JP2010251138A - Glass composition for electrode formation, and electrode forming material - Google Patents

Glass composition for electrode formation, and electrode forming material Download PDF

Info

Publication number
JP2010251138A
JP2010251138A JP2009099687A JP2009099687A JP2010251138A JP 2010251138 A JP2010251138 A JP 2010251138A JP 2009099687 A JP2009099687 A JP 2009099687A JP 2009099687 A JP2009099687 A JP 2009099687A JP 2010251138 A JP2010251138 A JP 2010251138A
Authority
JP
Japan
Prior art keywords
electrode
glass
content
forming material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009099687A
Other languages
Japanese (ja)
Other versions
JP5541605B2 (en
Inventor
Kentaro Ishihara
健太郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009099687A priority Critical patent/JP5541605B2/en
Priority to PCT/JP2009/065226 priority patent/WO2010026952A1/en
Priority to EP09811478.8A priority patent/EP2330084A4/en
Priority to US13/058,277 priority patent/US20110135931A1/en
Priority to CN2009801227630A priority patent/CN102066275A/en
Publication of JP2010251138A publication Critical patent/JP2010251138A/en
Priority to US13/917,866 priority patent/US20130276870A1/en
Application granted granted Critical
Publication of JP5541605B2 publication Critical patent/JP5541605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To reduce manufacturing cost of a silicon solar cell while improving characteristics such as photoelectric conversion efficiency of the silicon solar cell by creating a glass composition for electrode formation and an electrode forming material hard to cause blister and aggregation of Al and suitable for forming an Al-Si alloy layer and a p+ electrode layer. <P>SOLUTION: The glass composition for the electrode formation contains as a glass composition, expressed in mass%, in the oxide conversions of 60-90% for Bi<SB>2</SB>O<SB>3</SB>, 2-30% for B<SB>2</SB>O<SB>3</SB>and 0% or more and less than 3% for ZnO, and 0.1-15% for CuO+Fe<SB>2</SB>O<SB>3</SB>+Sb<SB>2</SB>O<SB>3</SB>+Nd<SB>2</SB>O<SB>3</SB>composition by mass%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電極形成用ガラス組成物および電極形成材料に関し、特にシリコン太陽電池(単結晶シリコン太陽電池、多結晶シリコン太陽電池、微結晶シリコン太陽電池、アモルファスシリコン太陽電池等を含む)の裏面電極の形成に好適な電極形成用ガラス組成物および電極形成材料に関する。   The present invention relates to a glass composition for electrode formation and an electrode forming material, and in particular, a back electrode of a silicon solar cell (including a single crystal silicon solar cell, a polycrystalline silicon solar cell, a microcrystalline silicon solar cell, an amorphous silicon solar cell, etc.). It is related with the glass composition for electrode formation suitable for formation of electrode, and an electrode formation material.

シリコン太陽電池は、シリコン半導体基板、受光面電極、裏面電極、反射防止膜等を備えており、シリコン半導体基板の受光面側に、グリッド状の受光面電極が形成されるとともに、シリコン半導体基板の裏面側に、裏面電極が形成される。また、受光面電極は、Ag電極等が一般的であり、裏面電極は、Al電極等が一般的である。   A silicon solar cell includes a silicon semiconductor substrate, a light-receiving surface electrode, a back electrode, an antireflection film, and the like. A grid-shaped light-receiving surface electrode is formed on the light-receiving surface side of the silicon semiconductor substrate. A back electrode is formed on the back side. The light receiving surface electrode is generally an Ag electrode and the back surface electrode is generally an Al electrode.

裏面電極は、通常、厚膜法で形成される。厚膜法は、所望の電極パターンになるように、シリコン半導体基板に電極形成材料をスクリーン印刷し、これを最高温度660〜900℃で短時間焼成(具体的には、焼成開始から終了まで2〜3分、最高温度で5〜20秒保持)して、Alをシリコン半導体基板に拡散させることにより、シリコン半導体基板に裏面電極を形成する方法である。   The back electrode is usually formed by a thick film method. In the thick film method, an electrode forming material is screen-printed on a silicon semiconductor substrate so as to obtain a desired electrode pattern, and this is fired for a short time at a maximum temperature of 660 to 900 ° C. This is a method of forming a back electrode on a silicon semiconductor substrate by diffusing Al into the silicon semiconductor substrate for 3 minutes and holding at the maximum temperature for 5 to 20 seconds).

裏面電極の形成に用いる電極形成材料は、Al粉末と、ガラス粉末と、ビークル等を含有する。この電極形成材料を焼成すると、Al粉末がシリコン半導体基板のSiと反応し、裏面電極とシリコン半導体基板の界面にAl−Si合金層が形成されるとともに、Al−Si合金層とシリコン半導体基板の界面にp+電解層(Back Surfase Field層、BSF層とも称される)が形成される。p+電解層を形成すれば、電子の再結合を防止し、生成キャリアの収集効率を向上させる効果、所謂BSF効果を享受することができる。結果として、p+電解層を形成すれば、シリコン太陽電池の光電変換効率を高めることができる。   The electrode forming material used for forming the back electrode contains Al powder, glass powder, vehicle and the like. When this electrode forming material is baked, the Al powder reacts with Si of the silicon semiconductor substrate to form an Al—Si alloy layer at the interface between the back electrode and the silicon semiconductor substrate, and between the Al—Si alloy layer and the silicon semiconductor substrate. A p + electrolytic layer (also referred to as a back surface field layer or a BSF layer) is formed at the interface. By forming the p + electrolytic layer, it is possible to enjoy the effect of preventing recombination of electrons and improving the collection efficiency of the generated carriers, the so-called BSF effect. As a result, if a p + electrolytic layer is formed, the photoelectric conversion efficiency of the silicon solar cell can be increased.

特開2000−90733号公報JP 2000-90733 A 特開2003−165744号公報JP 2003-165744 A

電極形成材料に含まれるガラス粉末は、Al粉末とSiの反応を促進し、Al−Si合金層とシリコン半導体基板の界面にp+電解層を形成して、BSF効果を付与する作用を有している(特許文献1、2参照)。   The glass powder contained in the electrode forming material has a function of accelerating the reaction between the Al powder and Si, forming a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate, and imparting a BSF effect. (See Patent Documents 1 and 2).

しかし、従来のガラス粉末、具体的には鉛ホウ酸系ガラス粉末を使用すると、Al粉末とSiの反応が不均一になり、局所的にAl−Si合金の生成量が増大し、裏面電極の表面にブリスターやAlの凝集が生じ、シリコン太陽電池の光電変換効率が低下するとともに、シリコン太陽電池の製造工程でシリコン半導体基板に割れ等が発生しやすくなり、シリコン太陽電池の製造効率が低下する。   However, when conventional glass powder, specifically, lead borate glass powder is used, the reaction between Al powder and Si becomes non-uniform, and the amount of Al-Si alloy produced locally increases, and the back electrode Blisters and Al agglomerate on the surface, reducing the photoelectric conversion efficiency of the silicon solar cell, and easily causing cracks in the silicon semiconductor substrate in the manufacturing process of the silicon solar cell, thereby reducing the manufacturing efficiency of the silicon solar cell. .

上記事情に鑑み、本発明は、ブリスターやAlの凝集が生じ難く、且つAl−Si合金層およびp+電解層の形成に好適な電極形成用ガラス組成物および電極形成材料を創案することにより、シリコン太陽電池の光電変換効率等の特性を高めつつ、シリコン太陽電池の製造コストを低廉化することを技術的課題とする。   In view of the above circumstances, the present invention provides a glass composition for forming an electrode and an electrode forming material that are less likely to cause blister and agglomeration of Al and that are suitable for forming an Al—Si alloy layer and a p + electrolytic layer. It is a technical problem to reduce the manufacturing cost of a silicon solar cell while improving the characteristics such as photoelectric conversion efficiency of the solar cell.

本発明者は、鋭意努力の結果、Bi−B系ガラスを用いるとともに、ガラス組成中にCuO+Fe+Sb+Nd(CuO、Fe、Sb、Ndの合量)を所定量導入すれば、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の電極形成用ガラス組成物は、ガラス組成として、下記酸化物換算の質量%表示で、Bi 60〜90%、B 2〜30%、ZnO 0〜3%未満、CuO+Fe+Sb+Nd 0.1〜15%含有することを特徴とする
ガラスの主成分として、BiとBを導入すれば、Al粉末とSiの反応を促進することができるため、p+電解層を形成しやすくなり、結果として、BSF効果を享受しやすくなり、シリコン太陽電池の光電変換効率を高めることができる。
As a result of diligent efforts, the inventor uses Bi 2 O 3 —B 2 O 3 -based glass and uses CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 (CuO, Fe 2 O 3 , Sb) in the glass composition. The present inventors have found that the above technical problem can be solved by introducing a predetermined amount of (total amount of 2 O 3 and Nd 2 O 3 ), and propose the present invention. That is, the electrode-forming glass composition of the present invention has a glass composition represented by mass% in terms of the following oxide, Bi 2 O 3 60 to 90%, B 2 O 3 2 to 30%, ZnO 0 to 3%. Less than, CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 0.1 to 15% As a main component of glass, if Bi 2 O 3 and B 2 O 3 are introduced, Al powder and Since the reaction of Si can be promoted, it becomes easy to form a p + electrolytic layer, and as a result, it is easy to enjoy the BSF effect and the photoelectric conversion efficiency of the silicon solar cell can be increased.

また、ZnOの含有量を所定範囲以下に規制すれば、ブリスターやAlの凝集を抑制することができる。CuO+Fe+Sb+Ndの含有量を所定量導入すれば、ガラスの熱的安定性が向上するため、電極形成材料の焼成時にガラスが失透し、ガラスの機能が発揮されない事態、つまり電極形成材料の焼結性が低下し、裏面電極の機械的強度が低下する事態やAl粉末とSiの反応性が低下し、BSF効果を享受し難くなる事態を防止しやすくなる。結果として、Bi、B、ZnO、CuO+Fe+Sb+Ndの含有量を所定範囲に規制すれば、シリコン太陽電池の光電変換効率等の特性を高めつつ、シリコン太陽電池の製造コストを低廉化することができる。 Moreover, if the content of ZnO is restricted to a predetermined range or less, blistering and Al aggregation can be suppressed. When a predetermined amount of CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 is introduced, the thermal stability of the glass is improved, so that the glass is devitrified when the electrode forming material is fired, and the glass functions are exhibited. It is easy to prevent the situation where it is difficult to enjoy the BSF effect because the sinterability of the electrode forming material is lowered, the mechanical strength of the back electrode is lowered, and the reactivity of the Al powder and Si is lowered. . As a result, if the content of Bi 2 O 3 , B 2 O 3 , ZnO, CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 is regulated within a predetermined range, characteristics such as photoelectric conversion efficiency of the silicon solar cell are improved. However, the manufacturing cost of the silicon solar cell can be reduced.

第二に、本発明の電極形成用ガラス組成物は、ZnOの含有量が1%未満であることを特徴とする。このようにすれば、ブリスターやAlの凝集を顕著に抑制することができる。   Second, the electrode-forming glass composition of the present invention is characterized in that the ZnO content is less than 1%. In this way, aggregation of blisters and Al can be remarkably suppressed.

第三に、本発明の電極形成用ガラス組成物は、実質的にZnOを含有しないことを特徴とする。ここで、「実質的にZnOを含有しない」とは、ガラス組成中のZnOの含有量が1000ppm以下の場合を指す。   Thirdly, the electrode-forming glass composition of the present invention is characterized by containing substantially no ZnO. Here, “substantially does not contain ZnO” refers to a case where the content of ZnO in the glass composition is 1000 ppm or less.

第四に、本発明の電極形成用ガラス組成物は、アルカリ金属酸化物の含有量が0.05%以上であることを特徴とする。   Fourth, the electrode-forming glass composition of the present invention is characterized in that the content of alkali metal oxide is 0.05% or more.

第五に、本発明の電極形成用ガラス組成物は、SiOの含有量が3%未満であることを特徴とする。このようにすれば、ガラスの軟化点が不当に上昇する事態、或いはガラスの熱的安定性が低下し、電極形成材料の焼成時にガラスが失透する事態を防止しやすくなる。 Fifth, glass composition for electrode formation of the present invention is characterized in that the SiO 2 content is less than 3%. If it does in this way, it will become easy to prevent the situation where the softening point of glass raises unjustly, or the thermal stability of glass falls, and the situation where glass devitrifies at the time of baking of electrode formation material.

第六に、本発明の電極形成材料は、上記の電極形成用ガラス組成物からなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする。このようにすれば、厚膜法で電極パターンを形成することができ、シリコン太陽電池の生産効率を高めることができる。ここで、「ビークル」は、一般的に、有機溶媒中に樹脂を溶解させたものを指すが、本発明では、樹脂を含有せず、高粘性の有機溶媒(例えば、イソトリデシルアルコール等の高級アルコール)のみで構成される態様を含む。   Sixth, the electrode forming material of the present invention is characterized in that it contains glass powder made of the above electrode forming glass composition, metal powder, and vehicle. If it does in this way, an electrode pattern can be formed by a thick film method, and the production efficiency of a silicon solar cell can be improved. Here, “vehicle” generally refers to a resin in which an organic solvent is dissolved. However, in the present invention, the resin does not contain a high-viscosity organic solvent (for example, isotridecyl alcohol or the like). The aspect comprised only with a higher alcohol) is included.

第七に、本発明の電極形成材料は、ガラス粉末の平均粒子径D50が5μm未満であることを特徴とする。ここで、「平均粒子径D50」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 Seventh, the electrode forming material of the present invention, wherein the average particle diameter D 50 of the glass powder is less than 5 [mu] m. Here, the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.

第八に、本発明の電極形成材料は、ガラス粉末の軟化点が600℃以下であることを特徴とする。このようにすれば、低温で裏面電極を形成することができる。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した軟化点は、図1に示す第四屈曲点の温度(Ts)を指す。   Eighth, the electrode forming material of the present invention is characterized in that the softening point of the glass powder is 600 ° C. or lower. In this way, the back electrode can be formed at a low temperature. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis (DTA) apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, the softening point measured with the macro type | mold DTA apparatus points out the temperature (Ts) of the 4th bending point shown in FIG.

第九に、本発明の電極形成材料は、ガラス粉末の含有量が0.2〜10質量%であることを特徴とする。このようにすれば、Al−Si合金層とシリコン半導体基板の界面にp+電解層を形成して、BSF効果を享受しやすくなる。   Ninthly, the electrode forming material of the present invention is characterized in that the content of the glass powder is 0.2 to 10% by mass. This makes it easy to enjoy the BSF effect by forming a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate.

第十に、本発明の電極形成材料は、金属粉末がAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種または二種以上を含むことを特徴とする。これらの金属粉末は、本発明に係るガラス粉末と適合性が良好であり、電極形成材料の焼成時にガラスが発泡し難い性質を有している。   Tenth, the electrode forming material of the present invention is characterized in that the metal powder contains Ag, Al, Au, Cu, Pd, Pt, or one or more of these alloys. These metal powders have good compatibility with the glass powder according to the present invention, and have a property that the glass is difficult to foam during firing of the electrode forming material.

第十一に、本発明の電極形成材料は、金属粉末がAlであることを特徴とする。   Eleventh, the electrode forming material of the present invention is characterized in that the metal powder is Al.

第十二に、本発明の電極形成材料は、シリコン太陽電池の電極に用いることを特徴とする。   12thly, the electrode forming material of this invention is used for the electrode of a silicon solar cell, It is characterized by the above-mentioned.

第十三に、本発明の電極形成材料は、シリコン太陽電池の裏面電極に用いることを特徴とする。   13thly, the electrode forming material of this invention is used for the back surface electrode of a silicon solar cell, It is characterized by the above-mentioned.

マクロ型DTA装置で測定したときのガラス粉末の軟化点を示す模式図である。It is a schematic diagram which shows the softening point of glass powder when it measures with a macro type | mold DTA apparatus.

本発明の電極形成用ガラス組成物において、各成分の含有範囲を上記のように規定した理由を以下に説明する。   In the glass composition for electrode formation of the present invention, the reason why the content ranges of the respective components are defined as described above will be described below.

Biは、ガラスの骨格を形成する成分であり、またAl粉末とSiの反応を促進する成分であるとともに、軟化点を低下させる成分であり、その含有量は60〜90%、好ましくは67〜86%、より好ましくは71〜86%、更に好ましくは75〜82.5%である。Biの含有量が多くなると、ガラスの熱的安定性が低下するため、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。一方、Biの含有量が少なくなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl−Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。また、Biの含有量が少なくなると、ガラスの軟化点が高くなり過ぎ、低温で裏面電極を形成し難くなる。 Bi 2 O 3 is a component that forms the skeleton of the glass, and is a component that promotes the reaction between Al powder and Si, and is a component that lowers the softening point, and its content is preferably 60 to 90%, preferably Is 67 to 86%, more preferably 71 to 86%, still more preferably 75 to 82.5%. When the content of Bi 2 O 3 is increased, the thermal stability of the glass is lowered, so that the glass is easily devitrified when the electrode forming material is fired, and the mechanical strength of the back electrode is easily lowered. On the other hand, when the content of Bi 2 O 3 decreases, the reaction between the Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. Further, when the content of Bi 2 O 3 is reduced, the softening point of the glass becomes too high, and it becomes difficult to form the back electrode at a low temperature.

は、ガラスの骨格を形成する成分であり、またAl粉末とSiの反応を促進する成分である。また、Bは、ガラスの熱的安定性を高める成分であるとともに、ガラスの軟化点を低下させる成分である。Bの含有量は2〜30%、好ましくは5〜25%、更に好ましくは10〜20%である。Bの含有量が少なくなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl−Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。また、Bの含有量が少なくなると、ガラスの熱的安定性が低下し、電極形成材料の焼成時に、ガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。一方、Bの含有量が多くなると、ガラスの耐水性が低下しやすくなり、裏面電極の長期信頼性が低下することに加えて、ガラスが分相しやすくなり、Al−Si合金層およびp+電解層を均一に形成し難くなる。 B 2 O 3 is a component that forms a glass skeleton, and a component that promotes the reaction between Al powder and Si. B 2 O 3 is a component that increases the thermal stability of the glass and a component that lowers the softening point of the glass. The content of B 2 O 3 is 2 to 30%, preferably 5 to 25%, more preferably 10 to 20%. When the content of B 2 O 3 decreases, the reaction between Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. Further, when the content of B 2 O 3 is low, reduces the thermal stability of the glass, upon firing of the electrode forming material, the glass is easily devitrified, the mechanical strength of the back electrode tends to decrease. On the other hand, when the content of B 2 O 3 increases, the water resistance of the glass tends to decrease, the long-term reliability of the back electrode decreases, and the glass tends to phase-separate, and the Al—Si alloy layer And it becomes difficult to form the p + electrolytic layer uniformly.

ZnOは、ガラスの熱的安定性を高める成分であるとともに、ガラスの熱膨張係数を上昇させずに、ガラスの軟化点を低下させる成分である。しかし、ZnOの含有量が多くなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl-Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。よって、ZnOの含有量は0〜3%未満、好ましくは0〜1%未満であり、理想的には実質的に含有しないことが望ましい。   ZnO is a component that enhances the thermal stability of the glass and a component that lowers the softening point of the glass without increasing the thermal expansion coefficient of the glass. However, when the ZnO content increases, the reaction between the Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. Therefore, the ZnO content is 0 to less than 3%, preferably 0 to less than 1%, and ideally it is not substantially contained.

CuO+Fe+Sb+Ndは、熱的安定性を高める成分であり、その含有量は0.1〜15%、好ましくは0.5〜10%、より好ましくは1〜8%である。CuO+Fe+Sb+Ndの含有量が15%より多いと、ガラス組成の成分バランスが損なわれて、逆にガラスの熱的安定性が低下する傾向がある。BSF効果を的確に享受するためには、ガラス組成中にBiを多量に添加する必要があるが、Biの含有量を増加させると、電極形成材料の焼成時にガラスが失透しやすくなり、この失透に起因して、裏面電極の機械的強度が低下しやすくなる。特に、Biの含有量が75%以上になると、その傾向が顕著になる。そこで、ガラス組成中にCuO+Fe+Sb+Ndを適量添加すれば、Biの含有量が75%以上であっても、ガラスの失透を抑制することができる。CuOの含有量は0〜15%、0.1〜10%、特に1〜5%が好ましい。また、Feの含有量は0〜10%、0.05〜5%、特に0.2〜3%が好ましい。また、Sbの含有量は0〜7%、特に0.1〜3%が好ましい。なお、Sbは、環境的観点から、その使用が制限される場合があり、そのような場合には、Sbを実質的に含有しないことが好ましい。ここで、「実質的にSbを含有しない」とは、ガラス組成中のSbの含有量が1000ppm以下の場合を指す。Ndの含有量は0〜10%、0〜5%、特に0.1〜3%が好ましい。なお、ガラス組成中にNdを所定量添加すれば、Bi−B系ガラスのガラスネットワークを安定化させ、焼成時にBi(ビスマイト)、BiとBで形成される2Bi・Bまたは12Bi・B等の結晶が析出し難くなる。 CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 is a component that enhances thermal stability, and its content is 0.1 to 15%, preferably 0.5 to 10%, more preferably 1 to 8. %. When the content of CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 is more than 15%, the component balance of the glass composition is impaired, and conversely, the thermal stability of the glass tends to decrease. In order to enjoy the BSF effect accurately, it is necessary to add a large amount of Bi 2 O 3 to the glass composition. However, if the Bi 2 O 3 content is increased, the glass loses during the firing of the electrode forming material. It becomes easy to see through, and due to this devitrification, the mechanical strength of the back electrode tends to decrease. In particular, when the Bi 2 O 3 content is 75% or more, the tendency becomes remarkable. Therefore, if an appropriate amount of CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O 3 is added to the glass composition, devitrification of the glass can be suppressed even if the Bi 2 O 3 content is 75% or more. . The CuO content is preferably 0 to 15%, 0.1 to 10%, particularly preferably 1 to 5%. Further, the content of Fe 2 O 3 is preferably 0 to 10%, 0.05 to 5%, particularly preferably 0.2 to 3%. Further, the content of Sb 2 O 3 is preferably 0 to 7%, particularly preferably 0.1 to 3%. The use of Sb 2 O 3 may be restricted from an environmental point of view. In such a case, it is preferable that Sb 2 O 3 is not substantially contained. Here, “substantially does not contain Sb 2 O 3 ” refers to a case where the content of Sb 2 O 3 in the glass composition is 1000 ppm or less. The content of Nd 2 O 3 is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 3%. Incidentally, if the predetermined amount added Nd 2 O 3 in the glass composition, Bi 2 O 3 -B 2 O 3 system to stabilize the glass network of the glass, Bi 2 O 3 during sintering (Bisumaito), Bi 2 O 3 and B 2 O 3, such as 2Bi 2 O 3 · B 2 O 3 or 12Bi 2 O 3 · B 2 O 3 is formed in the crystal is less likely to precipitate.

本発明の電極形成用ガラス組成物は、上記成分以外にも、例えば下記の成分を合量で25%まで、好ましくは10%まで含有することができる。   In addition to the above components, the glass composition for electrode formation of the present invention may contain, for example, the following components in a total amount of up to 25%, preferably up to 10%.

アルカリ金属酸化物(LiO、NaO、KO、CsOの合量)は、軟化点を下げる成分であるとともに、電極形成材料の焼結性を促進させる成分であり、その含有量は合量で0〜15%、0.05〜5%、特に0.1〜2%が好ましい。アルカリ金属酸化物の含有量が多くなると、ガラスの熱的安定性が低下するため、溶融時または焼成時にガラスが失透しやすくなる。なお、LiO、NaO、KO、CsOの含有量は、それぞれ0〜5%、特に0.1〜2%が好ましい。 Alkali metal oxide (total amount of Li 2 O, Na 2 O, K 2 O, Cs 2 O) is a component that lowers the softening point and promotes the sinterability of the electrode forming material. The total content is preferably 0 to 15%, 0.05 to 5%, particularly preferably 0.1 to 2%. When the content of the alkali metal oxide is increased, the thermal stability of the glass is lowered, so that the glass is easily devitrified at the time of melting or firing. The contents of Li 2 O, Na 2 O, K 2 O, and Cs 2 O are each preferably 0 to 5%, particularly preferably 0.1 to 2%.

MgO+CaO+SrO+BaO(MgO、CaO、SrO、BaOの合量)は、ブリスターやAlの凝集を抑制する成分であり、その含有量は0.01〜20%、0.1〜20%、1〜15%、特に3〜10%が好ましい。MgO+CaO+SrO+BaOの含有量が少なくなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl−Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。一方、MgO+CaO+SrO+BaOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。また、MgO+CaO+SrO+BaOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出しやすくなる。   MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO, BaO) is a component that suppresses the aggregation of blisters and Al, and its content is 0.01-20%, 0.1-20%, 1-15%, 3 to 10% is particularly preferable. When the content of MgO + CaO + SrO + BaO decreases, the reaction between Al powder and Si tends to be non-uniform, the amount of Al-Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. On the other hand, when the content of MgO + CaO + SrO + BaO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell tends to be lowered. Moreover, when content of MgO + CaO + SrO + BaO increases, the component balance of a glass composition will be impaired and a crystal | crystallization will precipitate on glass conversely.

MgOは、ブリスターやAlの凝集を抑制する成分であり、その含有量は0〜5%、0.1〜3%、特に0〜1%が好ましい。MgOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。   MgO is a component that suppresses aggregation of blisters and Al, and its content is preferably 0 to 5%, 0.1 to 3%, particularly preferably 0 to 1%. When the content of MgO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease.

CaOは、ブリスターやAlの凝集を抑制する効果が高い成分であり、その含有量は0〜20%、0.01〜10%、0.1〜8%、0.5〜5%、特に1〜4%が好ましい。CaOの含有量が少なくなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl−Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。一方、CaOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。   CaO is a component having a high effect of suppressing aggregation of blisters and Al, and the content thereof is 0 to 20%, 0.01 to 10%, 0.1 to 8%, 0.5 to 5%, particularly 1 ~ 4% is preferred. When the content of CaO decreases, the reaction between Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. On the other hand, when the content of CaO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease.

SrOは、ブリスターやAlの凝集を抑制する成分であるとともに、ガラスの熱的安定性を高める成分であり、その含有量は0〜15%、0〜10%、特に0〜5%が好ましい。SrOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。また、SrOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出しやすくなる。   SrO is a component that suppresses the aggregation of blisters and Al and is a component that enhances the thermal stability of the glass, and its content is preferably 0 to 15%, 0 to 10%, particularly preferably 0 to 5%. When the content of SrO increases, it becomes difficult to form the p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease. Moreover, when the content of SrO increases, the component balance of the glass composition is impaired, and conversely, crystals easily precipitate on the glass.

BaOは、ブリスターやAlの凝集を抑制する成分であるとともに、ガラスの熱的安定性を高める成分であり、その含有量は0〜20%、0.01〜15%、0.1〜12%、1〜10%、特に3〜9%が好ましい。BaOの含有量が少なくなると、Al粉末とSiの反応が不均一になりやすく、局所的にAl−Si合金の生成量が増大し、ブリスターやAlの凝集が生じやすくなる。一方、BaOの含有量が多くなると、p+電解層を形成し難くなるため、BSF効果を享受し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。また、BaOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、逆にガラスに結晶が析出しやすくなる。   BaO is a component that suppresses the aggregation of blisters and Al, and is a component that improves the thermal stability of the glass, and its content is 0 to 20%, 0.01 to 15%, 0.1 to 12%. 1 to 10%, particularly 3 to 9% is preferable. When the content of BaO decreases, the reaction between the Al powder and Si tends to be non-uniform, the amount of Al—Si alloy produced locally increases, and blisters and Al agglomeration tend to occur. On the other hand, when the content of BaO increases, it becomes difficult to form a p + electrolytic layer, so that it becomes difficult to enjoy the BSF effect, and the photoelectric conversion efficiency of the silicon solar cell is likely to decrease. Moreover, when the content of BaO increases, the component balance of the glass composition is impaired, and conversely, crystals easily precipitate on the glass.

SiOは、ガラスの耐水性を高める成分であるが、ガラスの軟化点を顕著に上昇させる作用を有するため、その含有量は25%以下、8.5%以下、3%未満、特に1%未満が好ましい。SiOの含有量が多くなると、ガラスの軟化点が高くなり過ぎ、低温で裏面電極を形成しやすくなる。 SiO 2 is a component that enhances the water resistance of the glass, but has the effect of significantly increasing the softening point of the glass, so its content is 25% or less, 8.5% or less, less than 3%, particularly 1%. Less than is preferable. When the content of SiO 2 increases, the softening point of the glass becomes too high, and it becomes easy to form the back electrode at low temperature.

WOは、熱的安定性を高める成分であり、その含有量は0〜5%、特に0〜2%が好ましい。WOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスの熱的安定性が低下しやすくなる。 WO 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of WO 3 is too large, is impaired balance of components a glass composition, the thermal stability of the glass tends to decrease conversely.

In+Ga(InとGaの合量)は、ガラスの熱的安定性を高める成分であり、その含有量は0〜5%、0〜3%、特に0〜1%が好ましい。In+Gaの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下しやすくなる。なお、InとGaの含有量はそれぞれ0〜2%が好ましい。 In 2 O 3 + Ga 2 O 3 (total amount of In 2 O 3 and Ga 2 O 3 ) is a component that increases the thermal stability of the glass, and its content is 0 to 5%, 0 to 3%, In particular, 0 to 1% is preferable. When the content of In 2 O 3 + Ga 2 O 3 is too large, is impaired balance of components glass composition, thermal stability tends to lower the reverse. In addition, the content of In 2 O 3 and Ga 2 O 3 is preferably 0 to 2%.

は、溶融時にガラスの失透を抑制する成分であるが、その含有量が多いと、溶融時にガラスが分相しやくなり、Al−Si合金層およびp+電解層を均一に形成し難くなる。よって、Pの含有量は1%以下が好ましい。 P 2 O 5 is a component that suppresses the devitrification of the glass at the time of melting. However, if the content is large, the glass is easily phase-separated at the time of melting, and an Al—Si alloy layer and a p + electrolytic layer are uniformly formed. It becomes difficult to do. Therefore, the content of P 2 O 5 is preferably 1% or less.

MoO+La+Y+CeO(MoO、La、Y、CeOの合量)は、溶融時にガラスの分相を抑制する効果があるが、これらの成分の含有量が多いと、ガラスの軟化点が高くなり過ぎ、低温で電極形成材料を焼結し難くなる。よって、MoO+La+Y+CeOの含有量は3%以下が好ましい。なお、MoO、La、Y、CeOの含有量は、それぞれ0〜2%が好ましい。 MoO 3 + La 2 O 3 + Y 2 O 3 + CeO 2 (total amount of MoO 3 , La 2 O 3 , Y 2 O 3 , CeO 2 ) has an effect of suppressing the phase separation of the glass at the time of melting. When the content of the component is large, the softening point of the glass becomes too high, and it becomes difficult to sinter the electrode forming material at a low temperature. Therefore, the content of MoO 3 + La 2 O 3 + Y 2 O 3 + CeO 2 is preferably 3% or less. Incidentally, MoO 3, the content of La 2 O 3, Y 2 O 3, CeO 2 is 0-2%, respectively are preferred.

本発明の電極形成用ガラス組成物は、PbOの含有を排除するものではないが、環境的観点から実質的にPbOを含有しないことが好ましい。また、PbOは、ブリスターやAlの凝集を助長しやすいため、シリコン太陽電池の裏面電極の形成に用いる場合には、実質的にPbOを含有しないことが好ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。   Although the glass composition for electrode formation of the present invention does not exclude the inclusion of PbO, it is preferable that the glass composition contains substantially no PbO from an environmental viewpoint. Moreover, since PbO tends to promote the aggregation of blisters and Al, when used for forming the back electrode of the silicon solar cell, it is preferable that PbO does not substantially contain PbO. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is 1000 ppm or less.

本発明の電極形成用ガラス組成物において、熱膨張係数は130×10−7/℃以下、110×10−7/℃以下、105×10−7/℃以下、特に100×10−7/℃未満が好ましい。近年、シリコン太陽電池の製造コストを低廉化するために、シリコン半導体基板を薄くすることが検討されている。シリコン半導体基板を薄くすれば、Alとシリコン半導体基板の熱膨張係数の差に起因して、電極形成材料の焼成後に、シリコン半導体基板において裏面電極が形成された裏面側が凹状になるような反りが発生しやすくなる。電極形成材料の塗布量を低減し、裏面電極を薄くすれば、シリコン半導体基板の反りを抑制することができるが、電極形成材料の塗布量を低減すると、電極形成材料の焼成時にブリスターやAlの凝集が生じやすくなる。そこで、熱膨張係数を上記範囲とすれば、シリコン半導体基板の反りを可及的に抑制することができる。なお、「熱膨張係数」とは、押棒式熱膨張係数測定(TMA)装置で測定した値を指し、30〜300℃の温度範囲で測定した値を指す。 In the glass composition for electrode formation of the present invention, the thermal expansion coefficient is 130 × 10 −7 / ° C. or lower, 110 × 10 −7 / ° C. or lower, 105 × 10 −7 / ° C. or lower, particularly 100 × 10 −7 / ° C. Less than is preferable. In recent years, in order to reduce the manufacturing cost of silicon solar cells, it has been studied to make the silicon semiconductor substrate thinner. If the silicon semiconductor substrate is made thin, the back surface side where the back electrode is formed on the silicon semiconductor substrate becomes concave after firing of the electrode forming material due to the difference in thermal expansion coefficient between Al and the silicon semiconductor substrate. It tends to occur. If the coating amount of the electrode forming material is reduced and the back electrode is made thin, the warp of the silicon semiconductor substrate can be suppressed. However, if the coating amount of the electrode forming material is reduced, blister or Al Aggregation tends to occur. Therefore, if the thermal expansion coefficient is in the above range, warpage of the silicon semiconductor substrate can be suppressed as much as possible. In addition, "thermal expansion coefficient" refers to a value measured with a push rod thermal expansion coefficient measurement (TMA) device, and refers to a value measured in a temperature range of 30 to 300 ° C.

本発明の電極形成材料は、上記の電極形成用ガラス組成物からなるガラス粉末と、金属粉末と、ビークルとを含む。ガラス粉末は、Al粉末とSiの反応を促進し、Al−Si合金層とシリコン半導体基板の界面にp+電解層を形成して、BSF効果を付与する成分である。金属粉末は、電極を形成する主要成分であり、導電性を確保するための成分である。ビークルは、ペースト化するための成分であり、印刷に適した粘度を付与するための成分である。   The electrode forming material of the present invention includes a glass powder made of the above-described electrode forming glass composition, a metal powder, and a vehicle. Glass powder is a component that accelerates the reaction between Al powder and Si, forms a p + electrolytic layer at the interface between the Al—Si alloy layer and the silicon semiconductor substrate, and imparts a BSF effect. The metal powder is a main component for forming the electrode and a component for ensuring conductivity. The vehicle is a component for making a paste, and a component for imparting a viscosity suitable for printing.

本発明の電極形成材料において、ガラス粉末の平均粒子径D50は5μm未満、4μm以下、3μm以下、2μm以下、1μm以下、特に1μm未満が好ましい。ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の表面積が小さくなることに起因して、Al粉末とSiの反応を促進し難くなり、BSF効果を享受し難くなる。また、ガラス粉末の平均粒子径D50が5μm以上であると、ガラス粉末の軟化点が上昇し、電極の形成に必要な温度域が上昇する。さらに、ガラス粉末の平均粒子径D50が5μm以上であると、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。一方、ガラス粉末の平均粒子径D50の下限は特に限定されないが、ガラス粉末の平均粒子径D50が小さ過ぎると、ガラス粉末のハンドリング性や材料収率が低下しやすくなる。このような状況を考慮すれば、ガラス粉末の平均粒子径D50は0.1μm以上が好ましい。なお、(1)ガラスフィルムをボールミルで粉砕した後、得られたガラス粉末を空気分級、或いは(2)ガラスフィルムをボールミル等で粗粉砕した後、ビーズミル等で湿式粉砕すれば、上記平均粒子径D50を有するガラス粉末を作製することができる。 In the electrode forming material of the present invention, the average particle diameter D 50 of the glass powder less than 5 [mu] m, 4 [mu] m or less, 3 [mu] m or less, 2 [mu] m or less, 1 [mu] m or less, in particular less than 1 [mu] m is preferred. When the average particle diameter D 50 of the glass powder is 5μm or more, due to the surface area of the glass powder is reduced, it becomes difficult to promote the reaction of the Al powder and Si, it is difficult to enjoy the BSF effect. When the average particle diameter D 50 of the glass powder is 5μm or more, the softening point of the glass powder is increased, the temperature range is increased required to form the electrode. Further, when the average particle diameter D 50 of the glass powder is 5μm or more, it becomes difficult to form a fine electrode pattern, the photoelectric conversion efficiency of the silicon solar cells tends to decrease. On the other hand, the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, the average particle diameter D 50 of the glass powder is too small, the handling property and material yield of the glass powder tends to decrease. In view of such situation, the average particle diameter D 50 of the glass powder is preferably at least 0.1 [mu] m. (1) After the glass film is pulverized with a ball mill, the obtained glass powder is classified by air, or (2) The glass film is coarsely pulverized with a ball mill or the like and then wet pulverized with a bead mill or the like. it can be produced glass powder having a D 50.

本発明の電極形成材料において、ガラス粉末の最大粒子径Dmaxは25μm以下、20μm以下、15μm以下、10μm以下、特に10μm未満が好ましい。ガラス粉末の最大粒子径Dmaxが25μmより大きいと、微細な電極パターンを形成し難くなり、シリコン太陽電池の光電変換効率が低下しやすくなる。ここで、「平均粒子径Dmax」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the electrode forming material of the present invention, the maximum particle diameter Dmax of the glass powder is preferably 25 μm or less, 20 μm or less, 15 μm or less, 10 μm or less, particularly preferably less than 10 μm. When the maximum particle diameter Dmax of the glass powder is larger than 25 μm, it becomes difficult to form a fine electrode pattern, and the photoelectric conversion efficiency of the silicon solar cell tends to be lowered. Here, the “average particle diameter D max ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 99%.

本発明の電極形成材料において、ガラス粉末の軟化点は600℃以下、570℃以下、特に560℃以下が好ましい。ガラス粉末の軟化点が600℃より高いと、電極の形成に必要な温度域が上昇し、シリコン太陽電池の生産効率が低下する。   In the electrode forming material of the present invention, the softening point of the glass powder is preferably 600 ° C. or lower, 570 ° C. or lower, and particularly preferably 560 ° C. or lower. When the softening point of the glass powder is higher than 600 ° C., the temperature range necessary for forming the electrode is increased, and the production efficiency of the silicon solar cell is decreased.

本発明の電極形成材料において、ガラス粉末の結晶化温度は500℃以上、520℃以上、特に540℃以上が好ましい。ガラス粉末の結晶化温度が500℃より低いと、ガラスの熱的安定性が低下するため、電極形成材料の焼成時にガラスが失透しやすくなり、裏面電極の機械的強度が低下しやすくなる。また、低温でガラスが失透すると、Al粉末とSiの反応を促進し難くなり、BSF効果を享受し難くなる。ここで、「結晶化温度」は、マクロ型DTA装置で測定したピーク温度を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。   In the electrode forming material of the present invention, the crystallization temperature of the glass powder is preferably 500 ° C. or more, 520 ° C. or more, and particularly preferably 540 ° C. or more. When the crystallization temperature of the glass powder is lower than 500 ° C., the thermal stability of the glass is lowered, so that the glass is easily devitrified when the electrode forming material is fired, and the mechanical strength of the back electrode is easily lowered. Further, when the glass is devitrified at a low temperature, it becomes difficult to promote the reaction between the Al powder and Si, and it is difficult to enjoy the BSF effect. Here, the “crystallization temperature” refers to the peak temperature measured with a macro DTA apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min.

本発明の電極形成材料において、ガラス粉末の含有量は0.2〜10質量%、0.5〜6質量%、0.7〜4質量%、特に1〜3質量%が好ましい。ガラス粉末の含有量が0.2質量%より少ないと、Al粉末とSiの反応を促進し難くなることに加えて、裏面電極の機械的強度が低下しやすくなる。一方、ガラス粉末の含有量が10質量%より多いと、電極形成材料の焼成後にガラスが偏析しやすくなり、裏面電極の導電性が低下して、シリコン太陽電池の光電変換効率が低下するおそれがある。また、ガラス粉末の含有量と金属粉末の含有量は、上記と同様の理由により、質量比で0.3:99.7〜13:87、1.5:98.5〜7:93、特に1.8:98.2〜4:96が好ましい。   In the electrode forming material of the present invention, the glass powder content is preferably 0.2 to 10% by mass, 0.5 to 6% by mass, 0.7 to 4% by mass, and particularly preferably 1 to 3% by mass. When the content of the glass powder is less than 0.2% by mass, it becomes difficult to promote the reaction between the Al powder and Si, and the mechanical strength of the back electrode tends to decrease. On the other hand, when the content of the glass powder is more than 10% by mass, the glass tends to segregate after the electrode forming material is fired, the conductivity of the back electrode is lowered, and the photoelectric conversion efficiency of the silicon solar cell may be lowered. is there. In addition, the content of the glass powder and the content of the metal powder are 0.3: 99.7 to 13:87, 1.5: 98.5 to 7:93 in mass ratios for the same reason as described above, in particular. 1.8: 98.2 to 4:96 are preferred.

本発明の電極形成材料において、金属粉末の含有量は50〜97質量%、65〜95質量%、特に70〜92質量%が好ましい。金属粉末の含有量が50質量%より少ないと、裏面電極の導電性が低下し、シリコン太陽電池の光電変換効率が低下しやすくなる。一方、金属粉末の含有量が97質量%より多いと、相対的にガラス粉末、或いはビークルの含有量を低下せざるを得ず、p+電解層を形成し難くなる。   In the electrode forming material of the present invention, the content of the metal powder is preferably 50 to 97 mass%, 65 to 95 mass%, particularly preferably 70 to 92 mass%. When content of metal powder is less than 50 mass%, the electroconductivity of a back surface electrode will fall and the photoelectric conversion efficiency of a silicon solar cell will fall easily. On the other hand, if the content of the metal powder is more than 97% by mass, the content of the glass powder or the vehicle must be relatively lowered, and it becomes difficult to form the p + electrolytic layer.

本発明の電極形成材料において、金属粉末はAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種または二種以上が好ましく、AlはBSF効果を享受する観点から特に好ましい。これらの金属粉末は、導電性が良好であるとともに、本発明に係るガラス粉末と適合性が良好である。よって、これらの金属粉末を用いると、電極形成材料の焼成時にガラスが失透し難くなることに加えて、ガラスが発泡し難くなる。また、微細な電極パターンを形成するために、金属粉末の平均粒子径D50は5μm以下、3μm以下、2μm以下、特に1μm以下が好ましい。 In the electrode forming material of the present invention, the metal powder is preferably one or more of Ag, Al, Au, Cu, Pd, Pt and alloys thereof, and Al is particularly preferable from the viewpoint of enjoying the BSF effect. These metal powders have good electrical conductivity and good compatibility with the glass powder according to the present invention. Therefore, when these metal powders are used, the glass is less likely to be devitrified when the electrode forming material is fired, and the glass is less likely to foam. Further, in order to form a fine electrode pattern, the mean particle diameter D 50 of the metal powder is 5μm or less, 3 [mu] m or less, 2 [mu] m or less, especially 1μm or less.

本発明の電極形成材料において、ビークルの含有量は5〜50質量%、特に10〜30質量%が好ましい。ビークルの含有量が5質量%より少ないと、ペースト化が困難になり、厚膜法で電極を形成し難くなる。一方、ビークルの含有量が50質量%より多いと、電極形成材料の焼成前後で膜厚や膜幅が変動しやすくなり、結果として、所望の電極パターンを形成し難くなる。   In the electrode forming material of the present invention, the content of the vehicle is preferably 5 to 50% by mass, particularly preferably 10 to 30% by mass. When the content of the vehicle is less than 5% by mass, it becomes difficult to form a paste and it is difficult to form an electrode by the thick film method. On the other hand, when the content of the vehicle is more than 50% by mass, the film thickness and film width are likely to fluctuate before and after the electrode forming material is fired, and as a result, it is difficult to form a desired electrode pattern.

既述の通り、ビークルは、一般的に、有機溶媒中に樹脂を溶解させたものを指す。樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロース、エチルセルロースは、熱分解性が良好であるため、好ましい。有機溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As described above, a vehicle generally refers to a resin in which a resin is dissolved in an organic solvent. As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester, nitrocellulose, and ethylcellulose are preferable because of their good thermal decomposability. As organic solvents, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether , Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO) N- methyl-2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

本発明の電極形成材料は、上記成分以外にも、熱膨張係数を調整するためにコーディエライト等のセラミックフィラー粉末、電極の表面抵抗を調整するためにNiO等の酸化物粉末、ペースト特性を調整するために界面活性剤、増粘剤、可塑剤、表面処理剤、色調を調整するために顔料等を含有してもよい。   In addition to the above components, the electrode-forming material of the present invention has ceramic filler powder such as cordierite for adjusting the thermal expansion coefficient, oxide powder such as NiO for adjusting the surface resistance of the electrode, and paste characteristics. In order to adjust, a surfactant, a thickener, a plasticizer, a surface treatment agent, a pigment or the like may be included to adjust the color tone.

本発明の電極形成材料(電極形成用ガラス組成物)は、裏面電極のみならず、受光面電極の形成にも好適である。厚膜法で受光面電極を形成する場合、焼成時に電極形成材料が反射防止膜を貫通する現象が利用され、この現象により受光面電極と半導体層が電気的に接続される。この現象は、一般的にファイアスルーと称されている。ファイアスルーを利用すれば、受光面電極の形成に際し、反射防止膜のエッチングが不要になるとともに、反射防止膜のエッチングと電極パターンの位置合わせが不要になり、シリコン太陽電池の生産効率が飛躍的に向上する。電極形成材料が反射防止膜を貫通する度合(以下、ファイアスルー性)は、電極形成材料の組成、焼成条件で変動し、特にガラス粉末のガラス組成の影響が最も大きい。また、シリコン太陽電池の光電変換効率は、電極形成材料のファイアスルー性と相関があり、ファイアスルー性が不十分であると、これらの特性が低下し、シリコン太陽電池の基本性能が低下する。本発明の電極形成材料は、ガラス粉末のガラス組成範囲を所定範囲に規制しているため、ファイアスルー性が良好であり、受光面電極の形成に好適である。本発明の電極形成材料を受光面電極の形成に用いる場合、金属粉末は、Ag粉末が好ましく、Ag粉末の含有量等は、上記の通りである。   The electrode forming material (glass composition for forming an electrode) of the present invention is suitable for forming not only the back electrode but also the light receiving surface electrode. When the light-receiving surface electrode is formed by the thick film method, a phenomenon in which the electrode forming material penetrates the antireflection film at the time of firing is used, and this phenomenon electrically connects the light-receiving surface electrode and the semiconductor layer. This phenomenon is generally called fire-through. By using fire-through, it is not necessary to etch the antireflection film when forming the light receiving surface electrode, and it is not necessary to etch the antireflection film and align the electrode pattern, which dramatically increases the production efficiency of silicon solar cells. To improve. The degree to which the electrode-forming material penetrates the antireflection film (hereinafter referred to as fire-through property) varies depending on the composition of the electrode-forming material and the firing conditions, and is particularly affected by the glass composition of the glass powder. Moreover, the photoelectric conversion efficiency of a silicon solar cell correlates with the fire-through property of the electrode forming material. If the fire-through property is insufficient, these characteristics are deteriorated and the basic performance of the silicon solar cell is deteriorated. Since the electrode forming material of the present invention regulates the glass composition range of the glass powder to a predetermined range, it has good fire-through properties and is suitable for forming a light-receiving surface electrode. When the electrode forming material of the present invention is used for forming a light-receiving surface electrode, the metal powder is preferably Ag powder, and the content and the like of Ag powder are as described above.

受光面電極と裏面電極を別々に形成してもよいし、受光面電極と裏面電極を同時に形成してもよい。受光面電極と裏面電極を同時に形成すれば、焼成回数を減らすことができるため、シリコン太陽電池の製造効率が向上する。ここで、本発明の電極形成材料を受光面電極と裏面電極の双方に用いると、受光面電極と裏面電極を同時に形成しやすくなる。   The light receiving surface electrode and the back surface electrode may be formed separately, or the light receiving surface electrode and the back surface electrode may be formed simultaneously. If the light-receiving surface electrode and the back electrode are formed at the same time, the number of firings can be reduced, so that the production efficiency of the silicon solar cell is improved. Here, when the electrode forming material of the present invention is used for both the light receiving surface electrode and the back surface electrode, it becomes easy to form the light receiving surface electrode and the back surface electrode simultaneously.

以下、実施例に基づいて、本発明を詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

表1、2は、本発明の実施例(試料No.1〜10)および比較例(試料No.11〜13)を示している。試料No.11、12は、従来の電極形成用ガラス組成物を例示している。   Tables 1 and 2 show Examples (Sample Nos. 1 to 10) and Comparative Examples (Sample Nos. 11 to 13) of the present invention. Sample No. 11 and 12 exemplify conventional glass compositions for electrode formation.

次のようにして、各試料を調製した。まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れ、1100℃〜1200℃で1〜2時間溶融した。次に、溶融ガラスの一部をTMA用サンプルとしてステンレス製の金型に流し出した。その他の溶融ガラスを水冷ローラーでフィルム状に成形し、得られたガラスフィルムをボールミルで粉砕した後、目開き250メッシュの篩を通過させた上で、空気分級し、平均粒子径D50が1.5μmのガラス粉末を得た。 Each sample was prepared as follows. First, after preparing glass raw materials, such as various oxides and carbonates, so that it may become the glass composition shown in the table | surface, and preparing a glass batch, this glass batch is put into a platinum crucible and 1100 to 1200 degreeC. Melted for ~ 2 hours. Next, a part of the molten glass was poured into a stainless steel mold as a TMA sample. Molding the other of the molten glass into a film with a water-cooled roller, the obtained glass film was pulverized by a ball mill, after passed through the mesh 250 mesh sieve, and air classification, the average particle diameter D 50 of 1 A glass powder of 5 μm was obtained.

得られたガラス試料につき、熱膨張係数α、軟化点および熱的安定性を測定した。   About the obtained glass sample, the thermal expansion coefficient (alpha), the softening point, and thermal stability were measured.

熱膨張係数αは、TMA装置で測定した値であり、30〜300℃の温度範囲で測定した値である。   The thermal expansion coefficient α is a value measured with a TMA apparatus, and is a value measured in a temperature range of 30 to 300 ° C.

軟化点は、マクロ型DTA装置で測定した値である。なお、マクロ型DTAの測定温度域は室温〜650℃とし、昇温速度は10℃/分とした。   The softening point is a value measured with a macro DTA apparatus. The measurement temperature range of the macro type DTA was room temperature to 650 ° C., and the rate of temperature increase was 10 ° C./min.

熱的安定性は、結晶化温度が500℃以上の場合を「○」とし、500℃未満の場合を「×」として評価した。なお、結晶化温度は、マクロ型DTA装置で測定した値であり、マクロ型DTAの測定温度域は室温〜570℃とし、昇温速度は10℃/分とした。   The thermal stability was evaluated as “◯” when the crystallization temperature was 500 ° C. or higher, and “X” when the crystallization temperature was lower than 500 ° C. The crystallization temperature was a value measured with a macro DTA apparatus, the measurement temperature range of the macro DTA was room temperature to 570 ° C., and the temperature rising rate was 10 ° C./min.

得られたガラス粉末3質量%と、Al粉末(平均粒子径D50=0.5μm)75質量%と、ビークル(α−ターピネオールにアクリル酸エステルを溶解させたもの)23質量%とを三本ローラーで混練し、ペースト状の電極形成材料を得た。次に、スクリーン印刷により、シリコン半導体基板(100mm×100mm×200μm厚)の裏面の全面に電極形成材料を塗布し、乾燥した後、最高温度720℃で短時間焼成(焼成開始から終了まで2分、最高温度で10秒保持)し、厚みが50μmの裏面電極を得た。得られた裏面電極につき、p+電解層の表面抵抗、外観および反りを評価した。 Three of 3% by weight of the obtained glass powder, 75% by weight of Al powder (average particle diameter D 50 = 0.5 μm), and 23% by weight of vehicle (a solution of acrylic acid ester dissolved in α-terpineol) The mixture was kneaded with a roller to obtain a paste-like electrode forming material. Next, an electrode forming material is applied to the entire back surface of the silicon semiconductor substrate (100 mm × 100 mm × 200 μm thickness) by screen printing, dried, and then fired for a short time at a maximum temperature of 720 ° C. (2 minutes from the start to the end of firing). For 10 seconds at a maximum temperature) to obtain a back electrode having a thickness of 50 μm. About the obtained back surface electrode, the surface resistance, external appearance, and curvature of the p + electrolytic layer were evaluated.

p+電解層の表面抵抗は、試料No.12により作製されたp+電解層の表面抵抗値を基準にして、その表面抵抗値以下の場合を「○」、その表面抵抗値より大きい場合を「×」として評価した。なお、p+電解層の表面抵抗値が低い程、BSF効果を享受しやすくなる。   The surface resistance of the p + electrolytic layer is the sample No. With respect to the surface resistance value of the p + electrolytic layer produced according to No. 12, the case where the surface resistance value is equal to or less than “◯” is evaluated, and the case where the surface resistance value is greater than “×” is evaluated. In addition, it becomes easy to enjoy a BSF effect, so that the surface resistance value of a p + electrolytic layer is low.

外観は、裏面電極の表面を目視観察し、ブリスターおよびAlの凝集の個数を観察することで評価した。ブリスターおよびAlの凝集の個数が試料No.13より少ない場合を「○」、試料No.13より多い場合を「×」とした。   The appearance was evaluated by visually observing the surface of the back electrode and observing the number of blisters and Al aggregates. The number of blister and agglomeration of Al is the sample number. In the case of less than 13, “◯”, sample No. The case where there were more than 13 was marked “x”.

反りは、接触式表面粗さ計により、シリコン半導体基板の受光面側の表面を測定することで評価した。シリコン半導体の中央部において、30mmの間隔で測定し、最低部と最上部の差が20μm未満の場合を「○」とし、20μm以上の場合を「×」とした。   The warpage was evaluated by measuring the surface of the silicon semiconductor substrate on the light receiving surface side with a contact-type surface roughness meter. In the central part of the silicon semiconductor, measurement was performed at an interval of 30 mm, and a case where the difference between the lowest part and the uppermost part was less than 20 μm was designated as “◯”, and a case where the difference was 20 μm or more was designated as “X”.

表1、2から明らかなように、試料No.1〜10は、p+電解層の表面抵抗、外観、反りの評価が良好であった。一方、試料No.11は、p+電解層の表面抵抗および外観の評価が不良であった。試料No.12は、外観の評価が不良であった。試料No.13は、外観の評価が試料No.1〜10より劣っていた。   As is clear from Tables 1 and 2, sample no. Nos. 1 to 10 were good in evaluation of the surface resistance, appearance, and warpage of the p + electrolytic layer. On the other hand, sample No. No. 11 had poor evaluation of the surface resistance and appearance of the p + electrolytic layer. Sample No. No. 12 had poor appearance evaluation. Sample No. No. 13 shows the evaluation of the external appearance of sample No. It was inferior to 1-10.

試料No.1〜13について、ファイアスルー性を評価した。ファイアスルー性の評価は次のようにして行った。シリコン半導体基板に形成されたSiN膜(膜厚100nm)上に、長さ200mm、100μm幅になるように各電極形成材料を線状にスクリーン印刷し、乾燥した後、最高温度720℃で短時間焼成(焼成開始から終了まで2分、最高温度で10秒保持)した。次に、焼成後のシリコン半導体基板を塩酸水溶液(10重量%濃度)に浸漬し、12時間超音波にかけ、各試料をエッチングした。エッチング後のシリコン半導体基板を光学顕微鏡(100倍)で観察し、ファイアスルー性を評価した。SiN膜を貫通し、シリコン半導体基板上に線状の電極パターンが形成されていたものを「○」、シリコン半導体基板上に線状の電極パターンが概ね形成されていたが、SiN膜を貫通していない箇所が存在し、シリコン半導体基板との電気的接続が一部途切れていたものを「△」、SiN膜を貫通していなかったものを「×」として評価した。その結果、試料No.1〜10は、「○」の評価であり、ファイアスルー性が良好あった。したがって、試料No.1〜10は、シリコン太陽電池の受光面電極の形成に好適であると考えられる。一方、試料No.11、13は、「△」の評価であり、ファイアスルー性が不良あった。また、試料No.12は、「×」の評価であり、ファイアスルー性が不良あった。   Sample No. About 1-13, the fire-through property was evaluated. The fire-through property was evaluated as follows. Each electrode forming material is linearly screen-printed on a SiN film (film thickness: 100 nm) formed on a silicon semiconductor substrate to a length of 200 mm and a width of 100 μm, and after drying, a short time at a maximum temperature of 720 ° C. Firing (2 minutes from the start to the end of the firing, holding for 10 seconds at the maximum temperature). Next, the fired silicon semiconductor substrate was immersed in an aqueous hydrochloric acid solution (10 wt% concentration) and subjected to ultrasonic waves for 12 hours to etch each sample. The etched silicon semiconductor substrate was observed with an optical microscope (100 times) to evaluate fire-through properties. “○” indicates that the linear electrode pattern was formed on the silicon semiconductor substrate through the SiN film, and the linear electrode pattern was generally formed on the silicon semiconductor substrate. The case where there was a non-existing portion and the electrical connection with the silicon semiconductor substrate was partially broken was evaluated as “Δ”, and the case where the SiN film was not penetrated was evaluated as “x”. As a result, sample no. 1 to 10 were evaluations of “◯”, and the fire-through property was good. Therefore, sample no. 1-10 are considered suitable for formation of the light-receiving surface electrode of a silicon solar cell. On the other hand, sample No. 11 and 13 are evaluations of “Δ”, and the fire-through property was poor. Sample No. No. 12 was an evaluation of “x”, and the fire-through property was poor.

本発明の電極形成用ガラス組成物および電極形成材料は、上記の通り、シリコン太陽電池の電極、特にシリコン太陽電池の裏面電極の形成に好適に使用可能である。さらに、本発明の電極形成用ガラス組成物および電極形成材料は、セラミックコンデンサ等のセラミック電子部品、フォトダイオード等の光学部品に適用することができる。   As described above, the electrode-forming glass composition and electrode-forming material of the present invention can be suitably used for forming an electrode of a silicon solar cell, particularly a back electrode of a silicon solar cell. Furthermore, the electrode-forming glass composition and electrode-forming material of the present invention can be applied to ceramic electronic parts such as ceramic capacitors and optical parts such as photodiodes.

Claims (13)

ガラス組成として、下記酸化物換算の質量%表示で、Bi 60〜90%、B 2〜30%、ZnO 0〜3%未満、CuO+Fe+Sb+Nd 0.1〜15%含有することを特徴とする電極形成用ガラス組成物。 As a glass composition, Bi 2 O 3 60 to 90%, B 2 O 3 2 to 30%, ZnO 0 to less than 3%, CuO + Fe 2 O 3 + Sb 2 O 3 + Nd 2 O in terms of mass% in terms of the following oxides 3 0.1-15% of glass composition for electrode formation characterized by containing. ZnOの含有量が1%未満であることを特徴とする請求項1に記載の電極形成用ガラス組成物。   The glass composition for forming an electrode according to claim 1, wherein the content of ZnO is less than 1%. 実質的にZnOを含有しないことを特徴とする請求項1または2に記載の電極形成用ガラス組成物。   The glass composition for forming an electrode according to claim 1 or 2, which does not substantially contain ZnO. アルカリ金属酸化物の含有量が0.05%以上であることを特徴とする請求項1〜3のいずれかに記載の電極形成用ガラス組成物。   The glass composition for forming an electrode according to any one of claims 1 to 3, wherein the content of the alkali metal oxide is 0.05% or more. SiOの含有量が3%未満であることを特徴とする請求項1〜4のいずれかに記載の電極形成用ガラス組成物。 The glass composition for forming an electrode according to any one of claims 1 to 4, wherein the content of SiO 2 is less than 3%. 請求項1〜5のいずれかに記載の電極形成用ガラス組成物からなるガラス粉末と、金属粉末と、ビークルとを含むことを特徴とする電極形成材料。   An electrode forming material comprising: a glass powder comprising the glass composition for forming an electrode according to claim 1; a metal powder; and a vehicle. ガラス粉末の平均粒子径D50が5μm未満であることを特徴とする請求項6に記載の電極形成材料。 The electrode forming material according to claim 6, wherein the glass powder has an average particle diameter D 50 of less than 5 μm. ガラス粉末の軟化点が600℃以下であることを特徴とする請求項6または7に記載の電極形成材料。   The electrode forming material according to claim 6 or 7, wherein the softening point of the glass powder is 600 ° C or lower. ガラス粉末の含有量が0.2〜10質量%であることを特徴とする請求項6〜8のいずれかに記載の電極形成材料。   Content of glass powder is 0.2-10 mass%, The electrode forming material in any one of Claims 6-8 characterized by the above-mentioned. 金属粉末がAg、Al、Au、Cu、Pd、Ptおよびこれらの合金の一種または二種以上を含むことを特徴とする請求項6〜9のいずれかに記載の電極形成材料。   The electrode forming material according to any one of claims 6 to 9, wherein the metal powder contains Ag, Al, Au, Cu, Pd, Pt, or one or more of these alloys. 金属粉末がAlであることを特徴とする請求項6〜10のいずれかに記載の電極形成材料。   The electrode forming material according to claim 6, wherein the metal powder is Al. シリコン太陽電池の電極に用いることを特徴とする請求項6〜11のいずれかに記載の電極形成材料。   It uses for the electrode of a silicon solar cell, The electrode formation material in any one of Claims 6-11 characterized by the above-mentioned. シリコン太陽電池の裏面電極に用いることを特徴とする請求項6〜12のいずれかに記載の電極形成材料。   It uses for the back surface electrode of a silicon solar cell, The electrode formation material in any one of Claims 6-12 characterized by the above-mentioned.
JP2009099687A 2008-09-04 2009-04-16 Electrode forming glass composition and electrode forming material Expired - Fee Related JP5541605B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009099687A JP5541605B2 (en) 2009-04-16 2009-04-16 Electrode forming glass composition and electrode forming material
PCT/JP2009/065226 WO2010026952A1 (en) 2008-09-04 2009-09-01 Glass composition for electrode formation and electrode formation material
EP09811478.8A EP2330084A4 (en) 2008-09-04 2009-09-01 Glass composition for electrode formation and electrode formation material
US13/058,277 US20110135931A1 (en) 2008-09-04 2009-09-01 Glass composition for electrode formation and electrode formation material
CN2009801227630A CN102066275A (en) 2008-09-04 2009-09-01 Glass composition for electrode formation and electrode formation material
US13/917,866 US20130276870A1 (en) 2008-09-04 2013-06-14 Glass composition for electrode formation and electrode formation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099687A JP5541605B2 (en) 2009-04-16 2009-04-16 Electrode forming glass composition and electrode forming material

Publications (2)

Publication Number Publication Date
JP2010251138A true JP2010251138A (en) 2010-11-04
JP5541605B2 JP5541605B2 (en) 2014-07-09

Family

ID=43313248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099687A Expired - Fee Related JP5541605B2 (en) 2008-09-04 2009-04-16 Electrode forming glass composition and electrode forming material

Country Status (1)

Country Link
JP (1) JP5541605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035035A (en) * 2009-07-30 2011-02-17 Noritake Co Ltd Conductive composition for solar cell electrode
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
KR101909143B1 (en) 2012-01-20 2018-10-17 엘지전자 주식회사 Bifacial solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227214A (en) * 1996-02-22 1997-09-02 Asahi Glass Co Ltd Ceramic color composition
JP2000090733A (en) * 1998-09-14 2000-03-31 Murata Mfg Co Ltd Conductive paste, and solar battery using it
JP2005268204A (en) * 2004-02-19 2005-09-29 Murata Mfg Co Ltd Conductive paste and ceramic electronic component
JP2006321665A (en) * 2005-05-17 2006-11-30 Nippon Electric Glass Co Ltd Bismuth-based lead-free glass composition
JP2007087661A (en) * 2005-09-20 2007-04-05 Murata Mfg Co Ltd Conductive paste and manufacturing method of ceramic electronic component using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227214A (en) * 1996-02-22 1997-09-02 Asahi Glass Co Ltd Ceramic color composition
JP2000090733A (en) * 1998-09-14 2000-03-31 Murata Mfg Co Ltd Conductive paste, and solar battery using it
JP2005268204A (en) * 2004-02-19 2005-09-29 Murata Mfg Co Ltd Conductive paste and ceramic electronic component
JP2006321665A (en) * 2005-05-17 2006-11-30 Nippon Electric Glass Co Ltd Bismuth-based lead-free glass composition
JP2007087661A (en) * 2005-09-20 2007-04-05 Murata Mfg Co Ltd Conductive paste and manufacturing method of ceramic electronic component using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035035A (en) * 2009-07-30 2011-02-17 Noritake Co Ltd Conductive composition for solar cell electrode
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
KR101909143B1 (en) 2012-01-20 2018-10-17 엘지전자 주식회사 Bifacial solar cell

Also Published As

Publication number Publication date
JP5541605B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5532512B2 (en) Electrode forming glass composition and electrode forming material
WO2010026952A1 (en) Glass composition for electrode formation and electrode formation material
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
JP5796270B2 (en) Electrode forming material
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
KR101455019B1 (en) Electroconductive paste and solar cell element obtained using the electroconductive paste
JP5272373B2 (en) Polycrystalline Si solar cell
JP2009200276A (en) Conductive composition for forming electrode, and method of forming solar cell
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
JP6075601B2 (en) Electrode forming glass and electrode forming material using the same
JP5541605B2 (en) Electrode forming glass composition and electrode forming material
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
KR101317228B1 (en) Aluminum paste compositon of the low bowing and high-efficiency silicon solar cells
JP5796281B2 (en) Electrode forming material
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
JP2011079694A (en) Sealing material
JP2010192480A (en) Glass composition for electrode formation, and electrode forming material
JP2013018666A (en) Electrode formation glass and electrode formation material
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP6112384B2 (en) Electrode forming glass and electrode forming material using the same
JP5709033B2 (en) Bismuth glass
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same
JP7138844B2 (en) Sintered body using bismuth-based glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5541605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140427

LAPS Cancellation because of no payment of annual fees