機構S2は、高圧混練ゾーン22と減圧ゾーン23(徐減圧部23A)との境界領域に設けられる。下流側シール機構S2は、高圧混練ゾーン22の溶融樹脂の圧力をほぼ一定に調整した状態で、高圧混練ゾーン22から減圧ゾーン23へ溶融樹脂を流動させることができる圧力保持機構である。本実施例では、溶融樹脂に液体(CNFスラリーの溶媒及び液体A)が混合されるため、溶融樹脂の粘度が低下する。このように低粘度化した溶融樹脂の圧力を高めるためには、以下に説明するような機械的なシール機構が有効である。一方で、例えば、スクリュフライトの形状設計によって溶融樹脂の圧力を制御する等の手法では、低粘度化した溶融樹脂の圧力制御は難しいと考える。
(C) Downstream side sealing mechanism The downstream side sealing mechanism S2 provided in the extrusion molding machine 200 will be described. The downstream seal mechanism S2 is provided in a boundary region between the high-pressure kneading zone 22 and the decompression zone 23 (gradual decompression unit 23A). The downstream-side seal mechanism S2 is a pressure holding mechanism that allows the molten resin to flow from the high-pressure kneading zone 22 to the decompression zone 23 in a state where the pressure of the molten resin in the high-pressure kneading zone 22 is adjusted to be substantially constant. In this embodiment, since the liquid (solvent of CNF slurry and liquid A) is mixed with the molten resin, the viscosity of the molten resin is reduced. In order to increase the pressure of the molten resin whose viscosity has been lowered in this way, a mechanical seal mechanism as described below is effective. On the other hand, for example, it is considered difficult to control the pressure of the molten resin whose viscosity has been reduced by a technique such as controlling the pressure of the molten resin by designing the shape of the screw flight.
 図3に示すように、スクリュ20は、高圧混練ゾーン22と減圧ゾーン23との境界領域において、内部に溶融樹脂が流動可能なスクリュ内流路30が形成された圧力保持部20Aを有する。下流側シール機構S2は、この圧力保持部20Aと、圧力保持部20Aの外周に設けられた半割シールリング31と、スクリュ20内部に設けられ、スクリュ内流路30を流動する溶融樹脂の流動抵抗となるポペット弁33と、スクリュ20内部に設けられ、ポベット弁33を上流側に付勢する皿バネ34とから主に構成される。 As shown in FIG. 3, the screw 20 has a pressure holding portion 20 </ b> A in which a screw internal flow path 30 in which a molten resin can flow is formed in the boundary region between the high pressure kneading zone 22 and the decompression zone 23. The downstream seal mechanism S2 includes the pressure holding portion 20A, the half seal ring 31 provided on the outer periphery of the pressure holding portion 20A, and the flow of the molten resin that is provided inside the screw 20 and flows through the flow passage 30 in the screw. It is mainly composed of a poppet valve 33 that serves as a resistor and a disc spring 34 that is provided inside the screw 20 and biases the poppet valve 33 upstream.
 スクリュ内流路30は、高圧混練ゾーン22と、減圧ゾーン23とを連通している。一方、半割シールリング31によって、圧力保持部20A(スクリュ20)の外側を通って、高圧混練ゾーン22から減圧ゾーン23へ溶融樹脂が流動することが妨げられている。したがって、下流側シール機構S2においては、溶融樹脂は、圧力保持部20A内に形成されるスクリュ内流路30を通過して、高圧混練ゾーン22から減圧ゾーン23へ流動しようとする。 The in-screw flow path 30 communicates the high pressure kneading zone 22 and the decompression zone 23. On the other hand, the half seal ring 31 prevents the molten resin from flowing from the high-pressure kneading zone 22 to the decompression zone 23 through the outside of the pressure holding unit 20A (screw 20). Therefore, in the downstream seal mechanism S2, the molten resin tends to flow from the high-pressure kneading zone 22 to the pressure-reducing zone 23 through the screw flow path 30 formed in the pressure holding portion 20A.
 このとき、溶融樹脂の圧力(高圧混練ゾーン22の圧力)が所定圧力未満であると、スクリュ内流路30はポベット弁33により遮断され、溶融樹脂は減圧ゾーン23へ流動することができない。そして、スクリュ内流路30がポベット弁33によって遮断された状態のまま、スクリュ20が正回転し、溶融樹脂が可塑化ゾーン21から高圧混練ゾーン22へ流動し続けると、高圧混練ゾーン22の圧力が上昇する。そして、高圧混練ゾーン22の圧力が所定の圧力以上になると、溶融樹脂が皿バネ34のバネ力以上の圧力でポペット弁33を下流方向(図3の左方向)に加圧し、スクリュ内流路30が開放される。これにより、溶融樹脂が、高圧混練ゾーン22から減圧ゾーン23へ流動することができる。 At this time, if the pressure of the molten resin (pressure in the high-pressure kneading zone 22) is less than a predetermined pressure, the in-screw flow path 30 is blocked by the povet valve 33 and the molten resin cannot flow to the decompression zone 23. Then, when the screw 20 rotates in the forward direction and the molten resin continues to flow from the plasticizing zone 21 to the high-pressure kneading zone 22 while the in-screw flow path 30 is blocked by the povet valve 33, the pressure in the high-pressure kneading zone 22 is increased. Rises. When the pressure in the high-pressure kneading zone 22 becomes equal to or higher than a predetermined pressure, the molten resin pressurizes the poppet valve 33 in the downstream direction (left direction in FIG. 3) with a pressure equal to or higher than the spring force of the disc spring 34. 30 is opened. As a result, the molten resin can flow from the high-pressure kneading zone 22 to the decompression zone 23.
 下流側シール機構S2は、高圧混練ゾーン22が一定圧力に達したときにのみ、スクリュ内流路30を開放し、溶融樹脂を高圧混練ソーン22から減圧ゾーン23で流動させる。そして、高圧混練ゾーン22が一定圧力未満となると、再び、ポベット弁33によりスクリュ内流路30が遮断される。このように、下流側シール機構S2は、高圧混練ゾーン22における溶融樹脂の圧力を圧力変動の少ない高圧力に維持できる。この結果、高圧混練ゾーン22では、CNFスラリーは、その液相を維持したまま、溶融樹脂に十分に混練、分散される。本実施例では、高圧混練ゾーン22を8~10MPaに維持できるように、下流側シール機構S2を設計した。 The downstream side seal mechanism S2 opens the in-screw flow path 30 only when the high-pressure kneading zone 22 reaches a certain pressure, and causes the molten resin to flow from the high-pressure kneading zone 22 in the decompression zone 23. When the high-pressure kneading zone 22 becomes less than a certain pressure, the screw flow path 30 is again blocked by the povet valve 33. Thus, the downstream seal mechanism S2 can maintain the pressure of the molten resin in the high-pressure kneading zone 22 at a high pressure with little pressure fluctuation. As a result, in the high-pressure kneading zone 22, the CNF slurry is sufficiently kneaded and dispersed in the molten resin while maintaining its liquid phase. In this embodiment, the downstream side sealing mechanism S2 is designed so that the high-pressure kneading zone 22 can be maintained at 8 to 10 MPa.
