JP2009211967A - 色素増感型太陽電池及びその製造方法 - Google Patents

色素増感型太陽電池及びその製造方法 Download PDF

Info

Publication number
JP2009211967A
JP2009211967A JP2008054378A JP2008054378A JP2009211967A JP 2009211967 A JP2009211967 A JP 2009211967A JP 2008054378 A JP2008054378 A JP 2008054378A JP 2008054378 A JP2008054378 A JP 2008054378A JP 2009211967 A JP2009211967 A JP 2009211967A
Authority
JP
Japan
Prior art keywords
substrate
base
dye
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008054378A
Other languages
English (en)
Inventor
Atsuya Takashima
淳矢 高島
Takuya Fujii
拓也 藤井
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008054378A priority Critical patent/JP2009211967A/ja
Publication of JP2009211967A publication Critical patent/JP2009211967A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】光発電により得た電力を第2基体側の集電導体を介して効率よく回収可能で、大面積化に有利な構造の色素増感型太陽電池を提供する。
【解決手段】色素増感型太陽電池1,201は、第1基体13、第2基体20、透光性導電層14、半導体電極15、触媒電極23、集電導体42、複数の中継接続体51、樹脂製保護部121等を備える。集電導体42は、第2基体20にて触媒電極23と絶縁された状態で配置される。複数の中継接続体51は、表面にはんだ層52が存在する粒状物で、第1基体13及び第2基体20間にて触媒電極23と絶縁された状態で点状に配置され、透光性導電層14と集電導体42との間を導通する。樹脂製保護部121は、複数の中継接続体51を個別に包囲してはんだ層52を電解液33から隔てる。複数の中継接続体51は、はんだ層52の溶融及び固化により集電導体42に対して接合される。
【選択図】 図1

Description

本発明は、光エネルギーを電気エネルギーに直接変換する色素増感型太陽電池及びその製造方法に関するものである。
現在、太陽光発電では、単結晶シリコン、多結晶シリコン、アモルファスシリコン及びこれらを組み合わせたHIT(Heterojunction with Intrinsic Thin-layer)等を用いた太陽電池が実用化され、主力技術となっている。これらの太陽電池は、光電変換の効率が20%近くあり、優れている。しかし、シリコン系太陽電池は素材製造にかかるエネルギーコストが高く、環境負荷などの面でも課題が多く、価格や材料供給等における制限もある。一方、近年においては、Gratzel等により提案された色素増感型太陽電池が安価な太陽電池として注目されている(例えば、非特許文献1及び特許文献1参照)。色素増感型太陽電池は、増感色素を担持させたチタニア多孔質電極(いわゆる半導体電極)と対極である触媒電極との間に電解質を介在させた構造を有している。この種の太陽電池は、現行のシリコン系太陽電池に比べて光電変換効率が低いというデメリットを有するものの、材料や製法等の面で大幅なコストダウンが可能というメリットを有している。
ところで、この種の色素増感型太陽電池における半導体電極は、ガラス基板のような透光性基板上に設けられた透光性導電層を被覆するように設けられることが多い。しかし、透光性導電層には透明性が要求されるため、その低抵抗化には一定の制約を受ける。それゆえ、色素増感型太陽電池が大きな面積になればなるほど、半導体電極での光電変換により生じた電力を効率よく集めることが難しくなる。そこで通常は、銀ペーストを塗布及び焼付けしてなる低抵抗かつ格子状の集電電極を透光性基板上に別途設け、この集電電極に半導体電極を電気的に接続して集電するようにしている(例えば、特許文献2参照)。また、このような焼付けに代えて、スパッタまたは蒸着により金属膜を形成、堆積させることで集電電極を形成することも従来提案されている。
Nature誌(第353巻、pp.737−740、1991年) 特開平1−220380号公報 特開2000−285977号公報
ところが、このような集電電極を設ける場合には、その幅か厚さのいずれかを大きくする必要があるが、例えば幅を広くしたときその部分には半導体電極が形成不能となる。そのため、光電変換のための有効な実面積の縮小につながり、単位面積あたりの光電変換効率が低下してしまう。また、厚さを厚くすると、半導体電極と対極との距離、つまり電解液層の厚さが厚くなるため、イオンの移動速度が低下する結果、やはり光電変換効率の低下につながってしまう。
以上の問題を解消するためには、例えば、半導体電極が形成される透光性基板(便宜上「第1基体」と呼ぶ)の側ではなく、対極のある基板(便宜上「第2基体」と呼ぶ)の側に集電電極を設ければよいと考えられる。また、このような構造においては、半導体電極と第2基体側集電電極との間を中継して電気的に接続するための何らかの導電体の配設が必要になる。しかしながら、従来このような構造を有する色素増感型太陽電池は、未だ具体的に提案されていなかった。
本発明は上記の課題に鑑みてなされたものであり、その第1の目的は、光発電により得た電力を第2基体側に設けられた集電導体を介して効率よく回収可能であり、大面積化に有利な構造を有する色素増感型太陽電池を提供することにある。また、本発明の第2の目的は、上記の優れた色素増感型太陽電池を比較的容易にかつ低コストで得ることが可能な製造方法を提供することにある。
上記課題を解決するために、請求項1に記載の発明は、透光性を有する第1基体(13)と、前記第1基体(13)と対向する位置に配置された第2基体(20,20A)と、前記第1基体(13)の前記第2基体(20,20A)に対向する側(12)に設けられた透光性導電層(14)と、前記透光性導電層(14)上に設けられた、増感色素を含む半導体電極(15)と、前記第2基体(20,20A)の前記第1基体に対向する側(22)に設けられた触媒電極(23)と、前記第1基体(13)及び前記第2基体(20,20A)間に存在するセル空間(32)内に充填された電解液(33)と、導電金属材料からなり、前記第2基体(20,20A)の前記第1基体(13)に対向する側に露出し、前記触媒電極(23)と絶縁された状態で配置された集電導体(42,205)と、少なくとも表面にはんだ層(52)が存在する粒状物であり、前記第1基体(13)及び前記第2基体(20,20A)間にて前記触媒電極(23)と絶縁された状態で点状に配置され、前記透光性導電層(14)と前記集電導体(42,205)との間を導通する複数の中継接続体(51)と、前記複数の中継接続体(51)を個別に包囲して前記はんだ層(52)を前記電解液(33)から隔てる樹脂製保護部(61,62)とを備え、前記複数の中継接続体(51)が、前記はんだ層(52)の溶融及び固化により前記集電導体(42,205)に対して接合されていることを特徴とする色素増感型太陽電池(1,201)をその要旨とする。
従って、手段1に記載の発明によると、第1基体及び第2基体間に配置された複数の中継接続体を介して、第1基体側の透光性導電層と第2基体側の集電導体とが導通される。そのため、第1基体側に集電電極を設けた従来技術とは異なり、半導体電極が形成不能な面積が増えることもなく、光電変換のための有効な実面積が維持される。よって、単位面積あたりの光電変換効率の低下を回避でき、光発電により得た電力を第2基体側に設けられた集電導体を介して効率よく回収することができる。よって、大面積化に有利な構造を有する色素増感型太陽電池を実現することができる。また、中継接続体の表面に存在するはんだ層は比較的低抵抗であるため電気を効率よく流すことができ、しかも中継接続体はそのはんだ層の溶融及び固化により集電導体に対して強固に接合されている。これらのことも電力の効率的回収の実現に寄与している。
しかも、第1基体側の透光性導電層は導電金属材料に比べてはんだ濡れ性に劣る非金属材料であることが多く、この場合にはリフローを行っても中継接続体のはんだ層を固着させることができない可能性がある。この点、手段1では中継接続体のはんだ層を導電金属材料からなる集電導体側に固着させているため、強固な接合状態を得ることができ、信頼性も向上する。
