JP2009206737A - データ処理装置およびその制御方法 - Google Patents

データ処理装置およびその制御方法 Download PDF

Info

Publication number
JP2009206737A
JP2009206737A JP2008046139A JP2008046139A JP2009206737A JP 2009206737 A JP2009206737 A JP 2009206737A JP 2008046139 A JP2008046139 A JP 2008046139A JP 2008046139 A JP2008046139 A JP 2008046139A JP 2009206737 A JP2009206737 A JP 2009206737A
Authority
JP
Japan
Prior art keywords
data
quantization
processing apparatus
data processing
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008046139A
Other languages
English (en)
Inventor
Kunihiro Imamura
邦博 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008046139A priority Critical patent/JP2009206737A/ja
Publication of JP2009206737A publication Critical patent/JP2009206737A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】量子化圧縮時に発生する量子化誤差を低減する
【解決手段】量子化圧縮を行う際に、量子化圧縮後に逆量子化伸張を行い、オリジナルデータと逆量子化伸張後のデータから量子化圧縮に起因する劣化特性を推定する。推定された劣化特性の逆特性をオリジナルデータに付加し、劣化特性の逆特性が付加されたオリジナルデータを量子化圧縮した結果である補正済みデータを圧縮データとする。
【選択図】図8

Description

本発明は、データ処理装置およびその制御方法に係り、特に、量子化圧縮により生じる量子化誤差の低減に関する。
データを圧縮する簡易な方法として、データを量子化してデータのbit長を圧縮する量子化圧縮処理がある。
このような量子化圧縮処理における量子化の誤差を低減する技術として、複数の量子化部を備え、それらの量子化結果を逆量子化して得られる逆量子化結果と原信号との間の差分の小さい量子化結果を、量子化圧縮の結果として採択する方法(特許文献1)が提案されている。
また、逆量子化後のデータが量子化誤差を持っている場合、圧縮データに誤差情報を加え、伸張時に量子化誤差の程度に応じて逆量子化後のデータを補正する方法も提案されている(特許文献2)。
特開平8-213915号公報 特開平10-051768号公報
しかしながら、特許文献1の方法では、量子化圧縮により発生する量子化誤差を補正するには、上述の特許文献1では、複数の量子化部を備え、それらの結果から最良のものを選択するため、回路規模が大型化する。その結果、回路規模に負担を強いることになる。
また、上述の特許文献2では、逆量子化後の誤差情報を伸張時にも使用するため、誤差情報を格納しておく必要があり、データの圧縮率に悪影響を及ぼすことになる。
このように、上記特許文献1および2のいずれの方法をもってしても、回路規模と圧縮率の両立は困難であった。
本発明は、前記実情に鑑みてなされたものであり、その解決しようとする課題は、量子化誤差の低減を実現するに際し、回路規模の増大を防ぎ、回路規模に対する負担を最小限に抑え、かつ、データの圧縮率を高め、高精度のデータ圧縮を実現することである。
上記目的を達成するため、本発明に係るデータ処理装置及びその制御方法は、量子化圧縮前のオリジナルデータに対して、量子化圧縮を行う量子化圧縮手段と、量子化圧縮手段により量子化圧縮された量子化圧縮データに対して、逆量子化伸張を行う逆量子化伸張手段と、逆量子化伸張手段により伸張された伸張データと、オリジナルデータから、量子化誤差に起因する誤差を補正する補正データを生成する補正データ生成手段と、オリジナルデータと補正データから、補正済みデータを生成する補正済みデータ生成手段と、補正済みデータを量子化圧縮する量子化圧縮手段を、備え、補正済みデータを量子化圧縮した結果を圧縮データ結果として出力することを特徴とするものである。
この構成において、量子化および圧縮のなされた量子化圧縮データに対して、逆量子化伸張を行い、この伸張データと、オリジナルデータとから、量子化誤差に起因する誤差を補正する補正データを生成し、オリジナルデータと補正データとで補正済みデータを生成し、この補正済みデータを圧縮データとして出力するようにしているため、余剰な量子化誤差情報を圧縮データに付加することなく、簡易な回路構成において、効率よく量子化圧縮に起因する量子化誤差を補正することが可能になる。
上記において、補正データが量子化誤差に起因する劣化特性の逆特性であると好適である。このようにすれば、量子化誤差によるオリジナルデータの劣化に対して効果的に量子化誤差の補正を行うことが可能になる。
量子化圧縮により、逆量子化伸張後のデータが原データと比較して増減するが、この増減量を低減するために、量子化圧縮前の原データに対して、量子化圧縮により発生する増減の逆特性を予め付加するようにしたもので、その増減の逆特性を「量子化誤差の逆特性」とする。すなわち、「量子化誤差の逆特性」とは、量子化圧縮伸張前のデータを量子化圧縮逆量子化伸張することにより発生する、量子化圧縮伸張前のデータとの「差異の特性の逆特性」をいうものとする。ここで、「差異の特性の逆特性」には、「加算」「減算」等の差分などがある。
上記において、複数存在する量子化器を単一の回路で構成すると好適である。このようにすれば、量子化器の回路を削減することで回路規模の削減が可能になる。
上記において、補正データがオリジナルデータと一度量子化圧縮し逆量子化伸張した後のデータとの差分であると好適である。このようにすれば、量子化誤差によるオリジナルデータの劣化を簡易な回路で検知することが可能になり、量子化誤差の補正を、コストの大きな増加無しに行うことが可能になる。
上記において、量子化圧縮を行う量子化圧縮手段の前段に直交変換を行う手段と、逆量子化伸張を行う逆量子化伸張手段の後段に逆直交変換を行う手段を備えていると好適である。このようにすれば、量子化圧縮を行う際に、オリジナルデータが有する相関性を利用して、量子化誤差を低減させつつ量子化圧縮の圧縮率向上を行うことが可能になる。
上記において、少なくとも一度以上補正データを用いて、量子化圧縮の誤差を補正する構成とすると好適である。このようにすれば、補正データを使用する回数に応じて、量子化誤差を必要に応じて低減することが可能になる。
上記において、少なくとも一度以上補正データを用いて、量子化圧縮の誤差を補正する構成とし、さらに、オリジナルデータと補正済みデータの量子化誤差を算出する手段を備え、量子化誤差のレベルに応じて補正データを使用する回数を制御する構成とすると好適である。このようにすれば、量子化誤差のレベルに応じて、量子化誤差の補正を行うことが可能になり、より量子化誤差の補正を精度良く行うことが可能になる。
上記において、量子化誤差を算出する手段が、オリジナルデータと補正済みデータの差分の累積二乗和の値を求める構成であると好適である。このようにすれば、データ全体での量子化誤差の補正をバランスよく行うことが可能になる。
上記において、量子化誤差を算出する手段が、オリジナルデータと補正済みデータの差分の絶対値の最大値を求める構成であると好適である。このようにすれば、量子化誤差の検出の回路構成を簡易にすることが可能になる。
上記において、圧縮データ結果に対してエントロピー符号化による圧縮を行う構成であると好適である。このようにすれば、量子化圧縮に加え、エントロピー符号化による圧縮により圧縮率の向上が可能になる。
上記において、量子化圧縮の結果における直交変換で得られた低周波成分に対応する係数、及び、DC成分に対応する係数が、補正済みデータの値によらずオリジナルデータを直交変換し量子化圧縮した値と同一であると好適である。このようにすれば、補正データを使用しオリジナルデータを補正する場合に発生するDCレベルの変動を最小限に抑制でき、量子化誤差の低減をさらに行うことが可能になる。
上記において、直交変換はコサイン変換であると好適である。このようにすれば、量子化圧縮を行う際に、オリジナルデータが有する相関性を利用して、量子化誤差を低減させつつ量子化圧縮の圧縮率向上を行うことが可能になる。
上記において、直交変換はDCT変換であると好適である。このようにすれば、量子化圧縮を行う際に、オリジナルデータが有する相関性を利用して、量子化誤差を低減させつつ量子化圧縮の圧縮率向上を行うことが可能になる。
上記において、直交変換はアダマール変換であると好適である。このようにすれば、量子化圧縮を行う際に、オリジナルデータが有する相関性を利用して、量子化誤差を低減させつつ量子化圧縮の圧縮率向上を行うことが可能になる。
上記において、直交変換はウェーブレット変換であると好適である。このようにすれば、量子化圧縮を行う際に、オリジナルデータが有する相関性を利用して、量子化誤差を低減させつつ量子化圧縮の圧縮率向上を行うことが可能になる。
上記において、ウェーブレットの基底がHarrであると好適である。このようにすれば、直交変換を単純な加減算とビットシフトで実現でき、回路規模を低減することが可能になる。
上記において、ウェーブレットの基底がDaubechiesであると好適である。このようにすれば、なだらかに変化するデータに対して、より好ましい直交変換が可能になり、量子化誤差の低減が可能になる。
上記において、直交変換が一次元方向に行われると好適である。このようにすれば、シーケンシャルに入力されるデータに対して量子化誤差の低減を実現することが可能になる。
上記において、直交変換が二次元方向に行われると好適である。このようにすれば、二次元方向に相関性のあるデータに対して効率的に量子化誤差の低減を実現することが可能になる。
上記において、オリジナルデータが画像データであると好適である。このようにすれば、量子化圧縮による画像データの量子化誤差を補正することが可能になる。
上記において、圧縮後の符号が固定長であると好適である。このようにすれば、符号長を制御するための余剰な回路が不要になり、復号側でも簡易な回路構成で復号装置を構成することが可能になる。
上記において、圧縮後の符号が可変長であると好適である。このようにすれば、量子化誤差が十分に収束しなかった場合でも、圧縮率を下げることでデータの精度を保つことが可能になる。
上記において、オリジナルデータと補正済みデータの量子化誤差を算出する手段を備える構成とし、量子化誤差のレベルに応じて補正データを使用する回数を制御する手段において、外部から入力された所定の閾値に基づいて補正データを使用する回数を決定する構成とすると好適である。このようにすると、量子化誤差に応じて、最適な回数の量子化誤差補正が行われ、処理時間とデータの精度の最適化を行うことが可能になる。
上記において、補正データを使用する回数を制御する手段において、外部から入力された所定の値に基づいて補正データを使用する回数を決定する構成とすると好適である。このようにすると、量子化誤差のレベルに依存せず、圧縮、及び、補正に必要な処理時間が固定となり、処理時間の長さを制御することが可能になる。
上記において、データの量子化誤差を最適化した画質優先モードと処理速度優先モードを選択する手段を備え、量子化誤差のレベルに応じて補正データを使用する回数を制御する手段に対し、モードに応じた所定の閾値を入力する構成のカメラとすると好適である。このようにすれば、画質を重視するような状況においては量子化誤差の最適化された圧縮方法、連写撮影時等のように速度が重視される状況では処理速度を優先した圧縮方法を、ユーザが自由に選択することができ、より好ましいカメラ制御を行うことが可能になる。
上記において、データの量子化誤差を最適化した画質優先モードと処理速度優先モードを選択する手段を備え、補正データを使用する回数を制御する手段に対し、モードに応じた所定の補正を繰り返す回数を入力する構成のカメラとすると好適である。このようにすれば、画質を重視するような状況においては量子化誤差の最適化された圧縮方法、連写撮影時等のように速度が重視される状況では処理速度を優先した圧縮方法を、ユーザが自由に選択することができ、より好ましいカメラ制御を行うことが可能になる。
上記において、データの量子化誤差を最適化した画質優先モードと処理速度優先モードにおける、量子化誤差のレベルに応じて補正データを使用する回数を制御する手段に入力する閾値が、(画質優先モードの閾値)≦(処理速度優先モードの閾値)の関係を満たしていると好適である。このようにすれば、画質を重視するような状況においては量子化誤差の最適化された圧縮方法、連写撮影時等のように速度が重視される状況では処理速度を優先した圧縮方法を、ユーザが自由に選択することができ、より好ましいカメラ制御を行うことが可能になる。
上記において、データの量子化誤差を最適化した画質優先モードと処理速度優先モードにおける、量子化誤差のレベルに応じて補正データを使用する回数を制御する手段に入力する補正を繰り返す回数が、
(画質優先モードの回数)≧(処理速度優先モードの回数)
の関係を満たしていると好適である。このようにすれば、画質を重視するような状況においては量子化誤差の最適化された圧縮方法、連写撮影時等のように速度が重視される状況では処理速度を優先した圧縮方法を、ユーザが自由に選択することができ、より好ましいカメラ制御を行うことが可能になる。
本発明によれば、大幅な回路増、圧縮率の低下をともなわず、量子化圧縮によって発生した量子化誤差を低減することが可能になる。また、本発明を画像データやカメラに適用することで、画質の向上が可能になる。
以下、本発明のデータ処理装置の実施の形態について、データ圧縮部を例にとり、図面を参照しながら説明する。
(第1の実施の形態)
本実施の形態では、量子化および圧縮のなされた量子化圧縮データに対して、逆量子化伸張を行い、この伸張データと、オリジナルデータとから、量子化誤差に起因する誤差を補正する補正データを生成し、オリジナルデータと補正データとで補正済みデータを生成し、この補正済みデータを量子化圧縮データとして出力するようにしたことを特徴とするものである。
本発明の第1の実施の形態におけるデータ圧縮部について説明する。
(1−1)データ圧縮部の構成
まず、本実施の形態におけるデータ圧縮部の構成について説明する。図1は本実施の形態におけるデータ圧縮部の機能構成を示すブロック図である。
データ圧縮部は、第1の直交変換部1、第1の量子化部2、逆量子化部3、逆直交変換部4、補正データ生成部5、補正済みデータ生成部6、第2の直交変換部7、第2の第2の量子化部8を備えている。
入力されたオリジナルデータは、第1の直交変換部1に入力されて直交変換され、直交変換後の直交変換係数を出力する。第1の量子化部2は第1の直交変換部1が出力した直交変換後の係数に対して量子化圧縮を行い、量子化圧縮後の直交変換係数を出力する。逆量子化部3は、第1の量子化部2で量子化圧縮された直交変換係数を逆量子化し、圧縮処理され量子化誤差が含まれた直交変換係数を出力する。逆直交変換部4は、逆量子化部3が出力した量子化誤差が含まれた直交変換係数に対して逆直交変換を行うことで、量子化誤差の含まれたオリジナルデータを復元する。
さらに、オリジナルデータと逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータは、補正データ生成部5に入力され、オリジナルデータと量子化誤差の含まれたオリジナルデータから、圧縮部の直交変換、及び、量子化圧縮に起因する劣化特性を推定し、その劣化特性を補正するためのデータを生成し出力する。
さらに、オリジナルデータと補正データ生成部5から出力された劣化特性を補正するためのデータは、補正済みデータ生成部6に入力され、オリジナルデータに対して、直交変換、及び、量子化圧縮に起因する劣化特性の逆特性を付加した補正済みデータを出力する。補正済みデータ生成部6が出力した補正済みデータは、第2の直交変換部7に入力されて直交変換され、直交変換後の直交変換係数を出力する。第2の量子化部8は第2の直交変換部7が出力した直交変換後の係数に対して量子化圧縮を行い、量子化圧縮後の直交変換係数を出力する。
データ圧縮部は、第2の量子化部8が出力した量子化圧縮後の直交変換係数をオリジナルデータの圧縮データとして出力する。
(1−2)直交変換部
次に、第1の直交変換部1、第2の直交変換部7について説明する。第1の直交変換部1と第2の直交変換部7は演算のビット精度、及び、第2の直交変換部7の最終段にデータのレンジを制限するクリップ回路が存在している点が異なっており、演算の方法や手順等は同一である。
本実施の形態における直交変換部は、Harr基底のウェーブレット変換により実現される。
説明の簡便化のために、入力データ数16、データビット長12、データは一次元として具体的な数値を用いて演算過程を説明する。
図2は入力されたデータ列が、どのように変換されているかの値を示したもので、21は入力されたオリジナルデータ、22はレベル1のウェーブレット係数、23はレベル2のウェーブレット係数、24はレベル3のウェーブレット係数、25はレベル4のウェーブレット係数である。
オリジナルのデータ系列をdat、レベル1で生成されるウェーブレット係数をcoef L、coef H、レベル2で生成されるウェーブレット係数をcoef LL、coef LH、レベル3で生成されるウェーブレット係数をcoef LLL、coef LLH、レベル4で生成されるウェーブレット係数をcoef LLLL、coef LLLHとすると、それぞれ[式1]の関係から算出される。
[式1]
coef L[i] = dat[i*2] + dat[i*2+1] (i=0〜7)
coef H[i] = dat[i*2] - dat[i*2+1] (i=0〜7)
coef LL[i] = coef L[i*2] + coef L[i*2+1] (i=0〜3)
coef LH[i] = coef L[i*2] - coef L[i*2+1] (i=0〜3)
coef LLL[i] = coef LL[i*2] + coef LL[i*2+1] (i=0〜1)
coef LLH[i] = coef LL[i*2] - coef LL[i*2+1] (i=0〜1)
coef LLLL[i] = coef LLL[i*2] + coef LLL[i*2+1] (i=0)
coef LLLH[i] = coef LLL[i*2] - coef LLL[i*2+1] (i=0)
ウェーブレット係数のビット長はこの段階でそれぞれ、coef L=13ビット、coef H=13ビット、coef LL=14ビット、coef LH=14ビット、coef LLL=15ビット、coef LLH=15ビット、coef LLLL=16ビット、coef LLLH=16ビットとなる。
なお、第2の直交変換部7においては、補正済みデータを入力データとし、データのビット長が12ビットである保証がないため、最終的な直交変換係数の値に対して、上記のビット長になるようにクリッピング処理を行う。
(1−3)量子化部
次に、第1の量子化部2、第2の量子化部8について説明する。第1の量子化部2、第2の量子化部8は演算の方法や手順等は同一である。
説明の簡便化のために、(1−2)で説明した直交変換部で算出されたウェーブレット係数を量子化圧縮する具体例を示す。
coef H=13ビット、coef LH=14ビット、coef LLH=15ビット、coef LLLL=16ビット、coef LLLH=16ビットのビット長となっているデータを、量子化部において、coef H'=9ビット、coef LH'=9ビット、coef LLH'=11ビット、coef LLLL'=11ビット、coef LLLH'=13ビットに量子化圧縮を行なう。図3の31は、上記量子化圧縮の結果を示しており、量子化部で行われる量子化は[式2]の操作によって算出される。
[式2]
(量子化後のデータ)=int((量子化前のデータ)/(2^((量子化前のビット長)−(量子化後のビット長))))
:int()は、()内の引数を整数化する関数
ウェーブレット係数のビット長はこの段階でそれぞれ、coef H'=9ビット、coef LH'=9ビット、coef LLH'=11ビット、coef LLLL'=11ビット、coef LLLH'=13ビットに量子化圧縮され、オリジナルデータ192ビット(12ビットx16データ)が、154ビットに圧縮されることになる。
(1−4)逆量子化部
次に、逆量子化部3について説明する。
説明の簡便化のために、(1−3)で説明した量子化部で算出された量子化されたウェーブレット係数を逆量子化伸張する具体例を示す。
coef H'=9ビット、coef LH'=9ビット、coef LLH'=11ビット、coef LLLL'=11ビット、coef LLLH'=13ビットのビット長になっているデータを、逆量子化部において、coef H''=13ビット、coef LH''=14ビット、coef LLH'''=15ビット、coef LLLL''=16ビット、coef LLLH''=16ビットに逆量子化伸張を行う。図4において41は、上記逆量子化伸張の結果を示しており、逆量子化部で行われる逆量子化は[式3]の操作によって算出される。
[式3]
(逆量子化後のデータ)=(量子化後のデータ)*(2^((量子化前のビット長)−(量子化後のビット長)))
ウェーブレット係数のビット長はこの段階でそれぞれ、coef H''=13ビット、coef LH''=14ビット、coef LLH'''=15ビット、coef LLLL''=16ビット、coef LLLH''=16ビットに伸張されることになる。
(1−5)逆直交変換部
次に、逆直交変換部4について説明する。
説明の簡便化のために、(1−4)で説明した逆量子化部で逆量子化により算出されたウェーブレット係数を逆直交変換する具体例を示す。
図5は入力されたウェーブレット係数列、どのように変換されているかの値を示したもので、41は逆量子化により算出されたウェーブレット係数、51はレベル3のウェーブレット係数、52はレベル2のウェーブレット係数、53はレベル1のウェーブレット係数、54は圧縮され再度伸張されたオリジナルデータである。
ウェーブレット変換係数から逆ウェーブレット変換されたオリジナルのデータ系列をdat'、レベル1で生成されるウェーブレット係数をcoef L''、coef H''、レベル2で生成されるウェーブレット係数をcoef LL''、coef LH''、レベル3で生成されるウェーブレット係数をcoef LLL''、coef LLH''、レベル4で生成されるウェーブレット係数をcoef LLLL''、coef LLLH''とすると、それぞれ[式4]の関係から算出される。
[式4]
coef LLL''[2*i] = int((coef LLLL''[i] + coef LLLH''[i])/2) (i=0)
coef LLL''[2*i+1] = int((coef LLLL''[i] - coef LLLH''[i])/2) (i=0)
coef LL''[2*i] = int((coef LLL''[i] + coef LLH''[i])/2) (i=0〜1)
coef LL''[2*i+1] = int((coef LLL''[i] - coef LLH''[i])/2) (i=0〜1)
coef L''[2*i] = int((coef LL''[i] + coef LH''[i])/2) (i=0〜3)
coef L''[2*i+1] = int((coef LL''[i] - coef LH''[i])/2) (i=0〜3)
dat'[2*i] = int((coef L''[i] + coef H''[i])/2) (i=0〜7)
dat'[2*i+1] = int((coef L''[i] - coef H''[i])/2) (i=0〜7)
通常の復号側の伸張部であれば、生成された逆直交変換後のデータが所定のビットレンジ、本実施の形態の場合には12ビットをオーバーしている場合には、所定のビットレンジになるようにクリッピング処理をかけるが、本実施の形態においては、直交変換、及び、量子化誤差による劣化特性を推定するために意図的にクリッピング処理は行わない。
(1−6)補正データ生成部
次に、補正データ生成部5について説明する。
説明の簡便化のために、(1−5)で説明した逆直交変換部で算出された量子化圧縮後の伸張データと、データ圧縮部に入力されたオリジナルデータから補正データを算出する具体例を示す。
補正データ生成部は、(1−5)の逆直交変換部で算出された量子化圧縮後の伸張データと、データ圧縮部に入力されたオリジナルデータの差分値を[式5]によって求める。
図6の61は、[式5]によって算出されたcor[i]である。
[式5]
cor[i] = dat[i] - dat'[i] (i=0〜15)
cor[i]が、直交変換、及び、量子化圧縮によって生じた劣化特性の値となる。
(7)補正済みデータ生成部
次に、補正済みデータ生成部6について説明する。
説明の簡便化のために、(1−6)で説明した補正データ生成部で算出された補正データと、データ圧縮部に入力されたオリジナルデータから補正済みデータを算出する具体例を示す。
補正済みデータ生成部6は、(1−6)で説明した補正データ生成部で算出された補正データと、データ圧縮部に入力されたオリジナルデータから、補正済みデータを[式6]によって求める。
図6の62は、[式6]によって算出されたnew_dat[i]である。
[式6]
new_dat[i] = dat[i] + cor[i] (i=0〜15)
new_dat[i]が、直交変換、及び、量子化圧縮によって生じた劣化特性を補正したオリジナルデータの値となる。
データ圧縮部は、(1−7)で説明した補正済みデータ生成部で算出されたnew_dat[i]を、第2の直交変換部7へ入力し直交変換係数を算出した後、第2の量子化部8へと直交変換係数を入力し、直交変換係数を量子化圧縮したデータを最終的な圧縮データとして出力する。
図6の63、64は、それぞれ、new_dat[i]を圧縮し伸張したデータnew_dat[i]'、new_dat[i]'とオリジナルデータの補正データcor[i]'であり、dat[i]'より圧縮による誤差が低減していることが確認できる。
(1−8)変形例
上記においては、データ個数が2のべき乗個であったので、特にケアをせずにウェーブレット変換を行ったが、データの個数が2のべき乗でない場合においては、データの個数が2のべき乗個になるまでデータ列の最終データでデータを埋めてもよい。このようにすれば、データ埋めを行った部分のcoef Hが0になり、圧縮後の符号長さに影響せずに直交変換を行うことができる。
また、上記においては、ウェーブレット変換のレベルを4として説明したが、これ以外のレベルで行ってもよい。
また、上記においては、量子化を行う際に、量子化前のデータのレンジによらず一定の量子化を実行したが、データのレンジを管理するフラグを圧縮データに付加して、過剰な量子化が行われない構成をとるようにしても良い。
また、上記においては、直交変換部と、その直交変換データを逆変換するための逆直交変換部を備えていたが、直交変換部、及び、逆直交変換部を備えない図7に示すような構成でもよい。この構成は図1に示した装置から第1の直交変換部1、逆直交変換部4および第2の直交変換部7を除いたものであり、同一部位には同一符号を付した。
また、上記においては、直交変換部をウェーブレット変換で実現したが、コサイン変換、DCT、アダマール変換であってもよい。さらに、入力データの特性に合わせて直交変換部が、ウェーブレット変換、コサイン変換、DCT、アダマール変換の何れかを選択し、組み合わせて直交変換する構成でもよい。
また、上記においては、直交変換部のウェーブレット変換の基底をHarrとしたが、Daubechiesであってもよい。勿論、その他の既知の基底であってもよい。
また、上記においては、補正済みデータとして、全ての直交変換係数を補正済みデータを直交変換した値としたが、ウェーブレット変換の場合はL*(ウェーブレットのレベルによってL、LL、LLL・・・)、その他の直交変換の場合は、低域、低周波、DC部に相当する係数を、オリジナルデータを直交変換して得られた直交変換係数で固定してもよい。
(第2の実施の形態)
本発明の第2の実施の形態におけるデータ圧縮部について説明する。
以下、当該相違点に着目して説明する。
(2−1)データ圧縮部の構成
まず、本実施の形態におけるデータ圧縮部の構成について説明する。図8は本実施の形態におけるデータ圧縮部の機能構成を示すブロック図である。
データ圧縮部は、第1の直交変換部1、第1の量子化部2、逆量子化部3、逆直交変換部4、補正データ生成部5、補正済みデータ生成部6、誤差算出部81、誤差判定部82、入出力制御部83を備えている。
入力されたオリジナルデータは、セレクタに入力され、入出力制御部83の制御信号(不図示)によりセレクトされ、第1の直交変換部1に入力されて直交変換され、直交変換後の直交変換係数を出力する。第1の量子化部2は第1の直交変換部1が出力した直交変換後の係数に対して量子化圧縮を行い、量子化圧縮後の直交変換係数を出力する。逆量子化部3は、第1の量子化部2で量子化圧縮された直交変換係数を逆量子化し、圧縮処理され量子化誤差が含まれた直交変換係数を出力する。逆直交変換部4は、逆量子化部3が出力した量子化誤差が含まれた直交変換係数に対して逆直交変換を行うことで、量子化誤差の含まれたオリジナルデータを復元する。
さらに、オリジナルデータと逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータは、補正データ生成部5に入力され、オリジナルデータと量子化誤差の含まれたオリジナルデータから、圧縮部の直交変換、及び、量子化圧縮に起因する劣化特性を推定し、その劣化特性を補正するためのデータを生成し出力する。
さらに、オリジナルデータと補正データ生成部5から出力された劣化特性を補正するためのデータは、補正済みデータ生成部6に入力され、オリジナルデータに対して、直交変換、及び、量子化圧縮に起因する劣化特性の逆特性を付加した補正済みデータをセレクタに出力する。
一方で、誤差算出部81は、オリジナルデータと逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータを比較して、直交変換、及び、量子化圧縮により発生した誤差のレベルを判定し、その誤差レベルの判定結果を誤差判定部82に出力する。
誤差判定部82は、誤差算出部81が出力した誤差レベルの判定結果と外部から入力された所定の値に基づいて圧縮データに対する誤差補正動作のON/OFFを決定し、その誤差補正動作制御信号を入出力制御部83に出力する。
入出力制御部83は、誤差判定部82が出力した誤差補正動作制御信号に基づいて、第1の直交変換部1に入力するデータが、オリジナルデータか補正済みデータ生成部6から出力された量子化圧縮に起因する劣化特性の逆特性を付加した補正済みデータであるかをセレクトする制御信号(不図示)を出力する。誤差補正が必要である場合には、補正済みデータ生成部6が出力したデータをセレクトし、誤差補正が必要でない場合、或いは、初期データが入力される場合には、オリジナルデータがセレクトされるように制御信号を出力する。
さらに、誤差補正が必要でない場合、圧縮データである第1の量子化部2から出力されたデータが、本実施の形態のデータ圧縮部の後段に存在するブロックにおいて正しく認識されるように、圧縮データの区切りに相当する制御信号(不図示)を出力する。
データ圧縮部は、入出力制御部83が出力した量子化圧縮後の直交変換係数をオリジナルデータの圧縮データとして出力する。
(2−2)誤差算出部
次に、誤差算出部81について説明する。
誤差算出部81は、入力されたオリジナルデータと逆直交変換部4からの出力データである量子化誤差の含まれたオリジナルデータから誤差レベルを判定するための値を算出する。
実施の形態1で示したオリジナルデータ、及び、逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータを用いると、本実施の形態の誤差算出部81は、[式7]で表され、オリジナルデータと逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータの差分の累積二乗誤差を誤差レベルの判定基準用の値としている。
[式7]
diff_val = Σ(dat[i] - dat'[i])^2 (i=0〜15)
(2−3)誤差判定部
次に、誤差判定部82について説明する。
誤差判定部82は、誤差算出部81から入力された誤差レベル判定基準値と、外部から入力(不図示)された所定の値を用いて、補正済みデータ生成部6から出力された補正済みデータの使用の要否を決定する。
本実施の形態では、誤差レベル判定基準値と大きさを比較するための閾値が外部から入力されており、誤差判定部は、閾値と誤差算出部81から入力された誤差レベル判定基準値を比較し、誤差レベル判定基準値が閾値より大きい場合、つまり、誤差が大きい場合には補正済みデータの使用が必要と判断し、閾値以下の場合、つまり、誤差が許容できる場合には補正済みデータの使用が不要と判断し、誤差補正動作制御信号を出力する。
(2−4)入出力制御部
次に、入出力制御部83について説明する。
入出力制御部83は誤差判定部82から入力された誤差補正動作制御信号、及び、データ圧縮部の状態に基づいて動作を行う。
データ圧縮部の状態がデータ受け入れ状態、及び、補正済みデータの使用が不要である誤差補正動作制御信号を受理した場合、本実施の形態のデータ圧縮部の前段に存在するブロックに対して、次のデータ圧縮を行うためのデータ入力のリクエストを出力する(不図示)。つづいて、入力されてきたオリジナルデータを第1の直交変換部1に入力するようにセレクタの動作を決定する。
さらに、補正済みデータの使用が不要である誤差補正動作制御信号を受理した場合には、本実施の形態のデータ圧縮部の後段に存在するブロックにおいて正しく認識されるように、圧縮データの区切りに相当する制御信号と圧縮されたデータを出力する。
補正済みデータの使用が必要である誤差補正動作制御信号を受理した場合、補正済みデータ生成部6から出力された補正済みデータを第1の直交変換部1に入力するようにセレクタの動作を決定する。その場合には、本実施の形態のデータ圧縮部の後段に存在するブロックにおいて正しく認識するための、圧縮データの区切りに相当する制御信号と圧縮されたデータは出力されない。
(2−5)変形例
上記においては、誤差算出部が算出する誤差レベル判定基準値を、オリジナルデータと逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータの差分の累積二乗誤差としたが、オリジナルデータと逆直交変換部4から出力された量子化誤差の含まれたオリジナルデータの差分の絶対値の中の最大値、或いは、最小値としてもよい。
また、上記においては、誤差判定部に外部から入力される値を、誤差レベル判定基準値と比較するための閾値としたが、誤差レベル判定基準値に依存しないで補正済みデータの使用回数を決定するために、補正済みデータを使用する回数であってもよい。この場合は、誤差レベル判定基準値によらず、外部から入力された値の回数分補正済みデータの使用を行う。
また、上記においては、圧縮データとして量子化されたデータを出力していたが、量子化圧縮されたデータに対してエントロピー符号化による圧縮手段を備えていてもよい。
また、上記においては、オリジナルデータを一次元データ系列としたが、二次元データ系列として直交変換部を二次元で直交変換を行う構成としてもよいし、オリジナルデータが二次元データ系列であっても直交変換部を一次元で直交変換を行う構成としてもよい。
また、上記においては、オリジナルデータを一次元データ系列としたが、画像データ、rawデータ、輝度データ、色差信号データ、色データ、音声データであってもよい。
また、上記においては、圧縮後のデータ長を限定していないが、固定長であってもよいし、可変長であってもよい。
また、上記においては、誤差レベル判定基準値が所定の閾値以下の場合に補正処理を終了する形態としたが、誤差レベル判定基準値が一定回数以上補正を行っても収束しない場合に、自動的に処理を打ち切り、その時点で最適な結果を出力する形態であってもよい。
(第3の実施の形態)
本発明の第3の実施の形態では、本発明のデータ圧縮部を備えたカメラについて説明する。
(3−1)カメラの構成
まず、本実施の形態におけるデータ圧縮部を備えたカメラの構成について説明する。図9は本実施の形態におけるデータ圧縮部を備えたカメラの機能構成を示すブロック図である。
カメラは、レンズ91、CCD92、タイミングジェネレータ(TG)93、前処理部94、データ圧縮部95、メモコン部96、SDRAM97、データ伸張部98、YC処理部99、LCD910、JPEG処理部911、SDカード912、CPU913、モード指示部914を備えている。
レンズ91は被写体からの入射光をCCD92上に結像させる。イメージセンサ92はいわゆる単板式のCCD(電荷転送素子:Charge Coupled Device)イメージセンサであって、2次元状に配置された光電変換素子と電荷転送部とで構成され、光電変換素子のそれぞれに入射光を濾光するRGBベイヤ配列の色フィルタが設けられており、それぞれのカラーフィルターで濾光された入射光が光電変換素子に到達し、電荷として光電変換素子に蓄積される。タイミングジェネレータであるTG93から出力される駆動信号に応じてCCD92から電荷を読み出し、アナログ撮像信号として出力する。
前処理部94は、CCD92から読み出されたアナログ撮像信号に対して、OBクランプ処理、ゲイン補正、相関二重サンプリング処理を行い、A/D変換を行った後、所謂rawデータであるデジタル撮像信号として出力する。
データ圧縮部95は、rawデータに対して、直交変換処理、量子化圧縮、量子化圧縮による誤差補正を行い、圧縮rawデータを出力する。メモコン部96は、データ圧縮部95から入力された圧縮rawデータをSDRAM97に書き込み、後段のYC処理部99でrawデータからRGB成分を算出するための同時化等を行うためにデータを一時的に記憶させる。メモコン部96は、SDRAM97に所定の圧縮rawデータ量が蓄積されると、SDRAM97から圧縮rawデータを読み出し、データ伸張部98へ出力する。
データ伸張部98は、直交変換処理、量子化圧縮されている圧縮rawデータに対して、逆量子化伸張、逆直交変換処理を行い、圧縮されていたrawデータから伸張されたrawデータに復元し、伸張したrawデータをYC処理部99に出力する。YC処理部99は、データ伸張部98から入力された伸張したrawデータに対して、オフセット補正、マトリクス演算処理、同時化、フィルタリング、γ補正等を行い、輝度信号と色信号であるYCデータを生成し、データ圧縮部95に出力する。データ圧縮部は、前処理部94から入力されたrawデータを圧縮する処理と並列して、YC処理部99から入力されたYCデータに対して、直交変換処理、量子化圧縮、量子化圧縮による誤差補正を行い、圧縮YCデータを出力する。メモコン部96は、データ圧縮部95から入力された圧縮YCデータをSDRAM97に書き込み、後段のJPEG処理部911で二次元DCT処理を行うためにデータを一時的に記憶させる。
メモコン部96は、SDRAM97に所定の圧縮YCデータ量が蓄積されると、SDRAM97から圧縮YCデータを読み出し、データ伸張部98へ出力する。データ伸張部98は、直交変換処理、量子化圧縮されている圧縮YCデータに対して、逆量子化伸張、逆直交変換処理を行い、圧縮されていたYCデータから伸張されたYCデータに復元し、伸張したYCデータを、表示デバイスであるLCD910に出力し、伸張したYCデータをLCD910で表示し、並列してJPEG処理部911に対しても伸張したYCデータを出力する。JPEG処理部911は入力された伸張したYCデータに対して、二次元DCT、エントロピー符号化等を行い、JPEG(Joint Photographic Experts Group)により圧縮したJPEG符号を出力する。外部の記憶メディアであるSDカード912は、JPEG処理部911により出力されたJPEG符号とSDカード912がデータとして認識するためのファイルフォーマット用のファイルヘッダデータを加えてSDカード912内の記憶エリアに保存する。
さらに、カメラ外部から、カメラの動作モードを選択するための指示914がCPU913を介してデータ圧縮部95に通知される。
(3−2)データ圧縮部
次に、データ圧縮部95について説明する。
データ圧縮部95は、実施の形態2で示した図8の構成と同一の構成であり、図9に示すこのデータ圧縮部95の誤差判定部82(図8参照)に対し外部から入力される信号が存在する点のみが異なっている。誤差判定部82に外部から入力される信号は、図9に示すようにカメラ外部から、カメラの動作モードを選択するための指示914であって、その指示914の内容がCPU913によって通知される形態となっている。
また、本実施の形態では、rawデータとYCデータの直交変換、及び、量子化圧縮を行うが、ビットレンジが異なっているだけで、概ね同一の構成をとる。
(3−3)データ伸張部
次に、データ伸張部98について説明する。
図10は本実施の形態におけるデータ伸張部の機能構成を示すブロック図である。
データ伸張部は、逆量子化部101、逆直交変換部102を備えている。
入力された圧縮データは、逆量子化部101に入力される。逆量子化部101は、量子化圧縮された直交変換係数を逆量子化し、量子化伸張された直交変換係数を出力する。逆直交変換部102は、逆量子化部101が出力した量子化伸張された直交変換係数に対して逆直交変換を行うことで、伸張後のオリジナルデータを復元する。その際に、出力データのビットレンジが、所定のレンジにおさまっていない場合には、クリッピング等でビットレンジの補正を行う。
(3−4)CPU及びカメラ動作モード選択指示
次に、CPU913とカメラ外部から指示された動作モード指示914について説明する。
本実施の形態におけるカメラにおいては、外部から指示する動作モードに、「画質優先モード」と「処理速度優先モード」の二つのモードが用意されており、ユーザーがスイッチ(不図示)やメニュー等からモードを選択するようになっており、そこで選択されたモードが外部から指示された動作モード指示914としてCPU913に通知される。CPU913は外部から指示された動作モード指示が、「画質優先モード」である場合には、誤差判定部82に誤差レベル判定基準値と大きさを比較するための値αを閾値として出力する。また、「速度優先モード」である場合には、誤差判定部82に誤差レベル判定基準値と大きさを比較するための値βを閾値として出力する。
本実施の形態におけるカメラにおいては、αとβは以下の関係式[式8]を満たすように構成される。
[式8]
α≦β
誤差判定部82に入力された閾値は、「画質優先モード」の場合にはβと比較して値が小さいため、一般的に圧縮によって生じた誤差の補正を行うための動作の回数が増加し、処理時間の増加を伴うが、誤差の補正精度が向上することになる。一方で、「速度優先モード」の場合には、閾値がαと比較して値が大きいため、一般的に圧縮で生じた誤差の補正を行うための動作が減少し、処理時間の減少が実現できるが、誤差の補正精度が低下することになる。つまり、CPU913が出力する閾値に応じて、「画質」と「速度」の選択をユーザが行うことが可能になる。
(3−5)変形例
上記においては、CPUにおいて、誤差算出部が誤差判定部に出力する値を、誤差レベル判定基準値と大きさを比較するための閾値としたが、「画質優先モード」と「速度優先モード」において、補正動作を繰り返す数を通知する形態であってもよい。その場合、「画質優先モード」と「速度優先モード」においてCPUが出力する値を、それぞれγ、δとしたときに、関係式[式9]を満たすように構成される。
[式9]
γ≧δ
また、上記においては、外部からモードの指示を行う形態としたが、CPUが出力している閾値や繰り返し回数等を外部から直接指示する形態であってもよい。
本発明のデータ装置及びその制御方法は、データの量子化圧縮機能を有するデータ処理装置において、量子化誤差の影響を簡易な回路構成で低減する方法として有用である。
本発明の第1の実施の形態におけるデータ圧縮部の機能構成を示すブロック図 本発明の第1の実施の形態における直交変換部の演算例を示す図 本発明の第1の実施の形態における量子化部の演算例を示す図 本発明の第1の実施の形態における逆量子化部の演算例を示す図 本発明の第1の実施の形態における逆直交変換部の演算例を示す図 本発明の第1の実施の形態における補正データ生成部、補正済みデータ生成部の演算例、補正済みデータを圧縮した演算結果を示す図 本発明の第1の実施の形態におけるデータ圧縮部の変形例の機能構成を示すブロック図 本発明の第2の実施の形態におけるデータ圧縮部の機能構成を示すブロック図 本発明の第3の実施の形態におけるカメラの機能構成を示すブロック図 本発明の第3の実施の形態におけるデータ伸張部の機能構成を示すブロック図
符号の説明
1 直交変換部
2 量子化部
3 逆量子化部
4 逆直交変換部
5 補正データ生成部
6 補正済みデータ生成部
7 直交変換部
8 量子化部
21 演算例における入力データ列dat
22 直交変換演算例における直交変換係数列coef L、coef H(レベル1)
23 直交変換演算例における直交変換係数列coef LL、coef LH、coef H(レベル2)
24 直交変換演算例における直交変換係数列coef LLL、coef LLH、coef LH、coef H(レベル3)
25 直交変換演算例における直交変換係数列coef LLLL、coef LLLH、coef LLH、coef LH、coef H(レベル4)
31 量子化圧縮演算例における量子化圧縮された直交変換係数列coef LLLL'、coef LLLH'、coef LLH'、coef LH'、coef H'
41 逆量子化伸張演算例における逆量子化伸張された直交変換係数列coef LLLL''、coef LLLH''、coef LLH''、coef LH''、coef H''
51 逆直交変換演算例における直交変換係数列coef LLL''、coef LLH''、coef LH''、coef H''(レベル3)
52 逆直交変換演算例における直交変換係数列coef LL''、coef LH''、coef H''(レベル2)
53 逆直交変換演算例における直交変換係数列coef L''、coef H''(レベル1)
54 逆直交変換演算例における圧縮され伸張されたデータ列dat'
61 補正データ生成部演算例における劣化特性データ列cor
62 補正済みデータ生成部演算例における補正済みデータ列new_dat
63 演算例における補正済みデータが圧縮され伸張されたデータ列new_dat'
64 補正済みデータによる補正データ生成部演算例における劣化特性データ列cor'
81 誤差算出部
82 誤差判定部
83 入出力制御部
91 レンズ
92 CCD
93 TG
94 前処理部
95 データ圧縮部
96 メモコン部
97 SDRAM
98 データ伸張部
99 YC処理部
910 LCD
911 JPEG処理部
912 SDカード
913 CPU
914 モード指示部
101 逆量子化部
102 逆直交変換部

Claims (29)

  1. 量子化圧縮を行うデータ処理装置であって、
    量子化圧縮前のオリジナルデータである第一のオリジナルデータに対して、
    量子化圧縮を行う第一の量子化圧縮手段と、
    前記第一の量子化圧縮手段により量子化圧縮された第一の量子化圧縮データに対して、
    逆量子化伸張を行う第一の逆量子化伸張手段と、
    前記第一の逆量子化伸張手段により伸張された第一の伸張データと、前記第一のオリジナルデータから、
    量子化誤差に起因する誤差を補正するデータである第一の補正データを生成する補正データ生成手段と、
    前記第一のオリジナルデータと前記第一の補正データから、
    第一の補正済みデータを生成する補正済みデータ生成手段と、
    前記第一の補正済みデータを量子化圧縮する第二の量子化圧縮手段とを、
    備え、
    前記第二の量子化圧縮手段により量子化圧縮されたデータを、量子化圧縮の結果として出力するデータ処理装置。
  2. 請求項1に記載のデータ処理において、
    前記第一の量子化圧縮手段と前記第二の量子化圧縮手段が同一回路で構成されたデータ処理装置。
  3. 請求項1から2に記載のデータ処理装置において、
    前記第一の補正データを生成する手段において、
    前記補正データ生成手段は、
    前記第一の量子化圧縮手段により発生する量子化誤差の逆特性を算出するデータ処理装置。
  4. 請求項1または2に記載のデータ処理装置において、
    前記第一の補正データを生成する手段において、
    前記補正データ生成手段は、
    前記第一のオリジナルデータから前記第一の伸張データを減算した値を算出し、
    前記補正済みデータ生成手段は、
    前記第一のオリジナルデータに前記第一の補正データを加算することで補正済みデータを算出するデータ処理装置。
  5. 請求項1乃至4のいずれかに記載のデータ処理装置において、
    前記第一の量子化圧縮手段の前段に直交変換を行う第一の直交変換手段と、
    前記第一の逆量子化伸張手段と前記補正データ生成手段の間に逆直交変換を行う第一の 逆直交変換手段と、
    前記補正済みデータ生成手段と前記第二の量子化圧縮手段の間に直交変換を行う第二の直交変換手段とを、備えるデータ処理装置。
  6. 請求項1乃至5のいずれかに記載のデータ処理装置において、
    前記第二の量子化圧縮手段の量子化圧縮データを前記第一の逆量子化伸張手段に少なくとも一度以上再度入力するデータ処理装置。
  7. 請求項6に記載のデータ処理装置において、
    前記第一のオリジナルデータと前記第一の補正済みデータとの第一の量子化誤差を算出する誤差算出手段と、
    前記誤差算出手段により算出された第一の量子化誤差と所定の閾値の大小を比較し判定する誤差判定手段と、
    前記誤差判定手段において、前記第一の量子化誤差が前記所定の閾値より大きいと判定された場合には、
    前記第二の量子化圧縮手段の量子化圧縮データを前記第一の逆量子化伸張手段に再度入力し、
    前記誤差判定手段において、前記第一の量子化誤差が前記所定の閾値より小さいと判定された場合には、
    前記第二の量子化圧縮手段の量子化圧縮データを前記第一の逆量子化伸張手段に再度入力せず、
    前記第二の量子化圧縮手段により量子化圧縮されたデータを、
    量子化圧縮の結果として出力するデータ処理装置。
  8. 請求項7に記載のデータ処理装置において、
    前記誤差算出手段は、
    前記第一のオリジナルデータと前記第一の補正済みデータの差分の二乗を累積加算することで第一の量子化誤差を算出するデータ処理装置。
  9. 請求項7に記載のデータ処理装置において、
    前記誤差算出手段は、
    前記第一のオリジナルデータと前記第一の補正済みデータの差分の絶対値の最大値を算出するデータ処理装置。
  10. 請求項1乃至9のいずれかに記載の処理装置において、
    前記第二の量子化圧縮手段により量子化圧縮されたデータに対してエントロピー符号圧縮を行うデータ処理装置。
  11. 請求項5乃至10のいずれかに記載の処理装置において、
    前記第一の直交変換により算出された、低周波成分に対応する係数、及び、DC成分に対応する係数が、
    前記第一の補正済みデータの値によらず、
    前記第一のオリジナルデータを前記第一の直交変換手段により直交変換を行い、
    前記直交変換後のデータを前記第一の量子化圧縮手段で量子化圧縮された値と同一であるデータ処理装置。
  12. 請求項1乃至11のいずれかに記載の処理装置において、
    前記第一の直交変換手段が、コサイン変換であり、
    前記第一の逆直交変換手段が、逆コサイン変換であるデータ処理装置。
  13. 請求項1乃至11のいずれかに記載の処理装置において、
    前記第一の直交変換手段が、DCT変換であり、
    前記第一の逆直交変換手段が、逆DCT変換であるデータ処理装置。
  14. 請求項1乃至11のいずれかに記載の処理装置において、
    前記第一の直交変換手段が、アダマール変換であり、
    前記第一の逆直交変換手段が、逆アダマール変換であるデータ処理装置。
  15. 請求項1乃至11のいずれかに記載の処理装置において、
    前記第一の直交変換手段が、ウェーブレット変換であり、
    前記第一の逆直交変換手段が、逆ウェーブレット変換であるデータ処理装置。
  16. 請求項15に記載のウェーブレット変換の基底がHarrであることを特徴とするデータ処理装置。
  17. 請求項15に記載のウェーブレット変換の基底がDaubechiesであるデータ処理装置。
  18. 請求項11乃至1のいずれかに記載のデータ処理装置において、
    前記直交変換が一次元方向に行われるデータ処理装置。
  19. 請求項11乃至16のいずれかに記載のデータ処理装置において、
    前記直交変換が二次元方向に行われるデータ処理装置。
  20. 請求項1乃至19のいずれかに記載のデータ処理装置において、
    前記第一のオリジナルデータが画像データであるデータ処理装置。
  21. 請求項1乃至20のいずれかに記載のデータ処理装置において、
    圧縮後のデータのbit長が固定長であるデータ処理装置。
  22. 請求項1乃至20のいずれかに記載のデータ処理装置において、
    圧縮後のデータのbit長が可変長であるデータ処理装置。
  23. 請求項1乃至20のいずれかに記載のデータ処理装置において、
    前記誤差判定手段において、前記第一の量子化誤差と比較する前記所定の閾値が、
    外部から制御可能であるデータ処理装置。
  24. 請求項23に記載のデータ処理装置において、
    前記誤差判定手段において、
    補正済みデータを所定の回数生成した場合でも、
    前記第一の量子化誤差の値が比較する前記所定の閾値を満足しない場合に、
    量子化誤差を補正する動作を中断し、中断した時点で量子化誤差の最小のものを選択し、
    圧縮データとして出力するデータ処理装置。
  25. 請求項1乃至20のいずれかに記載のデータ処理装置において、
    前記第二の量子化圧縮手段の量子化圧縮データを前記第一の逆量子化伸張手段に再度入力する回数が、
    外部から制御可能であるデータ処理装置。
  26. 請求項23または24に記載のデータ処理装置において、
    前記所定の閾値が、
    ユーザの選択する、
    圧縮後のデータの画質を優先する画質優先モードと
    圧縮時にかかる時間の短縮を優先する処理速度優先モードとの選択結果に応じて外部から制御可能であるデータ処理装置。
  27. 請求項25に記載のデータ処理装置において、
    前記第二の量子化圧縮手段の量子化圧縮データを前記第一の逆量子化伸張手段に再度入力する回数が、
    ユーザの選択する、
    圧縮後のデータの画質を優先する画質優先モードと
    圧縮時にかかる時間の短縮を優先する処理速度優先モードとの選択結果に応じて外部から制御可能であるデータ処理装置。
  28. 請求項26に記載のデータ処理装置において、
    前記所定の閾値が、
    前記画質優先モードと前記処理速度優先モードにおいて、
    (画質優先モードの閾値)≦(処理速度優先モードの閾値)
    の関係を満たすデータ処理装置。
  29. 請求項27に記載のデータ処理装置において、
    前記第二の量子化圧縮手段の量子化圧縮データを前記第一の逆量子化伸張手段に再度入力する回数が、
    前記画質優先モードと前記処理速度優先モードにおいて、
    (画質優先モードの回数)≧(処理速度優先モードの回数)
    の関係を満たすデータ処理装置。
JP2008046139A 2008-02-27 2008-02-27 データ処理装置およびその制御方法 Withdrawn JP2009206737A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046139A JP2009206737A (ja) 2008-02-27 2008-02-27 データ処理装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046139A JP2009206737A (ja) 2008-02-27 2008-02-27 データ処理装置およびその制御方法

Publications (1)

Publication Number Publication Date
JP2009206737A true JP2009206737A (ja) 2009-09-10

Family

ID=41148587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046139A Withdrawn JP2009206737A (ja) 2008-02-27 2008-02-27 データ処理装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2009206737A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207643A (ja) * 2013-04-16 2014-10-30 大日本印刷株式会社 画像圧縮装置
US9520081B2 (en) 2013-11-08 2016-12-13 Samsung Display Co., Ltd. Recording device and recording method using the same
JP7469865B2 (ja) 2019-10-25 2024-04-17 キヤノン株式会社 画像処理装置および画像処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207643A (ja) * 2013-04-16 2014-10-30 大日本印刷株式会社 画像圧縮装置
US9520081B2 (en) 2013-11-08 2016-12-13 Samsung Display Co., Ltd. Recording device and recording method using the same
JP7469865B2 (ja) 2019-10-25 2024-04-17 キヤノン株式会社 画像処理装置および画像処理方法

Similar Documents

Publication Publication Date Title
US8233060B2 (en) Image data processing apparatus, image data processing method, and program
JP4769039B2 (ja) デジタル信号符号化および復号化装置ならびにその方法
US20070031049A1 (en) Image compression device and image compression method
US8457428B2 (en) Image coding apparatus, control method thereof, and storage medium
JP2001136526A (ja) 画像処理方法及びその装置及び記憶媒体
DE60235460D1 (de) Bildwiedergabe mittels adaptiver fehlerdiffusion
US20080131015A1 (en) Amount-of-Compressed Data Control Method and Image Data Compressing Apparatus
JP5843631B2 (ja) フレームレート制御方法,フレームレート制御装置およびフレームレート制御プログラム
JP2009206737A (ja) データ処理装置およびその制御方法
JP6906324B2 (ja) 符号化装置、符号化方法、及び、プログラム
JP2006339811A (ja) 高速画像縮小装置および方法
US8428381B2 (en) Image compression method with variable quantization parameter
JP2006270737A (ja) 復号化装置、分布推定方法、復号化方法及びこれらのプログラム
CN108200429B (zh) 一种Bayer图像压缩方法及装置
KR100570488B1 (ko) 정보 압축 장치, 정보 압축 방법 및 그 프로그램과 기록매체
JP2006295573A (ja) 電子透かしの埋込装置および埋込方法並びに画像形成装置
KR101035746B1 (ko) 동영상 인코더와 동영상 디코더에서의 분산적 움직임 예측 방법
JP4725217B2 (ja) 撮像装置
JP4241517B2 (ja) 画像符号化装置及び画像復号装置
US6173079B1 (en) Buffer data control circuit and method in image compression system using wavelet system using wavelet transform
JP2008017247A (ja) 電子カメラ、および画像処理プログラム
JP6512927B2 (ja) 画像符号化装置及びその制御方法
JP6486120B2 (ja) 符号化装置、符号化装置の制御方法、及びプログラム
JP2019068385A (ja) 符号化装置、その制御方法、および制御プログラム、並びに撮像装置
US20020122556A1 (en) Data encoding apparatus and method of same and camera system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510