(2)樹脂ペレットの製造
 以上説明した図2に示す製造装置1000を用いて、熱可塑性樹脂と、CNFと、ブロック共重合体とを含む樹脂ペレットを製造した。
(2) Manufacture of resin pellets Using the manufacturing apparatus 1000 shown in FIG. 2 described above, resin pellets containing a thermoplastic resin, CNF, and a block copolymer were manufactured.
 水(液体A)を収容容器10に収容した。そして、液体Aをダブルプランジャーポンプ11により吸引、昇圧、液送し、導入バルブ212までの系を加圧した。背圧弁12により、1次圧力(背圧弁12より上流側の液体A圧力)を12MPaに設定し、これにより、2次圧力(背圧弁12より下流側の液体A圧力)を8~11MPaの範囲に調整した。 Water (liquid A) was stored in the storage container 10. Then, the liquid A was sucked, pressurized and fed by the double plunger pump 11, and the system up to the introduction valve 212 was pressurized. The primary pressure (liquid A pressure upstream of the back pressure valve 12) is set to 12 MPa by the back pressure valve 12, whereby the secondary pressure (liquid A pressure downstream of the back pressure valve 12) is in the range of 8 to 11 MPa. Adjusted.
 押出成形機200において、バンドヒータ(不図示)により、フィード部21Aを220℃、圧縮部21Bを240℃、高圧混練ゾーン22を190℃、減圧ゾーン23を220℃、再圧縮ゾーン24を220℃に調整した。高圧混練ゾーン22は、液体Aが導入されて溶融樹脂の粘度が急激に低下する。溶融樹脂温度を低温にして、樹脂密度及び樹脂内圧を高く維持するため、高圧混練ゾーン22の温度は他のゾーンよりも低い温度に設定した。 In the extrusion molding machine 200, the feed section 21A is 220 ° C., the compression section 21B is 240 ° C., the high pressure kneading zone 22 is 190 ° C., the decompression zone 23 is 220 ° C., and the recompression zone 24 is 220 ° C. by a band heater (not shown). Adjusted. In the high-pressure kneading zone 22, the liquid A is introduced, and the viscosity of the molten resin rapidly decreases. In order to maintain the resin density and the internal pressure of the molten resin at a low temperature, the high-pressure kneading zone 22 was set at a lower temperature than the other zones.
 まず、ABS樹脂、ブロック共重合体、CNFスラリー(CNF濃度:10重量%)を100重量部、3重量部、40重量部(CNF:4重量部)の割合で混合し、次に、水(CNFスラリーの溶媒)を一部乾燥させた。その後、樹脂供給用ホッパ211から、上記混合物(樹脂ペレット材料)を押出成形機200に供給した。樹脂ペレット材料の押出成形機200への供給は、フィーダースクリュ121により供給量を抑制しながら行った。供給量を抑制することで、フィード部21Aにおいて、樹脂ペレット材料が未充満の状態(飢餓状態)を維持した。 First, ABS resin, block copolymer, and CNF slurry (CNF concentration: 10% by weight) are mixed at a ratio of 100 parts by weight, 3 parts by weight, and 40 parts by weight (CNF: 4 parts by weight), and then water ( The solvent of the CNF slurry was partially dried. Thereafter, the mixture (resin pellet material) was supplied to the extrusion molding machine 200 from the resin supply hopper 211. The resin pellet material was supplied to the extrusion molding machine 200 while the supply amount was suppressed by the feeder screw 121. By suppressing the supply amount, in the feed portion 21A, the resin pellet material was maintained in an unfilled state (starved state).
 スクリュ20を正回転させながら、フィード部21Aで余熱を与え、圧縮部21Bにて、熱可塑性樹脂及びブロック共重合体を可塑化溶融した。更に、スクリュ20を正回転することにより、CNFスラリーを含む溶融樹脂を可塑化ゾーン21から高圧混練ゾーン22に流動させた。 While the screw 20 was rotated in the forward direction, preheating was applied at the feed portion 21A, and the thermoplastic resin and the block copolymer were plasticized and melted at the compression portion 21B. Further, by rotating the screw 20 forward, the molten resin containing the CNF slurry was caused to flow from the plasticizing zone 21 to the high-pressure kneading zone 22.
 次に、導入バルブ212を開放して、高圧混練ゾーン22に液体A(水)を8~11MPa(約10MPa)の導入圧力で導入した。液体Aの導入量は、樹脂ペレット材料に対して液体Aが約10重量%となるように調整した。 Next, the introduction valve 212 was opened, and liquid A (water) was introduced into the high-pressure kneading zone 22 at an introduction pressure of 8 to 11 MPa (about 10 MPa). The amount of liquid A introduced was adjusted so that liquid A was about 10% by weight with respect to the resin pellet material.
 高圧混練ゾーン22内の圧力は、下流側シール機構S2により所定の圧力に調整し、導入口202に対向する位置に設けられた圧力センサー(不図示)によって、8~10MPaの範囲で維持されていることを確認した。190℃に調整された高圧混練ゾーンにおいて、液相(水)を安定に維持する圧力は、約3~5MPaである。したがって、8~10MPaに調整された高圧混練ゾーンでは、CNFスラリーをその液相を維持した状態で溶融樹脂に混合できた。また、更に、溶融樹脂に液体A(水)を混合することで、CNFの凝集を抑制した。 The pressure in the high-pressure kneading zone 22 is adjusted to a predetermined pressure by the downstream seal mechanism S2, and is maintained in the range of 8 to 10 MPa by a pressure sensor (not shown) provided at a position facing the inlet port 202. I confirmed. In the high-pressure kneading zone adjusted to 190 ° C., the pressure for stably maintaining the liquid phase (water) is about 3 to 5 MPa. Therefore, in the high-pressure kneading zone adjusted to 8 to 10 MPa, the CNF slurry could be mixed with the molten resin while maintaining its liquid phase. Furthermore, CNF aggregation was suppressed by mixing liquid A (water) with the molten resin.
