JP2009200276A - Conductive composition for forming electrode, and method of forming solar cell - Google Patents

Conductive composition for forming electrode, and method of forming solar cell Download PDF

Info

Publication number
JP2009200276A
JP2009200276A JP2008040913A JP2008040913A JP2009200276A JP 2009200276 A JP2009200276 A JP 2009200276A JP 2008040913 A JP2008040913 A JP 2008040913A JP 2008040913 A JP2008040913 A JP 2008040913A JP 2009200276 A JP2009200276 A JP 2009200276A
Authority
JP
Japan
Prior art keywords
component
group
oxide
mass
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008040913A
Other languages
Japanese (ja)
Other versions
JP5522900B2 (en
Inventor
Katsuya Tanitsu
克也 谷津
Takaaki Hirai
隆昭 平井
Atsushi Murota
敦史 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2008040913A priority Critical patent/JP5522900B2/en
Publication of JP2009200276A publication Critical patent/JP2009200276A/en
Application granted granted Critical
Publication of JP5522900B2 publication Critical patent/JP5522900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive composition for forming an electrode in which its versatility is high, more specifically, there are a number of options of glass frit and metal compound to be used, and which can reduce the resistance between the electrode and a substrate. <P>SOLUTION: The conductive composition for forming the electrode contains at least one metal compound selected from (a) conductive powder, (b) glass frit, and (c) metal oxide (except low metal oxide, Fe oxide, and Mn oxide) and metal nitride, wherein the (b) component contains the oxide of group III element, and/or the oxide of group V element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極形成用導電性組成物及び太陽電池の形成方法に関する。   The present invention relates to a conductive composition for electrode formation and a method for forming a solar cell.

太陽電池用電極は、p型シリコン基板の受光面側にリン(P)等のn型不純物原子を高温で熱的に拡散させることよりn型拡散層を形成し、その後導電性組成物を、n型拡散層を含む基板の上にスクリーン印刷等により塗布し焼成することにより、形成される。このような導電性組成物には、銀粉末等の導電性金属粉末、ガラス粉末(ガラスフリット)並びに種々の添加剤及び有機溶媒等が含まれている。ここで、ガラスフリットは焼成時に溶解し、電極と基板とを接着する役割を有するが、電極と基板との間の抵抗を低く抑えつつ、接着強度を高めることが求められている。このような課題を解決する試みとして、例えば特許文献1には、銀粉末、カドミウムを含有しないガラス粉末、並びに0.1〜10.0重量%のFe、FeO、MnO及びCuOの群から選択される少なくとも1種の金属酸化物の粒子を含み、全ての粉末が有機媒質中に分散される、銀導体組成物が開示されている。
特表2005−504409号公報
The solar cell electrode forms an n-type diffusion layer by thermally diffusing n-type impurity atoms such as phosphorus (P) at a high temperature on the light-receiving surface side of the p-type silicon substrate, and then the conductive composition is used. It is formed by applying and baking on a substrate including an n-type diffusion layer by screen printing or the like. Such a conductive composition contains conductive metal powder such as silver powder, glass powder (glass frit), various additives, an organic solvent, and the like. Here, the glass frit melts during firing and has a role of bonding the electrode and the substrate, but it is required to increase the adhesive strength while keeping the resistance between the electrode and the substrate low. As an attempt to solve such a problem, for example, Patent Document 1 discloses silver powder, glass powder not containing cadmium, and 0.1 to 10.0 wt% Fe 2 O 3 , FeO, MnO, and Cu 2 O. Disclosed is a silver conductor composition comprising particles of at least one metal oxide selected from the group consisting of all powders dispersed in an organic medium.
JP 2005-504409 A

しかしながら、従来の技術では、添加できる金属酸化物が制限されているだけでなく、形成した電極と基板との間の抵抗の抑制効果に限界があった。さらに、本発明者によれば、用いたガラスフリットの成分によっては電極−基板間の抵抗が抑制されないことも見出された。   However, in the conventional technique, not only the metal oxide that can be added is limited, but also the effect of suppressing the resistance between the formed electrode and the substrate is limited. Furthermore, according to the present inventors, it has also been found that the resistance between the electrode and the substrate is not suppressed depending on the components of the glass frit used.

したがって、本発明は、汎用性が高く、すなわち、用いるガラスフリットと金属化合物との選択肢が広く、電極と基板間の抵抗をより低く抑えることが可能な電極形成用導電性組成物を提供することを目的とする。   Therefore, the present invention provides a conductive composition for forming an electrode that is highly versatile, that is, has a wide range of choices between the glass frit and the metal compound to be used, and can further reduce the resistance between the electrode and the substrate. With the goal.

本発明者らは、ア)ガラスフリットにIII族元素の酸化物及び/又はV族元素の酸化物が含まれる場合には、金属化合物としてFe、FeO、MnO及びCuOに限定することなく種々の金属酸化物及び/又は金属窒化物を添加しても、形成した電極と基板との間の抵抗を低く抑えられること、及びイ)III族元素の酸化物及び/又はV族元素の酸化物を別に添加した場合には、特定のガラスフリットに限定する必要が無くなることに加え、上記と同様に種々の金属酸化物及び/又は金属窒化物を添加すると、形成した電極と基板との間の抵抗を低く抑えられることを見出し、本発明を完成するに至った。 In the case where the glass frit contains an oxide of a group III element and / or an oxide of a group V element, the present inventors are limited to Fe 2 O 3 , FeO, MnO and Cu 2 O as metal compounds. Even if various metal oxides and / or metal nitrides are added without reducing the resistance between the formed electrode and the substrate, and b) Group III element oxides and / or Group V When the oxide of the element is added separately, it is not necessary to limit to a specific glass frit. In addition, when various metal oxides and / or metal nitrides are added as described above, the formed electrode and substrate The inventors have found that the resistance between them can be kept low, and have completed the present invention.

具体的には、本発明は以下のものを提供する。   Specifically, the present invention provides the following.

本発明は、第一の態様として、(a)導電性粉末、(b)ガラスフリット並びに(c)金属酸化物(ただし、低次金属酸化物並びにFe酸化物及びMn酸化物は除く)、及び金属窒化物の中から選ばれる少なくとも1種の金属化合物を含み、前記(b)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物を提供する。   The present invention provides, as a first aspect, (a) conductive powder, (b) glass frit, and (c) metal oxide (however, excluding low-order metal oxides and Fe oxides and Mn oxides), and Provided is an electrode-forming conductive composition comprising at least one metal compound selected from metal nitrides, wherein the component (b) contains an oxide of a group III element and / or an oxide of a group V element. To do.

本発明は、第二の態様として、(a)導電性粉末、(b)ガラスフリット並びに(c’)I族元素、II族元素、III族元素及びIV族元素の低次酸化物(ただしCuOは除く)、並びにこれら元素の低次窒化物の中から選ばれる少なくとも1種の金属化合物を含み、前記(b)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物を提供する。 The present invention provides, as a second embodiment, (a) conductive powder, (b) glass frit, and (c ′) a low-order oxide of a group I element, a group II element, a group III element, and a group IV element (however, Cu 2 O), and at least one metal compound selected from the low-order nitrides of these elements, and the component (b) comprises an oxide of a group III element and / or an oxide of a group V element An electroconductive composition for forming an electrode is provided.

本発明は、第三の態様として、(a)導電性粉末、(b’)ガラスフリット、(c’’)金属酸化物及び/又は金属窒化物並びに(d)III族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物を提供する。   The present invention provides, as a third aspect, (a) conductive powder, (b ′) glass frit, (c ″) metal oxide and / or metal nitride, and (d) Group III element oxide and / or Alternatively, an electrode-forming conductive composition containing an oxide of a group V element is provided.

さらに、本発明は第四の態様として、上記の電極形成用導電性組成物をシリコン基板上に塗布、乾燥及び焼成する工程を含む太陽電池の製造方法を提供する。   Furthermore, this invention provides the manufacturing method of a solar cell including the process of apply | coating said electroconductive composition for electrode formation on a silicon substrate, drying and baking as a 4th aspect.

本発明によれば、III族元素の酸化物及び/又はV族元素の酸化物を含むガラスフリットを用いることにより金属化合物としてFe、FeO、MnO及びCuOに限定することなく種々の金属酸化物及び/又は金属窒化物を添加しても、形成した電極と基板との間の抵抗を低く抑えることができる。さらに、III族元素の酸化物及び/又はV族元素の酸化物を別に添加した場合には、特定のガラスフリットに限定する必要が無くなることに加え、上記と同様に種々の金属酸化物及び/又は金属窒化物を添加すると、形成した電極と基板との間の抵抗を低く抑えることができる。 According to the present invention, various kinds of metal compounds are not limited to Fe 2 O 3 , FeO, MnO and Cu 2 O by using glass frit containing Group III element oxide and / or Group V element oxide. Even if the metal oxide and / or metal nitride is added, the resistance between the formed electrode and the substrate can be kept low. Further, when a group III element oxide and / or a group V element oxide are separately added, it is not necessary to limit to a specific glass frit. Alternatively, when metal nitride is added, the resistance between the formed electrode and the substrate can be kept low.

以下、本発明の実施形態について詳説するが、本発明は以下の実施形態になんら限定されるものではない。なお、以下の説明では、本発明に係る電極形成用導電性組成物を「導電性組成物」と称することがある。   Hereinafter, although embodiment of this invention is explained in full detail, this invention is not limited to the following embodiment at all. In the following description, the electrode-forming conductive composition according to the present invention may be referred to as a “conductive composition”.

(第一の態様)
本発明は、第一の態様として、(a)導電性粉末、(b)ガラスフリット並びに(c)金属酸化物(ただし、低次金属酸化物並びにFe酸化物及びMn酸化物は除く)、及び金属窒化物の中から選ばれる少なくとも1種の金属化合物を含み、前記(b)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物を提供する。この電極形成用導電性組成物における各成分(a)〜(c)は次のとおりである。
(First aspect)
The present invention provides, as a first aspect, (a) conductive powder, (b) glass frit, and (c) metal oxide (however, excluding low-order metal oxides and Fe oxides and Mn oxides), and Provided is an electrode-forming conductive composition comprising at least one metal compound selected from metal nitrides, wherein the component (b) contains an oxide of a group III element and / or an oxide of a group V element. To do. The components (a) to (c) in the electrode-forming conductive composition are as follows.

((a)導電性粉末)
(a)導電性粉末(以下、(a)成分ともいう。)として、従来公知のいかなる導電性粉末を使用することができる。例えば、銀粉末や、酸化銀、炭酸銀、酢酸銀等の焼成によって銀単体が析出するような粉末、銅、ニッケル等が挙げられる。これらは単独又は2種以上混合して使用することができるが、銀粉末が好ましい。このような(a)成分として、初めから粉末状のものを使用しても、例えばフレーク状のものを公知の手段によって粉末にすることにより調製してもよい。ここで、粉末の粒径は、粒径が大きいほど焼結速度は遅くなることから所望の焼結速度と電極を形成する工程において与える影響とを考慮して任意に設定することができる。本発明において粒径は、10μm以下が好ましく、1μm以下がさらに好ましい。(a)成分の純度は、電極として通常要求される条件を満たせばいかなる純度でもよいが、例えば銀粉末の場合、純度90%以上が好ましく、95%以上がさらに好ましい。導電性組成物中の(a)成分の量は、全固形分に対し40質量%以上が好ましく、60質量%以上がさらに好ましい。
((A) Conductive powder)
As the (a) conductive powder (hereinafter also referred to as the component (a)), any conventionally known conductive powder can be used. For example, silver powder, powder such as silver oxide, silver carbonate, silver acetate, or the like that precipitates silver alone by firing, copper, nickel, and the like can be given. These can be used alone or in combination of two or more, and silver powder is preferred. As such component (a), a powdery one may be used from the beginning, or it may be prepared, for example, by making a flaky powder by a known means. Here, the particle size of the powder can be arbitrarily set in consideration of the desired sintering rate and the influence in the step of forming the electrode, since the sintering rate becomes slower as the particle size becomes larger. In the present invention, the particle size is preferably 10 μm or less, and more preferably 1 μm or less. The purity of the component (a) may be any purity as long as the conditions normally required for an electrode are satisfied. For example, in the case of silver powder, the purity is preferably 90% or more, and more preferably 95% or more. The amount of the component (a) in the conductive composition is preferably 40% by mass or more, more preferably 60% by mass or more based on the total solid content.

((b)ガラスフリット)
(b)ガラスフリット(以下、(b)成分ともいう。)は、上記の導電性粉末の焼結する際に金属が基板に強く接着するための成分であって、従来公知のガラスフリットを使用することができる。(b)成分の例として、ケイ酸、ホウケイ酸等の変性ケイ酸、アルミノケイ酸等が挙げられる。(b)成分は、B、SiO、Al、CdO、CaO、BaO、ZnO、NaO、LiO、PbO、TiO、Bi及びZrO等の酸化物を1種以上含んでもよいが、環境に与える影響を考慮すると、鉛やカドミウム等の重金属を含まない方が好ましい。(b)成分は、1000℃以下の軟化点を有することが好ましく、800℃以下の軟化点を有することがさらに好ましい。また、導電性組成物における(b)成分は、(a)成分に対して0.1質量%〜10質量%含まれることが好ましい。
((B) Glass frit)
(B) Glass frit (hereinafter also referred to as component (b)) is a component for strongly bonding the metal to the substrate when the conductive powder is sintered, and a conventionally known glass frit is used. can do. Examples of the component (b) include modified silicic acid such as silicic acid and borosilicate, and aluminosilicic acid. Component (b) is an oxide such as B 2 O 3 , SiO 2 , Al 2 O 3 , CdO, CaO, BaO, ZnO, Na 2 O, Li 2 O, PbO, TiO 2 , Bi 2 O 3 and ZrO. However, it is preferable not to include heavy metals such as lead and cadmium in consideration of the influence on the environment. The component (b) preferably has a softening point of 1000 ° C. or lower, and more preferably has a softening point of 800 ° C. or lower. Moreover, it is preferable that (b) component in an electroconductive composition is contained 0.1 mass%-10 mass% with respect to (a) component.

さらに、第一の態様に係る(b)成分は、III族元素の酸化物及び/又はV族元素の酸化物を含む。このIII族元素の酸化物及び/又はV族元素の酸化物を含むことにより、電極を形成する工程においてシリコン基板内にp型又はn型拡散層を形成することができ、形成した電極と基板との抵抗を抑制することができる。例えばp型拡散層を形成しようとすればIII族元素の酸化物から、n型拡散層を形成しようとすればV族元素の酸化物から選択することができる。また、所望の拡散層の性質に応じて、III族元素の酸化物とV族元素の酸化物とから任意に組み合わせて用いてもよい。このような、III族元素及びV族元素の酸化物には、例えば、B、Al、Bi、P等が挙げられ、(b)成分には、拡散層をp型にするかn型にするか所望に応じて、これらのうち1種類以上が含まれる。中でも、B、Al、Biが軟化点を低くすることができる点、接着性を向上させることができる点及び電極形成時の抵抗を抑制できる点で好ましい。このようなIII族元素の酸化物及び/又はV族元素の酸化物は、(b)成分に対して、5質量%以上含まれることが好ましく、10質量%以上含まれることがさらに好ましい。 Furthermore, the component (b) according to the first embodiment includes a Group III element oxide and / or a Group V element oxide. By including this Group III element oxide and / or Group V element oxide, a p-type or n-type diffusion layer can be formed in the silicon substrate in the step of forming the electrode. Resistance can be suppressed. For example, if a p-type diffusion layer is to be formed, a group III element oxide can be selected, and if an n-type diffusion layer is to be formed, a group V element oxide can be selected. Further, depending on the properties of the desired diffusion layer, any combination of Group III element oxides and Group V element oxides may be used. Examples of such Group III element and Group V oxides include B 2 O 3 , Al 2 O 3 , Bi 2 O 3 , P 2 O 5 , and the component (b) includes: One or more of these are included depending on whether the diffusion layer is p-type or n-type. Among these, B 2 O 3 , Al 2 O 3 , and Bi 2 O 3 are preferable in that the softening point can be lowered, the adhesiveness can be improved, and the resistance during electrode formation can be suppressed. Such Group III element oxide and / or Group V element oxide is preferably contained in an amount of 5% by mass or more, and more preferably 10% by mass or more, relative to Component (b).

((c)金属酸化物(ただし、低次金属酸化物並びにFe酸化物及びMn酸化物は除く)、及び金属窒化物の中から選ばれる少なくとも1種の金属化合物)
(c)金属酸化物(ただし、低次金属酸化物並びにFe酸化物及びMn酸化物は除く)、及び金属窒化物の中から選ばれる少なくとも1種の金属化合物(以下、(c)成分ともいう。)は、(b)成分中のIII族元素及び/又はV族元素をシリコン基板内に拡散させる。このような(c)成分として、低次酸化物並びにFe酸化物及びMn酸化物を除く、いかなる金属酸化物及び金属窒化物を挙げることができる。Fe酸化物及びMn酸化物は、ウエハへ拡散した場合、光起電時の障害となる為好ましくない。また、(c)成分としては、I族元素、II族元素、III族元素及びIV族元素の酸化物並びにこれら元素の窒化物が好ましく、例えば、銅、銀、金、亜鉛、カドミウム、水銀、スカンジウム、イットリウム、ランタノイド、アクチノイド、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、珪素、ゲルマニウム、スズ及び鉛の酸化物又は窒化物が挙げられる。中でもCuO、Y、La、ZnO、AlN、Siが好ましい。(c)成分は、(a)成分と(b)成分との合計質量に対して0.1質量%〜10質量%含まれることが好ましい。
((C) Metal oxide (however, low-order metal oxides and Fe oxides and Mn oxides are excluded) and at least one metal compound selected from metal nitrides)
(C) At least one metal compound selected from metal oxides (excluding low-order metal oxides and Fe oxides and Mn oxides) and metal nitrides (hereinafter also referred to as component (c)) .) Diffuses the group III element and / or the group V element in the component (b) into the silicon substrate. Examples of the component (c) include any metal oxides and metal nitrides excluding low-order oxides and Fe oxides and Mn oxides. Fe oxide and Mn oxide are not preferable because they become obstacles at the time of photovoltaic when diffused to the wafer. Further, as the component (c), Group I elements, Group II elements, Group III elements and Group IV element oxides and nitrides of these elements are preferable, for example, copper, silver, gold, zinc, cadmium, mercury, Examples include scandium, yttrium, lanthanoid, actinide, boron, aluminum, gallium, indium, thallium, silicon, germanium, tin, and lead oxides or nitrides. Of these, CuO, Y 2 O 3 , La 2 O 3 , ZnO, AlN, and Si 3 N 4 are preferable. It is preferable that 0.1 mass%-10 mass% of (c) component is contained with respect to the total mass of (a) component and (b) component.

((c’)I族元素、II族元素、III族元素及びIV族元素の低次酸化物(ただしCuOは除く)並びにこれら元素の低次窒化物)
第一の態様に係る導電性組成物は、更に(c’)I族元素、II族元素、III族元素及びIV族元素の低次酸化物(ただしCuOは除く)並びにこれら元素の低次窒化物(以下、(c’)成分ともいう。)を含んでもよい。(c’)成分は、その還元能力により、形成した電極と基板との間の抵抗をより減少させることができる。このような(c’)成分の例として、銅、亜鉛、スカンジウム、イットリウム、ランタノイド、アクチノイド、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、チタン、ジルコニウム、珪素、ゲルマニウム、スズ及び鉛の低次酸化物(ただしCuOは除く)又は低次窒化物を挙げることができる。中でもSnO、チタンブラック(一次酸化物)、TiO及びZrO(xは0.5〜1.8を表す。)並びにTiNが好ましい。CuOは、これらの効果が期待できないので好ましくない。(c’)成分は、(c)成分との総質量が、(a)成分と(b)成分との合計質量に対して0.1質量%〜10質量%となるように含まれることが好ましい。
((C ′) Group I element, Group II element, Group III element and Group IV element low-order oxides (except Cu 2 O) and low-order nitrides of these elements)
The conductive composition according to the first aspect further includes (c ′) a low-order oxide (excluding Cu 2 O) of group I elements, group II elements, group III elements and group IV elements, and a low content of these elements. Secondary nitride (hereinafter also referred to as the component (c ′)) may be included. The component (c ′) can further reduce the resistance between the formed electrode and the substrate due to its reducing ability. Examples of such component (c ′) include low-order oxides of copper, zinc, scandium, yttrium, lanthanoid, actinoid, boron, aluminum, gallium, indium, thallium, titanium, zirconium, silicon, germanium, tin and lead. (However, Cu 2 O is excluded) or low-order nitrides. Among these, SnO, titanium black (primary oxide), TiO x and ZrO x (x represents 0.5 to 1.8) and TiN are preferable. Cu 2 O is not preferable because these effects cannot be expected. The component (c ′) may be contained so that the total mass of the component (c) is 0.1% by mass to 10% by mass with respect to the total mass of the component (a) and the component (b). preferable.

(その他の成分)
本発明に係る導電性組成物は、前述の各成分を混合し、電極を形成する諸工程における最適な特性を得るために有機バインダーをさらに含んでよい。かかる特性には、例えば、固形分の安定的な分散性及び濡れ性、スクリーン印刷における導電性組成物の粘度及びチクソトロピー、良好な揮発性、焼成時に形成された電極に影響を与えるような残渣等を発生しない焼成性が挙げられる。このような有機バインダーは、従来公知のいかなるものでもよいが、例えばポリマー溶液が好ましい。ポリマーの例として、エチルセルロース、エチルヒドロキシエチルセルロース、エチルセルロースとフェノール樹脂との混合物、低級アルコールのポリメタクリレート等が挙げられる。ポリマーを溶かす溶媒の例として、テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3−ジオキソラン、トリオキサンなどの環状エーテル系化合物;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのジアルキルケトアミド系化合物;ジメチルスルホキシド、ジエチルスルホキシドなどのジアルキルスルホキシド系化合物;アセトン、メチルエチルケトン、ジエチルケトンなどのケトン系化合物;エタノール、2−プロパノール、1−ブタノール、ターピネオールなどのアルコール系化合物;ジクロロエチレン、ジクロロエタン、ジクロロベンゼンなどの塩素化炭化水素系化合、2,2,4−トリメチル−1,3−ペンタンジオールモノアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノプロピオレート、2,2,4−トリメチル−1,3−ペンタンジオールモノブチレート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、2,2,4−トリエチル−1,3−ペンタンジオールモノアセテートなどの多価アルコールのエステル系化合物;α−テルピネン、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレンなどのテルペン系化合物及びこれらの混合物が挙げられる。有機バインダーは、(a)〜(c’)成分等の固形成分に対し任意の割合で混合することができるが、この固形成分に対し5質量%以下の範囲で混合することが好ましい。
(Other ingredients)
The conductive composition according to the present invention may further contain an organic binder in order to obtain optimum characteristics in various steps of mixing the above-described components and forming an electrode. Such properties include, for example, stable dispersibility and wettability of solids, viscosity and thixotropy of conductive compositions in screen printing, good volatility, residues that affect the electrodes formed during firing, etc. Firing property which does not generate | occur | produce is mentioned. Such an organic binder may be any conventionally known one, for example, a polymer solution is preferable. Examples of the polymer include ethyl cellulose, ethyl hydroxyethyl cellulose, a mixture of ethyl cellulose and a phenol resin, polymethacrylate of a lower alcohol, and the like. Examples of solvents for dissolving the polymer include cyclic ether compounds such as tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, 1,3-dioxolane, trioxane; dialkylketo such as N, N-dimethylformamide and N, N-dimethylacetamide Amide compounds; Dialkyl sulfoxide compounds such as dimethyl sulfoxide and diethyl sulfoxide; Ketone compounds such as acetone, methyl ethyl ketone and diethyl ketone; Alcohol compounds such as ethanol, 2-propanol, 1-butanol and terpineol; Dichloroethylene, dichloroethane and di Chlorinated hydrocarbon compounds such as chlorobenzene, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-trimethyl-1,3-pen Diol monopropiolate, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, 2,2,4- Ester compounds of polyhydric alcohols such as triethyl-1,3-pentanediol monoacetate; α-terpinene, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, terpineol, carvone, osimene, ferrandolene, etc. Examples include terpene compounds and mixtures thereof. The organic binder can be mixed in an arbitrary ratio with respect to the solid components such as the components (a) to (c ′), but is preferably mixed in the range of 5% by mass or less with respect to the solid components.

(第二の態様)
本発明は、第二の態様として、(a)導電性粉末、(b)ガラスフリット並びに(c’)I族元素、II族元素、III族元素及びIV族元素の低次酸化物(ただしCuOは除く)、並びにこれら元素の低次窒化物の中から選ばれる少なくとも1種の金属化合物を含み、前記(b)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物を提供する。この導電性組成物における(a)成分〜(c’)成分は、前述のとおりである。また、本発明の第二の態様においても、前述した有機バインダーを含んでよい。ここで、(c’)成分は、(a)成分と(b)成分との合計質量に対して0.1質量%〜10質量%含まれることが好ましい。このような(c’)成分を添加することにより、低次ではない酸化物や窒化物を添加した場合と比較すると、形成した電極と基板との間の抵抗をより減少させることができる。
(Second embodiment)
The present invention provides, as a second embodiment, (a) conductive powder, (b) glass frit, and (c ′) a low-order oxide of a group I element, a group II element, a group III element, and a group IV element (however, Cu 2 O), and at least one metal compound selected from the low-order nitrides of these elements, and the component (b) comprises an oxide of a group III element and / or an oxide of a group V element An electroconductive composition for forming an electrode is provided. The components (a) to (c ′) in this conductive composition are as described above. Moreover, also in the second aspect of the present invention, the organic binder described above may be included. Here, it is preferable that (c ') component is contained 0.1 mass%-10 mass% with respect to the total mass of (a) component and (b) component. By adding such a component (c ′), the resistance between the formed electrode and the substrate can be further reduced as compared with the case where a non-low order oxide or nitride is added.

(第三の態様)
本発明は、第三の態様として、(a)導電性粉末、(b’)ガラスフリット、(c’’)金属酸化物及び/又は金属窒化物並びに(d)III族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物を提供する。この導電性組成物における(a)成分は、前述のとおりである。また、本発明の第三の態様においても、前述した有機バインダーを含んでよい。
(Third embodiment)
The present invention provides, as a third aspect, (a) conductive powder, (b ′) glass frit, (c ″) metal oxide and / or metal nitride, and (d) Group III element oxide and / or Alternatively, an electrode-forming conductive composition containing an oxide of a group V element is provided. The component (a) in this conductive composition is as described above. In the third embodiment of the present invention, the organic binder described above may be included.

((b’)ガラスフリット)
(b’)ガラスフリット(以下、(b’)成分ともいう。)は、上記の導電性粉末の焼結する際に金属が基板に強く接着するための成分であって、従来公知のガラスフリットを使用することができる。(b’)成分の例として、ケイ酸、ホウケイ酸等の変性ケイ酸、アルミノケイ酸等が挙げられる。(b’)成分は、B、SiO、Al、CdO、CaO、BaO、ZnO、NaO、LiO、PbO、TiO、Bi及びZrO等の酸化物を1種以上含んでもよいが、環境に与える影響を考慮すると、鉛やカドミウム等の重金属を含まない方が好ましい。(b’)成分は、1000℃以下の軟化点を有することが好ましく、800℃以下の軟化点を有することがさらに好ましい。また、(b’)成分は、(a)成分に対して0.1質量%〜10質量%含まれることが好ましい。
((B ') Glass frit)
(B ′) Glass frit (hereinafter also referred to as component (b ′)) is a component for strongly adhering metal to the substrate when the conductive powder is sintered, and is a conventionally known glass frit. Can be used. Examples of the component (b ′) include modified silicic acid such as silicic acid and borosilicate, and aluminosilicic acid. Component (b ′) is an oxidation of B 2 O 3 , SiO 2 , Al 2 O 3 , CdO, CaO, BaO, ZnO, Na 2 O, Li 2 O, PbO, TiO 2 , Bi 2 O 3 and ZrO. One or more kinds may be included, but it is preferable not to include heavy metals such as lead and cadmium in consideration of the influence on the environment. The component (b ′) preferably has a softening point of 1000 ° C. or lower, and more preferably has a softening point of 800 ° C. or lower. Moreover, it is preferable that (b ') component is contained 0.1 mass%-10 mass% with respect to (a) component.

((c’’)金属酸化物及び/又は金属窒化物)
(c’’)金属酸化物及び/又は金属窒化物(以下、(c’’)成分ともいう。)は、後述する(d)III族元素の酸化物及び/又はV族元素の酸化物中のIII族元素及び/又はV族元素、並びに(b’)成分が含む場合には(b’)成分中のIII族元素及び/又はV族元素をシリコン基板内に拡散させ、p型又はn型拡散層を形成することができる。(c’’)成分として、いかなる金属酸化物及び金属窒化物を挙げることができるが、I族元素、II族元素、III族元素及びIV族元素の酸化物並びにこれら元素の窒化物が好ましい。このような(c’’)成分の例として、銅、銀、金、亜鉛、カドミウム、水銀、スカンジウム、イットリウム、ランタノイド、アクチノイド、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、チタン、ジルコニウム、珪素、ゲルマニウム、スズ及び鉛の酸化物又は窒化物を挙げることができる。また、これらの元素の低次酸化物又は低次窒化物が還元能力を有する点でより好ましい。中でもSnO、チタンブラック(一次酸化物)、TiO及びZrO(xは0.5〜1.8を表す。)並びにTiNが好ましい。また、(c’’)成分は、(a)成分と(b’)成分との合計質量に対して0.1質量%〜10質量%含まれることが好ましい。
((C ″) metal oxide and / or metal nitride)
(C ″) metal oxide and / or metal nitride (hereinafter also referred to as (c ″) component) is a group III element oxide and / or group V element oxide described later. When the group III element and / or group V element of (b ′) and the group (b ′) component are included, the group III element and / or group V element in the component (b ′) are diffused into the silicon substrate, p-type or n A mold diffusion layer can be formed. As the component (c ″), any metal oxide and metal nitride can be mentioned, but oxides of Group I elements, Group II elements, Group III elements and Group IV elements and nitrides of these elements are preferable. Examples of such component (c ″) include copper, silver, gold, zinc, cadmium, mercury, scandium, yttrium, lanthanoid, actinoid, boron, aluminum, gallium, indium, thallium, titanium, zirconium, silicon, germanium. And oxides or nitrides of tin and lead. Further, low-order oxides or low-order nitrides of these elements are more preferable in that they have a reducing ability. Among these, SnO, titanium black (primary oxide), TiO x and ZrO x (x represents 0.5 to 1.8) and TiN are preferable. Moreover, it is preferable that 0.1 mass%-10 mass% of (c '') component are contained with respect to the total mass of (a) component and (b ') component.

((d)III族元素の酸化物及び/又はV族元素の酸化物)
本発明の第三の態様に係る導電性組成物は、p型又はn型拡散層を形成するための成分である(d)III族元素の酸化物及び/又はV族元素の酸化物を含む(以下、(d)成分ともいう。)。(d)成分は、前述と同様に、(c’’)成分の働きにより、電極形成用導電性組成物を焼成する温度でシリコン基板内に拡散する。また、第三の態様においては、拡散層を形成するための成分を(d)成分として有するため、(b’)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含んでいても、含んでいなくてもよく、例えば高融点ガラスフリットのようなIII族元素の酸化物及び/又はV族元素の酸化物を含まないものでも用いることができる。このようなIII族元素の酸化物及び/又はV族元素の酸化物の例として、前述のとおり、B、Al、Bi、P等が挙げられ、第三の態様に係る導電性組成物には、所望のp型又はn型拡散層の性質に応じて1種類以上が含まれる。中でも、B、Biが含まれることが好ましい。このとき含まれるIII族元素の酸化物及び/又はV族元素の酸化物の量は、(c)成分に対して、5質量%以上含まれることが好ましく、10質量%以上含まれることがさらに好ましい。
((D) Group III element oxide and / or Group V element oxide)
The conductive composition according to the third aspect of the present invention includes (d) a Group III element oxide and / or a Group V element oxide which is a component for forming a p-type or n-type diffusion layer. (Hereinafter also referred to as component (d)). The component (d) is diffused into the silicon substrate at the temperature at which the electrode-forming conductive composition is fired by the action of the component (c ″), as described above. Further, in the third aspect, since the component for forming the diffusion layer has (d) component, the component (b ′) contains an oxide of a group III element and / or an oxide of a group V element. For example, a high-melting glass frit that does not contain an oxide of a group III element and / or no oxide of a group V element can also be used. Examples of such Group III element oxides and / or Group V element oxides include B 2 O 3 , Al 2 O 3 , Bi 2 O 3 , P 2 O 5, etc., as described above. The conductive composition according to the third aspect includes one or more types depending on the desired properties of the p-type or n-type diffusion layer. Among these, B 2 O 3 and Bi 2 O 3 are preferably included. The amount of Group III element oxide and / or Group V element oxide contained at this time is preferably 5% by mass or more, more preferably 10% by mass or more, relative to Component (c). preferable.

(太陽電池の形成方法)
本発明は、第四の態様として、上記の電極形成用導電性組成物をシリコン基板上に塗布、乾燥及び焼成する工程を含む太陽電池の製造方法を提供する。この形成方法は、本発明の第一の態様によれば(a)〜(c)成分を、第二の態様によれば、(a)〜(c’)成分を、第三の態様によれば(a)〜(d)成分を含む導電性組成物をそれぞれ調製し、シリコン基板上に塗布、乾燥及び焼成する工程を含む。各工程について以下に説明する。
(Method for forming solar cell)
This invention provides the manufacturing method of a solar cell including the process of apply | coating said electroconductive composition for electrode formation on a silicon substrate, drying and baking as a 4th aspect. According to the first aspect of the present invention, this forming method is based on the components (a) to (c), according to the second aspect, the components (a) to (c ′) according to the third aspect. If the conductive composition containing components (a) to (d) is prepared, it is applied to a silicon substrate, dried and fired. Each step will be described below.

(導電性組成物の調製)
導電性組成物の調製は次による。本発明の第一の態様では(a)〜(c)成分、第二の態様では(a)〜(c’)成分、第三の態様では(a)〜(d)成分と有機バインダー成分とをロールミル等従来公知の混合機を用いて、塗布工程に適した物性を有するペースト状になるように混合する。
(Preparation of conductive composition)
The conductive composition is prepared as follows. In the first aspect of the present invention, components (a) to (c), in the second aspect (a) to (c ′) components, in the third aspect (a) to (d) components and an organic binder component, Is mixed using a known mixer such as a roll mill so as to form a paste having physical properties suitable for the coating process.

(導電性組成物の塗布及び乾燥)
このようにして調製した導電性組成物をシリコン基板上に塗布し、乾燥する。ここで、塗布方法としては、スクリーン印刷等太陽電池の製造において用いられる従来公知の方法によることができる。次に、任意のパターン形状を印刷する。パターンの形状は、任意の形状でよいが、例えば、平行線状、格子状であることが好ましく、ここで塗布された導電性ペーストは、次の焼成工程によって表面電極を形成する。導電性組成物の塗布後、電気乾燥機等従来公知の乾燥機を用いて乾燥する。
(Application and drying of conductive composition)
The conductive composition thus prepared is applied onto a silicon substrate and dried. Here, the coating method can be a conventionally known method used in the production of solar cells such as screen printing. Next, an arbitrary pattern shape is printed. The shape of the pattern may be any shape, but is preferably, for example, a parallel line shape or a lattice shape, and the conductive paste applied here forms a surface electrode by the next baking step. After applying the conductive composition, it is dried using a conventionally known dryer such as an electric dryer.

(焼成及び太陽電池の形成)
次に、電気炉等を用いて焼成する。焼成は不活性ガス雰囲気下でも大気雰囲気下でもよい。焼成温度は、500℃〜800℃が好ましい。かかる焼成工程により、電極を形成すると同時にIII族元素の酸化物及び/又はV族元素の酸化物がシリコン基板内に拡散し、添加した元素に応じてp型又はn型拡散層を形成する。この後電極に導線を取り付ける等常法により、太陽電池を形成する。
(Firing and solar cell formation)
Next, firing is performed using an electric furnace or the like. Firing may be performed in an inert gas atmosphere or an air atmosphere. The firing temperature is preferably 500 ° C to 800 ° C. By such a firing step, at the same time as forming the electrode, the oxide of the group III element and / or the oxide of the group V element diffuses into the silicon substrate, and a p-type or n-type diffusion layer is formed depending on the added element. Thereafter, a solar cell is formed by a conventional method such as attaching a conductive wire to the electrode.

本発明について、以下の実施例により詳説する。しかしながら、この実施例は本発明について例示するものであり、本発明の範囲を限定されるものではない。   The invention is illustrated in detail by the following examples. However, this example illustrates the invention and is not intended to limit the scope of the invention.

(実施例1)
(1)バインダー溶液(エチルセルロース(10重量%濃度)ターピネオール溶液)の調製
フラスコに90質量部のターピネオールと10質量部のエチルセルロース(日進化成社製7CPS)を投入し、80℃で3時間撹拌した。この溶液をエチルセルロース(10質量%濃度)ターピネオール溶液とした。
(2)電極形成用導電性組成物の調製
0.3μm粒径のAg紛及びガラスフリットの総量に対して、0.50質量部のCuO(添加剤1)及び1.50質量部のチタンブラック12S(添加剤2)(三菱マテリアル社製)をメノウ鉢に入れすり潰した。さらに、87.48質量部の0.3μm粒径のAg紛、2.19質量部%のB−Bi−SiO系ガラスフリット(旭硝子社製ASF−1100B)、上記(1)で調製した8.75質量部のエチルセルロース(10質量%濃度)ターピネオール溶液及び1.58質量部のターピネオールをメノウ鉢に加えて十分に混合した後、3本ロールを用いて分散し、ペースト状の導電性組成物とした。
(3)太陽電池用電極の形成
上記導電性組成物をP−Type 6インチシリコン基板及びN−Type 6インチシリコン基板にスクリーン印刷機(MT2030型、ムラカミテクノ社製)を用いてそれぞれ印刷した。印刷条件は、印圧が4.2kgf/cm、スキージ速度が3.52cm/sec、スキージ硬度;70°であった。印刷後、乾燥機にて100℃で10分間乾燥し、大気雰囲気下で電気炉にてP−Type 6インチシリコン基板は500℃で30分、N−Type 6インチシリコン基板は700℃で30分それぞれ焼成した。
Example 1
(1) Preparation of binder solution (ethyl cellulose (10 wt% concentration) terpineol solution) 90 parts by mass of terpineol and 10 parts by mass of ethyl cellulose (7 CPS manufactured by Nisshinsei Co., Ltd.) were added to the flask and stirred at 80 ° C. for 3 hours. . This solution was used as an ethyl cellulose (10% by mass concentration) terpineol solution.
(2) Preparation of electrode-forming conductive composition 0.50 parts by mass of CuO (additive 1) and 1.50 parts by mass of titanium black with respect to the total amount of Ag powder having a particle size of 0.3 μm and glass frit 12S (Additive 2) (Mitsubishi Materials Co., Ltd.) was put in an agate bowl and ground. Further, 87.48 parts by mass of Ag powder having a particle diameter of 0.3 μm, 2.19 parts by mass of B 2 O 3 —Bi 2 O 3 —SiO 2 glass frit (ASF-1100B manufactured by Asahi Glass Co., Ltd.), 8.75 parts by weight of ethylcellulose (10% by weight concentration) terpineol solution prepared in 1) and 1.58 parts by weight of terpineol were added to an agate bowl and mixed well, and then dispersed using three rolls. A conductive composition was obtained.
(3) Formation of electrode for solar cell The conductive composition was printed on a P-Type 6-inch silicon substrate and an N-Type 6-inch silicon substrate using a screen printer (MT2030 type, manufactured by Murakami Techno Co., Ltd.). The printing conditions were a printing pressure of 4.2 kgf / cm 2 , a squeegee speed of 3.52 cm / sec, and a squeegee hardness of 70 °. After printing, it is dried at 100 ° C. for 10 minutes in a dryer, and P-Type 6 inch silicon substrate is 30 minutes at 500 ° C. and N-Type 6 inch silicon substrate is 30 minutes at 700 ° C. in an electric furnace in the air Each was fired.

(実施例2〜15)
添加剤の種類及び添加量を表1に記載のとおりとした他は、実施例1と同様の手順により太陽電池用電極を形成した。
(Examples 2 to 15)
A solar cell electrode was formed by the same procedure as in Example 1 except that the type and amount of the additive were as shown in Table 1.

(比較例1)
87.48質量部の0.3μm粒径のAg紛、2.19質量部のB−Bi−SiO系ガラスフリット(旭硝子社製ASF−1100B)、上記(1)で調製した8.75質量部のエチルセルロース(10質量%濃度)ターピネオール溶液及び1.58質量部のターピネオールをメノウ鉢に加えて十分に混合した後、3本ロールを用いて分散し、ペースト状の導電性組成物とした後、実施例1と同様の手順により太陽電池用電極を形成した。
(比較例2〜3)
添加剤の種類及び添加量を表1に記載のとおりとした他は、実施例1と同様の手順により太陽電池用電極を形成した。
(Comparative Example 1)
87.48 parts by mass of 0.3 μm particle diameter Ag powder, 2.19 parts by mass of B 2 O 3 —Bi 2 O 3 —SiO 2 glass frit (ASF-1100B manufactured by Asahi Glass Co., Ltd.), (1) above The prepared 8.75 parts by mass of ethyl cellulose (10% by mass concentration) terpineol solution and 1.58 parts by mass of terpineol were added to an agate bowl and mixed well, and then dispersed using three rolls to obtain a paste-like conductive material. After making into a composition, a solar cell electrode was formed by the same procedure as in Example 1.
(Comparative Examples 2-3)
A solar cell electrode was formed by the same procedure as in Example 1 except that the type and amount of the additive were as shown in Table 1.

(評価)
このようにして形成した太陽電池用電極の電極間の抵抗値をテスター(アナログマルチテスター EM7000 、三和電気計器社製)を用いて測定した。結果は表1の通りである。
(Evaluation)
The resistance value between the electrodes of the solar cell electrode thus formed was measured using a tester (Analog Multi Tester EM7000, manufactured by Sanwa Denki Keiki Co., Ltd.). The results are shown in Table 1.

Figure 2009200276
Figure 2009200276

金属酸化物及び/又は金属窒化物を添加した実施例に係る導電性組成物を用いた場合の電極間抵抗値は、このような金属酸化物及び/又は金属窒化物を添加しなかった比較例1の値と比較したところ、いずれも低く抑えられた(実施例1〜15)。また、更に低次窒化物を添加した例では電極間抵抗値が減少した(実施例1〜3対実施例7、実施例4対実施例9)。したがって、本願記載の電極形成用導電性組成物は、抵抗の小さい太陽電池用電極を形成できることがわかった。
一方、比較例2〜3の結果から明らかな通り、Mn酸化物、及び低次酸化物のCuOを添加した場合には、本発明のもとめる効果が得られないことがわかった。
When the conductive composition according to the example to which the metal oxide and / or metal nitride was added was used, the inter-electrode resistance value was a comparative example in which such a metal oxide and / or metal nitride was not added. When compared with the value of 1, all were suppressed low (Examples 1-15). In addition, the resistance value between the electrodes decreased in the example in which the lower order nitride was further added (Examples 1 to 3 vs. Example 7, Example 4 vs. Example 9). Therefore, it was found that the electrode-forming conductive composition described in the present application can form a solar cell electrode with low resistance.
On the other hand, as apparent from the results of Comparative Examples 2 to 3, it was found that when the Mn oxide and the low-order oxide Cu 2 O were added, the effect obtained by the present invention could not be obtained.

Claims (14)

(a)導電性粉末、(b)ガラスフリット並びに(c)金属酸化物(ただし、低次金属酸化物並びにFe酸化物及びMn酸化物は除く)、及び金属窒化物の中から選ばれる少なくとも1種の金属化合物を含み、前記(b)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物。   At least one selected from (a) conductive powder, (b) glass frit and (c) metal oxide (except low-order metal oxides and Fe oxides and Mn oxides), and metal nitrides A conductive composition for forming an electrode, comprising a seed metal compound, wherein the component (b) comprises a Group III element oxide and / or a Group V element oxide. 前記(c)成分が前記(a)成分と(b)成分との合計質量に対して0.1質量%〜10質量%含まれる、請求項1に記載の電極形成用導電性組成物。   The conductive composition for electrode formation according to claim 1, wherein the component (c) is contained in an amount of 0.1% by mass to 10% by mass with respect to the total mass of the component (a) and the component (b). 前記(c)成分がI族元素、II族元素、III族元素及びIV族元素の酸化物並びにこれら元素の窒化物から成る群から選ばれる、請求項1又は2に記載の電極形成用導電性組成物。   The electrode-forming conductivity according to claim 1 or 2, wherein the component (c) is selected from the group consisting of oxides of Group I elements, Group II elements, Group III elements and Group IV elements, and nitrides of these elements. Composition. 前記電極形成用導電性組成物は、更に(c’)I族元素、II族元素、III族元素及びIV族元素の低次酸化物(ただしCuOは除く)、並びにこれら元素の低次窒化物の中から選ばれる少なくとも1種の金属化合物を含むことを特徴とする請求項1に記載の電極形成用導電性組成物。 The electrode-forming conductive composition further comprises (c ′) a low-order oxide (excluding Cu 2 O) of a group I element, a group II element, a group III element, and a group IV element, and a lower order of these elements. The conductive composition for electrode formation according to claim 1, comprising at least one metal compound selected from nitrides. 前記(c)成分と(c’)成分との量が、前記(a)成分と(b)成分との合計質量に対して0.1質量%〜10質量%含まれる、請求項4に記載の電極形成用導電性組成物。   5. The amount of the component (c) and the component (c ′) is contained in an amount of 0.1% by mass to 10% by mass with respect to the total mass of the component (a) and the component (b). An electrode-forming conductive composition. (a)導電性粉末、(b)ガラスフリット並びに(c’)I族元素、II族元素、III族元素及びIV族元素の低次酸化物(ただしCuOは除く)、並びにこれら元素の低次窒化物の中から選ばれる少なくとも1種の金属化合物を含み、前記(b)成分がIII族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物。 (A) conductive powder, (b) glass frit and (c ′) low-order oxides (except Cu 2 O) of group I elements, group II elements, group III elements and group IV elements, and of these elements A conductive composition for forming an electrode, comprising at least one metal compound selected from low-order nitrides, wherein the component (b) comprises an oxide of a group III element and / or an oxide of a group V element. 前記(c’)成分が、前記(a)成分と(b)成分との合計質量に対して0.1質量%〜10質量%含まれる、請求項6に記載の電極形成用導電性組成物。   The conductive composition for electrode formation according to claim 6, wherein the component (c ′) is contained in an amount of 0.1% by mass to 10% by mass with respect to the total mass of the component (a) and the component (b). . 前記(b)成分が前記(a)成分に対して0.1質量%〜10質量%含まれる、請求項1〜7のいずれか1項に記載の電極形成用導電性組成物。   The conductive composition for electrode formation according to any one of claims 1 to 7, wherein the component (b) is contained in an amount of 0.1% by mass to 10% by mass with respect to the component (a). (a)導電性粉末、(b’)ガラスフリット、(c’’)金属酸化物及び/又は金属窒化物並びに(d)III族元素の酸化物及び/又はV族元素の酸化物を含む、電極形成用導電性組成物。   (A) conductive powder, (b ′) glass frit, (c ″) metal oxide and / or metal nitride and (d) Group III element oxide and / or Group V element oxide, Electroconductive composition for electrode formation. 前記(c’’)成分が前記(a)成分と(b’)成分との合計質量に対して0.1質量%〜10質量%含まれる、請求項9に記載の電極形成用導電性組成物。   The conductive composition for electrode formation according to claim 9, wherein the component (c ″) is contained in an amount of 0.1% by mass to 10% by mass with respect to the total mass of the component (a) and the component (b ′). object. 前記(c’’)成分がI族元素、II族元素、III族元素及びIV族元素の低次酸化物並びにこれらの低次窒化物から成る群から選ばれる、請求項9または10に記載の電極形成用導電性組成物。   The component (c '') is selected from the group consisting of low-order oxides of Group I elements, Group II elements, Group III elements and Group IV elements, and low-order nitrides thereof. Electroconductive composition for electrode formation. 前記(b’)成分が前記(a)成分に対して0.1質量%〜10質量%含まれる、請求項9〜11のいずれか1項に記載の電極形成用導電性組成物。   The conductive composition for electrode formation according to claim 9, wherein the component (b ′) is contained in an amount of 0.1% by mass to 10% by mass with respect to the component (a). 更に有機バインダーを含む、請求項1〜12のいずれか1項に記載の電極形成用導電性組成物。   Furthermore, the electroconductive composition for electrode formation of any one of Claims 1-12 containing an organic binder. 請求項1〜13のいずれか1項に記載の電極形成用導電性組成物をシリコン基板上に塗布、乾燥及び焼成する工程を含む太陽電池の製造方法。   The manufacturing method of a solar cell including the process of apply | coating, drying and baking the electroconductive composition for electrode formation of any one of Claims 1-13 on a silicon substrate.
JP2008040913A 2008-02-22 2008-02-22 Electrode forming conductive composition and method for forming solar cell Expired - Fee Related JP5522900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040913A JP5522900B2 (en) 2008-02-22 2008-02-22 Electrode forming conductive composition and method for forming solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008040913A JP5522900B2 (en) 2008-02-22 2008-02-22 Electrode forming conductive composition and method for forming solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013132351A Division JP5757977B2 (en) 2013-06-25 2013-06-25 Electrode forming conductive composition and method for forming solar cell