透光性を有する第1基体は、使用時に光が入射する側に配置されることから、ガラスや樹脂シート等のような透光性材料を用いて形成される。この第1基体が樹脂シートからなるとき、この樹脂シートの形成に用いる樹脂としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリフェニレンスルフィド、ポリカーボネート、ポリスルフォン、ポリエチリデンノルボルネン等の各種の熱可塑性樹脂が挙げられる。第1基体の厚さは材質によっても異なり、特に限定されないが、透光性の指標である下記の透過率が60%〜99%、特に85%〜99%となる厚さであることが好ましい。ここでいう透光性とは、波長400nm〜900nmの可視光の透過率が10%以上であることを意味する。この透過率は60%以上、特に85%以上であることが好ましい。以下、透光性の意味及び好ましい透過率は全て同様である。
透過率(%)=(透過した光量/入射した光量)×100
「透光性導電層」は、第1基体の第2基体に対向する側に設けられる。透光性導電層は、透光性及び導電性を有していればよく、その材質は特に限定されない。この透光性導電層としては、導電性酸化物からなる薄膜、炭素薄膜等が挙げられる。導電性酸化物としては、酸化インジウム、スズドープ酸化インジウム、酸化スズ、フッ素ドープ酸化スズ(FTO)等が挙げられる。この透光性導電層の厚さはその材質によっても異なり、特に限定されないが、表面抵抗が100Ω/cm以下、特に1Ω/cm以上10Ω/cm以下となる厚さであることが好ましい。
なお、この透光性導電層の透光性の意味及び好ましい可視光透過率は、透光性基板の場合と同様である。
「半導体電極」は、前記透光性導電層上に設けられ、増感色素を含む。前記つまり、この半導体電極は第1基体の第2基体に対向する側に設けられ、セル空間に面して配置された状態となる。
この半導体電極は、例えば、多孔質電極基体に増感色素を付着させた構造を有している。多孔質電極基体は、金属酸化物、金属硫化物等により形成することができる。金属酸化物としては、チタニア、酸化スズ、酸化亜鉛、五酸化二ニオブ等の酸化ニオブ、酸化タンタル及びジルコニア等が挙げられる。また、チタン酸ストロンチウム、チタン酸カルシウム及びチタン酸バリウム等の複合酸化物を用いることもできる。さらに、金属硫化物としては、硫化亜鉛、硫化鉛及び硫化ビスマス等が挙げられる。
多孔質電極基体の形成方法は特に限定されないが、例えば、金属酸化物、金属硫化物等の半導体微粒子を含有するペーストを、透光性基板等の表面に塗布して未焼成の多孔質電極基体を形成した後、焼成するという手順を採用することができる。ペーストの塗布方法も特に限定されず、その具体例としてはスクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等がある。このようにして形成された半導体電極基体は、半導体微粒子が集合してなる集合体の形態を有したものとなる。
この場合における焼成条件は特に限定されないが、例えば焼成温度については400℃以上600℃以下、特に450℃以上550℃以下に設定され、焼成時間については10分以上300分以下、特に20分以上40分以下に設定されてもよい。焼成雰囲気は、大気雰囲気等の酸化雰囲気としてもよく、あるいはアルゴン等の希ガスや窒素ガス等の不活性雰囲気としてもよい。
半導体電極の厚さは特に限定されないが、0.1μm以上100μm以下とすることができ、1μm以上50μm以下、特に2μm以上40μm以下、さらに5μm以上30μm以下とすることが好ましい。この厚さが0.1μm以上100μm以下の範囲内であれば、光電変換が十分になされ、発電効率の向上を図ることができる。また、半導体電極は、その強度及び第1基体等との密着性を向上させるため、熱処理されることが好ましい。熱処理の温度及び時間は特に限定されないが、熱処理温度については40℃以上700℃以下、特に100℃以上500℃以下とすることが好ましく、熱処理時間については10分以上10時間以下、特に20分以上5時間以下とすることが好ましい。なお、第1基体として樹脂シートを用いる場合には、樹脂が熱で劣化しないように適温で熱処理することが好ましい。
半導体電極が有する「増感色素」としては、光電変換の作用を向上させる役割を果たすものであって、具体的には光電変換の作用を向上させる錯体色素及び有機色素を用いることができる。錯体色素としては金属錯体色素が挙げられ、有機色素としてはポリメチン色素、メロシアニン色素等が挙げられる。金属錯体色素としてはルテニウム錯体色素及びオスミウム錯体色素等が挙げられ、ルテニウム錯体色素が特に好ましい。さらに、光電変換がなされる波長域を拡大し、光電変換効率を向上させるため、増感作用が発現される波長域の異なる2種以上の増感色素を併用することもできる。この場合、照射される光の波長域と強度分布とによって併用する増感色素の種類及びそれらの量比を設定することが好ましい。また、増感色素は半導体電極に結合するための官能基を有することが好ましい。この官能基としては、カルボキシル基、スルホン酸基、シアノ基等が挙げられる。
多孔質電極基体に増感色素を付着させる方法は特に限定されず、例えば、増感色素を有機溶媒に溶解させた溶液に多孔質電極基体を浸漬し、溶液を含浸させた後、有機溶媒を除去するという方法が採用可能である。また、この溶液を多孔質電極基体に塗布した後、有機溶媒を除去するという方法も採用可能である。この場合の溶液塗布方法としては、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテンコート法、スピンコート法、スプレーコート法等が挙げられる。さらに、この溶液は、オフセット印刷、グラビア印刷、スクリーン印刷等の印刷法により塗布することもできる。
増感色素の付着量は半導体電極15に対して0.01ミリモル以上1ミリモル以下、特に0.5ミリモル以上1ミリモル以下であることが好ましい。付着量が0.01ミリモル以上1ミリモル以下の範囲内に設定すれば、半導体電極において光電変換が効率よくなされる。また、半導体電極に付着しなかった増感色素が電極周辺に遊離していると、変換効率が低下することがある。そのため、増感色素を付着させる処理の後、半導体電極を洗浄して余剰の増感色素を除去することが好ましい。この除去は、洗浄槽を用いてアセトニトリル等の極性溶媒及びアルコール系溶媒などの有機溶媒で洗浄することにより行うことができる。また、電極基体に多くの増感色素を付着させるためには、半導体電極を加熱して、浸漬、塗布等の処理を行うことが好ましい。この場合、半導体電極の表面に水が吸着するのを避けるため、加熱後、常温に降温させることなく40℃以上80℃以下で速やかに処理することが好ましい。
一方、第1基体に対向して配置される「第2基体」は、その第1基体に対向する側に触媒電極を有している。
第2基体は、透光性を有していてもよいし、透光性を有していなくてもよい。透光性を有する第2基体としては、例えばガラス基板や樹脂基板等を用いることができる。透光性を有していない第2基体としては、例えばセラミック基板や樹脂基板、樹脂と金属とからなる積層基板を用いることができる。
樹脂基板の利点は、ガラス基板やセラミック基板に比較してコスト性及び加工性に優れていることである。樹脂基板における樹脂材料は特に限定されず任意に選択可能であるが、プリント配線基板に通常使用されるような樹脂材料を選択することがよく、例えばEP樹脂(エポキシ樹脂)、PI樹脂(ポリイミド樹脂)、PET樹脂(ポリエチレンテレフタレート樹脂)、BT樹脂(ビスマレイミド−トリアジン樹脂)、PPE樹脂(ポリフェニレンエーテル樹脂)、PEEK樹脂(ポリエーテルエーテルケトン樹脂)などが好適である。また、第2基体は、柔軟性を有する樹脂基板(例えば樹脂フィルム材)を1枚または2枚以上含んで構成されたものであることがよい。その理由は、第2基体自体が部分的に変形することで、中継接続体の粒径や電極間距離のバラツキの解消に有利に作用し、両電極間の電気的接続を確保しやすくなるからである。
また、セラミック基板の利点は、機械的強度に優れるため装置全体の耐久性の向上に有利なことである。セラミック基板の形成に用いられるセラミックは特に限定されず、例えば、酸化物系セラミック、窒化物系セラミック、炭化物系セラミック等の各種セラミックスを用いることができる。なかでも、アルミナ、窒化ケイ素、ジルコニア等が好ましく、特にアルミナが好ましい。その理由は、機械的強度に優れることに加え、好適な絶縁性を有することから電極や導電層などを形成するための支持体としても好適だからである。
また、樹脂と金属とからなる積層基板の利点は、集電抵抗を大きく下げることができる点とコスト低減が可能な点である。樹脂と金属とからなる積層基板における樹脂及び金属は特に限定されず、例えば、樹脂としては、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン等を用いることができ、金属としては、銅、アルミ等を用いることができる。なかでも、樹脂としてポリイミドを用い、金属として銅を用いることが特に好ましい。その理由は、耐熱性が高く、触媒形成、使用するはんだボールの自由度が高いことと、半導体パッケージで成熟された加工技術が流用できるため、安価に高度な加工が可能だからである。
第2基体の第1基体に対向する側に設けられた「触媒電極」は、第2基体の面上に直接的に設けられてもよく、第2基体側導電層を介して間接的に設けられてもよい。第2基体側導電層としては特に限定されず、導電性を有していればその材質は問わない。この場合、例えば第1基体の第2基体に対向する側に設けられた透光性導電層と同様のものを第2基体側導電層として用いてもよい。
この触媒電極は、触媒活性を有する物質により形成することができる。触媒活性を有する物質としては、白金、金、ロジウム等の貴金属が挙げられる。銀も貴金属であるが、電解質等に対する耐腐食性が低いため好ましくない。
触媒活性を有する物質であって貴金属以外のものとしては、カーボンブラック等が挙げられる。ここに列挙した物質は、いずれも好適な導電性を有する。貴金属は触媒活性を有しかつ電気化学的に安定であるため、触媒電極の形成用材料として好適であり、その中でも触媒活性が高くて電解質に対する耐腐食性が高い白金が特に好適である。
触媒電極の厚さは特に限定されないが、単層及び多層のいずれの場合も、3nm以上10μm以下、特に3nm以上2μm以下とすることができる。触媒電極の厚さが3nm以上10μm以下の範囲内であれば、十分に抵抗の低い触媒電極とすることができる。
触媒活性を有する物質からなる触媒電極は、触媒活性を有する物質の微粒子を含有するペーストを、第2基体の表面に塗布することにより形成することができる。
この塗布方法としては、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等の各種の方法が挙げられる。さらに、この触媒電極は、スパッタリング法、蒸着法、イオンプレーティング法等により第2基体の表面に金属等を堆積させて形成することもできる。
第1基体及び第2基体の間には例えばスペーサが配置され、その配置の結果両者の間にセル空間が区画形成される。スペーサの材料は特に限定されず、樹脂またはガラスなどが使用可能であるが、耐腐食性のある材料を選択することが好ましい。このスペーサの厚さは、所望の高さのセル空間を形成するために、例えば10μm以上100μm以下、好ましくは20μm以上80μm以下に設定される。
「電解液」は、第1基体及び第2基体間に存在する上記のセル空間内に充填され、少なくとも半導体電極と触媒電極との間に介在している。セル空間への電解液の注入は、第1基体側から行ってもよく、第2基体側から行ってもよい。この場合、穿孔しやすい側に注入口を設け、この注入口から電解液を注入することが好ましい。注入口は1個でよいが、空気抜きのためさらに別の孔を設けておいてもよい。このように空気抜きのための孔を設けておけば、電解液をより容易にかつ確実に注入することができる。
電解液における電解質としては、(1)Iとヨウ化物、(2)Brと臭化物、(3)フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、(4)ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、(5)ビオロゲン色素、(6)ヒドロキノン−キノン、などを含有する電解質が挙げられる。(1)におけるヨウ化物としては、LiI、NaI、KI、CsI、CaI等の金属ヨウ化物、及びテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩などが挙げられる。また、(2)における臭化物としては、LiBr、NaBr、KBr、CsBr、CaBr等の金属臭化物、及びテトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物の臭素塩などが挙げられる。これらの電解質のうちでは、Iと、LiI及びピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩と、を組み合わせてなる電解質が特に好ましい。これらの電解質は1種のみを用いてもよいし、2種以上を用いてもよい。
電解質は、各種の添加剤等とともに溶媒に配合し、電解液として用いることができる。この溶媒は、粘度が低く、イオン易動度が高く、十分なイオン伝導性を有するものであることが好ましい。このような溶媒としては、(1)エチレンカーボネート、プロピレンカーボネート等のカーボネート類、(2)3−メチル−2−オキサゾリジノン等の複素環化合物、(3)ジオキサン、ジエチルエーテル等のエーテル類、(4)エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、(5)メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のモノアルコール類、(6)エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、(7)アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類、(8)ジメチルスルフォキシド、スルフォラン等の非プロトン極性物質などが挙げられる。これらの溶媒は1種のみを用いてもよいし、2種以上を用いてもよい。
さらに、電解質として常温溶融塩を用いることができ、この場合には溶媒を用いて電解液とすることができる。また、電解質を単独で用いることもできる。この常温溶融塩としては、ヨウ化物の常温溶融塩を用いることができる。このヨウ化物の常温溶融塩としては、イミダゾリウム塩、ピリジニウム塩、ピロリジニウム塩、ピラゾリジウム塩、イソチアゾリジニウム塩、イソオキサゾリジニウム塩等の各種の常温溶融塩が挙げられる。ヨウ化物の常温溶融塩のうちではイミダゾリウム塩が好ましい。これらの常温溶融塩としては種類の異なる2種以上を併用することもできる。
「集電導体」は、前記第2基体の前記第1基体に対向する側に露出し、触媒電極と絶縁された状態で(言い換えると、物理的に離間した状態で)、配置されている。この集電導体は透光性導電層と中継接続体を介して電気的に接続されており、負極である半導体電極用の集電電極として機能する。このように第2基体側に集電電極を設けることで、光電変換のための有効な実面積を維持することができる。
集電導体は、導電性を有する金属材料からなり、その材質は特に限定されない。その具体例を挙げると、銅、銀、金、白金、パラジウム、タングステン、ニッケル、チタンなどがあり、特に耐腐食性が要求されないような場合には導電性の高い銅を用いることが好ましい。集電導体は、例えば、導電性微粒子を含有するペーストを第2基体に印刷塗布することにより形成することができる。この塗布方法としては、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法等の各種の方法が挙げられる。さらに、複数の集電導体は、スパッタリング法、蒸着法、イオンプレーティング法、めっき法等により第2基体に金属等を堆積させて形成することもできる。
前記第2基体がセラミック配線基板である場合、前記集電導体はニッケル及び金から選択される少なくとも1種の金属からなる第1の導電性金属層をその表面に有するタングステンメタライズ導体であることがよく、前記複数の中継接続体の有する前記はんだ層は、前記第1の導電性金属層を介して前記集電導体に接合されていることがよい。その理由は以下のとおりである。即ち、タングステンメタライズ導体はセラミック配線基板と同時焼成可能な点で好ましいが、はんだ濡れ性が必ずしも高くない。このため、第1の導電性金属層をその表面に設けることでタングステンメタライズ導体のはんだ濡れ性を改善することができ、ひいては集電導体に中継接続体のはんだ層を確実に固着させることができる。よって、強固な接合状態を得ることができ、信頼性も向上する。
「樹脂製保護部」は、複数の中継接続体を個別に包囲する部材であって、中継接続体表面のはんだ層を電解液から隔てる役割を果たしている。樹脂製保護部は、複数の中継接続体のある位置に対応して点状に配置される。ここで「包囲する」とは、他部材と電気的に接触している所定部位を除いて中継接続体を取り囲むことで、電解液との直接接触を避けて、中継接続体を保護することを意味する。樹脂製保護部は例えば中心孔を有するリング状に形成され、その中心孔内には個々の中継接続体が配置される。なお、樹脂製保護部で中継接続体を包囲する構成の利点は、はんだ層が電解液によって腐食されなくなり好適な導電性が維持できることである。樹脂製保護部に使用される樹脂は、電解液に対する耐腐食性がはんだ層よりも高い樹脂からなることがよく、具体的にはエポキシ樹脂、ウレタン樹脂、イソブチレン樹脂、オレフィン樹脂、アイオノマー樹脂などが挙げられる。なお、樹脂材料は好適な絶縁性を有するため、第1基体及び第2基体間に設けられる構造物としても好ましい。なお、上記樹脂の中でも、耐腐食性に優れるとともに熱融着性を有するアイオノマー樹脂が特に好ましい。
「複数の中継接続体」は、第1基体及び第2基体間にて触媒電極と絶縁された状態で点状に配置され、透光性導電層と集電導体とに接触することで両者間の電気的接続を中継する役割(即ち両者間を導通する役割)を果たしている。中継接続体は粒状物であって、少なくともその表面には導電層としてのはんだ層が存在している。中継接続体におけるはんだ層は、単に集電導体に対して接触しているのではなく、自身の溶融及び固化により集電導体に対して接合されている。従って、中継接続体が集電導体に強固にかつ確実に固定された状態となる結果、中継接続体を安定して介装することができ、かつ、導通抵抗を低くすることができる。
複数の中継接続体は、その表面に導電性を付与したものであればよく、少なくとも表面にはんだ層を存在させた構造であればよい。具体的には、粒状基体の表面をはんだ層で被覆した構造を採用してもよいほか、粒状基体を有さず全体がはんだ層のみからなる構造や、表面のみにはんだ層が存在しており内部が中空になっている構造などを採用してもよい。この場合、粒状基体の表面をはんだ層で被覆した構造、言い換えると中継接続体の内部にコアとしての粒状基体が存在している構造であることが好ましい。その理由は以下のとおりである。即ち、粒状基体が存在しない場合にははんだ層の溶融時等に中継接続体全体として粒状を保持できないおそれがあるが、粒状基体が存在する場合には所定径の粒状を保持できるからである。
ここで、中継接続体の形状(粒状基体の形状)は粒状であればよく、具体的には球形状、角柱状、円柱状などのいずれでもよいが、中でも特に球形状が好ましい。球形状の中継接続体は、方向性がなくて取扱いやすく、それ自体の製造も比較的容易だからである。
中継接続体を構成するはんだ層は、比較的低い融点(例えば500℃以下)で溶融する導電性合金からなる。はんだ層を構成するはんだは特に限定されず、任意のものを使用することが可能である。具体的には、90Pb−10Sn、95Pb−5Sn、40Pb−60SnなどのPb−Sn系はんだが使用可能であるほか、Sn−Sb系はんだ、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ、Au−Ge系はんだ、Au−Sn系はんだなどのPbフリーはんだも同様に使用可能である。環境に与える影響等を考慮すると、Pbフリーはんだを選択することが好ましい。
中継接続体を構成する粒状基体の形成材料としては特に限定されず、はんだ層をその表面に被覆できるものであれば、有機及び無機を問わず任意の材料を選択することができる。具体的にいうと、樹脂、セラミック、金属などから粒状基体の形成材料を選択することが許容されるが、なかでも球状の樹脂(樹脂球)を選択することが好適である。一般的に樹脂はセラミックや金属等の無機材料ほど硬くなく、ある程度の柔軟性や弾力性を持っている。このため、中継接続体が変形することで、電極間距離バラツキの解消に有利に作用し、両電極間の電気的接続を確保しやすくなるからである。粒状基体の形成材料である樹脂としては特に限定されないが、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、イソブチレン樹脂、オレフィン樹脂、アイオノマー樹脂などが挙げられる。
中継接続体を構成するはんだ層は、粒状基体の表面の少なくとも一部を被覆するように形成され、好ましくは表面全体を被覆するように形成される。はんだ層の平均厚さは特に限定されないが、導通抵抗の低減を実現するためには、少なくとも1μm以上、好ましくは10μm以上であることがよい。なお、はんだ層は中継接続体の表面に対して直接形成されていてもよいが、例えば銅や銀などの下地層を介して形成されていてもよい。
なお、はんだ層を導電層とする中継接続体は、例えば、ゴム等のような樹脂マトリクス中にフィラーとしての導電性金属粒を分散させてなる材料(いわゆる導電性ゴム等)を用いた中継接続体に比較して、以下の点で優れている。即ち、導電性ゴム等を用いた後者は、ある程度導電性を有するが、導電性金属のみからなるものではないため、電気抵抗が高くて導体としての特性に劣る。それゆえ、中継接続体を構成する導電層として導電性ゴムを使用することは、あまり好ましくない。これに対して、はんだ層を用いた前者は、好適な導電性を有するため、電気抵抗が低くて導体としての特性に勝る。よって、中継接続体を構成する導電層として好適であるといえる。
中継接続体の大きさは、第1基体及び第2基体間の隙間に介装可能な大きさであれば特に限定されず、例えば、10μm以上1000μm以下程度の大きさとすることができる。なお、好ましい中継接続体の大きさは、当該隙間のサイズ(即ちセル空間の高さ、あるいはスペーサの厚さ)よりも若干大きい程度、例えばその1.1倍以上3.0倍以下である。なお、セル空間の高さが20μm以上80μm以下に設定されている場合には、例えば中継接続体の大きさ(平均粒径)を22μm以上240μm以下程度に設定すればよい。この大きさが上記好適範囲内にて設定されていれば、第1基体及び第2基体間の隙間に中継接続体を安定的に介装でき、かつ第1基体と第2基体との間を低抵抗で確実に導通させることができる。
複数の中継接続体は基体面方向に沿って互いに離間して配置され、好ましくは互いに等間隔をもって均等に配置(例えば格子状に配置)されることがよい。このように配置することで、均等に集電することが可能となり、優れた集電効率を達成しやすくなる。
前記透光性導電層の表面において前記複数の中継接続体に対応する箇所には、インジウム及び銀から選択される少なくとも1種の金属を含む第2の導電性金属層が形成され、前記複数の中継接続体の有する前記はんだ層は、前記第2の導電性金属層を介して前記透光性導電層に接触されていることが好ましい。その理由は以下のとおりである。即ち、第1基体側の透光性導電層は透光性を有する非金属材料(金属酸化物等)により形成されているため、はんだ層と透光性導電層との接触抵抗も高くなりやすい。その点、第1基体側の透光性導電層上に第2の導電性金属層を形成しておけば、はんだ層が金属酸化物等ではなく導電性金属層と接触することとなり、接触抵抗が低くなるからである。また、銀等のような金属は比較的軟質であるため、中継接続体を押し付けた際に中継接続体の曲面に追従し、接触面積が比較的大きくなる。よって、第1基体側と中継接続体との低抵抗化に貢献する。
前記第2の導電性金属層は、インジウム及び銀から選択される少なくとも1種の金属を含むものであれば特に限定されないが、例えば、インジウム及び銀から選択される少なくとも1種の金属を含む金属ペーストを印刷焼成してなるものであることが好ましい。その理由は以下のとおりである。即ち、めっき等の他の手法により第2の導電性金属層を形成しようとすると、第1基体側が汚れることで透光性が損なわれる可能性があるからである。その点、金属ペーストの印刷焼成によれば、第1基体側が汚れにくくなり、かつ比較的安価に第2の導電性金属層を形成でき、好ましいからである。
なお、前記第2の導電性金属層の厚さは特に限定されないが、例えば10μm以上100μm以下であることが好ましい。10μm未満であると、中継接続体を押し付けた際でも、第2の導電性金属層内に中継接続体が十分に沈みこまず、接触面積を増大できないおそれがあるからである。100μm超であると、上記の問題は生じないが、装置全体の厚さが厚くなるおそれがある。
上記の別の課題を解決するために、手段2に記載の発明は、手段1に記載の色素増感型太陽電池(1,201)を製造する方法であって、前記第1基体(13)の前記第2基体(20,20A)に対向する側(12)に、透光性導電層(14)を形成する透光性導電層形成工程と、前記透光性導電層(14)上に、増感色素を含む半導体電極(15)を形成する半導体電極形成工程と、前記第2基体(20,20A)の前記第1基体(13)に対向する側に露出し、前記触媒電極(23)と絶縁された状態となるように集電導体(42,205)を形成する集電導体形成工程と、前記複数の中継接続体(51)を前記集電導体(42,205)上にて点状に配置するとともに、リフローを行って前記はんだ層(52)を加熱溶融することにより、前記集電導体(42,205)に対して前記複数の中継接続体(51)を接合する溶融接合工程と、前記第1基体(13)において前記透光性導電層(14)及び前記半導体電極(15)が形成された側の面と、前記第2基体(20,20A)において前記複数の中継接続体(51)が接合された側の面とを対向させた状態で、前記第1基体(13)及び前記第2基体(20,20A)を積層配置する積層配置工程とを含むことを特徴とする色素増感型太陽電池の製造方法がある。
従って、手段2に記載の発明によると、第1基体及び複数の中継接続体を用い、複数の中継接続体を第2基体の集電導体上にて点状に配置し、この状態で加熱してリフローを行う。すると、はんだ層が熱で溶融して集電導体の表面に馴染み、さらにこれが固化することにより、集電導体に対して複数の中継接続体が強固に接合され、複数の中継接続体が第2基体の面方向に位置ずれ不能となる。そして、この後第1基体の積層等を行うことにより、上記の優れた色素増感型太陽電池を比較的容易にかつ低コストで得ることができる。またこの製造方法によると、複数の中継接続体を固定するために第1基体または第2基体を加工して、あらかじめ凹部などの固定用構造部を形成しておく必要もなく、その分だけ低コスト化を図りやすくなる。
溶融接合工程では、リフローを行う前に複数の中継接続体を集電導体上にて点状に配置するととともに、溶融したはんだ層が完全に固化するまでの間、それらを位置ずれしないように仮固定しておくことが好適である。仮固定の方法としては限定されず、例えば、治具を用いて押圧保持しておく方法や、粘性材料を用いて集電導体上に粘着保持しておく方法などがある。好適な仮固定方法の例としては、例えば、フラックスを用いて複数の中継接続体を集電導体上に粘着保持しておくことがある。「フラックス」とは、はんだ付け用フラックスのことを指し、はんだの表面張力を小さくして被接合面がはんだで濡れやすくするために用いられる薬剤である。フラックスを用いる上記方法の利点は以下のとおりである。
即ち、通常はんだ付け時にはフラックスが使用され、このフラックスが好適な粘性を有していることから、中継接続体の仮固定のために粘性材料を別個に用意する必要がない。従って、この方法を採用したとしても特に工数増にはつながらず、生産性やコスト性の低下を防止できるからである。
フラックスの種類としては特に限定されず、例えば、樹脂系フラックス、有機酸系フラックス、無機酸系フラックスのいずれも使用することが可能である。樹脂系フラックスとは、ロジン、変性ロジンまたは合成樹脂を主剤とし、活性成分であるアミンのハロゲン塩、有機酸またはアミン有機酸塩などを必要に応じて添加したものをいう。有機酸系フラックスとは、水ベースまたは溶剤ベースを主剤とし、活性成分であるアミンのハロゲン塩、有機酸またはアミン有機酸塩などを必要に応じて添加したものをいう。無機酸系フラックスとは、水溶性主剤またはワセリン等の非水溶性主剤に、活性成分であるアミンのハロゲン塩、有機酸またはアミン有機酸塩、アンモニウムハライド、ハロゲン化亜鉛などを必要に応じて添加したものをいう。なお、中継接続体を確実に仮固定させるために、フラックスはある程度高い粘性を有していることがよい。
フラックスの供給方法は特に限定されず、例えば、スピンコート法、カーテンコート法、ディップコート法、ディスペンサ法などの任意の方法を採用することができる。また、フラックスは洗浄を要するもの(水系洗浄タイプや有機洗浄タイプ)であってもよいほか、洗浄を要しないもの(いわゆる無洗浄タイプ)であってもよい。
また、複数の中継接続体を個別に包囲してはんだ層を電解液から隔てるための樹脂製保護部は、溶融接合工程の前後を問わず配設することが可能であるが、溶融接合工程の後に配設することが好ましい。即ち、樹脂製保護部の配設後に溶融接合工程を行おうとすると、樹脂製保護部がリフロー時の高温に晒されて劣化や変質等する可能性があり、装置の信頼性などを低下させる原因となる。これに対して、樹脂製保護部の配設前に溶融接合工程を行っておけば、樹脂製保護部の熱による劣化や変質が回避され、装置の信頼性低下を防止できるからである。なお、樹脂製保護部を設けた後には、次いではんだ層に接触するように集電導体が配設される。
[第1の実施形態]
以下、本発明を具体化した第1の実施形態を図1〜図8に基づき詳細に説明する。
図1には、本実施形態において用いる色素増感型太陽電池1が示されている。この色素増感型太陽電池1は、スペーサ31を介して第1基体13と第2基体20とを対向配置した構造を備えている。第1基体13と第2基体20との間にはセル空間32が形成され、このセル空間32内には腐食性を有する電解液33が充填されている。
透光性を有する第1基体13の第2基体20に対向する側12には、透光性導電層14がほぼ全面にわたって形成されている。さらにその透光性導電層14上には、増感色素を含む半導体電極15が設けられている。この半導体電極15は、セル空間32に面して配置されており、結果としてセル空間32内に充填された電解液33に晒されている。
一方、第2基体20はセラミック基板25であり、詳しくはアルミナ焼結体からなるセラミック配線基板である。第2基体20の第1基体13に対向する側22には、白金からなる触媒電極23が半導体電極15に対向して設けられている。触媒電極23は、所定箇所を除き第2基体20の第1基体13に対向する側22のほぼ全面にわたって形成されている。触媒電極23もセル空間32に面して配置されており、結果としてセル空間32内に充填された電解液33に晒されている。
第2基体20の外側面27のほぼ全体には、タングステンメタライズからなる集電のための外層導体パターン44が形成されている。第2基体20における複数箇所には、同じくタングステンメタライズからなるビア導体42(集電導体)が貫通形成されている。各ビア導体42の外側端部は外層導体パターン44に接続されている。各ビア導体42の内側端部の表面上には、第1の導電性金属層41が形成されている。本実施形態における第1の導電性金属層41は、ニッケルめっき層71上に金めっき層72を積層形成した2層構造を有している。従って、この第1の導電性金属層41は、少なくともタングステンメタライズからなるビア導体42よりも導電性及びはんだ濡れ性に優れている。なお、触媒電極23と、第1の導電性金属層41、ビア導体42及び外層導体パターン44からなる導体群とは、第2基体20において電気的に別系統になっており、互いに絶縁されている。
図1に示されるように、第1基体13と第2基体20との間における所定箇所(触媒電極23のない箇所)には、球形状をした複数のインターコネクタ51(中継接続体)がそれぞれ配置されている。これらのインターコネクタ51は、樹脂球53(粒状基体)の表面全体を導電層であるはんだ層52で被覆した構造を有している。本実施形態における樹脂球53は、第1基体13の主体をなすガラスよりも弾性のある合成樹脂材料を用いて形成されている。このような樹脂材料として、本実施形態では球状エポキシ樹脂を用いている。インターコネクタ51の平均粒径は700μm〜800μm程度となっている。
透光性を有する第1基体13の第2基体20に対向する側12において、複数のインターコネクタ51に対向した箇所には、半導体電極15が設けられておらず、透光性導電層14が露出されている。そして、このように所々露出した透光性導電層14には、インジウムまたは銀からなる第2の導電性金属層61が形成され、その第2の導電性金属層61に対して複数のインターコネクタ51表面のはんだ層52が接触している。一方、第2基体20のビア導体42上にある第1の導電性金属層41に対し、インターコネクタ51のはんだ層52が、当該はんだ層52自身の溶融及び固化によって接合している。その結果、ビア導体42と透光性導電層14との間が複数のインターコネクタ51を介して導通されている。
従って、半導体電極15→透光性導電層14→第2の導電性金属層61→インターコネクタ51のはんだ層52→第1の導電性金属層41→ビア導体42という経路を経て、第2基体20側から半導体電極15用の配線を取り出すことが可能となっている。
図1に示されるように、第1基体13と第2基体20との間には、中継接続体保護構造部としての樹脂リング121が設けられている。樹脂リング121は、電解液33に対する耐腐食性がはんだ層52よりも高いアイオノマー樹脂からなり、各々のインターコネクタ51を包囲するように配設されている。
樹脂リング121の中心孔122は、インターコネクタ51の直径よりも大きな径を有しており、具体的には1mm〜1.5mm程度に設定されている。一方、樹脂リング121の外径は、2mm〜5mm程度に設定されている。樹脂リング121の上端面は第1基体13における透光性導電層14に対して熱融着し、下端面は第2基体20に対して熱融着している。その結果、インターコネクタ51がセル空間32側の領域から隔離され、電解液33に直接晒されないようになっている。
次に、本実施形態の色素増感型太陽電池1の作製手順について説明する。
(1)第1基体13、透光性導電層14、半導体電極15の作製
まず透光性を有する第1基体13(日本板硝子社製のガラス基板、縦100mm、横100mm、厚さ4mm)を用意し、その透光性を有する第1基体13の片側面全体にわたってFTOからなる厚さ300nmの透光性導電層14を形成した。次に、透光性を有する第1基体13における透光性導電層14上に、粒径が10nm〜300nmのチタニア粒子を含有するペースト(Ti-Nanoxide D/SP 13nm/300nm)をスクリーン印刷法によって塗布し、厚さ20μmの塗膜を形成した。その後、120℃で30分間予備乾燥し、次いでマッフル炉を用いて500℃で30分間保持して焼成し、半導体電極15を作製するための多孔質電極基体を形成した。
一方、氷冷した水に四塩化チタンを溶解させ、0.05モル/リットル濃度の水溶液を調製した。その後、この四塩化チタン水溶液に多孔質電極基体形成済みの上記透光性を有する第1基体13を浸漬し、水溶液を昇温させて70℃で30分間保持することで、塩化チタン処理を行った。次いで、処理済みの透光性を有する第1基体13を水溶液から取り出した後、蒸留水で十分に洗浄し、室温で30分間乾燥した。その後、塩化チタン処理された多孔質電極基体を、マッフル炉を用いて500℃で30分間保持して再度焼成した。
その後、さらに第1基体13の透光性導電層14側に所定のマスクを形成し、この状態でインジウムまたは銀を析出させるめっきを行い、第2の導電性金属層61を形成した。なお、このようなめっき法に代えて、金属ペースト印刷焼成法を採用してもよい。即ち、上記のようなマスクを形成した状態で、インジウムまたは銀を含むペーストを印刷し、所定温度で焼き付けて、第2の導電性金属層61としてもよい。後者の方法の利点は、第1基体13側にフラックス等が付着しないため第1基体13側が汚れず、かつ比較的安価かつ均一な厚さで第2の導電性金属層61を形成できることである。
また、ルテニウム錯体(小島化学社製、商品名「N−719」)を、アセトニトリルとtert−ブタノールとの混合溶媒に溶解させ、5×10−4モル/リットル濃度のアセトニトリル/tert−ブタノール溶液を調製した。次いで、このルテニウム錯体溶液に、塩化チタン処理された多孔質電極基体及び透光性を有する第1基体13を18時間浸漬した。その結果、多孔質電極基体に増感色素であるルテニウム錯体を付着させて厚さ20μmの半導体電極15を形成した。
(2)インターコネクタ51の作製
インターコネクタ51の作製にあたっては、エポキシ樹脂からなる真球状の樹脂球53(平均粒径700μm)を多数用意し、これらの樹脂球53に対して従来周知の手法によりはんだめっきを行い、その表面全体に厚さ1μm〜10μm程度のはんだ層52を形成した。この場合、樹脂球53の表面にあらかじめ銅や銀などの下地層を形成した上ではんだめっきを行ってもよい。この方法によれば、樹脂球53に対するはんだ層52の密着強度が高くなるとともに、インターコネクタ51の低抵抗化が達成しやすくなる。なお、本実施形態では積水化学工業株式会社製の樹脂コアはんだボール「商品名、ミクロパールSOL」を、インターコネクタ51として用いた。
(3)第2基体20、触媒電極23、集電導体の作製
アルミナを主体とするグリーンシートをシート成形あるいはプレス成形により作製し、得られたグリーンシートに対してドリル加工を行い、ビア孔を貫通形成した。この状態のグリーンシートに対するタングステンペーストの印刷、充填によって、後に外層配線パターン44となる導体部と、後にビア導体42となる導体部とを形成した。次に、かかるペースト印刷済みのグリーンシートを焼成し、アルミナ及びタングステンを同時に焼結させた。その結果、外層配線パターン44及びビア導体42を有するセラミック基板25からなる第2基体20を得た。即ち、第2基体20の第1基体13に対向する側22に露出する状態となるように、集電導体であるビア導体42を形成した(集電導体形成工程)。また、セラミック基板25の片側面に、図示しないマスクを配置した状態で白金(Pt)のスパッタを行うことにより、厚さ1μmの触媒電極23を形成した。その結果、図2に示す状態の第2基体20を得た。さらに、上記マスクを剥離した後、同じ面に別のマスクを形成し、ビア導体42の端面を露出させる開口を設けた。そして、まず電解ニッケルめっきを行ってタングステンメタライズ導体上にニッケルめっき層71を形成した。次に、電解金めっきを行って上記ニッケルめっき層71上に金めっき層72を形成し、第1の導電性金属層41を完成させた。なお、触媒電極23の形成前に第1の導電性金属層41の形成を行ってもよい。
(4)フラックス75の塗布及びインターコネクタ51の仮固定
上記のように作製した第2基体20の第1基体13に対向する側22となる面の一部に、従来公知の手法により粘性の高いフラックス75を均一に塗布した(図4参照)。なお、本実施形態では樹脂系フラックス75(トーヨーメタル社製、商品名:TF−400)を用いた。この後、フラックス75塗布面上における所定箇所に、複数のインターコネクタ51を供給した。そして、フラックス75の粘性を利用して、複数のインターコネクタ51を、第1の導電性金属層41を介してビア導体42上に粘着保持させて仮固定した(図5参照)。この場合、複数のインターコネクタ51を同時にそれぞれ正しい位置に配置するために、図示しない所定の治具を用いた。以上のように本実施形態では、はんだ付けに本来的に必要なフラックス75を有効に利用しているため、仮固定のために粘性材料を別個に用意する必要がない。ゆえに、この方法を採用したとしても特に工数増にはつながらず、生産性やコスト性の低下を防止することができる。なお、チップマウンタのような装置を用いてインターコネクタ51を1つずつ所定位置に載置するようにしてもよい。
(5)インターコネクタ51の溶融接合
フラックス75の粘性を利用して複数のインターコネクタ51をビア導体42上に仮固定し、次にこの状態で従来周知の加熱装置を用いて第1基体13を所定時間(1分〜10分)で所定温度(250℃〜350℃)に加熱するリフローを行った。すると、はんだ層52が熱で溶融してビア導体42の表面(正確には第1の導電性金属層41)に馴染み、さらにこれが固化することにより、ビア導体42に対して複数のインターコネクタ51を強固に接合した。ちなみに、はんだ層52におけるビア導体42との界面には、図6に示すようなフィレット54が形成され、その結果として好適な接合面積が確保される。複数のインターコネクタ51は、この時点で第1基体13の面方向に位置ずれ不能となる。なお、この方法によると、複数のインターコネクタ51を固定するために、第1基体13または第2基体20を加工してあらかじめ凹部などの固定用構造部を形成しておく必要もなく、その分だけ低コスト化を図りやすくなる。
そして、インターコネクタ51の溶融接合工程後、洗浄を行ってフラックス75を洗い流した。なお、無洗浄タイプを用いた場合には洗浄を省略することも可能である。
そしてまず、第2基体20の第1基体13に対向する側22における外周部分に、熱可塑性樹脂からなる厚さ約100μmのスペーサ31(三井デュポンポリケミカル社製、商品名「ハイミラン1702」)」)、集電ビア導体41形成部の上に同材料からなる防食樹脂リング121を配設した(図7参照)。そして、このスペーサ31を介して、第2基体20上に第1基体13を積層配置した(図8参照)。次に、基体厚さ方向に押圧力を加えた状態で所定温度に加熱することにより、第2基体20と第1基体13とを、スペーサ31及び樹脂リング121を介して熱融着接合した。
第1基体13側の透光性導電層14上には第2の導電性金属層61が形成されているため、インターコネクタ51のはんだ層52が金属酸化物等ではなく導電性金属層と接触する。インジウムや銀は比較的軟質であるため、インターコネクタ51を押し付けた際に第2の導電性金属層61がインターコネクタ51の曲面に追従し、接触面積が比較的大きくなる。よって、第1基体13側とインターコネクタ51との低抵抗化を図ることができる。
そして最後に、第1基体13とスペーサ31との隙間から注射器にてヨウ素電解液33を注入して、図1に示す色素増感型太陽電池1を完成させた。
なお本実施形態では、ヨウ素電解液33として、イオン液体であるメチルプロピルイミダゾリウムアイオダイドに、Iを1.3モル、LiIを0.5モル、4−tert−ブチルピリジンを0.58モル混入し、調製したものを用いることとした。
次に、以上のようにして完成した色素増感型太陽電池1の使用方法について簡単に述べる。
本実施形態の色素増感型太陽電池1は、触媒電極23側から取り出した配線と、半導体電極15側から取り出した配線との間に負荷を接続した状態で使用される。この色素増感型太陽電池1に光を当てると、第1基体13の第2基体20に対向する側12の反対側から入射した光は、透光性を有する第1基体13及び透光性導電層14を通過して半導体電極15に到達する。すると、半導体電極15では、増感色素が光を吸収して半導体電極15中に電子を放出する。このとき、増感色素に残されたホールは、ヨウ化物イオン(I)を酸化して三ヨウ化物イオン(I3−)へと変える。一方、対極である触媒電極23には、半導体電極15に電気的に接続されている負荷を経由して、電子が移動してくる。そしてこの電子は、三ヨウ化物イオン(I3−)を還元してヨウ化物イオン(I)へと変える。その結果、色素増感型太陽電池1において光エネルギーが電気エネルギーに変換される(即ち発電される)とともに、発生した電力を負荷に供給することができる。
従って、本実施の形態によれば以下の効果を得ることができる。
(1)本実施形態の色素増感型太陽電池1では、第1基体13及び第2基体20間に配置された複数のインターコネクタ51を介して、第1基体13側の透光性導電層14と第2基体20側の集電導体であるビア導体42とが導通される。そのため、第1基体13側に集電電極を設けた従来技術とは異なり、半導体電極15が形成不能な面積が増えることもなく、光電変換のための有効な実面積が維持される。よって、単位面積あたりの光電変換効率の低下を回避でき、光発電により得た電力を第2基体20側に設けられたビア導体42及び外側配線パターン27を介して効率よく回収することができる。よって、大面積化に有利な構造を有する色素増感型太陽電池1を実現することができる。
(2)また、インターコネクタ51の表面に存在するはんだ層52は比較的低抵抗であるため電気を効率よく流すことができ、しかもインターコネクタ51はそのはんだ層52の溶融及び固化により集電導体側(ビア導体42表面の第1の導電性金属層41)に対して強固に接合されている。これらのことも電力の効率的回収の実現に寄与している。しかも、第1基体13側の透光性導電層14は導電金属材料に比べてはんだ濡れ性に劣る非金属材料であるため、仮にリフローを行ってもインターコネクタ51のはんだ層52を固着させることができない。この点、本実施形態ではインターコネクタ51のはんだ層52を導電金属材料からなる集電導体側に固着させている。そのため、両者間に強固な接合状態を得ることができ、もって接合部分の信頼性を向上できるとともに、低抵抗化を達成することができる。
さらに本実施形態では、第1基体13側に第2の導電性金属層61を形成し、それに対してインターコネクタ51のはんだ層52を接触させている。従って、はんだ層52が金属酸化物等ではなく導電性金属層と接触することとなり、接触抵抗が低くなる。また、本実施形態において第2の導電性金属層61に用いた金属は比較的軟質であるため、インターコネクタ51を押し付けた際にインターコネクタ51の曲面に追従し、接触面積が比較的大きくなる。よって、第1基体13とインターコネクタ51との低抵抗化に貢献する。
ちなみに、第2基体20側にインターコネクタ51を接合した場合、接合部分の抵抗は数Ωになってしまうが、本実施形態によると1Ω以下に低減することができる。
(2)この色素増感型太陽電池1では、インターコネクタ51を個別に包囲して保護する樹脂リング121を設けたことにより、インターコネクタ51表面のはんだ層52が腐食性の高い電解液33から保護される。それゆえ、はんだ層52が電解液33によって腐食されなくなり、好適な導電性を維持することができる。また、耐腐食性を考慮する必要がないことから、はんだ材料を比較的自由に選択することが可能となる。
(3)この色素増感型太陽電池1では、粒状基体である樹脂球53の表面をはんだ層52で被覆した構造、言い換えると内部に球状の樹脂コアが存在した構造が採用されている。その結果、はんだ層52の溶融時等であっても、インターコネクタ51全体として所定径の粒状を保持することができる。このことも電力の効率的回収の実現に寄与している。
[第2の実施形態]
次に本実施形態を具体化した第2の実施形態の色素増感型太陽電池201を図9〜図16に基づいて説明する。
この色素増感型太陽電池201は、基本的に第1実施形態の色素増感型太陽電池1と同様の構造を備えているが、第2基体20Aの構造が第1実施形態の第2基体20と異なっている。即ち、本実施形態の第2基体20Aは、いわゆる樹脂製積層配線基板であり、詳しくは樹脂フィルム材202,203を積層一体化してなる配線基板である。第2基体20Aの内層に位置する第1樹脂フィルム材202は、内層導体パターン208及び集電導体層205を有するとともに、その内層導体パターン208と触媒電極23とを導通するビア導体26を有している。一方、第2基体20Aの外層に位置する第2樹脂フィルム材203は、集電のための外層配線パターン44を有している。内層導体パターン208、外層導体パターン44、集電導体層205、ビア導体26、ビア導体42は、いずれも導電性に優れた銅からなる。第1樹脂フィルム材202及び第2樹脂フィルム材203は、図示しない接着剤層を介して接着されることで一体化している。
次に、この色素増感型太陽電池201の作製手順について説明する。
まず、上記第1実施形態に準じて第1基体13に透光性導電層14、半導体電極15、第2の導電性金属層61を形成したものを用意するとともに、上記第1実施形態に準じて作製したインターコネクタ51を用意した。
また、以下の方法により第2基体20Aを作製した。まず第2基体20Aの構成要素である第1樹脂フィルム材202を準備し、サブトラクティブ法などの従来周知のパターン形成方法により、その片側面全体に銅からなる外層配線パターン44を形成した。そして、ビアめっきやペースト印刷などの手法により、ビア導体42を形成した後、反対側面に銅からなる内層導体パターン208及び集電導体層205を形成した。また、第2基体20Aの構成要素である第2樹脂フィルム材203を準備し、ビアめっきやペースト印刷などの手法によりビア導体26を形成した後、片側面に白金(Pt)をスパッタすることにより、厚さ1μmの触媒電極23を形成した。そして、第1樹脂フィルム材202及び第2樹脂フィルム材203を接着、一体化することにより、第2基体20Aを得た(図10参照)。
次に、従来公知の手法により、集電導体層205上に粘性の高いフラックス75を塗布した(図11参照)。この後、フラックス75塗布面上における所定箇所に複数のインターコネクタ51を供給し、それらを集電導体層205上に粘着保持させて仮固定した(図12参照)。次にこの状態でリフローを行い、集電導体層205に対して複数のインターコネクタ51を強固に接合した(図13参照)。この後、上記第1実施形態に準じてスペーサ31及び樹脂リング121を配置し(図14参照)、第2基体20Aと第1基体13とを熱融着接合した(図15参照)。そして最後に、第1基体13とスペーサ31との隙間から注射器にてヨウ素電解液33を注入して、図9に示す色素増感型太陽電池201を完成させた。
以上示した本実施形態によると、光発電により得た電力を第2基体20A側に設けられた集電導体層205を介して効率よく回収可能であり、大面積化に有利な構造を有する色素増感型太陽電池201を提供することにある。また、本発明の製造方法によれば、上記の優れた色素増感型太陽電池201を比較的容易にかつ低コストで得ることができる。特に本実施形態では、第2基体20Aの絶縁部分が樹脂製であるため、コスト性において第1実施形態よりも有利である。しかも、本実施形態によれば、第2基体20Aにおける導体部分として銅を選択することが可能なため、導体部分に高い導電性を付与できる。また、集電導体層205上にニッケル/金めっきを行わなくても、インターコネクタ51を強固に固定することができる。
なお、本発明の実施の形態は以下のように変更してもよい。
・例えば、粒状基体を有さず全体がはんだ層52のみからなるインターコネクタを用いてもよい。あるいは、表面のみにはんだ層52が存在しており内部が中空になっているインターコネクタ構造を採用してもよい。
・上記実施形態では、保護リング121を第2基体20,20A側に形成したが、これを第1基体13側に形成するようにしてもよい。
本発明を具体化した第1実施形態の色素増感型太陽電池を示す概略断面図。 第1実施形態の色素増感型太陽電池の製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 本発明を具体化した第2実施形態の色素増感型太陽電池を示す概略断面図。 第2実施形態の色素増感型太陽電池の製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。 同じく製造方法を説明するための概略断面図。
符号の説明
1,201…色素増感型太陽電池
12…第1基体の第2基体に対向する側
13…透光性を有する第1基体
14…透光性導電層
20…第2基体
22…第2基体の第1基体に対向する側
23…触媒電極
27…第2基体の第1基体に対向する側の反対側
32…セル空間
33…電解液
41…第1の導電性金属層
42…集電導体としてのビア導体
51…複数の中継接続体としての複数のインターコネクタ
52…はんだ層
53…粒状基体としての樹脂球
75…フラックス
121…樹脂製保護部としての樹脂リング
205…集電導体としての集電導体層

Claims (13)

  1. 透光性を有する第1基体と、
    前記第1基体と対向する位置に配置された第2基体と、
    前記第1基体の前記第2基体に対向する側に設けられた透光性導電層と、
    前記透光性導電層上に設けられた、増感色素を含む半導体電極と、
    前記第2基体の前記第1基体に対向する側に設けられた触媒電極と、
    前記第1基体及び前記第2基体間に存在するセル空間内に充填された電解液と、
    導電金属材料からなり、前記第2基体の前記第1基体に対向する側に露出し、前記触媒電極と絶縁された状態で配置された集電導体と、
    少なくとも表面にはんだ層が存在する粒状物であり、前記第1基体及び前記第2基体間にて前記触媒電極と絶縁された状態で点状に配置され、前記透光性導電層と前記集電導体との間を導通する複数の中継接続体と、
    前記複数の中継接続体を個別に包囲して前記はんだ層を前記電解液から隔てる樹脂製保護部と
    を備え、前記複数の中継接続体が、前記はんだ層の溶融及び固化により前記集電導体に対して接合されていることを特徴とする色素増感型太陽電池。
  2. 前記複数の中継接続体は、粒状基体の表面を前記はんだ層で被覆した構造を有することを特徴とする請求項1に記載の色素増感型太陽電池。
  3. 前記粒状基体は球状であることを特徴とする請求項2に記載の色素増感型太陽電池。
  4. 前記粒状基体は樹脂球であることを特徴とする請求項2または3に記載の色素増感型太陽電池。
  5. 前記樹脂製保護部は、前記電解液に対する耐腐食性が前記はんだ層よりも高い樹脂からなることを特徴とする請求項1乃至4のいずれか1項に記載の色素増感型太陽電池。
  6. 前記第2基体は、ポリイミドと銅とからなる積層基板であり、前記複数の中継接続体の有する前記はんだ層は、前記第1の導電性金属層を介して前記集電導体に接合されていることを特徴とする請求項1乃至5のいずれか1項に記載の色素増感型太陽電池。
  7. 前記第2基体はセラミック配線基板であり、前記集電導体はニッケル及び金から選択される少なくとも1種の金属からなる第1の導電性金属層をその表面に有するタングステンメタライズ導体であり、前記複数の中継接続体の有する前記はんだ層は、前記第1の導電性金属層を介して前記集電導体に接合されていることを特徴とする請求項1乃至5のいずれか1項に記載の色素増感型太陽電池。
  8. 前記透光性導電層の表面において前記複数の中継接続体に対応する箇所に、インジウム及び銀から選択される少なくとも1種の金属を含む第2の導電性金属層が形成され、前記複数の中継接続体の有する前記はんだ層は、前記第2の導電性金属層を介して前記透光性導電層に接触されていることを特徴とする請求項1乃至7のいずれか1項に記載の色素増感型太陽電池。
  9. 前記第2の導電性金属層は、インジウム及び銀から選択される少なくとも1種の金属を含む金属ペーストを印刷焼成してなるものであることを特徴とする請求項8に記載の色素増感型太陽電池。
  10. 前記第2の導電性金属層は、厚さが10μm以上100μm以下であることを特徴とする請求項8または9に記載の色素増感型太陽電池。
  11. 請求項1乃至10のいずれか1項に記載の色素増感型太陽電池を製造する方法であって、
    前記第1基体の前記第2基体に対向する側に、透光性導電層を形成する透光性導電層形成工程と、
    前記透光性導電層上に、増感色素を含む半導体電極を形成する半導体電極形成工程と、
    前記第2基体の前記第1基体に対向する側に露出し、前記触媒電極と絶縁された状態となるように集電導体を形成する集電導体形成工程と、
    前記複数の中継接続体を前記集電導体上にて点状に配置するとともに、リフローを行って前記はんだ層を加熱溶融することにより、前記集電導体に対して前記複数の中継接続体を接合する溶融接合工程と、
    前記第1基体において前記透光性導電層及び前記半導体電極が形成された側の面と、前記第2基体において前記複数の中継接続体が接合された側の面とを対向させた状態で、前記第1基体及び前記第2基体を積層配置する積層配置工程と
    を含むことを特徴とする色素増感型太陽電池の製造方法。
  12. 前記溶融接合工程では、フラックスを用いて前記複数の中継接続体を前記集電導体上に仮固定した後にリフローを行うことを特徴とする請求項11に記載の色素増感型太陽電池の製造方法。
  13. 前記溶融接合工程の実施後かつ前記積層配置工程の実施前に、前記複数の中継接続体を個別に包囲して前記はんだ層を前記電解液から隔てるための樹脂製保護部を設けることを特徴とする請求項11または12に記載の色素増感型太陽電池の製造方法。
JP2008054378A 2008-03-05 2008-03-05 色素増感型太陽電池及びその製造方法 Pending JP2009211967A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054378A JP2009211967A (ja) 2008-03-05 2008-03-05 色素増感型太陽電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054378A JP2009211967A (ja) 2008-03-05 2008-03-05 色素増感型太陽電池及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009211967A true JP2009211967A (ja) 2009-09-17

Family

ID=41184915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054378A Pending JP2009211967A (ja) 2008-03-05 2008-03-05 色素増感型太陽電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009211967A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543639A (ja) * 2010-10-04 2013-12-05 ダイパワー 光電気化学電池の縦型電気接続体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357897A (ja) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd 光電変換モジュール
JP2005302499A (ja) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007012377A (ja) * 2005-06-29 2007-01-18 Tokyo Univ Of Science 太陽電池モジュール
JP2007066874A (ja) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007066875A (ja) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007287480A (ja) * 2006-04-17 2007-11-01 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007317454A (ja) * 2006-05-24 2007-12-06 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2008176948A (ja) * 2007-01-16 2008-07-31 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその製造方法
JP2008262837A (ja) * 2007-04-12 2008-10-30 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357897A (ja) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd 光電変換モジュール
JP2005302499A (ja) * 2004-04-09 2005-10-27 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007012377A (ja) * 2005-06-29 2007-01-18 Tokyo Univ Of Science 太陽電池モジュール
JP2007066874A (ja) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007066875A (ja) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007287480A (ja) * 2006-04-17 2007-11-01 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2007317454A (ja) * 2006-05-24 2007-12-06 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2008176948A (ja) * 2007-01-16 2008-07-31 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその製造方法
JP2008262837A (ja) * 2007-04-12 2008-10-30 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543639A (ja) * 2010-10-04 2013-12-05 ダイパワー 光電気化学電池の縦型電気接続体
KR20140023251A (ko) * 2010-10-04 2014-02-26 다이파워 광전기 화학 전지의 수직 전기 연결 장치
KR101896728B1 (ko) * 2010-10-04 2018-09-07 페르마스틸리사 에스.피.에이. 광전기 화학 전지의 수직 전기 연결 장치

Similar Documents

Publication Publication Date Title
JP5346932B2 (ja) 光電変換素子モジュール、及び、光電変換素子モジュールの製造方法
JP5230481B2 (ja) 光電変換素子
JP5430970B2 (ja) 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法
JP5430971B2 (ja) 光電変換素子の製造方法、及び、光電変換素子モジュールの製造方法
JP5080018B2 (ja) 色素増感型太陽電池
JP5185550B2 (ja) 光電変換素子およびその製造方法
US9330854B2 (en) Dye-sensitized solar cell and process of manufacturing same, dye-sensitized solar cell module and process of manufacturing same
JP2008153180A (ja) 光電変換素子および光電変換素子用の対極の製造方法
JP5095226B2 (ja) 色素増感型太陽電池及びその製造方法
JP4615878B2 (ja) 色素増感型太陽電池及びそれを用いた太陽電池ユニットパネル
JP5095237B2 (ja) 色素増感型太陽電池及びその製造方法
JP5451106B2 (ja) 光電変換素子モジュール
JP5412136B2 (ja) 光電変換素子
JP5160045B2 (ja) 光電変換素子
JP2009211967A (ja) 色素増感型太陽電池及びその製造方法
CN107615425B (zh) 光电转换元件
JP5706786B2 (ja) 色素増感太陽電池の製造方法
CN103548104B (zh) 染料敏化太阳能电池及其制造方法
JP2005353850A (ja) 太陽電池用基板及び融雪機能付き太陽電池
JP2009110851A (ja) 色素増感型太陽電池の正極電極およびその製造方法
JP2010177173A (ja) 色素増感型太陽電池及びその製造方法
JP2012182038A (ja) 色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029