 スクリュ20を更に正回転させることにより、高圧混練ゾーン22を所定の圧力(8~10MPa)に保持した状態で、溶融樹脂を高圧混練ゾーン22から、下流側シール機構S2を通過させて、減圧ゾーン23へ流動させた。減圧ゾーン23において、徐減圧部23Aから飢餓減圧部23Bへ溶融樹脂を流動させながら徐々に減圧し、飢餓減圧部23Bにおいて溶融樹脂に含まれるスラリーの溶媒(水)及び液体A(水)をガス化して分離した。ガス化した水(水蒸気)は、真空ポンプPにより吸引されて、ベント203からベント容器213を介して可塑化シリンダ210の外部へ排出され、真空ポンプPに接続する回収容器(不図示)に回収された。 By further rotating the screw 20 forward, the molten resin is allowed to pass from the high-pressure kneading zone 22 through the downstream-side seal mechanism S2 while the high-pressure kneading zone 22 is maintained at a predetermined pressure (8 to 10 MPa). To 23. In the depressurization zone 23, the molten resin is gradually depressurized while flowing from the slow depressurization unit 23A to the starvation depressurization unit 23B, and the solvent (water) and liquid A (water) of the slurry contained in the molten resin are gasified in the starvation depressurization unit 23B. Separated. Gasified water (water vapor) is sucked by the vacuum pump P, discharged from the vent 203 through the vent container 213 to the outside of the plasticizing cylinder 210, and recovered in a recovery container (not shown) connected to the vacuum pump P. It was done.
 スクリュ20を更に回転することにより、溶融樹脂を更に下流の再圧縮ゾーン24へ流動させ、その後、可塑化シリンダ210の先端に設けられたダイ29から紐状に押し出し、紐状の成形体を得た。得られた紐状の押出成形体を図示しないペレタイザにてペレット化し、樹脂ペレットを得た。 By further rotating the screw 20, the molten resin is further flowed to the downstream recompression zone 24, and then extruded from a die 29 provided at the tip of the plasticizing cylinder 210 to obtain a string-like molded body. It was. The obtained string-like extruded product was pelletized with a pelletizer (not shown) to obtain resin pellets.
(3)成形体の成形
 次に、得られた樹脂ペレットを汎用の射出成形機を用いて射出成形し、60mm×80mm×2mmの平板状の成形体を得た。樹脂温度は230℃、金型温度は70℃とした。得られた成形体の表面には黒点が観察された。この観察結果から、成形体中のCNFの少なくとも一部は凝集したと推測される。
(3) Molding of molded body Next, the obtained resin pellets were injection molded using a general-purpose injection molding machine to obtain a flat molded body of 60 mm x 80 mm x 2 mm. The resin temperature was 230 ° C. and the mold temperature was 70 ° C. Black spots were observed on the surface of the obtained molded body. From this observation result, it is presumed that at least a part of CNF in the molded body is aggregated.
(4)エッチング
 次に、得られた成形体を40℃のジプロピレングリコールモノメチルエーテル(DPGM)に、10分間浸漬し、その後、水洗した。成形体表面には、微細孔が形成された。これは、成形体に含まれるABS樹脂のブタンジエン成分が溶出したためと推測される。
(4) Etching Next, the obtained molded body was immersed in dipropylene glycol monomethyl ether (DPGM) at 40 ° C. for 10 minutes, and then washed with water. Micropores were formed on the surface of the molded body. This is presumably because the butanediene component of the ABS resin contained in the molded body was eluted.
(5)無電解メッキ触媒の付与
 まず、無電解メッキ触媒液として、50mg/Lの塩化パラジウムを含む、2.0Nの塩酸(塩酸水溶液)を調製した。無電解メッキ触媒液を30℃に調整し、成形体を5分間浸漬した。その後、無電解メッキ触媒液から、成形体を取り出して水洗した。
(5) Application of electroless plating catalyst First, 2.0 N hydrochloric acid (aqueous hydrochloric acid solution) containing 50 mg / L palladium chloride was prepared as an electroless plating catalyst solution. The electroless plating catalyst solution was adjusted to 30 ° C., and the compact was immersed for 5 minutes. Thereafter, the molded body was taken out from the electroless plating catalyst solution and washed with water.
(6)無電解メッキ
 界面活性剤(ラウリル硫酸ナトリウム)を0.2重量%溶解した無電解ニッケルリンメッキ液(奥野製薬工業製、トップニコロンHMB)を70℃に調整し、成形体を10分間浸漬し(無電解メッキ時間10分)、膜厚1μmの無電解ニッケルリンメッキ膜を形成した。無電解メッキ膜は、成形体表面の全面に形成された。次に、無電解ニッケルリン膜を形成した成形体を置換銅メッキ液(奥野製薬液工業製、ANCアクチ)に常温で1分間浸漬し、更に、汎用の電解銅メッキ法により、膜厚40μmの銅メッキ膜を形成し、本実施例のメッキ成形体を得た。
(6) Electroless plating An electroless nickel phosphorus plating solution (Okuno Pharmaceutical Co., Ltd., Top Nicolon HMB) in which 0.2% by weight of a surfactant (sodium lauryl sulfate) is dissolved is adjusted to 70 ° C. It was immersed for 1 minute (electroless plating time 10 minutes) to form an electroless nickel phosphorus plating film having a thickness of 1 μm. The electroless plating film was formed on the entire surface of the molded body. Next, the molded body on which the electroless nickel phosphorous film is formed is immersed in a replacement copper plating solution (ANC Acti, manufactured by Okuno Pharmaceuticals Industries Co., Ltd.) for 1 minute at a room temperature, and further, a film thickness of 40 μm is obtained by a general electrolytic copper plating method A copper plating film was formed to obtain a plated molded body of this example.
 得られたメッキ成形体のメッキ膜の密着強度を引っ張り試験機を用いて測定した。メッキ膜の密着強度は、8N/cmであった。この結果は、成形体上に形成されたメッキ膜の密着強度の目標値である10N/cmに近い値であった。 The adhesion strength of the plating film of the obtained plated molded body was measured using a tensile tester. The adhesion strength of the plating film was 8 N / cm. This result was a value close to 10 N / cm, which is the target value of the adhesion strength of the plating film formed on the molded body.
[比較例1]
 本比較例では、ABS樹脂とブロック共重合体をドライブレントしたものを射出成形し、得られた成形体に、実施例1と同様の方法により、エッチング、無電解メッキ触媒の付与、及び無電解メッキをこの順を行いメッキ部品を得た。ABS樹脂とブロック共重合体は、実施例1と同様のものを同様に比率で用いた。即ち、本比較例は、成形体中にCNFを含まない以外は実施例1と同様の組成の成形体を成形し、実施例1と同様の方法により、メッキ部品を製造した。
[Comparative Example 1]
In this comparative example, an ABS resin and a block copolymer drive-driven are injection-molded, and the obtained molded body is etched, electroless-plated catalyst applied, and electroless by the same method as in Example 1. Plating was performed in this order to obtain a plated part. The same ABS resin and block copolymer as in Example 1 were used in the same ratio. That is, in this comparative example, a molded body having the same composition as that of Example 1 was formed except that CNF was not contained in the molded body, and a plated part was manufactured by the same method as in Example 1.
 本比較例では、無電解メッキ膜は成形体表面の60%~80%程度しか形成されなかった。また、実施例1と同様の方法により、メッキ膜の密着強度を測定した。その結果、メッキ膜の密着強度は3N/cmであった。 In this comparative example, the electroless plating film was formed only about 60% to 80% of the surface of the molded body. Further, the adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 3 N / cm.
 実施例1と比較例1との比較から、CNFを成形体中に含有することによって、メッキ反応性及びメッキ膜の密着強度が向上することが確認できた。また、実施例1のメッキ成形体のように、成形体中でCNFが多少凝集している場合も、メッキ反応性及びメッキ膜の密着強度が向上することがわかった。 From the comparison between Example 1 and Comparative Example 1, it was confirmed that the plating reactivity and the adhesion strength of the plating film were improved by containing CNF in the molded body. It was also found that the plating reactivity and the adhesion strength of the plating film were improved even when CNF was somewhat aggregated in the molded body as in the plated molded body of Example 1.
 [実施例2]
 本実施例では、CNFを含有した樹脂ペレット(ユニチカ製)を成形し、得られた成形体に無電解メッキ触媒の付与、及び無電解メッキをこの順を行い、メッキ部品を得た。本実施例では、実施例1異なり、ブロック共重合体は用いず、また、成形体のエッチングは行なわなかった。
[Example 2]
In this example, resin pellets (manufactured by Unitika) containing CNF were molded, and an electroless plating catalyst was applied to the obtained molded body and electroless plating was performed in this order to obtain a plated part. In this example, unlike Example 1, no block copolymer was used, and the molded product was not etched.
 本実施例で用いたCNF含有樹脂ペレットは、特開2013‐79334号公報に開示される方法により、ポリアミド6(PA6)のモノマー重合反応過程で、CNFを分散させて製造した樹脂ペレットであり、CNFを約2重量%含む。熱可塑性樹脂であるPA6は、表面修飾していないCNFを分散可能であり、本実施例の樹脂ペレット中に含まれるCNFは表面修飾をしていない。 The CNF-containing resin pellets used in this example are resin pellets produced by dispersing CNF in the monomer polymerization reaction process of polyamide 6 (PA6) by the method disclosed in JP 2013-79334 A. Contains about 2% by weight of CNF. PA6, which is a thermoplastic resin, can disperse CNF that is not surface-modified, and CNF contained in the resin pellets of this example is not surface-modified.
(1)成形体の成形
 CNF含有樹脂ペレットを汎用の射出成形機を用いて射出成形し、60mm×80mm×2mmの平板状の成形体を得た。樹脂温度は270℃、金型温度は100℃とした。得られた成形体の表面は、平滑であり、CNFの浮きは殆ど目立たなかった。
(1) Molding of molded body CNF-containing resin pellets were injection molded using a general-purpose injection molding machine to obtain a flat molded body of 60 mm x 80 mm x 2 mm. The resin temperature was 270 ° C. and the mold temperature was 100 ° C. The surface of the obtained molded body was smooth, and the CNF float was hardly noticeable.
(2)無電解メッキ触媒の付与及び無電解メッキ
 本実施例では、無電解メッキ時間を実施例1よりも短い5分とした以外は、実施例1と同様の方法により、無電解メッキ触媒の付与、無電解メッキ、置換銅メッキ及び電解銅メッキを行い、メッキ成形体を得た。無電解メッキ膜は、成形体表面の全面に形成された。
(2) Application of electroless plating catalyst and electroless plating In this example, the electroless plating catalyst was prepared in the same manner as in Example 1 except that the electroless plating time was 5 minutes shorter than that of Example 1. Application, electroless plating, displacement copper plating and electrolytic copper plating were performed to obtain a plated molded body. The electroless plating film was formed on the entire surface of the molded body.
 実施例1と同様の方法により、メッキ膜の密着強度を測定した。その結果、メッキ膜の密着強度は、15N/cmであった。この結果は、成形体上に形成されたメッキ膜の密着強度の目標値である10N/cmを大幅に超える高い値であった。 The adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 15 N / cm. This result was a high value significantly exceeding 10 N / cm, which is the target value of the adhesion strength of the plating film formed on the molded body.
 更に、成形体を高温90℃に30分保持と、低温-35℃に30分保持とを交互に100回繰り返す(100サイクル)ヒートショック試験を行った。ヒートショック試験の結果、メッキ膜の膨れ及び割れは発生しなかった。 Further, a heat shock test was conducted by alternately repeating 100 times (100 cycles) holding the molded body at a high temperature of 90 ° C. for 30 minutes and holding at a low temperature of −35 ° C. for 30 minutes. As a result of the heat shock test, the plating film did not swell or crack.
[比較例2]
 本比較例では、CNFを分散しない汎用非強化PA6ペレット(ユニチカ製、ユニチカナイロンA1030BRF-BA)を成形し、得られた成形体に、実施例2と同様の方法により、無電解メッキ触媒の付与、及び無電解メッキをこの順を行い、メッキ部品を得た。即ち、本比較例は、成形体中にCNFを含まない以外は実施例2と同様の組成の成形体を用いて、実施例2と同様の方法により、メッキ部品を製造した。
[Comparative Example 2]
In this comparative example, general-purpose unreinforced PA6 pellets (manufactured by Unitika, Unitika Nylon A1030BRF-BA) that do not disperse CNF were molded, and an electroless plating catalyst was applied to the resulting molded body in the same manner as in Example 2. , And electroless plating were performed in this order to obtain a plated part. That is, in this comparative example, a plated part was produced by the same method as in Example 2 using a molded body having the same composition as in Example 2 except that the molded body did not contain CNF.
 本比較例では、無電解メッキ膜は成形体表面の全面に形成されず、成形体端部に一部、メッキ膜が成形されない箇所が発生した。また、実施例1と同様の方法により、メッキ膜の密着強度を測定した。その結果、メッキ膜の密着強度は7N/cmであった。更に、実施例2と同様の方法により、ヒートショック試験を行った。その結果、本比較例のメッキ成形体は、ヒートショック試験の5サイクル目で、メッキ膜に膨れが生じた。 In this comparative example, the electroless plating film was not formed on the entire surface of the molded body, and a portion where the plating film was not molded partially occurred at the end of the molded body. Further, the adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 7 N / cm. Further, a heat shock test was performed in the same manner as in Example 2. As a result, the plated molded body of this comparative example was swollen in the plated film in the fifth cycle of the heat shock test.
 実施例2と比較例2との比較から、CNFを成形体中に含有することによって、メッキ反応性及びメッキ膜の密着強度と共に、ヒートサイクル耐性が向上することが確認できた。 From a comparison between Example 2 and Comparative Example 2, it was confirmed that heat cycle resistance was improved along with plating reactivity and adhesion strength of the plating film by containing CNF in the molded body.
 [実施例3]
 本実施例では、物理発泡剤として加圧窒素を用いて、実施例2で用いた樹脂ペレット(ユニチカ製)を発泡成形した。得られた発泡成形体に無電解メッキ触媒の付与、及び無電解メッキをこの順を行い、本実施例のメッキ部品を得た。
[Example 3]
In this example, the resin pellets (manufactured by Unitika) used in Example 2 were subjected to foam molding using pressurized nitrogen as a physical foaming agent. Application of an electroless plating catalyst and electroless plating were performed in this order on the obtained foamed molded article to obtain a plated part of this example.
(1)発泡成形体の製造装置
 まず、本実施例で用いる発泡成形体を製造する製造装置について説明する。本実施例では、図4に示す製造装置(射出成形装置)2000を用いて発泡成形体を製造する。製造装置2000は、主に、スクリュ(可塑化スクリュ)40が回転及び進退自在に内設された可塑化シリンダ410と、物理発泡剤を可塑化シリンダ410に供給する物理発泡剤供給機構であるボンベ400と、金型が設けられた型締めユニット(不図示)と、可塑化シリンダ410及び型締めユニットを動作制御するための制御装置(不図示)を備える。可塑化シリンダ410内において可塑化溶融された溶融樹脂は、図4における右手から左手に向かって流動する。したがって本実施例の可塑化シリンダ410内部においては図4における右手を「上流」または「後方」、左手を「下流」または「前方」と定義する。
(1) Production apparatus for foam molded article First, a production apparatus for producing a foam molded article used in this example will be described. In the present embodiment, a foam molded body is manufactured using a manufacturing apparatus (injection molding apparatus) 2000 shown in FIG. The manufacturing apparatus 2000 mainly includes a plasticizing cylinder 410 in which a screw (plasticizing screw) 40 can be rotated and moved forward and backward, and a cylinder that is a physical foaming agent supply mechanism that supplies a physical foaming agent to the plasticizing cylinder 410. 400, a mold clamping unit (not shown) provided with a mold, and a control device (not shown) for controlling the operation of the plasticizing cylinder 410 and the mold clamping unit. The molten resin plasticized and melted in the plasticizing cylinder 410 flows from the right hand to the left hand in FIG. Therefore, in the plasticizing cylinder 410 of this embodiment, the right hand in FIG. 4 is defined as “upstream” or “rear”, and the left hand is defined as “downstream” or “front”.
 可塑化シリンダ410の上部側面には、上流側から順に、熱可塑性樹脂を可塑化シリンダ410に供給するための樹脂供給口401及び物理発泡剤を可塑化シリンダ410内に導入するための物理発泡剤導入口402が形成される。これらの樹脂供給口401及び物理発泡剤導入口402にはそれぞれ、樹脂供給用ホッパ411、容器412が配設される。容器412には、ボンベ400が、減圧弁451及び圧力計452を介して接続する。可塑化シリンダ410のノズル先端49には、エアシリンダの駆動により開閉するシャットオフバルブ48が設けられ、可塑化シリンダ410の内部を高圧に保持できる。ノズル先端49には金型(不図示)が密着し、金型が形成するキャビティ内にノズル先端49から溶融樹脂が射出充填される。 On the upper side surface of the plasticizing cylinder 410, a physical foaming agent for introducing a resin supply port 401 for supplying a thermoplastic resin to the plasticizing cylinder 410 and a physical foaming agent into the plasticizing cylinder 410 in order from the upstream side. An introduction port 402 is formed. The resin supply port 401 and the physical foaming agent introduction port 402 are provided with a resin supply hopper 411 and a container 412, respectively. The cylinder 400 is connected to the container 412 via a pressure reducing valve 451 and a pressure gauge 452. The nozzle tip 49 of the plasticizing cylinder 410 is provided with a shut-off valve 48 that opens and closes by driving the air cylinder, so that the inside of the plasticizing cylinder 410 can be held at a high pressure. A die (not shown) is in close contact with the nozzle tip 49, and molten resin is injected and filled from the nozzle tip 49 into a cavity formed by the die.
 可塑化シリンダ410内では、上流側から順に、フィード部41、圧縮部42、流動速度調整部43、飢餓部44、再圧縮部45が形成され、圧縮部42と流動速度調整部43の間には、溶融樹脂及び発泡剤の逆流を防止するシールリングS3が設けられる。フィード部41には樹脂供給口401か形成され、樹脂供給口401からフィード部41に供給された樹脂ペレットは、圧縮部42において、可塑化溶融され、加圧される。圧縮部42に位置するスクリュ40は、下流に向かうに伴ってスクリュフライト深さが浅くなる構造を有する。このスクリュ40の構造により、圧縮部42では、溶融樹脂が流動しながら加圧され、そして、下流へ供給される樹脂量が制限される。圧縮部42において溶融樹脂の下流への供給量を制限することで、下流の飢餓部44において溶融樹脂は飢餓状態となる。飢餓部44に設けられた物理発泡剤導入口402からは、常時一定圧力の物理発泡剤(加圧窒素)が可塑化シリンダ410内に導入され、流動速度調整部43及び飢餓部44において溶融樹脂と接触し、溶融樹脂内に浸透する。物理発泡剤が浸透した溶融樹脂は、再圧縮部45で再加圧された後、金型内に射出充填され発泡成形体が得られる。 Within the plasticizing cylinder 410, a feed part 41, a compression part 42, a flow rate adjustment part 43, a starvation part 44, and a recompression part 45 are formed in order from the upstream side, and between the compression part 42 and the flow rate adjustment part 43. Is provided with a seal ring S3 for preventing the backflow of the molten resin and the foaming agent. A resin supply port 401 is formed in the feed unit 41, and the resin pellets supplied from the resin supply port 401 to the feed unit 41 are plasticized and melted and pressurized in the compression unit 42. The screw 40 located in the compression part 42 has a structure in which the screw flight depth becomes shallower as it goes downstream. Due to the structure of the screw 40, the compression portion 42 is pressurized while the molten resin flows, and the amount of resin supplied downstream is limited. By restricting the supply amount of the molten resin downstream in the compression unit 42, the molten resin is starved in the downstream starvation unit 44. A physical foaming agent (pressurized nitrogen) at a constant pressure is always introduced into the plasticizing cylinder 410 from the physical foaming agent introduction port 402 provided in the starvation part 44, and the molten resin in the flow rate adjusting part 43 and the starvation part 44. And penetrates into the molten resin. The molten resin infiltrated with the physical foaming agent is repressurized by the recompression unit 45 and then injected and filled into a mold to obtain a foamed molded product.
 飢餓部44では、溶融樹脂が未充満(飢餓状態)であるため、溶融樹脂が存在しない空間に常時、一定圧力の物理発泡剤(加圧窒素)が物理発泡剤導入口402から供給され溶融樹脂と接触する。物理発泡剤は、一定圧力で溶融樹脂を加圧しながら、溶融樹脂に溶解する。このように、本実施例の成形装置2000では、高剪断力により物理発泡剤と樹脂を混錬するのではなく、低密度の溶融樹脂に物理発泡剤を接触させることにより、低圧の溶融樹脂に対する飽和溶解度まで物理発泡剤を溶解させることができる。飢餓部44のスクリュフライトの深さは他の部分より深く設定し、溶融樹脂の飢餓状態を促進した。 In the starvation part 44, since the molten resin is not full (starved state), a constant pressure physical foaming agent (pressurized nitrogen) is always supplied from the physical foaming agent inlet 402 to a space where no molten resin exists. Contact with. The physical foaming agent dissolves in the molten resin while pressurizing the molten resin at a constant pressure. As described above, in the molding apparatus 2000 of this example, the physical foaming agent and the resin are not kneaded with a high shearing force, but the low-density molten resin is contacted with the physical foaming agent to The physical blowing agent can be dissolved to saturation solubility. The depth of the screw flight of the starvation part 44 was set deeper than other parts, and the starvation state of the molten resin was promoted.
 また、飢餓部44では、溶融樹脂を飢餓状態とするため、圧縮部42等と比較して速い流速で溶融樹脂を下流に送ることが好ましい。このため、飢餓部44では、溶融樹脂と物理発泡剤との接触面積は増大するが、接触時間が短縮する。この溶融樹脂と物理発泡剤との接触時間を補い、十分に物理発泡剤を溶融樹脂に溶解させるため、本実施例の成形装置2000では、飢餓部44の上流に流動速度調整部43を設けた。流動速度調整部43では、そこに位置するスクリュ40に、スクリュフライトの深さが浅い部分と、深い部分とを交互に設けた。このスクリュ構造が溶融樹脂の流動抵抗となり、流動速度調整部43では溶融樹脂の流動速度が低下し、溶融樹脂と物理発泡剤との接触時間を長くすることができる。 In the starvation part 44, it is preferable to send the molten resin downstream at a higher flow rate than the compression part 42 and the like in order to make the molten resin starved. For this reason, in the starvation part 44, although the contact area of molten resin and a physical foaming agent increases, contact time is shortened. In order to compensate for the contact time between the molten resin and the physical foaming agent and sufficiently dissolve the physical foaming agent in the molten resin, in the molding apparatus 2000 of the present embodiment, the flow rate adjusting unit 43 is provided upstream of the starvation unit 44. . In the flow rate adjusting unit 43, the screw 40 located there is provided with a portion where the depth of the screw flight is shallow and a portion where the depth is deep. This screw structure becomes the flow resistance of the molten resin, and the flow rate adjusting unit 43 decreases the flow rate of the molten resin, and the contact time between the molten resin and the physical foaming agent can be extended.
(2)発泡成形体の成形
 本実施例では、ボンベ400として、窒素が15MPaで充填された窒素ボンベを用いた。まず、ボンベ400を開放し、圧力計452の示す圧力が2MPaとなるように減圧弁451により窒素の圧力を調整し、容器412を介して飢餓部44へ加圧窒素を供給した。図4において、成形装置2000中に供給した加圧窒素(物理発泡剤)をPFAとして示す(図4中、ドット模様の領域)。成形体の製造中、ボンベ400は常時、開放した状態とした。
(2) Molding of Foam Molded Body In this example, a nitrogen cylinder filled with nitrogen at 15 MPa was used as the cylinder 400. First, the cylinder 400 was opened, the pressure of nitrogen was adjusted by the pressure reducing valve 451 so that the pressure indicated by the pressure gauge 452 was 2 MPa, and pressurized nitrogen was supplied to the starvation unit 44 via the container 412. In FIG. 4, the pressurized nitrogen (physical foaming agent) supplied into the molding apparatus 2000 is shown as PFA (the area of the dot pattern in FIG. 4). During the production of the molded body, the cylinder 400 was always open.
 本実施例の発泡成形は、スクリュ回転数50rpm、樹脂温度250~280℃、背圧5MPaの条件で、樹脂ペレットの可塑化溶融及び計量を行った。まず、可塑化シリンダ410の樹脂供給口401からフィード部41に樹脂ペレットを供給し、圧縮部42にて可塑化溶融して加圧した。その後、スクリュ40の回転により、溶融樹脂を流動速度調整部43及び飢餓部44へ流動させた。流動速度調整部43及び飢餓部44において、一定圧力(2MPa)の物理発泡剤を溶融樹脂に接触させることで、溶融樹脂内に物理発泡剤を浸透させた。図4において、成形装置2000中の溶融樹脂をRとして示す(図4中、可塑化シリンダ410内の斜線領域)。 In the foam molding of this example, the plastic pellets were plasticized and melted and measured under the conditions of a screw rotation speed of 50 rpm, a resin temperature of 250 to 280 ° C., and a back pressure of 5 MPa. First, resin pellets were supplied from the resin supply port 401 of the plasticizing cylinder 410 to the feed unit 41, and plasticized, melted and pressurized by the compression unit 42. Thereafter, the molten resin was caused to flow to the flow rate adjusting unit 43 and the starvation unit 44 by the rotation of the screw 40. In the flow rate adjusting unit 43 and the starvation unit 44, the physical foaming agent was infiltrated into the molten resin by bringing a physical foaming agent having a constant pressure (2 MPa) into contact with the molten resin. In FIG. 4, the molten resin in the molding apparatus 2000 is indicated as R (the hatched area in the plasticizing cylinder 410 in FIG. 4).
 物理発泡剤が浸透した溶融樹脂を再圧縮部45に送り再圧縮し、可塑化シリンダ410の先端部において1ショット分の溶融樹脂を計量した。その後、シャットオブバルブ48を開放して、金型のキャビティ内に、キャビティ内容積の90%の充填率となるように溶融樹脂を射出充填し、保圧をかけず、60mm×80mm×2mmの平板状の発泡成形体を成形した(ショートショット法)。 The molten resin infiltrated with the physical foaming agent was sent to the recompression unit 45 and recompressed, and the molten resin for one shot was measured at the tip of the plasticizing cylinder 410. Thereafter, the shut-off valve 48 is opened, and the molten resin is injected and filled into the cavity of the mold so as to have a filling rate of 90% of the volume of the cavity, and without holding pressure, 60 mm × 80 mm × 2 mm. A flat foam molded article was molded (short shot method).
 得られた発泡成形体の表面に確認されたスワールマークは小さいものであり、発泡成形が成形体の外観に与える悪影響は小さいことが確認できた。また、成形体の断面をSEMにて観察した。その結果、平均セル径は約30μmと微細であった。 The swirl mark confirmed on the surface of the obtained foamed molded product was small, and it was confirmed that the adverse effect of foam molding on the appearance of the molded product was small. Moreover, the cross section of the molded object was observed with SEM. As a result, the average cell diameter was as fine as about 30 μm.
(3)無電解メッキ触媒の付与及び無電解メッキ
 本実施例では、無電解メッキ時間を実施例1よりも短い3分とした以外は、実施例1と同様の方法により、無電解メッキ触媒の付与、無電解メッキ、置換銅メッキ及び電解銅メッキを行い、メッキ成形体を得た。無電解メッキ膜は、成形体全面に形成された。
(3) Application of electroless plating catalyst and electroless plating In this example, the electroless plating catalyst was prepared in the same manner as in Example 1 except that the electroless plating time was 3 minutes shorter than that of Example 1. Application, electroless plating, displacement copper plating and electrolytic copper plating were performed to obtain a plated molded body. The electroless plating film was formed on the entire surface of the molded body.
 メッキ膜の密着強度を実施例1と同様の方法により測定した。その結果、メッキ膜の密着強度は、10N/cmであった。この結果は、実施例2よりも低い値であるが、実用的には十分な強度である。本発明者らの検討によれば、CNFの含有の有無に関わらず、発泡成形体は無発泡成形体と比較して、その表面に形成されるメッキ膜の密着強度が低下する傾向にある。この原因は定かでないが、次のように推測される。密着強度測定後(引張試験後)のメッキ成形体を観察すると、メッキ膜の剥離界面は、発泡成形体(樹脂)とメッキ膜の界面ではなく、発泡成形体内部に存在している。この結果から、発泡成形体では、成形体のスキン層が脆弱化し、このため、メッキ膜の密着強度が低下すると推測される。 The adhesion strength of the plating film was measured by the same method as in Example 1. As a result, the adhesion strength of the plating film was 10 N / cm. Although this result is a lower value than Example 2, it is practically sufficient strength. According to the study by the present inventors, the adhesive strength of the plating film formed on the surface of the foamed molded product tends to be lower than that of the non-foamed molded product regardless of the presence or absence of CNF. The cause of this is not clear, but is presumed as follows. When the plated molded body after the adhesion strength measurement (after the tensile test) is observed, the peeling interface of the plated film exists not inside the foamed molded body (resin) and the plated film, but inside the foamed molded body. From this result, it is presumed that in the foamed molded product, the skin layer of the molded product becomes brittle, and thus the adhesion strength of the plating film is lowered.
 本発明のメッキ成形体の製造方法は、高いメッキ反応性を有する成形体を提供できるため、環境負荷及びコストの低い方法で無電解メッキ膜を形成できる。更に、得られるメッキ成形体は、密着強度の高いメッキ膜を有し、高いヒートサイクル耐性を有する。したがって、本発明により製造されるメッキ成形体は、高い耐久性が要求される用途に広く対応可能である。 Since the method for producing a plated molded body of the present invention can provide a molded body having high plating reactivity, an electroless plated film can be formed by a method with low environmental burden and cost. Furthermore, the obtained plated molded body has a plating film with high adhesion strength and has high heat cycle resistance. Therefore, the plated molded body produced according to the present invention can be widely used for applications requiring high durability.
11    ダブルプランジャーポンプ
12    背圧弁
13,14 圧力計
20    スクリュ
20A   圧力保持部
21    可塑化ゾーン
21A   フィード部
21B   圧縮部
22    高圧混練ゾーン
23    減圧ゾーン
23A   徐減圧部
23B   飢餓減圧部
24    再圧縮ゾーン
29    ダイ
31    半割シールリング
33    ポペット弁
34    皿バネ
100   供給機構
200   押出成形機
201   樹脂供給口、
202   導入口
203   ベント
210   可塑化シリンダ
211   樹脂供給用ホッパ
212   導入バルブ
213   ベント容器
1000  製造装置
A     液体
P     真空ポンプ
S1    上流側シール機構
S2    下流側シール機構
40    スクリュ(可塑化スクリュ)
41    フィード部
42    圧縮部
43    流動速度調整部
44    飢餓部
45    再圧縮部
48    シャットオフバルブ
49    ノズル先端
400   ボンベ
401   樹脂供給口
402   物理発泡剤導入口
410   可塑化シリンダ
411   樹脂供給用ホッパ
412   容器
451   減圧弁
452   圧力計
2000  製造装置(射出成形装置)
PFA   物理発泡剤
R     溶融樹脂
S3    シールリング
11 Double plunger pump 12 Back pressure valve 13, 14 Pressure gauge 20 Screw 20A Pressure holding part 21 Plasticization zone 21A Feed part 21B Compression part 22 High pressure kneading zone 23 Decompression zone 23A Slow pressure reduction part 23B Starvation decompression part 24 Recompression zone 29 Die 31 Half seal ring 33 Poppet valve 34 Belleville spring 100 Supply mechanism 200 Extruder 201 Resin supply port,
202 Introduction Port 203 Vent 210 Plasticizing Cylinder 211 Resin Supply Hopper 212 Introducing Valve 213 Vent Container 1000 Manufacturing Device A Liquid P Vacuum Pump S1 Upstream Seal Mechanism S2 Downstream Seal Mechanism 40 Screw (Plasticization Screw)
41 Feed unit 42 Compression unit 43 Flow rate adjustment unit 44 Starvation unit 45 Recompression unit 48 Shutoff valve 49 Nozzle tip 400 Cylinder 401 Resin supply port 402 Physical foaming agent introduction port 410 Plasticizing cylinder 411 Resin supply hopper 412 Container 451 Depressurization Valve 452 Pressure gauge 2000 Manufacturing equipment (injection molding equipment)
PFA Physical foaming agent R Molten resin S3 Seal ring

Claims (10)

  1.  メッキ成形体の製造方法であって、
     セルロースナノファイバーを含む熱可塑性樹脂を成形して、成形体を得ることと、
     前記成形体に金属塩を含む無電解メッキ触媒液を接触させることと、
     前記無電解メッキ触媒液を接触させた前記成形体に、無電解メッキ液を接触させて、前記成形体の表面に無電解メッキ膜を形成することとを含む製造方法。
    A method for producing a plated molded body,
    Molding a thermoplastic resin containing cellulose nanofibers to obtain a molded body;
    Contacting the molded body with an electroless plating catalyst solution containing a metal salt;
    A manufacturing method comprising: bringing an electroless plating solution into contact with the formed body in contact with the electroless plating catalyst solution to form an electroless plating film on a surface of the formed body.
  2.  前記成形体を前記無電解メッキ触媒液に接触させる前に、前記成形体に膨潤処理、又はエッチング処理を施すことを更に含む請求項1に記載の製造方法。 The manufacturing method according to claim 1, further comprising subjecting the molded body to a swelling treatment or an etching process before contacting the molded body with the electroless plating catalyst solution.
  3.  前記無電解メッキ触媒液に含まれる金属塩が、塩化パラジウム、塩化銀、塩化銅、及び硝酸銀からなる群から選択される1つであることを特徴とする請求項1又は2に記載の製造方法。 3. The method according to claim 1, wherein the metal salt contained in the electroless plating catalyst solution is one selected from the group consisting of palladium chloride, silver chloride, copper chloride, and silver nitrate. .
  4.  前記熱可塑性樹脂が、ポリアミド、ポリプロピレン、又はABS樹脂を含むことを特徴とする請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the thermoplastic resin includes polyamide, polypropylene, or ABS resin.
  5.  前記成形体を成形することが、
     前記熱可塑性樹脂と、前記セルロースナノファイバーとを含む樹脂ペレットを用意することと、
     前記樹脂ペレットを成形して、前記成形体を得ることとを含む請求項1~4のいずれか一項に記載の製造方法。
    Forming the molded body,
    Preparing a resin pellet containing the thermoplastic resin and the cellulose nanofiber;
    The manufacturing method according to any one of claims 1 to 4, further comprising: molding the resin pellets to obtain the molded body.
  6.  前記樹脂ペレットを用意することが、
     前記熱可塑性樹脂を可塑化溶融した溶融樹脂と、前記セルロースナノファイバーが溶媒に分散したスラリーとの混合物を得ることと、
     前記混合物から、前記溶媒を除去することと、
     前記溶媒を除去した前記混合物を押出成形して、押出成形体を得ることと、
     前記押出成形体を粉砕して、前記樹脂ペレットを得ることとを含む請求項5に記載の製造方法。
    Preparing the resin pellets,
    Obtaining a mixture of a molten resin obtained by plasticizing and melting the thermoplastic resin and a slurry in which the cellulose nanofibers are dispersed in a solvent;
    Removing the solvent from the mixture;
    Extruding the mixture from which the solvent has been removed to obtain an extruded product;
    The manufacturing method according to claim 5, comprising pulverizing the extruded product to obtain the resin pellets.
  7.  前記樹脂ペレットを用意することが、
     前記溶融樹脂と前記スラリーとの前記混合物に、水を加えることを更に含む請求項6に記載の製造方法。
    Preparing the resin pellets,
    The manufacturing method according to claim 6, further comprising adding water to the mixture of the molten resin and the slurry.
  8.  メッキ成形体であって、
     熱可塑性樹脂と、セルロースナノファイバーとを含む成形体と、
     前記成形体の表面に形成された無電解メッキ膜とを含むメッキ成形体。
    A plated molded body,
    A molded body containing a thermoplastic resin and cellulose nanofibers;
    A plated molded body comprising an electroless plated film formed on the surface of the molded body.
  9.  前記成形体が、内部に発泡セルを有する発泡成形体であることを特徴とする請求項8に記載のメッキ成形体。 The plated molded body according to claim 8, wherein the molded body is a foamed molded body having foamed cells therein.
  10.  前記熱可塑性樹脂が、ポリアミド、ポリプロピレン、又はABS樹脂を含むことを特徴とする請求項8又は9に記載のメッキ成形体。 The plated molded body according to claim 8 or 9, wherein the thermoplastic resin contains polyamide, polypropylene, or ABS resin.
PCT/JP2017/045758 2016-12-22 2017-12-20 Method for producing plated molded body, and plated molded body WO2018117160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248781 2016-12-22
JP2016248781A JP6830596B2 (en) 2016-12-22 2016-12-22 Manufacturing method of plated molded product and plated molded product

Publications (1)

Publication Number Publication Date
WO2018117160A1 true WO2018117160A1 (en) 2018-06-28

Family

ID=62627362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045758 WO2018117160A1 (en) 2016-12-22 2017-12-20 Method for producing plated molded body, and plated molded body

Country Status (2)

Country Link
JP (1) JP6830596B2 (en)
WO (1) WO2018117160A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756809B (en) 2020-09-02 2022-03-01 歐特捷實業股份有限公司 Hybrid method and system therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214872A (en) * 2011-03-29 2012-11-08 Fujifilm Corp Method for manufacturing laminate with metallic film
JP2014216376A (en) * 2013-04-23 2014-11-17 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2015071821A (en) * 2013-09-09 2015-04-16 上村工業株式会社 Pretreatment agent for electroless plating, and pretreatment method of printed circuit substrate using the same, and its production methods
JP2015223811A (en) * 2014-05-29 2015-12-14 国立大学法人京都大学 Method for producing foam resin molded article, and foam resin molded article produced thereby
JP2016094541A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091858A (en) * 2012-11-05 2014-05-19 Hitachi Chemical Co Ltd Pretreatment agent for electroless plating and production method thereof
CN105148996B (en) * 2015-09-26 2018-01-12 佛山市维晨科技有限公司 A kind of Membrane catalysis nickel nano fibrous membrane and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214872A (en) * 2011-03-29 2012-11-08 Fujifilm Corp Method for manufacturing laminate with metallic film
JP2014216376A (en) * 2013-04-23 2014-11-17 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2015071821A (en) * 2013-09-09 2015-04-16 上村工業株式会社 Pretreatment agent for electroless plating, and pretreatment method of printed circuit substrate using the same, and its production methods
JP2015223811A (en) * 2014-05-29 2015-12-14 国立大学法人京都大学 Method for producing foam resin molded article, and foam resin molded article produced thereby
JP2016094541A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic resin composition

Also Published As

Publication number Publication date
JP6830596B2 (en) 2021-02-17
JP2018104725A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP3914961B2 (en) Method for manufacturing molded product, extrusion molding apparatus and molded product
WO2013129659A1 (en) Method for producing molded body, method for producing molded body having plating film, method for producing resin pellets, molded foam having plating film, foam injection molding method, nozzle unit, and injection molding apparatus
JP4919262B2 (en) Storage container, resin molding method and plating film forming method
US20070264451A1 (en) Method of manufacturing polymer member and polymer member
JP2013213276A (en) Method for manufacturing molded body having plating film, method for manufacturing resin pellet, foamed molded body having plating film and molded body having plating film
WO2018117160A1 (en) Method for producing plated molded body, and plated molded body
WO2014175008A1 (en) Method for manufacturing compact having plating film and compact having plating film
JP2011001577A (en) Method for manufacturing polymer member having plating film
JP4160623B2 (en) Production method and production apparatus for polymer member
JP4092364B1 (en) Method for forming plating film and electroless plating solution
JP2016125075A (en) Method for plating thermoplastic resin and thermoplastic resin pellet dispersed with metal fine particles
JP6318001B2 (en) Method for producing molded body having plated film
JP4105214B1 (en) Plating film forming method, polymer member and manufacturing method thereof
JP5138394B2 (en) Polymer parts
JP2013227617A (en) Method for manufacturing formed body having plating film
JP4092360B1 (en) Polymer member and manufacturing method thereof
JP2019006026A (en) Method for manufacturing foam molded body, and foam molded body
JP3926835B1 (en) Formation method of plating film
JP2009073994A (en) Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
JP2015036432A (en) Production method of compact having plating film
JP6715681B2 (en) Method of manufacturing plated parts
JP2014105361A (en) Production method of compact having plating film
JP6647059B2 (en) Method for producing composite resin material, method for producing plated component, and resin pellet
JP2015051601A (en) Sandwich molding method and molding apparatus
JP2016003345A (en) Method for manufacturing molding, method for manufacturing resin pellet, method for manufacturing molding having plating film, molding and resin pellet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883106

Country of ref document: EP

Kind code of ref document: A1