Publications (2)

Publication Number Publication Date
JP2009200276A true JP2009200276A (en) 2009-09-03
JP5522900B2 JP5522900B2 (en) 2014-06-18

Family

ID=41143458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040913A Expired - Fee Related JP5522900B2 (en) 2008-02-22 2008-02-22 Electrode forming conductive composition and method for forming solar cell

Country Status (1)

Country Link
JP (1) JP5522900B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181901A (en) * 2010-02-03 2011-09-15 Hitachi Chem Co Ltd COMPOSITION FOR FORMATION OF p-TYPE DIFFUSION LAYER, PROCESS FOR PRODUCTION OF p-TYPE DIFFUSION LAYER, AND PROCESS FOR PRODUCTION OF SOLAR BATTERY CELL
JP2011253868A (en) * 2010-06-01 2011-12-15 Hitachi Chem Co Ltd P-type diffusion layer formation composition, and solar cell and method for manufacturing the same
JP2012009627A (en) * 2010-06-24 2012-01-12 Hitachi Chem Co Ltd N-type diffusion layer forming composition, method of forming n-type diffusion layer, and method of manufacturing solar cell
JP2012009628A (en) * 2010-06-24 2012-01-12 Hitachi Chem Co Ltd P-type diffusion layer forming composition, p-type diffusion layer manufacturing method and solar battery cell manufacturing method
JP2012019051A (en) * 2010-07-07 2012-01-26 Hitachi Chem Co Ltd P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell
JP2012019052A (en) * 2010-07-07 2012-01-26 Hitachi Chem Co Ltd n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
JP2012033856A (en) * 2010-07-07 2012-02-16 Namics Corp Solar battery and conductive paste for forming electrode of solar battery
JP2012069806A (en) * 2010-09-24 2012-04-05 Hitachi Chem Co Ltd Composition for forming p-type diffusion layer, production method of composition for forming p-type diffusion layer, production method of p-type diffusion layer, and manufacturing method of solar cell
JP2012084698A (en) * 2010-10-12 2012-04-26 Hitachi Chem Co Ltd N type diffusion layer formation composition, manufacturing method of n type diffusion layer, and manufacturing method of solar cell
JP2012084699A (en) * 2010-10-12 2012-04-26 Hitachi Chem Co Ltd P type diffusion layer formation composition, manufacturing method of p type diffusion layer, and manufacturing method of solar cell
WO2012111575A1 (en) * 2011-02-17 2012-08-23 日立化成工業株式会社 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, PROCESS FOR PRODUCING n-TYPE DIFFUSION LAYER, AND PROCESS FOR PRODUCING SOLAR CELL
JP2012231012A (en) * 2011-04-26 2012-11-22 Hitachi Chem Co Ltd P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2012234990A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd P-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
JP2012234989A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd N-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
WO2013015284A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Semiconductor substrate, manufacturing method therefor, solar-cell element, and solar cell
CN102934205A (en) * 2010-07-07 2013-02-13 日立化成工业株式会社 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element
CN102959684A (en) * 2010-06-24 2013-03-06 日立化成工业株式会社 Impurities diffusion layer forming composition, n-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, p-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for m
CN103201849A (en) * 2010-11-17 2013-07-10 日立化成株式会社 Method for producing solar cell
JP2013211281A (en) * 2013-06-25 2013-10-10 Tokyo Ohka Kogyo Co Ltd Conductive composition for forming electrode and formation method of solar cell
KR101374359B1 (en) * 2010-09-15 2014-03-18 제일모직주식회사 Paste for forming electrode of solar cell and solar cell using the same
JP2014099660A (en) * 2010-04-23 2014-05-29 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
JP2014146811A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014146808A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014146813A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP2014150261A (en) * 2010-04-23 2014-08-21 Hitachi Chemical Co Ltd p-TYPE DIFFUSION LAYER FORMATION COMPOSITION, p-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2014170939A (en) * 2010-04-23 2014-09-18 Hitachi Chemical Co Ltd N-type diffusion layer-forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar battery element
TWI462157B (en) * 2011-07-19 2014-11-21 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI480929B (en) * 2011-07-05 2015-04-11 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI482208B (en) * 2010-01-25 2015-04-21 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
JP2015179866A (en) * 2015-05-25 2015-10-08 日立化成株式会社 P-type diffusion layer formation composition, and solar cell and method for manufacturing the same
JP2016006893A (en) * 2015-08-03 2016-01-14 日立化成株式会社 n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2016021589A (en) * 2015-09-14 2016-02-04 日立化成株式会社 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
KR20160024153A (en) * 2014-08-25 2016-03-04 엘지전자 주식회사 Paste composition for solar cell electrode and solar cell
US10312402B2 (en) 2010-02-05 2019-06-04 Hitachi Chemical Company, Ltd. P-type diffusion layer forming composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480010A (en) * 1987-09-19 1989-03-24 Taiyo Yuden Kk Electrode paste for ceramic capacitor
JP2000277768A (en) * 1999-03-25 2000-10-06 Kyocera Corp Method of forming solar battery
WO2007102287A1 (en) * 2006-03-07 2007-09-13 Murata Manufacturing Co., Ltd. Conductive paste and solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480010A (en) * 1987-09-19 1989-03-24 Taiyo Yuden Kk Electrode paste for ceramic capacitor
JP2000277768A (en) * 1999-03-25 2000-10-06 Kyocera Corp Method of forming solar battery
WO2007102287A1 (en) * 2006-03-07 2007-09-13 Murata Manufacturing Co., Ltd. Conductive paste and solar cell

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482208B (en) * 2010-01-25 2015-04-21 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI587372B (en) * 2010-01-25 2017-06-11 日立化成股份有限公司 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
JP2011181901A (en) * 2010-02-03 2011-09-15 Hitachi Chem Co Ltd COMPOSITION FOR FORMATION OF p-TYPE DIFFUSION LAYER, PROCESS FOR PRODUCTION OF p-TYPE DIFFUSION LAYER, AND PROCESS FOR PRODUCTION OF SOLAR BATTERY CELL
TWI482207B (en) * 2010-02-03 2015-04-21 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
US10312402B2 (en) 2010-02-05 2019-06-04 Hitachi Chemical Company, Ltd. P-type diffusion layer forming composition
TWI499070B (en) * 2010-04-23 2015-09-01 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI482302B (en) * 2010-04-23 2015-04-21 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI556289B (en) * 2010-04-23 2016-11-01 日立化成股份有限公司 Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
US9520529B2 (en) 2010-04-23 2016-12-13 Hitachi Chemical Co., Ltd. Composition for forming P-type diffusion layer, method of forming P-type diffusion layer, and method of producing photovoltaic cell
CN104916531A (en) * 2010-04-23 2015-09-16 日立化成工业株式会社 Composition that forms n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
TWI498945B (en) * 2010-04-23 2015-09-01 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI495118B (en) * 2010-04-23 2015-08-01 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI488222B (en) * 2010-04-23 2015-06-11 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI483294B (en) * 2010-04-23 2015-05-01 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI548102B (en) * 2010-04-23 2016-09-01 日立化成股份有限公司 Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP2014170939A (en) * 2010-04-23 2014-09-18 Hitachi Chemical Co Ltd N-type diffusion layer-forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar battery element
JP5626340B2 (en) * 2010-04-23 2014-11-19 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP5626339B2 (en) * 2010-04-23 2014-11-19 日立化成株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP2014150261A (en) * 2010-04-23 2014-08-21 Hitachi Chemical Co Ltd p-TYPE DIFFUSION LAYER FORMATION COMPOSITION, p-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
US9608143B2 (en) 2010-04-23 2017-03-28 Hitachi Chemical Co., Ltd. Composition for forming N-type diffusion layer, method of forming N-type diffusion layer, and method of producing photovoltaic cell
JP5573945B2 (en) * 2010-04-23 2014-08-20 日立化成株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5573946B2 (en) * 2010-04-23 2014-08-20 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP2014099660A (en) * 2010-04-23 2014-05-29 Hitachi Chemical Co Ltd Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
JP2014146811A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014146808A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2014146813A (en) * 2010-04-23 2014-08-14 Hitachi Chemical Co Ltd P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP2011253868A (en) * 2010-06-01 2011-12-15 Hitachi Chem Co Ltd P-type diffusion layer formation composition, and solar cell and method for manufacturing the same
JP2012009627A (en) * 2010-06-24 2012-01-12 Hitachi Chem Co Ltd N-type diffusion layer forming composition, method of forming n-type diffusion layer, and method of manufacturing solar cell
JP2012009628A (en) * 2010-06-24 2012-01-12 Hitachi Chem Co Ltd P-type diffusion layer forming composition, p-type diffusion layer manufacturing method and solar battery cell manufacturing method
CN104844268A (en) * 2010-06-24 2015-08-19 日立化成工业株式会社 Impurities diffusion layer forming composition, n-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, p-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell elements
TWI485875B (en) * 2010-06-24 2015-05-21 Hitachi Chemical Co Ltd Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci
CN102959684A (en) * 2010-06-24 2013-03-06 日立化成工业株式会社 Impurities diffusion layer forming composition, n-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, p-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for m
JP2012019051A (en) * 2010-07-07 2012-01-26 Hitachi Chem Co Ltd P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell
CN102934205A (en) * 2010-07-07 2013-02-13 日立化成工业株式会社 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element
JP2012019052A (en) * 2010-07-07 2012-01-26 Hitachi Chem Co Ltd n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
JP2012033856A (en) * 2010-07-07 2012-02-16 Namics Corp Solar battery and conductive paste for forming electrode of solar battery
KR101374359B1 (en) * 2010-09-15 2014-03-18 제일모직주식회사 Paste for forming electrode of solar cell and solar cell using the same
JP2012069806A (en) * 2010-09-24 2012-04-05 Hitachi Chem Co Ltd Composition for forming p-type diffusion layer, production method of composition for forming p-type diffusion layer, production method of p-type diffusion layer, and manufacturing method of solar cell
JP2012084699A (en) * 2010-10-12 2012-04-26 Hitachi Chem Co Ltd P type diffusion layer formation composition, manufacturing method of p type diffusion layer, and manufacturing method of solar cell
JP2012084698A (en) * 2010-10-12 2012-04-26 Hitachi Chem Co Ltd N type diffusion layer formation composition, manufacturing method of n type diffusion layer, and manufacturing method of solar cell
CN103201849A (en) * 2010-11-17 2013-07-10 日立化成株式会社 Method for producing solar cell
JP2015053505A (en) * 2011-02-17 2015-03-19 日立化成株式会社 Composition for n-type diffusion layer formation, method for manufacturing n-type diffusion layer, and method for manufacturing solar battery cell
WO2012111575A1 (en) * 2011-02-17 2012-08-23 日立化成工業株式会社 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, PROCESS FOR PRODUCING n-TYPE DIFFUSION LAYER, AND PROCESS FOR PRODUCING SOLAR CELL
CN103348449A (en) * 2011-02-17 2013-10-09 日立化成株式会社 Composition for forming n-type diffusion layer, process for producing n-type diffusion layer, and process for producing solar cell
JP5673694B2 (en) * 2011-02-17 2015-02-18 日立化成株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP2012231012A (en) * 2011-04-26 2012-11-22 Hitachi Chem Co Ltd P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2012234989A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd N-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
JP2012234990A (en) * 2011-05-02 2012-11-29 Hitachi Chem Co Ltd P-type diffusion layer formation composition, manufacturing method for the same, and manufacturing method for solar battery element
TWI570778B (en) * 2011-07-05 2017-02-11 日立化成股份有限公司 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI480929B (en) * 2011-07-05 2015-04-11 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI462157B (en) * 2011-07-19 2014-11-21 Hitachi Chemical Co Ltd Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
KR20140041797A (en) * 2011-07-25 2014-04-04 히타치가세이가부시끼가이샤 Semiconductor substrate, manufacturing method therefor, solar-cell element, and solar cell
JP2016015511A (en) * 2011-07-25 2016-01-28 日立化成株式会社 Semiconductor substrate and method for producing the same, solar cell element, and solar cell
KR101719885B1 (en) * 2011-07-25 2017-03-24 히타치가세이가부시끼가이샤 Semiconductor substrate, manufacturing method therefor, solar-cell element, and solar cell
JP2017085126A (en) * 2011-07-25 2017-05-18 日立化成株式会社 Semiconductor substrate and method of manufacturing the same, solar battery element, and solar battery
WO2013015284A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Semiconductor substrate, manufacturing method therefor, solar-cell element, and solar cell
JPWO2013015284A1 (en) * 2011-07-25 2015-02-23 日立化成株式会社 Semiconductor substrate and method for manufacturing the same, solar cell element, and solar cell
JP2013211281A (en) * 2013-06-25 2013-10-10 Tokyo Ohka Kogyo Co Ltd Conductive composition for forming electrode and formation method of solar cell
KR20160024153A (en) * 2014-08-25 2016-03-04 엘지전자 주식회사 Paste composition for solar cell electrode and solar cell
KR102306435B1 (en) 2014-08-25 2021-09-28 엘지전자 주식회사 Paste composition for solar cell electrode and solar cell
JP2015179866A (en) * 2015-05-25 2015-10-08 日立化成株式会社 P-type diffusion layer formation composition, and solar cell and method for manufacturing the same
JP2016006893A (en) * 2015-08-03 2016-01-14 日立化成株式会社 n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2016021589A (en) * 2015-09-14 2016-02-04 日立化成株式会社 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Also Published As

Publication number Publication date
JP5522900B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5522900B2 (en) Electrode forming conductive composition and method for forming solar cell
JP5817827B2 (en) Conductive paste
JP5568001B2 (en) Solar cell electrode paste and solar cell using the same
EP2317523B1 (en) Conductive paste for forming a solar cell electrode
JP6084249B2 (en) Conductive paste containing lead-free glass frit
CN104575662B (en) Composition for solar cell electrodes, electrode fabricated using the same, and solar cell having the electrode
KR101159787B1 (en) ZnO-based glass frit composition and aluminium paste composition for rear contacts of solar cell using the same
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
JP6042931B2 (en) Conductive paste containing lead-free glass frit
TW201700430A (en) Aluminum paste composition for perc solar cell
WO2011013469A1 (en) Paste composition and solar cell element using same
JP2011525887A (en) Glass composition for use in photovoltaic cell conductors
TW201144250A (en) Thick-film pastes containing lead-tellurium-lithium-titanium-oxides, and their use in the manufacture of semiconductor devices
JP5934411B1 (en) Conductive paste containing lead-free glass frit
JP2013089600A (en) Thick film silver paste and its use in manufacture of semiconductor devices
JP2018078120A (en) Thick-film composition containing antimony oxides and their use in manufacture of semiconductor devices
US20160163895A1 (en) Conductive paste containing lead-free glass frit
US20160163893A1 (en) Conductive paste containing lead-free glass frit
KR20140091090A (en) Electrode paste composition and electrode prepared using the same
JPWO2012111480A1 (en) Conductive paste and solar cell
US20160163892A1 (en) Conductive paste containing lead-free glass frit
KR101317228B1 (en) Aluminum paste compositon of the low bowing and high-efficiency silicon solar cells
JP5757977B2 (en) Electrode forming conductive composition and method for forming solar cell
JP2010251138A (en) Glass composition for electrode formation, and electrode forming material
KR20200078172A (en) Composition for forming solar cell electrode and solar cell electrode prepared using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130702

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5522900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees