JP5215731B2 - Plastic surface modification method and surface modified plastic - Google Patents

Plastic surface modification method and surface modified plastic Download PDF

Info

Publication number
JP5215731B2
JP5215731B2 JP2008130059A JP2008130059A JP5215731B2 JP 5215731 B2 JP5215731 B2 JP 5215731B2 JP 2008130059 A JP2008130059 A JP 2008130059A JP 2008130059 A JP2008130059 A JP 2008130059A JP 5215731 B2 JP5215731 B2 JP 5215731B2
Authority
JP
Japan
Prior art keywords
plastic
metal complex
metal
plastic substrate
modification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008130059A
Other languages
Japanese (ja)
Other versions
JP2009275279A (en
Inventor
薫 増田
昌弘 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008130059A priority Critical patent/JP5215731B2/en
Publication of JP2009275279A publication Critical patent/JP2009275279A/en
Application granted granted Critical
Publication of JP5215731B2 publication Critical patent/JP5215731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemically Coating (AREA)

Description

本発明は、プラスチックへのめっきのための粗面化によらない前処理となる表面改質方法に関する。   The present invention relates to a surface modification method which is a pretreatment not for roughening for plating on plastic.

プラスチックやセラミック等の非導電性材料の表面に金属皮膜を形成して金属の性質(導電性、帯電防止、金属光沢)を付与する方法として、無電解めっき法がある。しかし、プラスチック等にめっきを施すと、皮膜の密着性が足りなかったり均一に形成されない等の問題があるため、プラスチックへの前処理が不可欠である。前処理には、プラスチック表面への密着性を向上するために、表面を粗面化(親水化)する、および金属皮膜が均一に形成されるようにするために、核剤(触媒)を用いる、という方法が挙げられる。例えば、CuやNiをめっきされて製品とされることの多いABS(Acrylonitrile Butadiene Styrene)樹脂は、クロム酸等によるエッチングでブタジエン粒子が溶出されて表面が容易に粗面化される。そして粗面化した表面にパラジウム(Pd)等吸着力の強い、還元性のある金属を核剤として埋め込んでから無電解めっき処理を行うことにより、密着性の高い均一な金属皮膜が形成される。   There is an electroless plating method as a method for imparting metal properties (conductivity, antistatic properties, metallic luster) by forming a metal film on the surface of a nonconductive material such as plastic or ceramic. However, when plating is performed on plastic or the like, pre-treatment on the plastic is indispensable because there are problems such as insufficient adhesion of the film and uneven formation. In the pretreatment, a nucleating agent (catalyst) is used to roughen the surface (hydrophilize) and to form a metal film uniformly in order to improve adhesion to the plastic surface. The method of, is mentioned. For example, ABS (Acrylonitrile Butadiene Styrene) resin, which is often made into a product by plating with Cu or Ni, has its surface easily roughened by elution of butadiene particles by etching with chromic acid or the like. Then, by embedding a reducing metal having a strong adsorptive power such as palladium (Pd) as a nucleating agent on the roughened surface, a uniform metal film with high adhesion is formed by performing electroless plating treatment. .

一方、機械的強度や耐熱性に優れたエンジニアリングプラスチック等は、耐薬品性も高く、エッチングによる粗面化が非常に困難である。そこで、近年、超臨界流体(SCF;SuperCritical Fluid)を用いためっき法が注目されている。超臨界二酸化炭素に代表される超臨界流体は、気体の拡散性と液体の溶解性を併せ持つ。例えば、めっき液に超臨界二酸化炭素を混入させることで、イオンの高い拡散性により少量のめっき液で効率よく、均一な金属皮膜を無電解めっき等で形成する技術(特許第3571627号公報)が開示されている。   On the other hand, engineering plastics having excellent mechanical strength and heat resistance have high chemical resistance, and it is very difficult to roughen them by etching. Therefore, in recent years, a plating method using a supercritical fluid (SCF) has attracted attention. A supercritical fluid typified by supercritical carbon dioxide has both gas diffusibility and liquid solubility. For example, there is a technique (Japanese Patent No. 3571627) for forming a uniform metal film by electroless plating or the like efficiently by a small amount of plating solution due to high ion diffusibility by mixing supercritical carbon dioxide into the plating solution. It is disclosed.

さらに、超臨界二酸化炭素は、その高い浸透性によりプラスチック表面から内部に混入物ごと含浸する効果があるため、この特性を利用した無電解めっきおよび無電解めっきのための核剤の含浸処理が提案されている。その方法として、核や皮膜とする金属の錯体を混入した超臨界二酸化炭素に基体を接触させて、この金属錯体を基体表面に含浸させる技術が開示されている(特許文献1,2、非特許文献1,2)。正確には、基体表面から0.1〜0.2μmの深さまで(以下、表面近傍という)金属錯体を含浸させる。さらに、基体の成形時に金属錯体を混入した超臨界二酸化炭素を成形用の金型の内部に流入させて金属錯体を基体表面に含浸させる技術が開示されている(特許文献3)。また、核や皮膜とする金属の錯体の溶液を基体表面に塗布して、この基体を超臨界二酸化炭素に接触させて基体表面の金属錯体を内部に含浸させる技術が開示されている(特許文献4,5)。また、含浸させる物質を、それを含む液相として超臨界二酸化炭素に混入することで効率よく基体表面に含浸させる技術が開示されている(特許文献6,7)。
特開2004−26986号公報 特開2006−37188号公報 特開2005−171222号公報 特開2005−305945号公報 特許第3931196号公報 特開2005−272668号公報 特開2006−8945号公報 堀照夫、奥林里子,「応用期待高まる「超臨界二酸化炭素」技術の開発動向」,工業材料,日刊工業新聞社,2007年2月,Vol.55 No.2,p.77−82 須田洋幸、内丸祐子、依田智,独立行政法人新エネルギー・産業技術総合開発機構平成13年度産業技術研究助成事業「ファインポリマー技術および材料複合化技術による水素分離用耐候性無機膜の開発」
Furthermore, supercritical carbon dioxide has the effect of impregnating all contaminants from the surface of the plastic due to its high permeability. Therefore, electroless plating using this property and impregnation with a nucleating agent for electroless plating are proposed. Has been. As a method therefor, a technique is disclosed in which a substrate is brought into contact with supercritical carbon dioxide mixed with a metal complex as a nucleus or a film, and the surface of the substrate is impregnated (Patent Documents 1 and 2). References 1, 2). Precisely, the metal complex is impregnated from the substrate surface to a depth of 0.1 to 0.2 μm (hereinafter referred to as the vicinity of the surface). Furthermore, a technique is disclosed in which supercritical carbon dioxide mixed with a metal complex at the time of molding of the substrate is caused to flow into the molding die to impregnate the substrate with the metal complex (Patent Document 3). Also disclosed is a technique in which a metal complex solution for forming a nucleus or a film is applied to the surface of a substrate, and the substrate is brought into contact with supercritical carbon dioxide so that the metal complex on the surface of the substrate is impregnated inside (Patent Document). 4, 5). In addition, a technique for efficiently impregnating a substrate surface by mixing a substance to be impregnated into supercritical carbon dioxide as a liquid phase containing the substance is disclosed (Patent Documents 6 and 7).
JP 2004-26986 A JP 2006-37188 A JP 2005-171222 A JP 2005-305945 A Japanese Patent No. 3931196 JP 2005-272668 A JP 2006-8945 A Teruo Hori, Satoko Okubayashi, “Development Trends of“ Supercritical Carbon Dioxide ”Technology with Expected Application Expectations”, Industrial Materials, Nikkan Kogyo Shimbun, February 2007, Vol. 55 No. 2, p. 77-82 Hiroyuki Suda, Yuko Uchimaru, Satoshi Yoda, New Energy and Industrial Technology Development Organization, 2001 Industrial Technology Research Grant Program “Development of Weather-Resistant Inorganic Membrane for Hydrogen Separation by Fine Polymer Technology and Material Composite Technology”

しかしながら、特許文献1〜5および非特許文献1,2のように金属錯体を超臨界二酸化炭素に混合する方法は、金属錯体の超臨界二酸化炭素への溶解度が低いため、含浸の効率が低い。また、基体表面に含浸した金属錯体を分解して金属を析出させる処理が必要である。この処理方法には、120〜200℃の高温処理、または還元剤に接触させることが挙げられるが、高温処理の場合、超臨界二酸化炭素を扱う従来の高圧装置の仕様を超える温度となり、新規装置の設備投資を必要とする。または、高圧装置とは別に専用の高温処理装置を必要とする。さらに、このような高温処理は、耐熱性樹脂においても変性の虞があって好ましくない。一方、還元剤への接触の場合、基体を大気圧下で還元剤溶液に浸漬させただけでは、基体の内部(表面近傍)まで含浸した金属錯体は還元されない。また、特許文献6,7は、含浸させる物質は金属ではなく、低分子ポリマーやナノカーボンであり、金属の含浸については、考察されていない。   However, the methods of mixing a metal complex with supercritical carbon dioxide as in Patent Documents 1 to 5 and Non-Patent Documents 1 and 2 have low impregnation efficiency because the solubility of the metal complex in supercritical carbon dioxide is low. Moreover, the process which decomposes | disassembles the metal complex impregnated on the base | substrate surface and precipitates a metal is required. This treatment method includes high temperature treatment at 120 to 200 ° C. or contact with a reducing agent, but in the case of high temperature treatment, the temperature exceeds the specification of a conventional high pressure apparatus that handles supercritical carbon dioxide, Requires capital investment. Alternatively, a dedicated high-temperature treatment device is required separately from the high-pressure device. Furthermore, such a high temperature treatment is not preferable because there is a possibility that the heat resistant resin may be modified. On the other hand, in the case of contact with the reducing agent, the metal complex impregnated to the inside of the substrate (near the surface) is not reduced only by immersing the substrate in the reducing agent solution at atmospheric pressure. In Patent Documents 6 and 7, the substance to be impregnated is not a metal but a low molecular weight polymer or nanocarbon, and the impregnation of the metal is not considered.

本発明は、前記問題点に鑑みてなされたものであり、基体とするプラスチックの表面に、比較的低温下(120℃以下)で効率的にPd等の金属成分を含浸させる、プラスチックへのめっきの前処理方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and is a plating on a plastic in which a metal surface such as Pd is efficiently impregnated at a relatively low temperature (120 ° C. or lower) on the surface of the plastic used as a substrate. An object of the present invention is to provide a pre-processing method.

前記課題を解決するために、請求項1に係るプラスチックの表面改質方法は、プラスチック基材を収納する容器に、金属を中心原子とする金属錯体を有機溶媒に溶解してなる溶液と、超臨界二酸化炭素とを供給して、前記溶液に前記プラスチック基材を浸漬して、前記プラスチック基材の表面近傍内部に前記金属錯体を含浸させることを特徴とする。   In order to solve the above-mentioned problems, a plastic surface modification method according to claim 1 includes a container containing a plastic substrate, a solution obtained by dissolving a metal complex having a metal as a central atom in an organic solvent, Critical carbon dioxide is supplied, the plastic substrate is immersed in the solution, and the metal complex is impregnated in the vicinity of the surface of the plastic substrate.

このような方法によれば、金属錯体を溶液として、この溶液に超臨界二酸化炭素を混合することで、金属錯体を効率よくプラスチック基材の表面近傍内部に含浸させることができる。   According to such a method, the metal complex can be impregnated in the vicinity of the surface of the plastic substrate efficiently by mixing the metal complex as a solution and mixing supercritical carbon dioxide with this solution.

さらに、請求項2に係るプラスチックの表面改質方法は、請求項1に記載のプラスチックの表面改質方法において、前記プラスチック基材の表面近傍内部に含浸した金属錯体を還元して、前記金属を前記プラスチック基材の表面および表面近傍内部に析出させることを特徴とする。   Furthermore, the plastic surface modification method according to claim 2 is the plastic surface modification method according to claim 1, wherein the metal complex impregnated in the vicinity of the surface of the plastic base material is reduced to reduce the metal. It is deposited on the surface of the plastic substrate and in the vicinity of the surface.

このような方法によれば、金属錯体を効率よくプラスチック基材の表面近傍内部に含浸させると同時に、金属錯体を金属に還元させてプラスチック基材の表面層とすることができる。   According to such a method, the metal complex can be efficiently impregnated in the vicinity of the surface of the plastic substrate, and at the same time, the metal complex can be reduced to a metal to form a surface layer of the plastic substrate.

また、請求項3に係るプラスチックの表面改質方法は、プラスチック基材を収納する容器に、金属を中心原子とする金属錯体を有機溶媒に溶解してなる溶液と、超臨界二酸化炭素とを供給して、前記溶液に前記プラスチック基材を浸漬して、前記プラスチック基材の表面近傍内部に前記金属錯体を含浸させる含浸工程と、前記プラスチック基材の表面近傍内部に含浸した金属錯体を還元して、前記金属を前記プラスチック基材の表面および表面近傍内部に析出させる還元工程と、をこの順に行い、前記含浸工程は、前記金属錯体が還元されない温度、または、還元される速度が非常に遅い温度で行われ、前記還元工程は、前記含浸工程における温度から前記金属錯体が還元される温度に昇温して行われることを特徴とする。   According to another aspect of the plastic surface modification method of the present invention, a solution in which a metal complex having a metal as a central atom is dissolved in an organic solvent and supercritical carbon dioxide are supplied to a container that houses a plastic substrate. An impregnation step of immersing the plastic substrate in the solution to impregnate the metal complex in the vicinity of the surface of the plastic substrate, and reducing the metal complex impregnated in the vicinity of the surface of the plastic substrate. A reduction step of depositing the metal on the surface of the plastic substrate and in the vicinity of the surface in this order, and the impregnation step is performed at a temperature at which the metal complex is not reduced or at a very low rate of reduction. The reduction step is performed by raising the temperature from the temperature in the impregnation step to a temperature at which the metal complex is reduced.

このように、はじめに金属錯体が還元されずに溶液として超臨界二酸化炭素に混合した状態とすることで、プラスチック基材の表面近傍内部に金属錯体を十分含浸させることができる。   Thus, the metal complex can be sufficiently impregnated in the vicinity of the surface of the plastic substrate by first mixing the metal complex with the supercritical carbon dioxide as a solution without being reduced.

さらに、請求項4に係るプラスチックの表面改質方法は、請求項2または請求項3に記載のプラスチックの表面改質方法において、前記有機溶媒が前記金属錯体を還元する物質であることを特徴とする。また、請求項5に係るプラスチックの表面改質方法は、請求項2または請求項3に記載のプラスチックの表面改質方法において、前記溶液に前記金属錯体を還元する物質が添加されていることを特徴とする。   The plastic surface modification method according to claim 4 is the plastic surface modification method according to claim 2 or 3, wherein the organic solvent is a substance that reduces the metal complex. To do. The plastic surface modification method according to claim 5 is the plastic surface modification method according to claim 2 or 3, wherein a substance for reducing the metal complex is added to the solution. Features.

このような溶液とすることにより、比較的低温で金属錯体から金属を析出させることができる。   By setting it as such a solution, a metal can be deposited from a metal complex at comparatively low temperature.

また、請求項6に係るプラスチックの表面改質方法は、プラスチック基材を収納する容器に、金属を中心原子とする金属錯体を有機溶媒に溶解してなる溶液と、超臨界二酸化炭素とを供給して、前記溶液に前記プラスチック基材を浸漬して、前記プラスチック基材の表面近傍内部に前記金属錯体を含浸させる含浸工程と、前記プラスチック基材の表面近傍内部に含浸した金属錯体を還元して、前記金属を前記プラスチック基材の表面および表面近傍内部に析出させる還元工程と、をこの順に行い、前記有機溶媒は、前記金属錯体を還元しないまたは還元する速度が遅い物質であり、前記還元工程は、前記溶液に前記金属錯体を還元する物質を添加することを特徴とする。   According to another aspect of the plastic surface modification method of the present invention, a solution in which a metal complex having a metal as a central atom is dissolved in an organic solvent and supercritical carbon dioxide are supplied to a container containing a plastic substrate. An impregnation step of immersing the plastic substrate in the solution to impregnate the metal complex in the vicinity of the surface of the plastic substrate, and reducing the metal complex impregnated in the vicinity of the surface of the plastic substrate. A reduction step of precipitating the metal on the surface of the plastic substrate and in the vicinity of the surface in this order, and the organic solvent is a substance that does not reduce or reduces the metal complex, and reduces the reduction The step is characterized in that a substance that reduces the metal complex is added to the solution.

このように、はじめに金属錯体が還元されずに溶液中に溶解した状態で超臨界二酸化炭素を混合することで、プラスチック基材の表面近傍内部に金属錯体を十分含浸させることができる。また、比較的低温で金属錯体から金属を析出させることができる。   Thus, the metal complex can be sufficiently impregnated in the vicinity of the surface of the plastic substrate by first mixing the supercritical carbon dioxide in a state where the metal complex is not reduced but dissolved in the solution. Moreover, a metal can be deposited from a metal complex at a relatively low temperature.

さらに、請求項7に係るプラスチックの表面改質方法は、請求項1ないし請求項6のいずれか一項に記載のプラスチックの表面改質方法において、前記金属が、Cu,Ni,Pdからなる群から選択されることを特徴とする。   The plastic surface modification method according to claim 7 is the plastic surface modification method according to any one of claims 1 to 6, wherein the metal is made of Cu, Ni, Pd. It is selected from these.

このような金属錯体を用いることにより、プラスチック基材にめっきの核剤やめっき皮膜として優れた金属を埋め込むことができる。   By using such a metal complex, it is possible to embed an excellent metal as a nucleating agent for plating or a plating film in a plastic substrate.

さらに、請求項8に係るプラスチックの表面改質方法は、請求項1ないし請求項6のいずれか一項に記載のプラスチックの表面改質方法において、前記金属錯体が、ヘキサフルオロアセチルアセトナトパラジウム、パラジウムトリフルオロアセチルアセトナト、アセチルアセトナトパラジウムからなる群から選択されることを特徴とする。   The plastic surface modification method according to claim 8 is the plastic surface modification method according to any one of claims 1 to 6, wherein the metal complex is hexafluoroacetylacetonato palladium, It is selected from the group consisting of palladium trifluoroacetylacetonate and acetylacetonatopalladium.

このような金属錯体を用いることにより、プラスチック基材にめっきの核剤として優れた特性のパラジウムを埋め込むことができる。   By using such a metal complex, palladium having excellent characteristics as a nucleating agent for plating can be embedded in a plastic substrate.

さらに、請求項9に係るプラスチックの表面改質方法は、請求項1ないし請求項8のいずれか一項に記載のプラスチックの表面改質方法において、前記プラスチック基材が、ポリイミド樹脂または液晶ポリマーであることを特徴とする。また、請求項10に係るプラスチックは、請求項9に記載のプラスチックの表面改質方法により表面に金属層が形成されたプラスチック基材であることを特徴とする。   The plastic surface modification method according to claim 9 is the plastic surface modification method according to any one of claims 1 to 8, wherein the plastic substrate is made of a polyimide resin or a liquid crystal polymer. It is characterized by being. The plastic according to claim 10 is a plastic substrate having a metal layer formed on the surface thereof by the plastic surface modification method according to claim 9.

このような材料を基材とすることにより、表面粗化の困難な基材に金属皮膜を均一に形成することができる。   By using such a material as a substrate, a metal film can be uniformly formed on a substrate that is difficult to roughen the surface.

請求項1および請求項2に係るプラスチックの表面改質方法によれば、一度の処理で、かつ、少量の金属錯体を用いて、表面近傍内部にまで金属または金属錯体が埋め込まれたプラスチック基材を得られる。   According to the plastic surface modification method according to claim 1 and claim 2, the plastic base material in which the metal or metal complex is embedded in the vicinity of the surface by a single treatment and using a small amount of the metal complex. Can be obtained.

請求項3に係るプラスチックの表面改質方法によれば、より効率よくプラスチック基材表面近傍内部に金属を埋め込むことができる。   According to the plastic surface modification method of the third aspect, the metal can be embedded in the plastic substrate surface vicinity more efficiently.

請求項4、請求項5に係るプラスチックの表面改質方法によれば、処理温度を比較的低温とすることができ、プラスチック基材が変性しない。さらに、請求項6に係るプラスチックの表面改質方法によれば、より効率よく、かつ比較的低温でプラスチック基材表面近傍内部に金属を埋め込むことができる。   According to the plastic surface modification method of claims 4 and 5, the treatment temperature can be made relatively low, and the plastic substrate is not denatured. Furthermore, according to the plastic surface modification method of the sixth aspect, it is possible to embed metal in the vicinity of the plastic substrate surface more efficiently and at a relatively low temperature.

請求項7に係るプラスチックの表面改質方法によれば、核剤となるPdが埋め込まれたプラスチックや、めっき材料に適したCuやNiの皮膜が形成されたプラスチックが得られる。請求項8に係るプラスチックの表面改質方法によれば、核剤となるPdが表面近傍内部にまで埋め込まれ、めっきの前処理として優れた表面改質処理とすることができる。   According to the plastic surface modification method of the seventh aspect, it is possible to obtain a plastic in which Pd serving as a nucleating agent is embedded, or a plastic in which a Cu or Ni film suitable for a plating material is formed. According to the plastic surface modification method of the eighth aspect, Pd serving as a nucleating agent is embedded even in the vicinity of the surface, and an excellent surface modification treatment can be performed as a pretreatment for plating.

請求項9、請求項10に係るプラスチックの表面改質方法によれば、従来の方法では困難であった、金属皮膜を形成されたポリイミドや液晶ポリマーが得られる。   According to the plastic surface modification method according to the ninth and tenth aspects, a polyimide or a liquid crystal polymer with a metal film formed, which was difficult with the conventional method, can be obtained.

以下、本発明に係るプラスチックの表面改質方法について説明する。
図1は本発明の実施の形態であるプラスチックの表面改質処理を行う高圧処理装置の模式図、図2は本発明に係るプラスチックの表面改質の処理の一例を示すフローチャートである。以下に、本発明に係るプラスチックの表面改質処理における各要素について説明する。
The plastic surface modification method according to the present invention will be described below.
FIG. 1 is a schematic view of a high-pressure processing apparatus for performing plastic surface modification processing according to an embodiment of the present invention, and FIG. 2 is a flowchart showing an example of plastic surface modification processing according to the present invention. Hereinafter, each element in the plastic surface modification treatment according to the present invention will be described.

〔基材〕
基材1は、一般的な工業製品に使用されるプラスチック(合成樹脂)を成形してなる。使用されるプラスチックとして、耐溶媒性を有する必要があり、具体的には、ABS樹脂等の熱可塑性樹脂や、ポリウレタン等の熱硬化性樹脂、さらには、エンジニアリングプラスチックに分類されるポリアセタール(POM)、ポリアミド(PA)、変性ポリフェニレンエーテル(m−PPE)、ポリブチレンテレフタレート(PBT)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)等が挙げられる。特に、従来の方法での表面改質処理が困難なポリイミドを適用することが好ましい。また、基材1は公知の方法により加工、成形され、その形状は特に限定されず、例えば、フィルム状や粒状、繊維状でもよい。
〔Base material〕
The substrate 1 is formed by molding a plastic (synthetic resin) used for general industrial products. The plastic used must have solvent resistance. Specifically, it is a thermoplastic resin such as ABS resin, a thermosetting resin such as polyurethane, and a polyacetal (POM) classified as an engineering plastic. , Polyamide (PA), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyimide ( PI), polyetherimide (PEI), liquid crystal polymer (LCP) and the like. In particular, it is preferable to apply polyimide, which is difficult to perform surface modification by a conventional method. Moreover, the base material 1 is processed and shape | molded by a well-known method, The shape is not specifically limited, For example, a film form, a granular form, and a fiber form may be sufficient.

〔金属錯体〕
金属錯体は、中心原子として、Pd,Cu,Ni等、めっきの核剤やめっき皮膜となる金属のイオンを有するものが好ましい。具体的には、Pd錯体としては、ヘキサフルオロアセチルアセトナトパラジウム、パラジウムトリフルオロアセチルアセトナト、アセチルアセトナトパラジウムが挙げられ、特に、後記の有機溶媒への溶解性が良好なヘキサフルオロアセチルアセトナトパラジウムが好ましい。また、Cu錯体として、トリフルオロアセチルアセトナト銅、ヘキサフルオロアセチルアセトナト銅、アセチルアセトナト銅、Ni錯体として、ヘキサフルオロアセチルアセトナトニッケルが挙げられる。これらの金属錯体から、めっきの核剤またはめっき皮膜とする金属の錯体を適用する。また、後記の有機溶媒に溶解させる際の濃度は特に限定されないが、効率およびコストの点から0.1〜1質量%(溶液中の濃度)が好ましい。
[Metal complex]
It is preferable that the metal complex has, as a central atom, Pd, Cu, Ni, or the like, a nucleating agent for plating or a metal ion that becomes a plating film. Specific examples of the Pd complex include hexafluoroacetylacetonatopalladium, palladium trifluoroacetylacetonato, and acetylacetonatopalladium. In particular, hexafluoroacetylacetonato having good solubility in organic solvents described later. Palladium is preferred. Examples of the Cu complex include trifluoroacetylacetonato copper, hexafluoroacetylacetonato copper, acetylacetonato copper, and Ni complex includes hexafluoroacetylacetonato nickel. From these metal complexes, a metal complex to be used as a nucleating agent for plating or a plating film is applied. Moreover, although the density | concentration at the time of making it melt | dissolve in the organic solvent of a postscript is not specifically limited, 0.1-1 mass% (concentration in a solution) is preferable from the point of efficiency and cost.

〔有機溶媒〕
有機溶媒は、N−メチル−2−ピロリジノン(NMP)、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等が挙げられる。また、エタノール、イソプロパノール(IPA)等のアルコールは、前記金属錯体の中心金属のイオンを還元する作用を有するため、これらを有機溶媒としてもよいし、還元剤としてNMP等の還元力の低い有機溶媒に混合して用いてもよい。有機溶媒の種類は、基材1がその有機溶媒に対して耐溶媒性を有するか、また、基材1への含浸促進効果等の相性によって選択される。例えば、基材1がポリイミドからなる場合は、含浸促進効果を有するNMPが好ましい。なお、後記する還元工程において溶液2に還元剤を追加する場合は、還元剤の追加による金属錯体の濃度低下を計算して、初期の溶液2を調液する。
[Organic solvent]
Examples of the organic solvent include N-methyl-2-pyrrolidinone (NMP), dimethylformamide, dimethyl sulfoxide, acetonitrile and the like. In addition, since alcohols such as ethanol and isopropanol (IPA) have the action of reducing the central metal ions of the metal complex, these may be used as organic solvents, or organic solvents having a low reducing power such as NMP as a reducing agent. You may mix and use. The type of the organic solvent is selected depending on whether the substrate 1 has solvent resistance to the organic solvent or compatibility such as an impregnation promoting effect on the substrate 1. For example, when the substrate 1 is made of polyimide, NMP having an impregnation promoting effect is preferable. In addition, when adding a reducing agent to the solution 2 in the reduction | restoration process mentioned later, the density | concentration fall of the metal complex by addition of a reducing agent is calculated, and the initial solution 2 is prepared.

〔高圧処理装置〕
図1に示すように、本発明の実施の形態であるプラスチックの表面改質処理を行う高圧処理装置は、超臨界二酸化炭素を供給するための二酸化炭素貯槽4および加圧ポンプ5、内部で表面改質処理を行うための、密封され高圧処理の可能な圧力容器6、およびこの圧力容器6を内蔵する処理温度調整手段としての恒温槽7を備える。また、圧力容器6の上流には高圧バルブ81を、下流には減圧バルブ82を備えて圧力容器6内部の圧力を調整する。さらに、圧力容器6の底部には還元反応後の溶液2を排出する図示しない回収手段を備える。なお、高圧バルブ81および減圧バルブ82を圧力調整弁とすれば、例えば処理中に還元剤を添加するような場合でも圧力の変動が生じず、好ましい。これらはいずれも公知の装置を用いることができる。
[High pressure processing equipment]
As shown in FIG. 1, a high-pressure treatment apparatus for performing a surface modification treatment of plastic according to an embodiment of the present invention includes a carbon dioxide storage tank 4 and a pressure pump 5 for supplying supercritical carbon dioxide, and a surface inside. A pressure vessel 6 that can be subjected to a reforming process and is capable of high pressure treatment, and a constant temperature bath 7 as a treatment temperature adjusting means that incorporates the pressure vessel 6 are provided. Further, a high pressure valve 81 is provided upstream of the pressure vessel 6 and a pressure reducing valve 82 is provided downstream to adjust the pressure inside the pressure vessel 6. Furthermore, a recovery means (not shown) for discharging the solution 2 after the reduction reaction is provided at the bottom of the pressure vessel 6. Note that it is preferable to use the high pressure valve 81 and the pressure reducing valve 82 as pressure regulating valves because, for example, when a reducing agent is added during processing, pressure fluctuation does not occur. Any of these can use a known apparatus.

圧力容器6は、基材1を収納できる容積で、処理温度および処理圧力に対応可能で、内壁の材質が有機溶媒に耐性を有していれば、その形状や材質等は限定されない。ただし、基材1に対して大きすぎると、多量の溶液2すなわち金属錯体を必要としてコスト高となるため、圧力容器6は、基材1に合わせた内部形状および容積であることが好ましい。例えば、基材1が板状であれば、圧力容器6は底面積の大きい扁平な容器とし、基材1がフィルム状であれば、圧力容器6は円筒形状とし、さらに基材1をロール状に巻いた内側に芯材を格納して、溶液2の量を減らす工夫をすることが好ましい。また、圧力容器6の内壁は、溶液2から析出した金属が吸着しない材質であることが好ましい。また、圧力容器6の中に図示しない撹拌手段を設けてもよい。   The pressure vessel 6 has a volume capable of accommodating the base material 1 and can handle the processing temperature and the processing pressure, and the shape and material thereof are not limited as long as the material of the inner wall is resistant to an organic solvent. However, if it is too large with respect to the base material 1, a large amount of solution 2, that is, a metal complex is required, and the cost is high. Therefore, it is preferable that the pressure vessel 6 has an internal shape and volume adapted to the base material 1. For example, if the base material 1 is plate-shaped, the pressure vessel 6 is a flat container having a large bottom area. If the base material 1 is a film shape, the pressure vessel 6 is cylindrical, and the base material 1 is rolled. It is preferable to devise a method for reducing the amount of the solution 2 by storing the core material inside the wire. The inner wall of the pressure vessel 6 is preferably made of a material that does not adsorb metal deposited from the solution 2. Further, a stirring means (not shown) may be provided in the pressure vessel 6.

〔処理方法〕
次に、本発明の実施の形態であるプラスチックの表面改質の処理手順を説明する。
(含浸工程)
まず、有機溶媒に金属錯体を溶解して溶液2を調液する(ステップS11)。圧力容器6に基材1を格納し、溶液2を基材1の表面を完全に浸すように注入する(ステップS12)。圧力容器6を密閉し、さらに恒温槽7に格納する。このとき、圧力容器6内部(溶液2)の温度(T)は二酸化炭素の臨界温度(Tc)である31.1℃を超えるように恒温槽7を設定する。ただし、金属錯体が熱により還元する場合、溶液2の有機溶媒が金属錯体への還元作用を有する場合、または還元剤が含まれている場合は、前記臨界温度を超え、かつ、還元反応が進行しないか還元反応速度が非常に遅い温度になるように調整することが好ましい。この遅い還元反応速度というのは、溶液2(金属錯体)が十分に基材1の表面近傍内部に含浸する前に還元反応が完了する(すべての金属錯体が還元される)ことがない速度とする。溶液2の成分にもよるが、還元作用のある有機溶媒の場合、具体的には40〜60℃が好ましい。なお、還元作用の有無にかかわらず、全工程を通して、溶液2は基材1を変性させない程度の温度とする。次に、高圧バルブ81を開けて加圧ポンプ5により圧力容器6に超臨界二酸化炭素(scCO)を供給し、高圧バルブ81を閉める(ステップS13)。
〔Processing method〕
Next, a processing procedure for surface modification of plastic according to an embodiment of the present invention will be described.
(Impregnation process)
First, the metal complex is dissolved in an organic solvent to prepare solution 2 (step S11). The base material 1 is stored in the pressure vessel 6, and the solution 2 is injected so that the surface of the base material 1 is completely immersed (step S12). The pressure vessel 6 is sealed and further stored in a thermostatic chamber 7. At this time, the thermostat 7 is set so that the temperature (T) in the pressure vessel 6 (solution 2) exceeds 31.1 ° C., which is the critical temperature (Tc) of carbon dioxide. However, when the metal complex is reduced by heat, when the organic solvent of the solution 2 has a reducing action on the metal complex, or when a reducing agent is included, the critical temperature is exceeded and the reduction reaction proceeds. It is preferable that the reduction reaction rate is adjusted to a very low temperature. This slow reduction reaction rate is a rate at which the reduction reaction is not completed (all the metal complexes are reduced) before the solution 2 (metal complex) is sufficiently impregnated in the vicinity of the surface of the substrate 1. To do. Although depending on the components of the solution 2, in the case of an organic solvent having a reducing action, specifically, 40 to 60 ° C. is preferable. Note that the temperature of the solution 2 is set so as not to denature the substrate 1 throughout the entire process regardless of the presence or absence of the reducing action. Next, the high pressure valve 81 is opened, supercritical carbon dioxide (scCO 2 ) is supplied to the pressure vessel 6 by the pressure pump 5, and the high pressure valve 81 is closed (step S13).

なお、本発明において、圧力容器6内の溶液2と超臨界二酸化炭素とを完全に混合させる必要はなく、二相(液相と気相)に分離した状態であっても、液相すなわち溶液2に、基材1の表面近傍内部まで金属錯体を含浸させるために十分な量の超臨界二酸化炭素が混合している。具体的には、圧力容器6内部の圧力が二酸化炭素の臨界圧力である72.9atmの状態で、十分な量の超臨界二酸化炭素が溶液2に混合している。また、先に超臨界二酸化炭素を圧力容器6に供給してから、溶液2を注入してもよい。   In the present invention, it is not necessary to completely mix the solution 2 in the pressure vessel 6 and the supercritical carbon dioxide, and the liquid phase, that is, the solution, even if it is separated into two phases (liquid phase and gas phase). 2 is mixed with a sufficient amount of supercritical carbon dioxide to impregnate the metal complex into the vicinity of the surface of the substrate 1. Specifically, a sufficient amount of supercritical carbon dioxide is mixed in the solution 2 in a state where the pressure inside the pressure vessel 6 is 72.9 atm, which is the critical pressure of carbon dioxide. Alternatively, the supercritical carbon dioxide may be supplied to the pressure vessel 6 before the solution 2 is injected.

(還元工程)
圧力容器6に超臨界二酸化炭素を供給したら、溶液2中の金属錯体が還元される温度(TRed)以上に昇温する(ステップS14)。または、溶液2に還元剤を添加する(還元剤の供給路は不図示)。ステップS14は、ステップS13と並行して実行してもよく、好ましくはステップS13の完了(超臨界二酸化炭素の供給完了)後に実行することであり、より好ましくはさらに所定時間を置いて実行することである。所定時間を置くことにより、溶液2中の金属錯体が基材1の表面近傍内部まで十分含浸することができる。この還元工程(ステップS14)前の所定時間は特に限定されず、基材1の材料や形状、溶液2の組成等により適宜設定すればよい。また、ステップS13と同時およびステップS13完了直後にステップS14を実行する場合は、昇温後の温度や昇温速度、還元剤等の濃度の調整により、還元反応速度が速くなりすぎないように調節することが好ましい。特に、ステップS13完了前にステップS14を実行する場合、溶液2に超臨界二酸化炭素が混合する前に金属が析出しないようにする。このように還元反応速度を調整することで、溶液2が基材1の表面近傍内部に含浸する前に金属錯体が還元されないようにする。また、還元反応時間も特に限定されず、溶液2の組成(濃度)や温度等により適宜設定すればよく、さらに昇温と還元剤の添加の両方を行ってもよい。
(Reduction process)
When supercritical carbon dioxide is supplied to the pressure vessel 6, the temperature is raised to a temperature at which the metal complex in the solution 2 is reduced (T Red ) or higher (step S14). Alternatively, a reducing agent is added to the solution 2 (reducing agent supply path is not shown). Step S14 may be executed in parallel with step S13, and is preferably executed after completion of step S13 (supercritical carbon dioxide supply completion), and more preferably executed after a predetermined time. It is. By setting the predetermined time, the metal complex in the solution 2 can be sufficiently impregnated into the vicinity of the surface of the substrate 1. The predetermined time before the reduction step (step S14) is not particularly limited, and may be set as appropriate depending on the material and shape of the substrate 1, the composition of the solution 2, and the like. When step S14 is executed simultaneously with step S13 and immediately after completion of step S13, the reduction reaction rate is adjusted not to be too high by adjusting the temperature after the temperature rise, the temperature rise rate, the concentration of the reducing agent, etc. It is preferable to do. In particular, when step S14 is executed before step S13 is completed, the metal is prevented from precipitating before the supercritical carbon dioxide is mixed into the solution 2. By adjusting the reduction reaction rate in this way, the metal complex is prevented from being reduced before the solution 2 is impregnated in the vicinity of the surface of the substrate 1. Further, the reduction reaction time is not particularly limited, and may be appropriately set depending on the composition (concentration), temperature, etc. of the solution 2, and both temperature increase and addition of a reducing agent may be performed.

また、溶液2に基材1を浸漬させた(ステップS12)時点で、溶液2の有機溶媒または還元剤の金属錯体への還元作用の程度ならびに溶液2の温度が、還元反応速度が比較的緩やかとなる条件であれば、速やかに圧力容器6に超臨界二酸化炭素を供給し(ステップS13)、そのまま圧力容器6の温度および圧力を所定時間保持すれば、基材1への金属錯体の含浸とその金属錯体の還元とが同時に進行する。すなわち、作業を追加することなく自動的に還元工程(ステップS14)が行われる。また、この場合、温度調節した溶液2を圧力容器6に注入するようにすれば、恒温槽7は温度調整機能を備えず断熱材で形成して保温機能のみとすることもできる。   In addition, when the base material 1 is immersed in the solution 2 (step S12), the degree of the reducing action of the solution 2 on the metal complex of the organic solvent or the reducing agent and the temperature of the solution 2 are relatively slow. If supercritical carbon dioxide is promptly supplied to the pressure vessel 6 (step S13) and the temperature and pressure of the pressure vessel 6 are maintained for a predetermined time, the substrate 1 is impregnated with the metal complex. Reduction of the metal complex proceeds simultaneously. That is, the reduction process (step S14) is automatically performed without adding work. In this case, if the temperature-controlled solution 2 is injected into the pressure vessel 6, the thermostatic chamber 7 can be formed of a heat insulating material without a temperature adjusting function and only have a heat retaining function.

還元反応が完了したら、減圧バルブ82を開けて圧力容器6内部の圧力を開放する(ステップS15)。圧力容器6内部が臨界温度を超える温度を維持して臨界圧力未満に減圧されると、二酸化炭素は超臨界状態から気体となって、また、溶液2に混合していた超臨界二酸化炭素も還元反応後の液体(有機溶媒と基材1に含浸せずに析出した金属の粒子との混合物)と分離されて、減圧バルブ82を介して外部へ排気される。そして、図示しない回収手段により、液体を圧力容器6から排出して、基材1を取り出す。また、液体を圧力容器6から排出した後、再び超臨界二酸化炭素を供給して、基材1に含浸した液体(有機溶媒)を置換することにより除去することもできる。以上の方法により、基材1の表面および表面近傍内部に金属を析出させることができる。なお、還元工程(ステップS14)を行わず、金属錯体の状態のままで減圧して処理を完了してもよい。また、この金属または金属錯体を核剤として基材1に無電解めっきを行い、さらに皮膜を形成してもよい。   When the reduction reaction is completed, the pressure reducing valve 82 is opened to release the pressure inside the pressure vessel 6 (step S15). When the inside of the pressure vessel 6 is maintained at a temperature exceeding the critical temperature and the pressure is reduced to less than the critical pressure, the carbon dioxide becomes a gas from the supercritical state, and the supercritical carbon dioxide mixed in the solution 2 is also reduced. It is separated from the liquid after the reaction (a mixture of the organic solvent and metal particles deposited without impregnating the substrate 1) and exhausted to the outside through the pressure reducing valve 82. Then, the liquid is discharged from the pressure vessel 6 by a collecting means (not shown), and the substrate 1 is taken out. Alternatively, after the liquid is discharged from the pressure vessel 6, supercritical carbon dioxide is supplied again to replace the liquid (organic solvent) impregnated in the substrate 1. By the above method, a metal can be deposited on the surface of the base material 1 and in the vicinity of the surface. Note that the reduction process (step S14) may not be performed, and the treatment may be completed by reducing the pressure in the state of the metal complex. Further, electroless plating may be performed on the substrate 1 using this metal or metal complex as a nucleating agent to further form a film.

以上、本発明を実施するための最良の形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   Although the best mode for carrying out the present invention has been described above, examples in which the effects of the present invention have been confirmed will be specifically described in comparison with comparative examples that do not satisfy the requirements of the present invention. . In addition, this invention is not limited to this Example.

(供試材作製)
ポリイミドからなる0.3mm厚のフィルムを10mm角に切り出して基材とした。また、金属錯体としてヘキサフルオロアセチルアセトナトパラジウムを、表1に示す溶媒に表1に示す質量比で溶解して溶液を作成した。容積5mlの圧力容器に上記の基材と2〜5mlの溶液を入れて、圧力容器を密閉した。そして、圧力容器内部の温度(溶液の温度)を表1の処理条件1に示す温度に調整した。次に、外部から圧力容器内に二酸化炭素を注入して圧力が15MPaになるようにした。圧力が15MPaに到達してから、表1の処理条件1に示す時間、前記圧力および温度を維持した。
(Sample preparation)
A 0.3 mm thick film made of polyimide was cut into a 10 mm square to form a substrate. Further, hexafluoroacetylacetonato palladium as a metal complex was dissolved in a solvent shown in Table 1 at a mass ratio shown in Table 1 to prepare a solution. The above-mentioned base material and 2 to 5 ml of the solution were placed in a 5 ml capacity pressure vessel, and the pressure vessel was sealed. And the temperature inside the pressure vessel (temperature of the solution) was adjusted to the temperature shown in the treatment condition 1 of Table 1. Next, carbon dioxide was injected into the pressure vessel from the outside so that the pressure became 15 MPa. After the pressure reached 15 MPa, the pressure and temperature were maintained for the time indicated in treatment condition 1 in Table 1.

実施例1〜7は、前記処理条件1に示す時間を経過後、圧力容器を常圧に減圧して基材を取り出して供試材とした。一方、実施例8〜10は、前記時間経過後、圧力は維持したまま、表1の処理条件2に示す温度になるように調整した。また、実施例11,12は、還元剤としてエタノールを、元の溶液とほぼ同量添加した。さらに、実施例13は、還元剤としてのエタノールの添加と表1の処理条件2に示す温度への昇温との両方を実施した。なお、これら処理条件2への移行の際も、圧力容器内の圧力は圧力調整弁により15MPaを維持した。そして、表1の処理条件2に示す時間を経過後、実施例1〜7と同様に基材を取り出した。   In Examples 1 to 7, after elapse of the time shown in the treatment condition 1, the pressure vessel was reduced to normal pressure and the base material was taken out to be used as test materials. On the other hand, Examples 8 to 10 were adjusted to the temperature shown in the treatment condition 2 of Table 1 while maintaining the pressure after the lapse of time. In Examples 11 and 12, ethanol as a reducing agent was added in substantially the same amount as the original solution. Furthermore, in Example 13, both the addition of ethanol as a reducing agent and the temperature increase to the temperature shown in the treatment condition 2 of Table 1 were performed. Note that the pressure in the pressure vessel was maintained at 15 MPa by the pressure regulating valve during the transition to the treatment condition 2. And after the time shown in the processing condition 2 of Table 1, the base material was taken out similarly to Examples 1-7.

比較例として、実施例と同じ基材を、表1に示す組成の溶液と共に容器に入れて、表1の処理条件1に示す温度になるように調整した。ただし二酸化炭素は注入せず、常圧で表1の処理条件1に示す時間、前記温度を維持した。比較例15については、前記処理条件1に示す時間を経過後、表1の処理条件2に示す温度になるように調整した。   As a comparative example, the same base material as in the example was placed in a container together with a solution having the composition shown in Table 1, and adjusted so as to have a temperature shown in treatment condition 1 in Table 1. However, carbon dioxide was not injected, and the temperature was maintained at normal pressure for the time indicated in treatment condition 1 of Table 1. In Comparative Example 15, the temperature shown in the processing condition 2 in Table 1 was adjusted after the time shown in the processing condition 1 had elapsed.

得られた供試材にNi−P無電解めっきを行った。処理容器から取り出した供試材を、硫酸ニッケル、ピロリン酸ナトリウム、グリコール酸からなる無電解Ni−Pめっき溶液に浸漬し、90℃で20分間無電解めっき処理した。   Ni-P electroless plating was performed on the obtained specimen. The test material taken out from the processing container was immersed in an electroless Ni—P plating solution made of nickel sulfate, sodium pyrophosphate, and glycolic acid, and subjected to electroless plating at 90 ° C. for 20 minutes.

(評価方法)
評価は、Ni−P無電解めっき後の供試材の表面のめっきの有無、およびこの供試材を折り曲げて、めっきの剥がれの有無を目視することで判定した。供試材の表面に均一にNiめっき膜が形成され、かつNiめっき膜が剥がれなければ良好として「○」で評価した。また、Niめっき膜が、一部剥がれ落ちるが均一に残る供試材は「△」とした。一方、Niめっき膜が均一に形成されていない、あるいは、Niめっき膜が簡単に剥がれ落ちる供試材は不良として「×」とした。
(Evaluation method)
The evaluation was made by visually observing the presence or absence of plating on the surface of the specimen after Ni-P electroless plating and the presence or absence of peeling of the specimen by bending the specimen. If the Ni plating film was uniformly formed on the surface of the test material and the Ni plating film was not peeled off, it was evaluated as “Good” as good. In addition, the test material that Ni plating film partly peeled off but remained uniformly was designated as “Δ”. On the other hand, the Ni plating film was not formed uniformly, or the test material from which the Ni plating film was easily peeled off was evaluated as “x”.

Figure 0005215731
Figure 0005215731

40℃で処理された実施例1,2は、一部が剥がれてしまうものの、均一なNiめっき膜を形成することができた。これは、ポリイミドに埋め込まれたPdが錯体の状態で処理を完了したため、核剤としての作用が小さかったからである。一方、80℃で処理された実施例3〜5は、錯体の状態で埋め込まれたPdが還元されたため、Ni−P無電解めっきにおける核剤として十分に作用して、均一かつ剥がれないNiめっき膜を形成することができ、基材であるポリイミドの表面近傍内部までPdが埋め込まれたことが確認された。ただし、Pd錯体濃度が5質量%の実施例6は、処理完了時(Ni−P無電解めっき前)で実施例3〜5にはない金属光沢が認められるほどポリイミドの表面にPd皮膜が形成されたが、ポリイミドの内部に埋め込まれていないPdが存在したため、Niめっき膜に一部剥がれを生じた。また、1時間経過してから40℃から80℃に昇温した実施例8は、Pd錯体が十分にポリイミドに含浸してから還元されたため、特に良好なNiめっき膜を形成することができた。   In Examples 1 and 2 processed at 40 ° C., a uniform Ni plating film could be formed although a part was peeled off. This is because the action as a nucleating agent was small because Pd embedded in polyimide completed the treatment in a complex state. On the other hand, in Examples 3 to 5 treated at 80 ° C., the Pd embedded in a complex state was reduced, so that it sufficiently acts as a nucleating agent in Ni—P electroless plating, and Ni plating that does not peel evenly A film could be formed, and it was confirmed that Pd was embedded to the inside of the vicinity of the surface of polyimide as a base material. However, in Example 6 having a Pd complex concentration of 5% by mass, a Pd film was formed on the surface of the polyimide so that a metallic luster not found in Examples 3 to 5 was observed at the completion of the treatment (before Ni-P electroless plating). However, since Pd that was not embedded in the polyimide was present, the Ni plating film was partly peeled off. Further, in Example 8 where the temperature was raised from 40 ° C. to 80 ° C. after 1 hour had passed, the Pd complex was sufficiently impregnated in the polyimide and then reduced, so that a particularly good Ni plating film could be formed. .

還元剤としてエタノールを溶液に添加された実施例7,9は、均一かつ剥がれないNiめっき膜を形成することができた。特に、一貫して40℃で処理された実施例7により、処理温度40℃においても、ポリイミドの表面近傍内部までPdが埋め込まれたことが確認された。ただし、Pd錯体濃度が5質量%の実施例10は、実施例6と同様に、処理完了時でPdによる金属光沢が認められたが、Niめっき膜に一部剥がれを生じた。   In Examples 7 and 9 in which ethanol was added as a reducing agent to the solution, a Ni plating film that was uniform and not peeled off could be formed. In particular, it was confirmed in Example 7 that was treated consistently at 40 ° C. that Pd was embedded even in the vicinity of the polyimide surface even at a treatment temperature of 40 ° C. However, in Example 10 having a Pd complex concentration of 5 mass%, similar to Example 6, a metallic luster due to Pd was observed at the completion of the treatment, but a part of the Ni plating film was peeled off.

1時間経過してからエタノールを溶液に添加された実施例11は、Pd錯体が十分にポリイミドに含浸してから還元されたため、特に良好なNiめっき膜を形成することができた。ただし、Pd錯体濃度が5質量%の実施例12,13は、実施例6,10と同様に、処理完了時でPdによる金属光沢が認められたが、Niめっき膜に一部剥がれを生じた。   In Example 11 in which ethanol was added to the solution after one hour had elapsed, the Pd complex was sufficiently impregnated in the polyimide and then reduced, so that a particularly good Ni plating film could be formed. However, in Examples 12 and 13 having a Pd complex concentration of 5% by mass, similar to Examples 6 and 10, a metallic luster due to Pd was recognized at the completion of the treatment, but a part of the Ni plating film was peeled off. .

これらの実施例に対して、超臨界二酸化炭素を供給しなかった比較例14,15は、前記実施例と同じNi−P無電解めっきで、Niめっき膜がまったく形成されず、ポリイミドの内部にPdを埋め込むことはできなかった。   In contrast to these examples, Comparative Examples 14 and 15 in which no supercritical carbon dioxide was supplied were the same Ni—P electroless plating as in the above example, and no Ni plating film was formed. Pd could not be embedded.

本発明の実施の形態に係る高圧処理装置の模式図である。It is a schematic diagram of the high-pressure processing apparatus which concerns on embodiment of this invention. 本発明に係るプラスチックの表面改質の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of surface modification of the plastic which concerns on this invention.

符号の説明Explanation of symbols

1 基材(プラスチック基材)
2 溶液
6 圧力容器(容器)
scCO 超臨界二酸化炭素
1 Base material (plastic base material)
2 Solution 6 Pressure vessel (container)
scCO 2 supercritical carbon dioxide

Claims (10)

プラスチック基材の表面に金属からなる層を形成するためのプラスチックの表面改質方法であって、
前記プラスチック基材を収納する容器に、前記金属を中心原子とする金属錯体を有機溶媒に溶解してなる溶液と、超臨界二酸化炭素とを供給して、前記溶液に前記プラスチック基材を浸漬して、前記プラスチック基材の表面近傍内部に前記金属錯体を含浸させることを特徴とするプラスチックの表面改質方法。
A plastic surface modification method for forming a metal layer on the surface of a plastic substrate,
A container containing the plastic substrate is supplied with a solution obtained by dissolving a metal complex having the metal as a central atom in an organic solvent and supercritical carbon dioxide, and the plastic substrate is immersed in the solution. A plastic surface modification method comprising impregnating the metal complex in the vicinity of the surface of the plastic substrate.
前記プラスチック基材の表面近傍内部に含浸した金属錯体を還元して、前記金属を前記プラスチック基材の表面および表面近傍内部に析出させることを特徴とする請求項1に記載のプラスチックの表面改質方法。   2. The surface modification of plastic according to claim 1, wherein the metal complex impregnated in the vicinity of the surface of the plastic substrate is reduced, and the metal is deposited on the surface of the plastic substrate and in the vicinity of the surface. Method. プラスチック基材の表面に金属からなる層を形成するためのプラスチックの表面改質方法であって、
前記プラスチック基材を収納する容器に、前記金属を中心原子とする金属錯体を有機溶媒に溶解してなる溶液と、超臨界二酸化炭素とを供給して、前記溶液に前記プラスチック基材を浸漬して、前記プラスチック基材の表面近傍内部に前記金属錯体を含浸させる含浸工程と、
前記プラスチック基材の表面近傍内部に含浸した金属錯体を還元して、前記金属を前記プラスチック基材の表面および表面近傍内部に析出させる還元工程と、をこの順に行い、
前記含浸工程は、前記金属錯体が還元されない温度、または、還元される速度が非常に遅い温度で行われ、
前記還元工程は、前記含浸工程における温度から前記金属錯体が還元される温度に昇温して行われることを特徴とするプラスチックの表面改質方法。
A plastic surface modification method for forming a metal layer on the surface of a plastic substrate,
A container containing the plastic substrate is supplied with a solution obtained by dissolving a metal complex having the metal as a central atom in an organic solvent and supercritical carbon dioxide, and the plastic substrate is immersed in the solution. Impregnation step of impregnating the metal complex in the vicinity of the surface of the plastic substrate,
Reducing the metal complex impregnated in the vicinity of the surface of the plastic substrate, and depositing the metal on the surface of the plastic substrate and in the vicinity of the surface, in this order,
The impregnation step is performed at a temperature at which the metal complex is not reduced, or a temperature at which the rate of reduction is very low,
The plastic surface modification method, wherein the reduction step is performed by raising the temperature from the temperature in the impregnation step to a temperature at which the metal complex is reduced.
前記有機溶媒が前記金属錯体を還元する物質であることを特徴とする請求項2または請求項3に記載のプラスチックの表面改質方法。   4. The plastic surface modification method according to claim 2, wherein the organic solvent is a substance that reduces the metal complex. 前記溶液に前記金属錯体を還元する物質が添加されていることを特徴とする請求項2または請求項3に記載のプラスチックの表面改質方法。   4. The plastic surface modification method according to claim 2, wherein a substance for reducing the metal complex is added to the solution. プラスチック基材の表面に金属からなる層を形成するためのプラスチックの表面改質方法であって、
前記プラスチック基材を収納する容器に、前記金属を中心原子とする金属錯体を有機溶媒に溶解してなる溶液と、超臨界二酸化炭素とを供給して、前記溶液に前記プラスチック基材を浸漬して、前記プラスチック基材の表面近傍内部に前記金属錯体を含浸させる含浸工程と、
前記プラスチック基材の表面近傍内部に含浸した金属錯体を還元して、前記金属を前記プラスチック基材の表面および表面近傍内部に析出させる還元工程と、をこの順に行い、
前記有機溶媒は、前記金属錯体を還元しないまたは還元する速度が遅い物質であり、
前記還元工程は、前記溶液に前記金属錯体を還元する物質を添加することを特徴とするプラスチックの表面改質方法。
A plastic surface modification method for forming a metal layer on the surface of a plastic substrate,
A container containing the plastic substrate is supplied with a solution obtained by dissolving a metal complex having the metal as a central atom in an organic solvent and supercritical carbon dioxide, and the plastic substrate is immersed in the solution. Impregnation step of impregnating the metal complex in the vicinity of the surface of the plastic substrate,
Reducing the metal complex impregnated in the vicinity of the surface of the plastic substrate, and depositing the metal on the surface of the plastic substrate and in the vicinity of the surface, in this order,
The organic solvent is a substance that does not reduce or reduces the metal complex,
In the reducing step, a plastic surface modification method, wherein a substance that reduces the metal complex is added to the solution.
前記金属が、Cu,Ni,Pdからなる群から選択されることを特徴とする請求項1ないし請求項6のいずれか一項に記載のプラスチックの表面改質方法。   The plastic surface modification method according to any one of claims 1 to 6, wherein the metal is selected from the group consisting of Cu, Ni, and Pd. 前記金属錯体が、ヘキサフルオロアセチルアセトナトパラジウム、パラジウムトリフルオロアセチルアセトナト、アセチルアセトナトパラジウムからなる群から選択されることを特徴とする請求項1ないし請求項6のいずれか一項に記載のプラスチックの表面改質方法。   7. The metal complex according to claim 1, wherein the metal complex is selected from the group consisting of hexafluoroacetylacetonatopalladium, palladium trifluoroacetylacetonato, and acetylacetonatopalladium. 8. Plastic surface modification method. 前記プラスチック基材が、ポリイミド樹脂または液晶ポリマーであることを特徴とする請求項1ないし請求項8のいずれか一項に記載のプラスチックの表面改質方法。   9. The plastic surface modification method according to claim 1, wherein the plastic substrate is a polyimide resin or a liquid crystal polymer. 請求項9に記載のプラスチックの表面改質方法により表面に金属層が形成されたことを特徴とするプラスチック基材。   A plastic substrate, wherein a metal layer is formed on the surface by the plastic surface modification method according to claim 9.
JP2008130059A 2008-05-16 2008-05-16 Plastic surface modification method and surface modified plastic Expired - Fee Related JP5215731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130059A JP5215731B2 (en) 2008-05-16 2008-05-16 Plastic surface modification method and surface modified plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130059A JP5215731B2 (en) 2008-05-16 2008-05-16 Plastic surface modification method and surface modified plastic

Publications (2)

Publication Number Publication Date
JP2009275279A JP2009275279A (en) 2009-11-26
JP5215731B2 true JP5215731B2 (en) 2013-06-19

Family

ID=41440977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130059A Expired - Fee Related JP5215731B2 (en) 2008-05-16 2008-05-16 Plastic surface modification method and surface modified plastic

Country Status (1)

Country Link
JP (1) JP5215731B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649984B2 (en) * 2011-01-11 2015-01-07 矢崎総業株式会社 Pre-plating method
CN103572265B (en) * 2012-07-30 2015-12-02 比亚迪股份有限公司 The method of frosting alligatoring agent and preparation method thereof and dual-color plastic surface metalation
CN106637148A (en) * 2016-11-02 2017-05-10 厦门建霖工业有限公司 Polymer based composite surface pretreatment method
CN106480435A (en) * 2016-11-02 2017-03-08 厦门建霖工业有限公司 A kind of organic composite material surface pre-treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187575A (en) * 2003-12-25 2005-07-14 Teijin Ltd Method for producing metal/polymer composite porous material
JP4958141B2 (en) * 2006-03-20 2012-06-20 国立大学法人福井大学 Metal-coated polymer material and method for producing the same

Also Published As

Publication number Publication date
JP2009275279A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5215731B2 (en) Plastic surface modification method and surface modified plastic
Rebbecchi et al. Template-based fabrication of nanoporous metals
JP2008031513A (en) Method for metallizing plastic surface
Pang et al. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber
WO2007116493A1 (en) Surface modification liquid for plastic and method of metallizing plastic surface therewith
Nguyen et al. An electroplating technique using the post supercritical carbon dioxide mixed watts electrolyte
JP2009228083A (en) Metal plating method on plastic surface
Tengsuwan et al. Supercritical carbon dioxide-assisted electroless nickel plating on polypropylene—The effect of copolymer blend morphology on metal–polymer adhesion
JP4660661B2 (en) Plating pretreatment method for plastic, plating method, method for producing plated product, and plating apparatus
JP4954126B2 (en) Method for producing composite material including resin molding
WO2018129871A1 (en) Stainless steel and plastic combined member, and processing method therefor
Li et al. Combined continuous wave and pulsed plasma modes: For more stable interfaces with higher functionality on metal and semiconductor surfaces
KR20130028582A (en) Method for getting graphene
JP5096273B2 (en) Electroless plating method
US11008657B2 (en) Composition for catalyst-free electroless plating and method for electroless plating using the same
Hara et al. Relationship between peroxide radical species on plasma-treated PFA surface and adhesion strength of PFA/electroless copper-plating film
EP1546435B1 (en) Method for pretreating a surface of a non-conducting material to be plated
JP5138394B2 (en) Polymer parts
JP2009073994A (en) Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
JP4092360B1 (en) Polymer member and manufacturing method thereof
JP2011001576A (en) Plating-pretreatment method for polymeric base material
Woo et al. Effects of Sc-CO2 catalyzation in metallization on polymer by electroless plating
JP2008174840A5 (en) Polymer parts
JP2008255169A (en) Method for forming plating film, polymer member, and its manufacturing method
KR102198242B1 (en) Composition for catalyst-free electroless plating and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees