JP2009212416A - Method of manufacturing gas cell, and gas cell - Google Patents

Method of manufacturing gas cell, and gas cell Download PDF

Info

Publication number
JP2009212416A
JP2009212416A JP2008055876A JP2008055876A JP2009212416A JP 2009212416 A JP2009212416 A JP 2009212416A JP 2008055876 A JP2008055876 A JP 2008055876A JP 2008055876 A JP2008055876 A JP 2008055876A JP 2009212416 A JP2009212416 A JP 2009212416A
Authority
JP
Japan
Prior art keywords
transparent substrate
gas
gas cell
glass substrate
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008055876A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
拓 青山
Naoki Ishihara
直樹 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008055876A priority Critical patent/JP2009212416A/en
Publication of JP2009212416A publication Critical patent/JP2009212416A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a gas cell having a good optical window with excellent mass productivity, in which a dicing plane is made into a laser passing window, and a gas introducing path is provided as a metal holder. <P>SOLUTION: The method of manufacturing the gas cell includes: a step A of completing a processed glass substrate 20 projected a gas introducing cylinder 3 on the glass substrate 1; a step B of completing a processed glass substrate 21 having a rectangular second through-hole 5; a step C of completing a processed glass substrate 22 having a rectangular recess 7; a step D of forming a gas holding portion 9 for holding an alkali metal vapor in the glass substrate laminated body 23, filling rubidium (alkali metal) gas 8 from the opening 3a of the gas introducing cylinder 3 under an inert gas environment, sealing the opening 3a by welding, and dicing along a cutting line 25. As a result, a gas cell 26 having planes A to D are formed parallel to respective planes of the gas holding portion 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガスセルの製造方法に関し、特に、小型、薄型ガスセルの量産性を高めるためのガスセルの製造方法に関するものである。   The present invention relates to a method for manufacturing a gas cell, and more particularly to a method for manufacturing a gas cell for enhancing mass productivity of a small and thin gas cell.

近年、通信網や放送網等のディジタルネットワーク化が進み、これに伴い、伝送装置のクロック信号や放送局の基準周波数の生成に使用されるクロック源等として、高精度・高安定な発振器が必要不可欠なものとなっている。そのような発振器として、発振周波数の精度・安定度が高い原子発振器が多く用いられている。原子発振器では、ルビジウム、セシウム等のアルカリ金属原子を光と相互作用させる部位が必要であり、そのための構成要素として、これら原子を気密封入したガスセルを用いるのが一般的である。また、近年原子発振器の小型化の要求が高まり、この小型化に伴って、ガスセルも小型化、薄型化が余儀なくされている。ガスセルの製造は、薄型化のために図5に示す製造プロセスで行なわれている(特許文献1参照)。即ち、(a)工程でシリコンウエハー50を両面研磨し、(b)工程でシリコンウエハー50にエッチングにより開口部51を形成し、(c)工程で電源53から1000Vを印加して、300℃で下部ガラス基板52を陽極接合する。更に(d)工程で不活性雰囲気下でセシウム(アルカリ金属)とバッファガス54を開口部51に導入し、(e)工程で上部ガラス基板55を陽極接合し、(f)工程でセシウム封入ガスセル56を完成する。このプロセスで得たガスセル56は図6の向きに配置され、レーザ光57が貫通する構成となる。
US6806784B2
In recent years, digital networks such as communication networks and broadcasting networks have been developed, and accordingly, a highly accurate and highly stable oscillator is required as a clock source used for generating clock signals for transmission devices and reference frequencies for broadcasting stations. It has become indispensable. As such an oscillator, an atomic oscillator having high oscillation frequency accuracy and stability is often used. In an atomic oscillator, a site where alkali metal atoms such as rubidium and cesium interact with light is necessary, and a gas cell in which these atoms are hermetically sealed is generally used as a component for that purpose. In recent years, the demand for miniaturization of atomic oscillators has increased, and along with this miniaturization, gas cells have been forced to be smaller and thinner. The gas cell is manufactured by the manufacturing process shown in FIG. 5 in order to reduce the thickness (see Patent Document 1). That is, the silicon wafer 50 is polished on both sides in the step (a), the opening 51 is formed by etching in the silicon wafer 50 in the step (b), and 1000 V is applied from the power source 53 in the step (c) at 300 ° C. The lower glass substrate 52 is anodically bonded. Further, in step (d), cesium (alkali metal) and a buffer gas 54 are introduced into the opening 51 under an inert atmosphere, and in step (e), the upper glass substrate 55 is anodically bonded. In step (f), a cesium-filled gas cell is formed. 56 is completed. The gas cell 56 obtained by this process is arranged in the direction of FIG.
US6808064B2

しかしながら、従来の製造プロセスによるガスセルは、図7に示すように受光部60、ITO61、ガスセル56、ITO62、レンズ部63、発光部64が縦積みされ、レーザ光は最下段から上方に向かって出射される。そして、各チップ60aごとにダイシングして1つの光学系を製造する。そのため、ガスセル56には金属溜り部を形成する余地がなく、その結果、レーザ光が透過する窓部に金属が付着して透過率が低下したり、レーザ光を遮断してしまうといった問題がある。
本発明は、かかる課題に鑑みて成されたものであり、複数の貫通口を開口して、これらの貫通口に連通可能な位置にガス導入筒部を形成した第1のガラス基板と、矩形状の貫通口を形成した第2のガラス基板と、第3のガラス基板を備え、これらを積層して接合した後ダイシングすることにより、ダイシング面をレーザ光の透過窓とし、且つガス導入筒部を金属溜り部としたガスセルを製造することが可能となり、量産性に優れ、且つ良好な光学窓を有するガスセルの製造方法を提供することを目的とする。
However, the gas cell according to the conventional manufacturing process has a light receiving unit 60, an ITO 61, a gas cell 56, an ITO 62, a lens unit 63, and a light emitting unit 64 stacked vertically as shown in FIG. 7, and the laser beam is emitted upward from the lowest stage. Is done. Then, each chip 60a is diced to produce one optical system. Therefore, there is no room for forming the metal reservoir in the gas cell 56. As a result, there is a problem that the metal adheres to the window portion through which the laser beam is transmitted and the transmittance is lowered or the laser beam is blocked. .
The present invention has been made in view of such problems, and includes a first glass substrate in which a plurality of through holes are opened and a gas introduction tube portion is formed at a position where the through holes can communicate with each other. A second glass substrate having a through-hole having a shape and a third glass substrate are provided, and these are laminated and joined, and then dicing is performed, so that the dicing surface serves as a laser light transmission window, and the gas introduction tube portion An object of the present invention is to provide a method of manufacturing a gas cell having an optical window that is excellent in mass productivity and has a good optical window.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]複数の第1の貫通口、及び各第1の貫通口の表面側開口に突設されたガス導入筒部を備えた第1の透明基板を用意する工程と、前記第1の透明基板の各第1の貫通口と連通可能な位置に該第1の貫通口よりも大径であり且つ矩形状の第2の貫通口を備えた第2の透明基板を用意する工程と、第3の透明基板を用意する工程と、前記第1の透明基板の裏面側に前記第2の透明基板と前記第3の透明基板を順次積層して接合することにより前記第1及び第2の貫通口から成る複数の空所を備えた透明基板積層体を形成する透明基板積層工程と、前記各ガス導入筒部から前記透明基板積層体の各空所内にアルカリ金属蒸気を充填して封止する封止工程と、前記透明基板積層体を、前記各空所間に位置する透明基板材料の肉厚内で切断することにより複数個のガスセルを形成する工程と、を備えたことを特徴とする。   Application Example 1 A step of preparing a first transparent substrate including a plurality of first through holes and a gas introduction tube portion projecting from the surface side opening of each first through hole; Providing a second transparent substrate having a rectangular second through-hole that is larger in diameter than the first through-hole at a position where it can communicate with each first through-hole of the transparent substrate; A step of preparing a third transparent substrate, and the first transparent substrate and the second transparent substrate are sequentially stacked and bonded to the back side of the first transparent substrate. A transparent substrate stacking step for forming a transparent substrate laminate having a plurality of cavities made of through-holes, and filling each space of the transparent substrate laminate with alkali metal vapor from each of the gas introduction cylinders for sealing. Cutting the sealing substrate and cutting the transparent substrate laminate within the thickness of the transparent substrate material located between the voids. Characterized by comprising a step of forming a plurality of the gas cell, the by.

本発明のガスセルの製造方法は、3つの透明基板を用意して、第1の透明基板には複数の第1の貫通口を形成して、この第1の貫通口の表面側開口に突設されたガス導入筒部を形成する。また、第2の透明基板には、各第1の貫通口と連通可能な位置に第1の貫通口よりも大径であり且つ矩形状の第2の貫通口を形成する。また、第2の透明基板に形成された第2の貫通口を密封する第3の透明基板を用意する。そして、これらの透明基板を順次積層して接合する。その後、各ガス導入路からアルカリ金属蒸気を充填して封止する。そして、接合された透明基板積層体を、各空所間に位置する透明基板材料の肉厚内で切断する。これにより、一度の工程で複数のガスセルを製造することが可能となり、量産効果を高めることができる。   In the gas cell manufacturing method of the present invention, three transparent substrates are prepared, a plurality of first through holes are formed in the first transparent substrate, and the first through holes are protruded from the surface side opening. The gas introduction tube portion thus formed is formed. Further, the second transparent substrate is formed with a second through-hole having a diameter larger than that of the first through-hole and a rectangular shape at a position where it can communicate with each first through-hole. In addition, a third transparent substrate that seals the second through hole formed in the second transparent substrate is prepared. Then, these transparent substrates are sequentially laminated and bonded. After that, alkali metal vapor is filled from each gas introduction path and sealed. And the joined transparent substrate laminated body is cut | disconnected within the thickness of the transparent substrate material located between each cavity. As a result, a plurality of gas cells can be manufactured in a single process, and the mass production effect can be enhanced.

[適用例2]前記第3の透明基板の内側面には、前記各第2の貫通口と夫々連通する凹部が形成されていることを特徴とする。   Application Example 2 A concave portion communicating with each of the second through holes is formed on the inner side surface of the third transparent substrate.

適用例1では、第3の透明基板は第2の透明基板に形成された開口部を密封するために必要であったが、この開口部はガスセルのガスを充填する部屋となるため、所定の容積が必要である。そこで本発明では、第3の透明基板の内側面には、各第2の貫通口と夫々連通する凹部を設ける。これにより、ガスセルのガスを充填する部屋の容積を増加することができる。   In Application Example 1, the third transparent substrate is necessary for sealing the opening formed in the second transparent substrate. However, since this opening is a room filled with gas in the gas cell, Volume is needed. Therefore, in the present invention, the inner surface of the third transparent substrate is provided with a recess that communicates with each second through hole. Thereby, the volume of the room filled with the gas in the gas cell can be increased.

[適用例3]前記第2の透明基板と前記第3の透明基板を予め一体に構成したことを特徴とする。   Application Example 3 The second application example is characterized in that the second transparent substrate and the third transparent substrate are integrally formed in advance.

本発明は、適用例1の第2と第3の透明基板を一体化して部品点数を低減するものである。即ち、一体化した透明基板の厚みを厚くして、完全に貫通させずに矩形状の凹部を形成する。これにより、製造工程を減らすことができるため、製造コストを低減できるとともに、部品点数を削減することができる。   The present invention integrates the second and third transparent substrates of Application Example 1 to reduce the number of parts. That is, the thickness of the integrated transparent substrate is increased to form a rectangular recess without being completely penetrated. Thereby, since a manufacturing process can be reduced, while being able to reduce manufacturing cost, the number of parts can be reduced.

[適用例4]前記第1乃至第3の透明基板はガラスにより構成されていることを特徴とする。   Application Example 4 The first to third transparent substrates are made of glass.

透明基板はレーザ光を減衰させずに透過させるためには、透過率が高い材質が好ましい。また、透明基板に開口部等を形成したり、積層して接合する必要があるため、加工性に優れ、且つ平面度が高い材質が好ましい。その点ではガラスが最も適している。これにより、光の透過率が高く、加工性に優れ、且つ平面度が高いガスセルを製造することができる。   The transparent substrate is preferably made of a material having a high transmittance in order to transmit the laser light without being attenuated. Moreover, since it is necessary to form an opening etc. in a transparent substrate or to laminate | stack and join, the material which is excellent in workability and has high flatness is preferable. In that respect, glass is most suitable. Thereby, a gas cell with high light transmittance, excellent workability, and high flatness can be manufactured.

[適用例5]前記透明基板積層体の切断面を光透過部とすることを特徴とする。   Application Example 5 A feature is that a cut surface of the transparent substrate laminate is a light transmission portion.

透明基板をガラスで構成するため、切断面は光の透過率が高く、且つ平面度を高くすることができる。これにより、4面の切断面のうち対向する2面を光透過窓として他の2面を加熱するためのヒータを設置する面とすることができる。   Since the transparent substrate is made of glass, the cut surface has high light transmittance and high flatness. Thereby, it can be set as the surface which installs the heater for heating other 2 surfaces by making 2 surfaces which oppose among 4 cut surfaces into a light transmissive window.

[適用例6]請求項1乃至5の何れか一項に記載のガスセルの製造方法によりガスセルが製造されたことを特徴とする。   Application Example 6 A gas cell is manufactured by the method for manufacturing a gas cell according to any one of claims 1 to 5.

本発明の製造方法によれば、多数のガスセルを一度の工程で製造することができるため、品質の揃ったガスセルを大量生産することができる。   According to the manufacturing method of the present invention, a large number of gas cells can be manufactured in a single process, so that gas cells with uniform quality can be mass-produced.

[適用例7]前記ガス導入路を前記ガスセル内の余剰金属を貯留する金属溜り部とすることを特徴とする。   [Application Example 7] The application example is characterized in that the gas introduction path is a metal reservoir for storing excess metal in the gas cell.

ガスセルには拡散しきれなかった金属を貯留するための金属溜り部が必要である。本発明では、ガス導入路を他の温度より低く保つことにより、余分な金属を貯留する金属溜り部として機能する。これにより、透過窓に付着する金属をガス導入路に集めて透過窓の光透過率を高めることができる。   The gas cell needs a metal reservoir for storing metal that could not be diffused. In this invention, it functions as a metal reservoir part which stores an excess metal by keeping a gas introduction path lower than other temperature. Thereby, the metal adhering to the transmission window can be collected in the gas introduction path, and the light transmittance of the transmission window can be increased.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1(a)は本発明のガスセル製造方法の一例を説明する模式図である。このガスセル製造方法は、例えば、3枚のガラス基板1、4、6を接合して各チップごとにダイシングして製造する。即ち、本発明のガスセルの製造方法は、例えば、3枚のガラス基板を用意して、ガラス基板1(第1の透明基板)には複数の第1の貫通口2及び各第1の貫通口2の表面側開口に突設されたガス導入筒部3を形成する。また、ガラス基板4(第2の透明基板)には、ガラス基板1に形成した各第1の貫通口2と連通可能な位置に第1の貫通口2よりも大径であり且つ矩形状の第2の貫通口5を形成する。また、ガラス基板4に形成された第2の貫通口5を密封するガラス基板6(第3の透明基板)を用意する。そして、これらのガラス基板1、4、6を順次積層して接合することによりガラス基板積層体(透明基板積層体)23を形成する。その後、各ガス導入筒部3からガラス基板積層体23の各空所9内にアルカリ金属であるルビジウムガスを充填して封止する。そして、ガラス基板積層体23を各空所9間に位置するガラス基板材料の肉厚内で切断する。これにより、一度の工程で複数のガスセル26を製造することが可能となり、量産効果を高めることができる。
図1(b)はガラス基板積層体23を切断して製造されたガスセルの斜視図である。ガラス基板積層体23は、空所9の各面に対して平行に切断されるため、光源30から発光されたレーザ光をガスセル26のB面から入射して、その対向面のD面から出射して検出器31に入射させることができる。この図では、B面とD面を使用したが、A面とC面でも構わない。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
Fig.1 (a) is a schematic diagram explaining an example of the gas cell manufacturing method of this invention. In this gas cell manufacturing method, for example, three glass substrates 1, 4, 6 are joined and diced for each chip. That is, in the gas cell manufacturing method of the present invention, for example, three glass substrates are prepared, and the glass substrate 1 (first transparent substrate) has a plurality of first through holes 2 and first through holes. The gas introduction cylinder part 3 projected from the front surface side opening 2 is formed. Further, the glass substrate 4 (second transparent substrate) has a rectangular shape that is larger in diameter than the first through-hole 2 at a position where it can communicate with each first through-hole 2 formed in the glass substrate 1. A second through hole 5 is formed. Also, a glass substrate 6 (third transparent substrate) that seals the second through-hole 5 formed in the glass substrate 4 is prepared. And these glass substrates 1, 4, and 6 are laminated | stacked and joined sequentially, and the glass substrate laminated body (transparent substrate laminated body) 23 is formed. Thereafter, rubidium gas, which is an alkali metal, is filled from each gas introduction cylinder portion 3 into each space 9 of the glass substrate laminate 23 and sealed. And the glass substrate laminated body 23 is cut | disconnected within the thickness of the glass substrate material located between each cavity 9. FIG. As a result, a plurality of gas cells 26 can be manufactured in a single process, and the mass production effect can be enhanced.
FIG. 1B is a perspective view of a gas cell manufactured by cutting the glass substrate laminate 23. Since the glass substrate laminate 23 is cut in parallel to each surface of the void 9, the laser light emitted from the light source 30 enters from the B surface of the gas cell 26 and exits from the D surface of the opposite surface. Then, the light can enter the detector 31. In this figure, the B surface and the D surface are used, but the A surface and the C surface may be used.

図2は各ガラス基板の切断面を示す図である。同じ構成要素には図1と同じ参照番号を付して説明する。図2(a)はガラス基板1の断面図、図2(b)はガラス基板4の断面図、図2(c)はガラス基板6の断面図、図2(d)は各ガラス基板を接合してガラス基板積層体23とした断面図を示す。即ち、ガラス基板1には、第1の貫通口2及び各第1の貫通口2の表面側開口に突設されたガス導入筒部3がA部で接合されている(図2(a))。また、ガラス基板4には、ガラス基板1に形成した各第1の貫通口2と連通可能な位置に第1の貫通口2よりも大径であり且つ矩形状の第2の貫通口5が形成されている(図2(b))。また、ガラス基板6には、各第2の貫通口5と夫々連通する凹部7が形成されている(図2(c))。そして、図2(d)のようにガラス基板1、4、6を順次積層して接合することによりガラス基板積層体23を形成すると、ガス導入筒部3が接合された空所(以下、ガス貯留部と呼ぶ)9がガラス基板積層体23内に形成される。   FIG. 2 is a view showing a cut surface of each glass substrate. The same components will be described with the same reference numerals as in FIG. 2 (a) is a cross-sectional view of the glass substrate 1, FIG. 2 (b) is a cross-sectional view of the glass substrate 4, FIG. 2 (c) is a cross-sectional view of the glass substrate 6, and FIG. A sectional view of the glass substrate laminate 23 is shown. In other words, the glass substrate 1 is joined to the first through-hole 2 and the gas introduction cylinder portion 3 protruding from the surface-side opening of each first through-hole 2 at the A portion (FIG. 2A). ). Further, the glass substrate 4 has a second through-hole 5 having a diameter larger than that of the first through-hole 2 and a rectangular shape at a position where it can communicate with each first through-hole 2 formed in the glass substrate 1. It is formed (FIG. 2B). Further, the glass substrate 6 is formed with recesses 7 respectively communicating with the respective second through holes 5 (FIG. 2C). Then, when the glass substrate laminate 23 is formed by sequentially laminating and joining the glass substrates 1, 4, and 6 as shown in FIG. (Referred to as a reservoir) 9 is formed in the glass substrate laminate 23.

図3は本発明の第1の実施形態に係るガスセル製造方法の工程を説明する模式図である。この図では、説明を簡略化するために、ガラス基板に1つのガスセルを製造すると仮定して説明する。実際には、図1のように、ガラス基板には複数のガスセルが同一の工程により同時に製造される。
本発明のガスセル製造方法は、工程Aとして、円形のガラス基板1(図A−a)に、第1の貫通口2を開口し(図A−b)、この第1の貫通口2の表面側開口に突設されたガス導入筒部3を接合する(接合方法は、ガス導入筒部3を同質のガラスにより構成し、ガラス基板1とガス導入筒部3の接合面を研磨して密着させることで容易に両者を接合させることができる。)(図A−c)。これにより、ガラス基板1にガス導入筒部3が突出した加工ガラス基板20が完成する。
次に、工程Bとして、別の円形のガラス基板4(図B−a)に、第1の貫通口2と連通可能な位置に第1の貫通口2よりも大径であり且つ矩形状の第2の貫通口5を形成する(図B−b)。これにより、矩形の第2の貫通口5を有する加工ガラス基板21が完成する。
FIG. 3 is a schematic diagram for explaining the steps of the gas cell manufacturing method according to the first embodiment of the present invention. In this figure, in order to simplify the description, it is assumed that one gas cell is manufactured on a glass substrate. Actually, as shown in FIG. 1, a plurality of gas cells are simultaneously manufactured on the glass substrate by the same process.
In the gas cell manufacturing method of the present invention, as step A, the first through-hole 2 is opened in the circular glass substrate 1 (FIG. Aa) (FIG. Ab), and the surface of the first through-hole 2 is formed. The gas introduction cylinder part 3 protruding from the side opening is joined (the joining method is that the gas introduction cylinder part 3 is made of homogeneous glass, and the joining surface between the glass substrate 1 and the gas introduction cylinder part 3 is polished and adhered. By doing so, both can be easily joined.) (FIG. Ac). Thereby, the processed glass substrate 20 in which the gas introduction cylinder portion 3 protrudes from the glass substrate 1 is completed.
Next, as the process B, another circular glass substrate 4 (FIG. Ba) is larger in diameter than the first through-hole 2 and has a rectangular shape at a position where it can communicate with the first through-hole 2. The second through hole 5 is formed (FIG. B-b). Thereby, the processed glass substrate 21 having the rectangular second through-hole 5 is completed.

次に、工程Cとして、別の円形のガラス基板6(図C−a)の内側面に、第2の貫通口5と夫々連通する凹部7を形成する(図C−b)。これにより、矩形の凹部7を有する加工ガラス基板22が完成する。
次に、工程Dとして、加工ガラス基板20〜22を順次積層して(D−a)、それらを接合してガラス基板積層体23を形成する(D−b)。接合方法は、工程Aと同様である。これにより、ガラス基板積層体23内部にルビジウムガスを貯留するガス貯留部9が形成される。次に、不活性雰囲気下でガス導入筒部3の開口部3aからルビジウムガス8を充填する(D−c)。そして図示しないガスバーナ等で開口部3aを溶着させて封止し(符号24)、切断線25に沿ってダイシングする(D−d)。切断線25は、ガラス基板積層体23をガス貯留部9間に位置するガラス基板材料の肉厚内で切断する。その結果、ガス貯留部9の各面と平行な面A〜Dを有するガスセル26が完成する(D−e)。
Next, as step C, recesses 7 respectively communicating with the second through holes 5 are formed on the inner surface of another circular glass substrate 6 (FIG. Ca) (FIG. Cb). Thereby, the processed glass substrate 22 which has the rectangular recessed part 7 is completed.
Next, as the process D, the processed glass substrates 20 to 22 are sequentially laminated (Da), and they are joined to form the glass substrate laminate 23 (Db). The joining method is the same as in step A. Thereby, the gas storage part 9 which stores rubidium gas in the glass substrate laminated body 23 is formed. Next, the rubidium gas 8 is filled from the opening 3a of the gas introduction cylinder 3 under an inert atmosphere (Dc). Then, the opening 3a is welded and sealed with a gas burner or the like (not shown) (reference numeral 24) and diced along the cutting line 25 (Dd). The cutting line 25 cuts the glass substrate laminate 23 within the thickness of the glass substrate material located between the gas storage portions 9. As a result, the gas cell 26 having the surfaces A to D parallel to the respective surfaces of the gas storage unit 9 is completed (De).

即ち、ガラス基板6はガラス基板4に形成された第2の貫通口5を密封するために必要であったが、この第2の貫通口5はルビジウムガスを充填する部屋となるため、所定の容積が必要である。そこで本実施形態では、ガラス基板6の内側面に、第2の貫通口5と連通する凹部7を設ける。これにより、ルビジウムガスを充填する部屋の容積を増加することができる。これにより、一度の工程で複数のガスセルを製造することが可能となり、量産効果を高めることができる。
透明基板はレーザ光を減衰させずに透過させるためには、透過率が高い材質が好ましい。また、透明基板に貫通口等を形成したり、積層して接合する必要があるため、加工性に優れ、且つ平面度が高い材質が好ましい。その点ではガラスが最も適している。これにより、光の透過率が高く、加工性に優れ、且つ平面度が高いガスセルを製造することができる。
That is, the glass substrate 6 is necessary for sealing the second through-hole 5 formed in the glass substrate 4, but the second through-hole 5 becomes a room filled with rubidium gas. Volume is needed. Therefore, in the present embodiment, the concave portion 7 that communicates with the second through-hole 5 is provided on the inner surface of the glass substrate 6. Thereby, the volume of the room filled with rubidium gas can be increased. As a result, a plurality of gas cells can be manufactured in a single process, and the mass production effect can be enhanced.
The transparent substrate is preferably made of a material having a high transmittance in order to transmit the laser light without being attenuated. Moreover, since it is necessary to form a through-hole etc. in a transparent substrate, or to laminate | stack and join, the material which is excellent in workability and has high flatness is preferable. In that respect, glass is most suitable. Thereby, a gas cell with high light transmittance, excellent workability, and high flatness can be manufactured.

また、本発明の第2の実施形態に係るガスセル製造方法として、図3の工程Cにおいてガラス基板6に凹部7を形成せず、加工ガラス基板20、加工ガラス基板21、及びガラス基板6によりガラス基板積層体23を完成させても構わない。
また、本発明の第3の実施形態に係るガスセル製造方法として、図4のように、加工ガラス基板21と加工ガラス基板22を予め一体に構成するようにしても構わない。即ち、厚手のガラス基板10に貫通口5と凹部7により形成される容積に等しい凹部11を形成する。本発明は、加工ガラス基板21、22を一体化して部品点数を低減するものである。即ち、一体化したガラス基板10の厚みを厚くして、完全に貫通させずに矩形状の凹部11を形成する。これにより、製造工程を減らすことができるため、製造コストを低減できるとともに、部品点数を削減することができる。
Moreover, as a gas cell manufacturing method according to the second embodiment of the present invention, the glass substrate 6 is not formed with the recesses 7 in step C of FIG. 3, and the processed glass substrate 20, the processed glass substrate 21, and the glass substrate 6 are used to form glass. You may complete the board | substrate laminated body 23. FIG.
Further, as a gas cell manufacturing method according to the third embodiment of the present invention, the processed glass substrate 21 and the processed glass substrate 22 may be integrally configured in advance as shown in FIG. That is, the concave portion 11 having a volume equal to the volume formed by the through hole 5 and the concave portion 7 is formed in the thick glass substrate 10. In the present invention, the processed glass substrates 21 and 22 are integrated to reduce the number of parts. That is, the thickness of the integrated glass substrate 10 is increased, and the rectangular recess 11 is formed without being completely penetrated. Thereby, since a manufacturing process can be reduced, while being able to reduce manufacturing cost, the number of parts can be reduced.

以上の製造方法により、多数のガスセルを一度の工程で製造することができるため、品質の揃ったガスセルを大量生産することができる。また、ガス導入筒部3をガスセル内の余剰金属を貯留する金属溜り部とする。即ち、ガスセルには拡散しきれなかった金属を貯留するための金属溜り部が必要である。本発明では、ガス導入筒部3を他の温度より低く保つことにより、余分な金属を貯留する金属溜り部として機能する。これにより、透過窓に付着する金属をガス導入筒部3に集めて透過窓の光透過率を高めることができる。   Since a large number of gas cells can be manufactured in a single process by the above manufacturing method, gas cells with uniform quality can be mass-produced. Moreover, let the gas introduction cylinder part 3 be a metal reservoir part which stores the surplus metal in a gas cell. That is, the gas reservoir needs a metal reservoir for storing the metal that could not be diffused. In this invention, it functions as a metal reservoir part which stores excess metal by keeping the gas introduction cylinder part 3 lower than other temperature. Thereby, the metal adhering to the transmission window can be collected in the gas introduction cylinder part 3 to increase the light transmittance of the transmission window.

(a)は本発明のガスセル製造方法の一例を説明する模式図、(b)はガラス基板積層体23を切断して製造されたガスセルの斜視図である。(A) is a schematic diagram explaining an example of the gas cell manufacturing method of this invention, (b) is a perspective view of the gas cell manufactured by cut | disconnecting the glass substrate laminated body 23. FIG. (a)はガラス基板1の断面図、(b)はガラス基板4の断面図、(c)はガラス基板6の断面図、(d)は各ガラス基板を接合してガラス基板積層体23とした断面図である。(A) is sectional drawing of the glass substrate 1, (b) is sectional drawing of the glass substrate 4, (c) is sectional drawing of the glass substrate 6, (d) is joining each glass substrate, and the glass substrate laminated body 23 and FIG. 本発明の第1の実施形態に係るガスセル製造方法の工程を説明する模式図である。It is a schematic diagram explaining the process of the gas cell manufacturing method which concerns on the 1st Embodiment of this invention. 本発明の第3の実施形態に係るガスセル製造方法の斜視図である。It is a perspective view of the gas cell manufacturing method which concerns on the 3rd Embodiment of this invention. (a)〜(f)は従来のガスセルの製造プロセスを説明する図である。(A)-(f) is a figure explaining the manufacturing process of the conventional gas cell. 従来のガスセルの断面図である。It is sectional drawing of the conventional gas cell. 従来の製造方法による光学系を説明する模式図である。It is a schematic diagram explaining the optical system by the conventional manufacturing method.

符号の説明Explanation of symbols

1、4、6、10 ガラス基板、2 第1の貫通口、3 ガス導入筒部、5 第2の貫通口、7、11 凹部、8ルビジウムガス、9 ガス貯留部、20、21、22 加工ガラス基板   1, 4, 6, 10 Glass substrate, 2 1st through-hole, 3 gas introduction cylinder part, 5 2nd through-hole, 7, 11 recessed part, 8 rubidium gas, 9 gas storage part, 20, 21, 22 Glass substrate

Claims (7)

複数の第1の貫通口、及び各第1の貫通口の表面側開口に突設されたガス導入筒部を備えた第1の透明基板を用意する工程と、
前記第1の透明基板の各第1の貫通口と連通可能な位置に該第1の貫通口よりも大径であり且つ矩形状の第2の貫通口を備えた第2の透明基板を用意する工程と、
第3の透明基板を用意する工程と、
前記第1の透明基板の裏面側に前記第2の透明基板と前記第3の透明基板を順次積層して接合することにより前記第1及び第2の貫通口から成る複数の空所を備えた透明基板積層体を形成する透明基板積層工程と、
前記各ガス導入筒部から前記透明基板積層体の各空所内にアルカリ金属蒸気を充填して封止する封止工程と、
前記透明基板積層体を、前記各空所間に位置する透明基板材料の肉厚内で切断することにより複数個のガスセルを形成する工程と、を備えたことを特徴とするガスセルの製造方法。
Preparing a first transparent substrate having a plurality of first through-holes and a gas introduction tube portion projecting from the surface-side opening of each first through-hole;
A second transparent substrate having a second through-hole that is larger in diameter than the first through-hole and has a rectangular second through-hole is provided at a position where it can communicate with each first through-hole of the first transparent substrate. And a process of
Preparing a third transparent substrate;
The second transparent substrate and the third transparent substrate are sequentially stacked and bonded to the back surface side of the first transparent substrate, thereby providing a plurality of voids including the first and second through holes. A transparent substrate lamination step for forming a transparent substrate laminate,
A sealing step of filling and sealing an alkali metal vapor in each space of the transparent substrate laminate from each of the gas introduction cylinders;
Forming the plurality of gas cells by cutting the transparent substrate laminate within the thickness of the transparent substrate material positioned between the voids.
前記第3の透明基板の内側面には、前記各第2の貫通口と夫々連通する凹部が形成されていることを特徴とする請求項1に記載のガスセルの製造方法。   The method for manufacturing a gas cell according to claim 1, wherein a concave portion communicating with each of the second through holes is formed on an inner surface of the third transparent substrate. 前記第2の透明基板と前記第3の透明基板を予め一体に構成したことを特徴とする請求項1又は2に記載のガスセルの製造方法。   The method for manufacturing a gas cell according to claim 1 or 2, wherein the second transparent substrate and the third transparent substrate are integrally formed in advance. 前記第1乃至第3の透明基板はガラスにより構成されていることを特徴とする請求項1乃至3の何れか一項に記載のガスセルの製造方法。   The method of manufacturing a gas cell according to any one of claims 1 to 3, wherein the first to third transparent substrates are made of glass. 前記透明基板積層体の切断面を光透過部とすることを特徴とする請求項1乃至4の何れか一項に記載のガスセルの製造方法。   The method for producing a gas cell according to any one of claims 1 to 4, wherein a cut surface of the transparent substrate laminate is used as a light transmission part. 請求項1乃至5の何れか一項に記載のガスセルの製造方法により製造されたことを特徴とするガスセル。   A gas cell manufactured by the method for manufacturing a gas cell according to any one of claims 1 to 5. 前記ガス導入路を前記ガスセル内の余剰金属を貯留する金属溜り部とすることを特徴とする請求項6に記載のガスセル。   The gas cell according to claim 6, wherein the gas introduction path is a metal reservoir that stores excess metal in the gas cell.
JP2008055876A 2008-03-06 2008-03-06 Method of manufacturing gas cell, and gas cell Withdrawn JP2009212416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055876A JP2009212416A (en) 2008-03-06 2008-03-06 Method of manufacturing gas cell, and gas cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055876A JP2009212416A (en) 2008-03-06 2008-03-06 Method of manufacturing gas cell, and gas cell

Publications (1)

Publication Number Publication Date
JP2009212416A true JP2009212416A (en) 2009-09-17

Family

ID=41185252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055876A Withdrawn JP2009212416A (en) 2008-03-06 2008-03-06 Method of manufacturing gas cell, and gas cell

Country Status (1)

Country Link
JP (1) JP2009212416A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013670A (en) * 2010-02-04 2012-01-19 Honeywell Internatl Inc Manufacturing technology for enhancing pressure uniformity in anode junction gas-phase cell
CN102641118A (en) * 2011-02-16 2012-08-22 精工爱普生株式会社 Production method of gas cell, and gas cell
EP2546707A2 (en) 2011-07-13 2013-01-16 Ricoh Company, Ltd. Atomic oscillator and method for fabricating atomic oscillator
JP2014103350A (en) * 2012-11-22 2014-06-05 Ricoh Co Ltd Alkali metal cell, atomic oscillator, and method of manufacturing alkali metal cell
JP2014197718A (en) * 2014-07-23 2014-10-16 セイコーエプソン株式会社 Gas cell and magnetic measuring apparatus
JP2015053452A (en) * 2013-09-09 2015-03-19 セイコーエプソン株式会社 Method for manufacturing atom cell, atom cell, quantum interference device, atomic oscillator, electronic equipment, and mobile body
US20150107097A1 (en) * 2011-03-23 2015-04-23 Seiko Epson Corporation Gas cell, gas cell manufacturing apparatus, and gas cell manufacturing method
US9112518B2 (en) 2013-08-20 2015-08-18 Ricoh Company, Ltd. Heater substrate, alkali metal cell unit and atomic oscillator
US9201404B2 (en) 2012-11-21 2015-12-01 Ricoh Company, Ltd. Alkali metal cell, atomic oscillator, and alkali metal cell fabricating method
JP2016058807A (en) * 2014-09-08 2016-04-21 セイコーエプソン株式会社 Atom cell, method of manufacturing atom cell, quantum interference device, atomic oscillator, electronic apparatus, and mobile
JP2017220675A (en) * 2017-07-26 2017-12-14 セイコーエプソン株式会社 Method for manufacturing atom cell, atom cell, quantum interference device, atomic oscillator, and electronic equipment and mobile body
EP2746876A3 (en) * 2012-10-29 2018-01-10 Honeywell International Inc. Fabrication techniques to enhance pressure uniformity in anodically bonded vapor cells
CN111039552A (en) * 2019-12-24 2020-04-21 北京航天控制仪器研究所 Fusion sealing method for positive pressure filling glass air chamber based on low-temperature phase-change solder

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9146540B2 (en) 2010-02-04 2015-09-29 Honeywell International Inc. Fabrication techniques to enhance pressure uniformity in anodically bonded vapor cells
JP2012013670A (en) * 2010-02-04 2012-01-19 Honeywell Internatl Inc Manufacturing technology for enhancing pressure uniformity in anode junction gas-phase cell
CN104188626A (en) * 2011-02-16 2014-12-10 精工爱普生株式会社 Production method of gas cell, and gas cell, production method of magnetic measurement device and magnetic measurement device
CN102641118A (en) * 2011-02-16 2012-08-22 精工爱普生株式会社 Production method of gas cell, and gas cell
US9151808B2 (en) 2011-02-16 2015-10-06 Seiko Epson Corporation Production method of gas cell, and gas cell
US9684041B2 (en) 2011-02-16 2017-06-20 Seiko Epson Corporation Production method of gas cell, and gas cell
US20150107097A1 (en) * 2011-03-23 2015-04-23 Seiko Epson Corporation Gas cell, gas cell manufacturing apparatus, and gas cell manufacturing method
US9318750B2 (en) * 2011-03-23 2016-04-19 Seiko Epson Corporation Gas cell manufacturing apparatus
US8970309B2 (en) 2011-07-13 2015-03-03 Ricoh Company, Ltd. Atomic oscillator and method for fabricating atomic oscillator
JP2013038382A (en) * 2011-07-13 2013-02-21 Ricoh Co Ltd Atomic oscillator, and method of manufacturing the same
EP2546707A2 (en) 2011-07-13 2013-01-16 Ricoh Company, Ltd. Atomic oscillator and method for fabricating atomic oscillator
EP2746876A3 (en) * 2012-10-29 2018-01-10 Honeywell International Inc. Fabrication techniques to enhance pressure uniformity in anodically bonded vapor cells
US9201404B2 (en) 2012-11-21 2015-12-01 Ricoh Company, Ltd. Alkali metal cell, atomic oscillator, and alkali metal cell fabricating method
JP2014103350A (en) * 2012-11-22 2014-06-05 Ricoh Co Ltd Alkali metal cell, atomic oscillator, and method of manufacturing alkali metal cell
US9112518B2 (en) 2013-08-20 2015-08-18 Ricoh Company, Ltd. Heater substrate, alkali metal cell unit and atomic oscillator
JP2015053452A (en) * 2013-09-09 2015-03-19 セイコーエプソン株式会社 Method for manufacturing atom cell, atom cell, quantum interference device, atomic oscillator, electronic equipment, and mobile body
JP2014197718A (en) * 2014-07-23 2014-10-16 セイコーエプソン株式会社 Gas cell and magnetic measuring apparatus
US9467157B2 (en) 2014-09-08 2016-10-11 Seiko Epson Corporation Atomic cell, atomic cell manufacturing method, quantum interference device, atomic oscillator, electronic device, and moving object
JP2016058807A (en) * 2014-09-08 2016-04-21 セイコーエプソン株式会社 Atom cell, method of manufacturing atom cell, quantum interference device, atomic oscillator, electronic apparatus, and mobile
JP2017220675A (en) * 2017-07-26 2017-12-14 セイコーエプソン株式会社 Method for manufacturing atom cell, atom cell, quantum interference device, atomic oscillator, and electronic equipment and mobile body
CN111039552A (en) * 2019-12-24 2020-04-21 北京航天控制仪器研究所 Fusion sealing method for positive pressure filling glass air chamber based on low-temperature phase-change solder
CN111039552B (en) * 2019-12-24 2022-01-04 北京航天控制仪器研究所 Fusion sealing method for positive pressure filling glass air chamber based on low-temperature phase-change solder

Similar Documents

Publication Publication Date Title
JP2009212416A (en) Method of manufacturing gas cell, and gas cell
JP5504851B2 (en) Atomic oscillator and manufacturing method
US9146540B2 (en) Fabrication techniques to enhance pressure uniformity in anodically bonded vapor cells
TW466717B (en) Manufacturing method of semiconductor device and semiconductor device
CN104062720B (en) The method of optical receiver and manufacture optical receiver
JP2011119325A5 (en)
JP2005501405A (en) Manufacturing method of electronic parts
CN101593932A (en) Light-emitting device and method for producing light-emitting device
JP2007201260A (en) Sealing structure, method of manufacturing sealing structure, semiconductor device, and method of manufacturing semiconductor device
CN103454446A (en) Atomic sensor physics package with integrated transmissive and reflective portions along light paths
JP2007173915A (en) Piezoelectric device unit and method of manufacturing same
JP4807987B2 (en) Hermetically sealed package and optical submodule
CN102148608A (en) Method of manufacturing package and method of manufacturing piezoelectric vibrator
CN102122929A (en) Package manufacturing method, piezoelectric vibrator, and oscillator
CN105895591A (en) Heat sink component and mounting method for positioning and mounting chips
JP2019204878A (en) Light source device, projector, and method for manufacturing light source device
WO2017047420A1 (en) Light-emitting device
CN108649051B (en) Display panel mother board, preparation method thereof, display panel and electronic equipment
JP2010081127A (en) Crystal oscillator and method of manufacturing same
CN112825413A (en) Laser device
JP3342020B2 (en) Electronic or opto-electronic case with ceramic insert
JP2015170783A (en) Glass cell, functional device, and manufacturing method of functional device
JP2010221573A (en) Manufacturing method of multilayer substrate
JP2011119633A (en) Method for manufacturing atomic oscillator
JP2016115694A (en) Mounting structure of optical module and manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510