JP2007087661A - Conductive paste and manufacturing method of ceramic electronic component using it - Google Patents

Conductive paste and manufacturing method of ceramic electronic component using it Download PDF

Info

Publication number
JP2007087661A
JP2007087661A JP2005272656A JP2005272656A JP2007087661A JP 2007087661 A JP2007087661 A JP 2007087661A JP 2005272656 A JP2005272656 A JP 2005272656A JP 2005272656 A JP2005272656 A JP 2005272656A JP 2007087661 A JP2007087661 A JP 2007087661A
Authority
JP
Japan
Prior art keywords
conductive paste
powder
ceramic
glass
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005272656A
Other languages
Japanese (ja)
Other versions
JP4645383B2 (en
Inventor
Shinichi Tsugimoto
伸一 次本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005272656A priority Critical patent/JP4645383B2/en
Publication of JP2007087661A publication Critical patent/JP2007087661A/en
Application granted granted Critical
Publication of JP4645383B2 publication Critical patent/JP4645383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste capable of surely forming an external electrode excelling in reliability on a surface of ceramic by increasing junction strength between the electrode and the ceramics; and to provide a manufacturing method of a ceramic electronic component using it. <P>SOLUTION: This conductive paste contains conductive powder, glass powder and an organic vehicle. In the conductive paste, the glass powder contains, as constituents, Bi<SB>2</SB>O<SB>3</SB>, B<SB>2</SB>O<SB>3</SB>, SiO<SB>2</SB>, Fe<SB>2</SB>O<SB>3</SB>and Ag<SB>2</SB>O; in a 3-component composition diagram shown in an attached drawing, where mol% of Bi<SB>2</SB>O<SB>3</SB>, that of SiO<SB>2</SB>and that of B<SB>2</SB>O<SB>3</SB>+Fe<SB>2</SB>O<SB>3</SB>+Ag<SB>2</SB>O are represented by x, y and z, respectively, the composition ratio of the constituents are set in a range surrounded by polygons A, B, C, D and E having, as apexes, the respective composition points of which the coordinates (x, y, z) are A (25, 5, 70), B (55, 5, 40), C (20, 40, 40), D (10, 40, 50), and E (10, 20, 70); and the content (a) of Fe<SB>2</SB>O<SB>3</SB>is set in a range of 3≤a≤25 (mol%). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、導電性ペーストおよびそれを用いたセラミック電子部品の製造方法に関する。   The present invention relates to a conductive paste and a method for producing a ceramic electronic component using the same.

代表的なセラミック電子部品の一つに、図3に示すような、構造を有する表面実装型の積層セラミックコンデンサがある。
この積層セラミックコンデンサは、図3に示すように、誘電体層であるセラミック層53を介して複数の内部電極52a,52bが積層された積層セラミックコンデンサ素子51の両端面54a,54bに、内部電極52a,52bと導通するように外部電極55a,55bが配設された構造を有している。
One typical ceramic electronic component is a surface mount multilayer ceramic capacitor having a structure as shown in FIG.
As shown in FIG. 3, this multilayer ceramic capacitor has internal electrodes on both end faces 54a and 54b of a multilayer ceramic capacitor element 51 in which a plurality of internal electrodes 52a and 52b are laminated via a ceramic layer 53 which is a dielectric layer. It has a structure in which external electrodes 55a and 55b are disposed so as to be electrically connected to 52a and 52b.

ところで、この積層セラミックコンデンサのような外部電極を備えた表面実装型のセラミック電子部品を製造するにあたって、外部電極を形成する場合、内部電極を備えた焼結セラミック素体、この例では積層セラミックコンデンサ素子の端面に導電性ペーストを塗布し、焼き付けることにより外部電極を形成する方法が一般に用いられている。   By the way, when manufacturing a surface mount type ceramic electronic component having an external electrode such as this multilayer ceramic capacitor, when forming the external electrode, a sintered ceramic body having an internal electrode, in this example, a multilayer ceramic capacitor. A method of forming an external electrode by applying and baking a conductive paste on the end face of an element is generally used.

そして、外部電極の焼結セラミック素体への接合強度を向上させたり、外部電極の緻密性を向上させたりする目的で、外部電極形成用材料である導電性ペーストに、ガラス成分を添加することが知られている(例えば特許文献1参照)。
なお、特許文献1の請求項5には、Bi23+B23+SiO2+Fe23などを含有するガラス組成物であって、詳しくは、以下に示すような組成を有するガラス組成物が示されている。
And, for the purpose of improving the bonding strength of the external electrode to the sintered ceramic body or improving the denseness of the external electrode, a glass component is added to the conductive paste as the external electrode forming material. Is known (see, for example, Patent Document 1).
Note that claim 5 of Patent Document 1 is a glass composition containing Bi 2 O 3 + B 2 O 3 + SiO 2 + Fe 2 O 3 or the like, and more specifically, a glass composition having the following composition: Things are shown.

すなわち、特許文献1には、モル%で0.7〜1.5%のMgO、6〜14%のBaO、1.5〜4.5%のAl23 、15〜42%のB23 、1.5〜4.5%のZrO2 、20〜30%のSiO2 、5〜70%のBi23 、2.5〜25%のZnO、0.2〜40%のCuO、1.7〜40%のCoO、1.7〜40%のFe23 、および10〜40%のMnOを含み、鉛およびカドミウムを含まないことを特徴とするガラス組成物が示されている。 That is, Patent Document 1 includes 0.7 to 1.5% MgO, 6 to 14% BaO, 1.5 to 4.5% Al 2 O 3 , and 15 to 42% B 2 in mol%. O 3 , 1.5-4.5% ZrO 2 , 20-30% SiO 2 , 5-70% Bi 2 O 3 , 2.5-25% ZnO, 0.2-40% CuO , 1.7 to 40% of CoO, 1.7 to 40% of Fe 2 O 3, and comprises 10-40% of MnO, and glass composition characterized by containing no lead and cadmium are shown Yes.

そして、このガラス組成物を、導電成分やバインダなどと配合することにより得られる導電性ペーストを用いることにより、良好なワイヤボンディングを行うことが可能になるとされている。   And it is supposed that it will become possible to perform favorable wire bonding by using the conductive paste obtained by mix | blending this glass composition with a conductive component, a binder, etc.

しかしながら、近年、セラミック電子部品への特性向上への要求は厳しく、上記従来の導電性ペーストでは必ずしもその要求に応えられなくなっており、さらにセラミックへの接合性に優れた電極を形成することが可能な導電性ペーストが望まれるに至っている。
特開平8−67533号公報
However, in recent years, the demand for improving the characteristics of ceramic electronic components has become strict, and the conventional conductive paste cannot always meet the demand, and it is possible to form an electrode with excellent bondability to ceramic. A conductive paste is desired.
JP-A-8-67533

本願発明は、上記課題を解決するものであり、焼結セラミック素体の表面に塗布して焼き付けることにより形成される電極と焼結セラミック素体との接合強度が大きく、焼結セラミック素体の表面に信頼性に優れた外部電極を確実に形成することが可能な導電性ペーストおよびそれを用いたセラミック電子部品の製造方法を提供することを目的とする。   The invention of the present application solves the above problems, and the bonding strength between the electrode formed by applying and baking the surface of the sintered ceramic body and the sintered ceramic body is large, and It is an object of the present invention to provide a conductive paste capable of reliably forming a reliable external electrode on the surface and a method for manufacturing a ceramic electronic component using the same.

上記課題を解決するために、本願発明においては以下の構成を採用している。
すなわち、本願請求項1の導電性ペーストの発明は、
導電性粉末と、ガラス粉末と、有機ビヒクルとを含有する導電性ペーストであって、
前記ガラス粉末が、構成成分として、Bi23、B23、SiO2、Fe23、およびAg2Oを含有し、
前記構成成分の組成比が、B23、SiO2、およびBi23+Fe23+Ag2Oのモル%をそれぞれx、y、およびzで表わす、添付の図1に示す3成分組成図において、(x、y、z)がA(25、5、70)、B(55、5、40)、C(20、40、40)、D(10、40、50)、E(10、20、70)の各組成点を頂点とする多角形A、B、C、D、Eで囲まれた範囲内にあり、かつ、
Fe23の含有量aが、3≦a≦25モル%の範囲内にあること
を特徴としている。
In order to solve the above problems, the present invention adopts the following configuration.
That is, the invention of the conductive paste of claim 1 of the present application is
A conductive paste containing conductive powder, glass powder, and an organic vehicle,
The glass powder contains Bi 2 O 3 , B 2 O 3 , SiO 2 , Fe 2 O 3 , and Ag 2 O as constituent components,
The three components shown in the attached FIG. 1 in which the composition ratios of the constituents are represented by x, y, and z, respectively, as mole percentages of B 2 O 3 , SiO 2 , and Bi 2 O 3 + Fe 2 O 3 + Ag 2 O. In the composition diagram, (x, y, z) is A (25, 5, 70), B (55, 5, 40), C (20, 40, 40), D (10, 40, 50), E ( 10, 20, 70) within the range surrounded by polygons A, B, C, D, E having the respective composition points as vertices, and
It is characterized in that the content a of Fe 2 O 3 is in the range of 3 ≦ a ≦ 25 mol%.

また、請求項2の導電性ペーストは、請求項1の発明の構成において、前記Ag2Oの含有量bが3モル%以下であることを特徴としている。 The conductive paste of claim 2 is characterized in that, in the configuration of the invention of claim 1, the content b of Ag 2 O is 3 mol% or less.

また、請求項3の導電性ペーストは、請求項1または2の発明の構成において、前記導電性粉末が、Ag粉末、Cu粉末、およびAgとCuの合金からなる群より選ばれる少なくとも1種であることを特徴としている。   The conductive paste of claim 3 is at least one selected from the group consisting of Ag powder, Cu powder, and an alloy of Ag and Cu in the configuration of the invention of claim 1 or 2. It is characterized by being.

また、本願発明のセラミック電子部品の製造方法は、請求項4に記載されているように、
焼結セラミック素体を作製する工程と、
前記焼結セラミック素体の表面に請求項1〜3のいずれかに記載の導電性ペーストを塗布し、焼き付ける工程と
を備えていることを特徴としている。
Moreover, as described in claim 4, the manufacturing method of the ceramic electronic component of the present invention,
Producing a sintered ceramic body; and
A process of applying and baking the conductive paste according to any one of claims 1 to 3 on the surface of the sintered ceramic body.

また、請求項5のセラミック電子部品の製造方法は、請求項4の発明の構成において、前記焼結セラミック素体が、セラミックグリーンシートを介して内部導体が積層された構造を有する積層体を焼成することにより作製されるものであることを特徴としている。   According to a fifth aspect of the present invention, there is provided a method for manufacturing a ceramic electronic component according to the fourth aspect of the present invention, wherein the sintered ceramic body is fired a multilayer body having a structure in which internal conductors are laminated via ceramic green sheets. It is produced by doing.

請求項1の導電性ペーストは、導電性粉末と、ガラス粉末と、有機ビヒクルとを含有する導電性ペーストにおいて、ガラス粉末として、Bi23、B23、SiO2、Fe23、およびAg2Oを構成成分として含有し、これらの構成成分の組成比が、B23、SiO2、およびBi23+Fe23+Ag2Oのモル%をそれぞれx、y、およびzで表わす、添付の図1に示す3成分組成図において、(x、y、z)がA(25、5、70)、B(55、5、40)、C(20、40、40)、D(10、40、50)、E(10、20、70)の各組成点を頂点とする多角形A、B、C、D、Eで囲まれた範囲内にあり、かつ、Fe23の含有量aが、3≦a≦25モル%の範囲内にあるようにしているので、塗布して焼き付けることにより、セラミックとの接合強度が大きく、信頼性に優れた外部電極をセラミックの表面に確実に形成することが可能な導電性ペーストを提供することが可能になる。 The conductive paste according to claim 1 is a conductive paste containing a conductive powder, a glass powder, and an organic vehicle. As the glass powder, Bi 2 O 3 , B 2 O 3 , SiO 2 , Fe 2 O 3 are used. , And Ag 2 O as constituent components, and the composition ratio of these constituent components is B 2 O 3 , SiO 2 , and Bi 2 O 3 + Fe 2 O 3 + Ag 2 O mol%, respectively x, y, In the attached three-component composition diagram represented by FIG. 1 and z, (x, y, z) is A (25, 5, 70), B (55, 5, 40), C (20, 40, 40). ), D (10, 40, 50), E (10, 20, 70) within the range surrounded by the polygons A, B, C, D, E having the respective composition points as vertices, and Fe the content a of 2 O 3 is, since as in the range of 3 ≦ a ≦ 25 mol%, tempered by coating By kicking it, bonding strength between the ceramic is large, it is possible to provide a reliability can be reliably formed a good external electrodes on the surface of the ceramic conductive paste.

すなわち、本願請求項1の発明の要件を満たす、B−Si−Bi−O系のガラス成分に、FeとAgとを所定の範囲で添加したガラスは、焼成時の結晶化が抑制されてガラスとしての化学的な安定性が向上し、めっき液による侵食を受け難くなるとともに、焼成時のガラスの粘度が低下して、セラミック素体に対する濡れ性が向上し、かつ、流動性の高くなったガラスがセラミック素体の粒子の細部にまで浸透し、いわゆるアンカー効果が向上するため、上記ガラスを含有する導電性ペーストを焼き付けて電極を形成した場合、さらには形成された電極にめっきを施した場合にも、セラミック素体への接合強度の大きい電極を形成することが可能になる。
なお、本願発明の導電性ペーストを用いることにより、上述の特許文献1に記載されたガラスを配合した導電性ペーストを用いた場合よりも、さらに焼結セラミック素体に対する接合強度の大きい外部電極を形成することが可能になる。
That is, a glass in which Fe and Ag are added in a predetermined range to a B—Si—Bi—O-based glass component that satisfies the requirements of the invention of claim 1 of the present invention is a glass in which crystallization during firing is suppressed. As a result, the chemical stability of the product has been improved, and it has become less susceptible to erosion by the plating solution, the viscosity of the glass during firing has been reduced, wettability to the ceramic body has been improved, and fluidity has been increased. Since the glass penetrates into the details of the ceramic body particles and the so-called anchor effect is improved, when the electrode is formed by baking the conductive paste containing the glass, the formed electrode is further plated. Even in this case, it is possible to form an electrode having a high bonding strength to the ceramic body.
In addition, by using the conductive paste of the present invention, an external electrode having higher bonding strength to the sintered ceramic body than the case where the conductive paste containing the glass described in Patent Document 1 is used. It becomes possible to form.

なお、本願発明は、上述の構成成分を含有することを特徴としているが、意図せず含まれてしまう不可避不純物の混入や、形成される電極の焼結セラミック素体への接合強度を低下させない程度に配合される微量添加物の添加を排除するものではない。
また、本願請求項1の発明の導電性ペーストにおいては、Ag2Oを過剰に含有させると、焼き付け工程でAg2Oが析出してしまい、ガラスの構成成分として機能させることができなくなる。したがって、本願発明において、Ag2Oの含有量は、焼き付け工程で析出せず、ガラスの構成成分としてなりうる範囲までとすることが望ましい。
In addition, although this invention is characterized by containing the above-mentioned structural component, mixing of the inevitable impurity which is included unintentionally and the joint strength to the sintered ceramic body of the electrode formed are not reduced. This does not exclude the addition of trace additives that are blended to the extent.
In addition, in the conductive paste of the invention of claim 1, when Ag 2 O is excessively contained, Ag 2 O is precipitated in the baking step and cannot function as a glass component. Therefore, in the present invention, it is desirable that the content of Ag 2 O is within a range that does not precipitate in the baking step and can be a constituent component of the glass.

また、請求項2の導電性ペーストのように、請求項1の発明の構成において、Ag2Oの含有量bを3モル%以下とした場合、焼き付け工程でAg2Oが析出してしまうことを防止し、Ag2Oをガラスの構成成分として有効に機能させることが可能になり、さらに特性に優れた導電性ペーストを得ることが可能になる。 Further, like the conductive paste of claim 2 , in the structure of the invention of claim 1, when the content b of Ag 2 O is 3 mol% or less, Ag 2 O is precipitated in the baking step. This makes it possible to effectively function Ag 2 O as a constituent component of glass, and to obtain a conductive paste having excellent characteristics.

また、請求項3の導電性ペーストのように、請求項1または2の発明の構成において、前記導電性粉末として、導電性粉末が、Ag粉末、Cu粉末、およびAgとCuの合金の粉末からなる群より選ばれる少なくとも1種を用いるようにした場合、焼結セラミック素体との接合強度が大きく、しかも、導電性に優れた外部電極を形成することが可能な導電性ペーストを提供することが可能になる。   Further, as in the conductive paste of claim 3, in the configuration of the invention of claim 1 or 2, the conductive powder is made of Ag powder, Cu powder, and an alloy of Ag and Cu as the conductive powder. To provide a conductive paste capable of forming an external electrode having a high bonding strength with a sintered ceramic body and excellent in electrical conductivity when at least one selected from the group consisting of the above is used. Is possible.

また、請求項4のセラミック電子部品の製造方法は、焼結セラミック素体を作製する工程と、焼結セラミック素体の表面に請求項1〜3のいずれかに記載の導電性ペーストを塗布し、焼き付ける工程とを備えているので、焼結セラミック素体との接合強度が大きく、信頼性の高い外部電極を備えたセラミック電子部品を確実に製造することが可能になる。   According to a fourth aspect of the present invention, there is provided a method for producing a ceramic electronic component comprising: a step of producing a sintered ceramic body; and applying the conductive paste according to any one of claims 1 to 3 to a surface of the sintered ceramic body. , A ceramic electronic component having a high bonding strength with the sintered ceramic body and having a highly reliable external electrode can be reliably manufactured.

すなわち、本願発明のセラミック電子部品の製造方法に用いられる導電性ペーストは、塗布、焼き付け後に、焼結セラミック素体との接合強度の大きい電極を形成することが可能であることから、本願発明のセラミック電子部品の製造方法によれば、例えば、積層セラミックコンデンサなどの積層セラミック電子部品や、単板型コンデンサや内部導体を備えていないチップ型サーミスタなどの、非積層型の焼結セラミック素体の表面に信頼性の高い外部電極が形成された構造を有するセラミック電子部品を効率よく製造することが可能になる。   That is, the conductive paste used in the method for manufacturing a ceramic electronic component of the present invention can form an electrode having a high bonding strength with the sintered ceramic body after coating and baking. According to the method of manufacturing a ceramic electronic component, for example, a multilayer ceramic electronic component such as a multilayer ceramic capacitor, or a non-multilayer sintered ceramic body such as a single plate capacitor or a chip thermistor that does not include an internal conductor. It becomes possible to efficiently manufacture a ceramic electronic component having a structure in which a highly reliable external electrode is formed on the surface.

また、請求項5のセラミック電子部品の製造方法のように、請求項4の発明の構成において、焼結セラミック素体が、セラミックグリーンシートを介して内部導体が積層された構造を有する積層体を焼成することにより作製されるものである場合、すなわち、例えば、積層セラミックコンデンサを構成する焼結セラミック素体のように、内部導体とセラミック層との積層構造を有する焼結セラミック素体であるような場合に本願発明を適用することにより、焼結セラミック素体との接合強度が大きく、信頼性の高い外部電極を備えた積層型のセラミック電子部品を効率よくしかも確実に製造することが可能になる。   Further, as in the method of manufacturing a ceramic electronic component according to claim 5, in the configuration of the invention according to claim 4, the sintered ceramic body is a laminate having a structure in which internal conductors are laminated via ceramic green sheets. In the case of being produced by firing, that is, for example, a sintered ceramic body having a laminated structure of an internal conductor and a ceramic layer, such as a sintered ceramic body constituting a multilayer ceramic capacitor. In this case, by applying the present invention, it is possible to efficiently and surely manufacture a multilayer ceramic electronic component having a high bonding strength with a sintered ceramic body and having a reliable external electrode. Become.

以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説明する。   The features of the present invention will be described in more detail below with reference to examples of the present invention.

[1]導電性ペーストの作製
(1)まず、表1および表2に示すそれぞれの組成となるように、出発原料粉末であるH3BO3、SiO2、Bi23、Fe23およびAg2Oを調合し、SiO2製のるつぼに入れて1000〜1200℃で1h保持した。
そして、原料が完全に溶融したことを確認した上で炉から取り出し、純水中に投入してガラス化させた。得られた小粒状のガラスをボールミルで湿式粉砕して、表1および表2に示すそれぞれの組成のガラス粉末を得た。
[1] Preparation of conductive paste
(1) First, H 3 BO 3 , SiO 2 , Bi 2 O 3 , Fe 2 O 3 and Ag 2 O as starting material powders are prepared so as to have the respective compositions shown in Table 1 and Table 2. was 1h held at 1000~1200 ℃ placed in a SiO 2 crucible.
Then, after confirming that the raw material was completely melted, the raw material was taken out from the furnace and put into pure water to be vitrified. The obtained small granular glass was wet-ground with a ball mill to obtain glass powders having respective compositions shown in Tables 1 and 2.

(2)また、導電性粉末として、粒径が1〜3μmのAg粉末、および粒径が0.5〜2μmのCu粉末を準備した。   (2) Moreover, Ag powder with a particle size of 1 to 3 μm and Cu powder with a particle size of 0.5 to 2 μm were prepared as conductive powders.

(3)次に、上述のようにして得られたガラス粉末と、導電性粉末すなわち、Ag粉末およびCu粉末と、メタクリル系樹脂を有機溶媒に溶解させた有機ビヒクルとを配合し、3本ロールミルで混練し、表1および表2の試料番号1〜35の導電性ペーストを得た。
ここで、Ag粉末またはCu粉末と、ガラス粉末との混合比率は、真体積で計測した体積比で4:1とした。
(3) Next, a glass roll obtained as described above, conductive powder, that is, Ag powder and Cu powder, and an organic vehicle in which a methacrylic resin is dissolved in an organic solvent are blended, and a three-roll mill Kneaded to obtain conductive pastes of sample numbers 1 to 35 in Tables 1 and 2.
Here, the mixing ratio of the Ag powder or Cu powder and the glass powder was 4: 1 as a volume ratio measured in true volume.

[2]導電ペーストの塗布、焼き付け
(1)上述のようにして作製した導電性ペーストを、チタン酸バリウム系のセラミック基板上に直径3mmの円状図形となるようにスクリーン印刷した。
[2] Application and baking of conductive paste
(1) The conductive paste produced as described above was screen-printed on a barium titanate-based ceramic substrate so as to form a circular figure having a diameter of 3 mm.

(2)そして、導電性粉末としてAg粉末を用いた導電性ペーストは、大気中で、最高温度570℃、保持時間が600sとなるように設定したメッシュベルト炉を用いて焼成し、焼結膜とした。
また、導電性粉末としてCu粉末を用いた導電性ペーストは、酸素濃度が30ppmとなるように制御されたN2ガス中で、最高温度600℃、保持時間が600sとなるように設定したメッシュベルト炉を用いて焼成し、焼結膜とした。
(2) The conductive paste using Ag powder as the conductive powder is fired in the atmosphere using a mesh belt furnace set to have a maximum temperature of 570 ° C. and a holding time of 600 s, did.
In addition, the conductive paste using Cu powder as the conductive powder is a mesh belt that is set to have a maximum temperature of 600 ° C. and a holding time of 600 s in N 2 gas controlled to have an oxygen concentration of 30 ppm. It baked using the furnace and it was set as the sintered film.

(3)次に、周知の湿式めっき方法により、上述の焼結膜上にNiめっき、Snめっきの順でめっき処理を施した。めっき浴は一般的な酸性浴を使用した。   (3) Next, the plating process was performed in the order of Ni plating and Sn plating on the above-described sintered film by a known wet plating method. A general acidic bath was used as the plating bath.

(4)それから、上述のようにしてチタン酸バリウム系のセラミック基板上に形成した電極に、一般的にPbを含まないはんだとして用いられるSn−Ag−Cu系はんだを用いて直径0.6mmのリード線をはんだ付けした。このとき、はんだ付け条件は、はんだ盛り量を0.05gとし、余熱(120℃)を5分、本加熱(300℃)を5秒とした。   (4) Then, the electrode formed on the barium titanate-based ceramic substrate as described above has a diameter of 0.6 mm by using Sn—Ag—Cu-based solder that is generally used as solder not containing Pb. The lead wire was soldered. At this time, the soldering conditions were as follows: the amount of solder deposited was 0.05 g, the remaining heat (120 ° C.) was 5 minutes, and the main heating (300 ° C.) was 5 seconds.

(5)そして、上述のようにしてセラミック基板上の電極に接合したリード線を、1.67mm/sの定速で引張り、電極がセラミック基板から剥離したときの引張荷重から、電極とセラミック基板との接合強度を求めた。得られた結果を試料番号と対応させて表1および表2に示す。   (5) Then, the lead wire joined to the electrode on the ceramic substrate as described above is pulled at a constant speed of 1.67 mm / s, and the electrode and the ceramic substrate are obtained from the tensile load when the electrode peels from the ceramic substrate. The bonding strength was obtained. The obtained results are shown in Table 1 and Table 2 in correspondence with the sample numbers.

Figure 2007087661
Figure 2007087661

Figure 2007087661
Figure 2007087661

表1および表2に示すように、本願発明の範囲内にある試料番号2〜4、7、8、10、12、13、15、16、19〜22、24〜31、33、34のガラス粉末を用いた導電性ペーストを用いた場合には、電極とセラミック基板との接合強度を30N以上にまで高くできることが確認された。   As shown in Table 1 and Table 2, glass of sample numbers 2 to 4, 7, 8, 10, 12, 13, 15, 16, 19 to 22, 24 to 31, 33, and 34 within the scope of the present invention. It was confirmed that when a conductive paste using powder was used, the bonding strength between the electrode and the ceramic substrate could be increased to 30 N or higher.

一方、本願発明の要件を備えていないガラス粉末を用いた導電性ペーストについては、以下に説明するような結果が得られた。   On the other hand, the results described below were obtained for the conductive paste using glass powder that did not satisfy the requirements of the present invention.

まず、図1に示した3成分組成図において、多角形A、B、C、D、Eの頂点AとBを結ぶ線分ABの外側、すなわち、表1の試料番号1および5に示すように、SiO2が5モル%未満のガラス粉末を用いた場合には、電極とセラミック基板との接合強度が30N未満となることが確認された。 First, in the three-component composition diagram shown in FIG. 1, as shown on the outside of the line segment AB connecting the vertices A and B of the polygons A, B, C, D, and E, that is, sample numbers 1 and 5 in Table 1. In addition, it was confirmed that the bonding strength between the electrode and the ceramic substrate was less than 30 N when glass powder having a SiO 2 content of less than 5 mol% was used.

また、図1に示した3成分組成図において、多角形A、B、C、D、Eの頂点BとCを結ぶ線分BCの外側、すなわち、表1の試料番号6および9に示すように、Bi23+Fe23+Ag2Oが40モル%未満のガラス粉末を用いた場合には、電極とセラミック基板との接合強度が30N未満となることが確認された。 Further, in the three-component composition diagram shown in FIG. 1, as shown on the outside of the line segment BC connecting the vertices B and C of the polygons A, B, C, D, and E, that is, sample numbers 6 and 9 in Table 1. In addition, it was confirmed that when glass powder with Bi 2 O 3 + Fe 2 O 3 + Ag 2 O of less than 40 mol% was used, the bonding strength between the electrode and the ceramic substrate was less than 30N.

また、図1に示した3成分組成図において、多角形A、B、C、D、Eの頂点CとDを結ぶ線分CDの外側、すなわち、表1の試料番号9および11に示すように、SiO2が40モル%を超えるガラス粉末を用いた場合には、電極とセラミック基板との接合強度が30N未満となることが確認された。 Further, in the three-component composition diagram shown in FIG. 1, outside the line segment CD connecting the vertices C and D of the polygons A, B, C, D, and E, that is, as shown in sample numbers 9 and 11 in Table 1. In addition, it was confirmed that when glass powder with SiO 2 exceeding 40 mol% was used, the bonding strength between the electrode and the ceramic substrate was less than 30N.

また、図1に示した3成分組成図において、多角形A、B、C、D、Eの頂点DとEを結ぶ線分DEの外側、すなわち、表1の試料番号11および14に示すように、B23が10モル%未満のガラス粉末を用いた場合には、電極とセラミック基板との接合強度が30N未満となることが確認された。 Further, in the three-component composition diagram shown in FIG. 1, as shown on the outside of the line segment DE connecting the vertices D and E of the polygons A, B, C, D, and E, that is, sample numbers 11 and 14 in Table 1. In addition, it was confirmed that when a glass powder having a B 2 O 3 content of less than 10 mol% was used, the bonding strength between the electrode and the ceramic substrate was less than 30N.

また、図1に示した3成分組成図において、多角形A、B、C、D、Eの頂点EとAを結ぶ線分EAの外側、すなわち、表1の試料番号1および14に示すように、Bi23+Fe23+Ag2Oが70モル%を超えるガラス粉末を用いた場合には、電極とセラミック基板との接合強度が30N未満となることが確認された。 Further, in the three-component composition diagram shown in FIG. 1, as shown on the outside of the line segment EA connecting the vertices E and A of the polygons A, B, C, D, E, that is, sample numbers 1 and 14 in Table 1. In addition, it was confirmed that when glass powder with Bi 2 O 3 + Fe 2 O 3 + Ag 2 O exceeding 70 mol% was used, the bonding strength between the electrode and the ceramic substrate was less than 30N.

また、表1の試料番号17、18、および表2の試料番号23、32に示すように、Fe23の含有量aが3モル%未満、または25モル%を超えるガラス粉末を用いた場合には、電極とセラミック基板との接合強度が30N未満となることが確認された。 Further, as shown in Sample Nos. 17 and 18 in Table 1 and Sample Nos. 23 and 32 in Table 2, glass powder having a Fe 2 O 3 content a of less than 3 mol% or more than 25 mol% was used. In this case, it was confirmed that the bonding strength between the electrode and the ceramic substrate was less than 30N.

また、表2の試料番号35に示すように、Ag2Oの含有量bを0モル%とした、すなわち、Ag2Oを含有させていないガラスを用いた場合には、電極とセラミック基板との接合強度が低下することが確認された。 In addition, as shown in Sample No. 35 in Table 2, when an Ag 2 O content b is 0 mol%, that is, when glass not containing Ag 2 O is used, the electrode, the ceramic substrate, It was confirmed that the bonding strength of the sheet was lowered.

これに対し、表1の試料番号2〜4,7,8,10,12,13,15,16,19,20、表2の試料番号21,22,24,26〜31,33に示すように、Ag2Oの含有量bを1モル%としたガラスを用いた場合には、電極とセラミック基板との接合強度を30N以上にまで高くできることが確認された。 On the other hand, sample numbers 2 to 4, 7, 8, 10, 12, 13, 15, 16, 19, 20 in Table 1 and sample numbers 21, 22, 24, 26 to 31, 33 in Table 2 are shown. In addition, it was confirmed that when the glass having an Ag 2 O content b of 1 mol% was used, the bonding strength between the electrode and the ceramic substrate could be increased to 30 N or more.

さらに、表2の試料番号25、34に示すように、Ag2Oの含有量bを3モル%としたガラスを用いた場合には、電極とセラミック基板との接合強度がより向上することが確認された、
したがって、電極とセラミック基板の接合を強固にする見地からは、Ag2Oの含有量bを、0モル%を超えて3モル%までの範囲とすることが好ましい。
Furthermore, as shown in sample numbers 25 and 34 of Table 2, when glass with an Ag 2 O content b of 3 mol% is used, the bonding strength between the electrode and the ceramic substrate can be further improved. confirmed,
Therefore, from the viewpoint of strengthening the bonding between the electrode and the ceramic substrate, the Ag 2 O content b is preferably in the range of more than 0 mol% to 3 mol%.

上述のように、本願発明の要件を満たす導電性ペーストを用いた場合に、セラミック基板への電極の接合強度を向上させることが可能になるのは、B−Si−Bi−O系のガラス成分に、FeとAgとを所定の範囲で添加したガラスは、焼成時の結晶化が抑制されてガラスとしての化学的な安定性が向上し、めっき液による侵食を受け難くなるとともに、焼成時のガラスの粘度が低下して、セラミック素体に対する濡れ性が向上し、かつ、流動性の高くなったガラスがセラミック素体の粒子の細部にまで浸透して、いわゆるアンカー効果が向上することによるものと考えられる。   As described above, when the conductive paste satisfying the requirements of the present invention is used, the bonding strength of the electrode to the ceramic substrate can be improved by using a B-Si-Bi-O-based glass component. In addition, the glass to which Fe and Ag are added in a predetermined range suppresses crystallization at the time of firing, improves the chemical stability as the glass, becomes less susceptible to erosion by the plating solution, and at the time of firing. This is because the viscosity of the glass decreases, the wettability to the ceramic body improves, and the glass with increased fluidity penetrates into the details of the particles of the ceramic body, improving the so-called anchor effect. it is conceivable that.

すなわち、本願発明によれば、組成にPbを含まないガラス粉末を用いながら、湿式めっき処理後においても、セラミック素体との接合強度が大きい外部電極を形成することが可能な導電性ペーストを得ることが可能になり、環境に対する負荷を低減させつつ、工業的に安定して信頼性の高いセラミック電子部品を供給することが可能になる。   That is, according to the present invention, a conductive paste capable of forming an external electrode having a high bonding strength with a ceramic body even after a wet plating process is obtained while using a glass powder containing no Pb in the composition. It becomes possible to supply ceramic electronic components that are industrially stable and highly reliable while reducing the burden on the environment.

なお、上記表1および表2に示した導電性ペーストのうちの、本願発明の要件を備えた導電性ペーストを塗布して、焼き付けることにより外部電極を形成した、図2に示すような構造、すなわち、誘電体層であるセラミック層3を介して複数の内部電極2a,2bが積層された積層セラミックコンデンサ素子1の両端面4a,4bに、内部電極2a,2bと導通するように外部電極5a,5bが配設された構造を有する積層セラミックコンデンサ10を製造した。
そして、この外部電極5a,5bの、焼結セラミック素体である積層セラミックコンデンサ素子1への接合強度を調べたところ、実用上必要とされる接合強度を有する外部電極5a,5bが形成されていることが確認された。
Of the conductive pastes shown in Tables 1 and 2 above, a conductive paste having the requirements of the present invention was applied and baked to form external electrodes, as shown in FIG. That is, the external electrode 5a is connected to both end surfaces 4a and 4b of the multilayer ceramic capacitor element 1 in which a plurality of internal electrodes 2a and 2b are stacked via the ceramic layer 3 which is a dielectric layer so as to be electrically connected to the internal electrodes 2a and 2b. , 5b is manufactured.
When the bonding strength of the external electrodes 5a and 5b to the multilayer ceramic capacitor element 1 which is a sintered ceramic body was examined, the external electrodes 5a and 5b having the bonding strength required for practical use were formed. It was confirmed that

なお、本願発明は、図2に示すような構造を有する積層セラミックコンデンサに限らず、単板型コンデンサや内部導体を備えていないチップ型サーミスタなどの、非積層型で、内部導体を備えていないセラミック電子部品に外部電極を形成する場合にも広く適用することが可能である。   The present invention is not limited to the multilayer ceramic capacitor having the structure shown in FIG. 2, but is a non-layered type such as a single plate type capacitor or a chip type thermistor that does not include an internal conductor, and does not include an internal conductor. The present invention can also be widely applied when external electrodes are formed on ceramic electronic components.

また、上記実施例では、導電性ペーストを構成する導電性粉末として、Ag粉末およびCu粉末を用いた場合を例にとって説明したが、本願発明は、上記実施例に限定されるものではなく、AgとCuの合金の粉末を導電成分として用いることも可能である。   Moreover, in the said Example, although the case where Ag powder and Cu powder were used as an example was demonstrated as an electroconductive powder which comprises an electrically conductive paste, this invention is not limited to the said Example, Ag It is also possible to use a powder of an alloy of Cu and Cu as the conductive component.

また、上記実施例では、Ag粉末またはCu粉末と、ガラス粉末の混合比率を、真体積で計測した体積比で4:1としたが、導電成分とガラス粉末の混合比率はこれに限定されるものではない。ただし、導電性を損なうことなく、セラミック素子への十分な接合強度を確保する見地からは、導電成分とガラス粉末の混合比率を、10:1〜3:1の範囲とすることが望ましい。   Moreover, in the said Example, although the mixing ratio of Ag powder or Cu powder and glass powder was set to 4: 1 by the volume ratio measured by true volume, the mixing ratio of an electroconductive component and glass powder is limited to this. It is not a thing. However, from the viewpoint of ensuring sufficient bonding strength to the ceramic element without impairing conductivity, the mixing ratio of the conductive component and the glass powder is preferably in the range of 10: 1 to 3: 1.

本願発明はさらにその他の点においても上記実施例に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above embodiment in other points, and various applications and modifications can be made within the scope of the invention.

上述のように、本願発明によれば、焼結セラミック素体の表面に、焼結セラミック素体との接合強度が高い信頼性の高い外部電極を確実に形成することが可能になる。
したがって、本願発明は、焼結セラミック素体の表面に外部電極を備えた構造を有する種々のセラミック電子部品およびその製造に関する技術分野に広く適用することが可能である。
As described above, according to the present invention, it is possible to reliably form a highly reliable external electrode having a high bonding strength with the sintered ceramic body on the surface of the sintered ceramic body.
Therefore, the present invention can be widely applied to various ceramic electronic components having a structure in which external electrodes are provided on the surface of a sintered ceramic body and technical fields related to the manufacture thereof.

本願発明の実施例1の導電性ペーストに用いられているガラス粉末の組成比を示す3成分組成図である。It is a 3 component composition figure which shows the composition ratio of the glass powder used for the electrically conductive paste of Example 1 of this invention. 本願発明の実施例1の導電性ペーストを用いて外部電極を形成したセラミック電子部品を示す図である。It is a figure which shows the ceramic electronic component which formed the external electrode using the electrically conductive paste of Example 1 of this invention. 従来の導電性ペーストを用いて外部電極を形成したセラミック電子部品を示す図である。It is a figure which shows the ceramic electronic component which formed the external electrode using the conventional electrically conductive paste.

符号の説明Explanation of symbols

1 積層セラミックコンデンサ素子
2a,2b 内部電極
3 セラミック層
4a,4b 積層セラミックコンデンサ素子の端面
5a,5b 外部電極
10 積層セラミックコンデンサ
DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor element 2a, 2b Internal electrode 3 Ceramic layer 4a, 4b End surface of a multilayer ceramic capacitor element 5a, 5b External electrode 10 Multilayer ceramic capacitor

Claims (5)

導電性粉末と、ガラス粉末と、有機ビヒクルとを含有する導電性ペーストであって、
前記ガラス粉末が、構成成分として、Bi23、B23、SiO2、Fe23、およびAg2Oを含有し、
前記構成成分の組成比が、B23、SiO2、およびBi23+Fe23+Ag2Oのモル%をそれぞれx、y、およびzで表わす、添付の図1に示す3成分組成図において、(x、y、z)がA(25、5、70)、B(55、5、40)、C(20、40、40)、D(10、40、50)、E(10、20、70)の各組成点を頂点とする多角形A、B、C、D、Eで囲まれた範囲内にあり、かつ、
Fe23の含有量aが、3≦a≦25モル%の範囲内にあること
を特徴とする、導電性ペースト。
A conductive paste containing conductive powder, glass powder, and an organic vehicle,
The glass powder contains Bi 2 O 3 , B 2 O 3 , SiO 2 , Fe 2 O 3 , and Ag 2 O as constituent components,
The three components shown in the attached FIG. 1 in which the composition ratios of the constituents are represented by x, y, and z, respectively, as mole percentages of B 2 O 3 , SiO 2 , and Bi 2 O 3 + Fe 2 O 3 + Ag 2 O. In the composition diagram, (x, y, z) is A (25, 5, 70), B (55, 5, 40), C (20, 40, 40), D (10, 40, 50), E ( 10, 20, 70) within the range surrounded by polygons A, B, C, D, E having the respective composition points as vertices, and
A conductive paste characterized in that the content a of Fe 2 O 3 is in the range of 3 ≦ a ≦ 25 mol%.
前記Ag2Oの含有量bが3モル%以下であることを特徴とする、請求項1記載の導電性ペースト。 The conductive paste according to claim 1, wherein the content b of Ag 2 O is 3 mol% or less. 前記導電性粉末が、Ag粉末、Cu粉末、およびAgとCuの合金の粉末からなる群より選ばれる少なくとも1種であることを特徴とする、請求項1または2記載の導電性ペースト。   The conductive paste according to claim 1 or 2, wherein the conductive powder is at least one selected from the group consisting of Ag powder, Cu powder, and an alloy powder of Ag and Cu. 焼結セラミック素体を作製する工程と、
前記焼結セラミック素体の表面に請求項1〜3のいずれかに記載の導電性ペーストを塗布し、焼き付ける工程と
を備えていることを特徴とする、セラミック電子部品の製造方法。
Producing a sintered ceramic body; and
A method for producing a ceramic electronic component, comprising: applying and baking the conductive paste according to any one of claims 1 to 3 on a surface of the sintered ceramic body.
前記焼結セラミック素体が、セラミックグリーンシートを介して内部導体が積層された構造を有する積層体を焼成することにより作製されるものであることを特徴とする、請求項4記載のセラミック電子部品の製造方法。   5. The ceramic electronic component according to claim 4, wherein the sintered ceramic body is produced by firing a laminated body having a structure in which internal conductors are laminated via ceramic green sheets. Manufacturing method.
JP2005272656A 2005-09-20 2005-09-20 Conductive paste and method for manufacturing ceramic electronic component using the same Expired - Fee Related JP4645383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272656A JP4645383B2 (en) 2005-09-20 2005-09-20 Conductive paste and method for manufacturing ceramic electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272656A JP4645383B2 (en) 2005-09-20 2005-09-20 Conductive paste and method for manufacturing ceramic electronic component using the same

Publications (2)

Publication Number Publication Date
JP2007087661A true JP2007087661A (en) 2007-04-05
JP4645383B2 JP4645383B2 (en) 2011-03-09

Family

ID=37974443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272656A Expired - Fee Related JP4645383B2 (en) 2005-09-20 2005-09-20 Conductive paste and method for manufacturing ceramic electronic component using the same

Country Status (1)

Country Link
JP (1) JP4645383B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026952A1 (en) * 2008-09-04 2010-03-11 日本電気硝子株式会社 Glass composition for electrode formation and electrode formation material
JP2010251138A (en) * 2009-04-16 2010-11-04 Nippon Electric Glass Co Ltd Glass composition for electrode formation, and electrode forming material
JP2012033614A (en) * 2010-07-29 2012-02-16 Kyocera Corp Ceramic body with conductive layer, and method of producing the same
JP2014241348A (en) * 2013-06-12 2014-12-25 株式会社ノリタケカンパニーリミテド Paste composition for backside fire-through of solar battery, method for manufacturing solar battery, and solar battery
JP2019079983A (en) * 2017-10-26 2019-05-23 京都エレックス株式会社 Conductive paste for external electrode formation of laminate chip component and laminate chip component
CN112750623A (en) * 2019-10-29 2021-05-04 株式会社村田制作所 Conductive paste and laminated electronic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243079A (en) * 1992-03-02 1993-09-21 Asahi Chem Ind Co Ltd Paste for external electrode of laminar ceramic capacitor, and capacitor using the same
JPH05258919A (en) * 1992-03-12 1993-10-08 Taiyo Yuden Co Ltd Electrode material for voltage non-linear resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243079A (en) * 1992-03-02 1993-09-21 Asahi Chem Ind Co Ltd Paste for external electrode of laminar ceramic capacitor, and capacitor using the same
JPH05258919A (en) * 1992-03-12 1993-10-08 Taiyo Yuden Co Ltd Electrode material for voltage non-linear resistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026952A1 (en) * 2008-09-04 2010-03-11 日本電気硝子株式会社 Glass composition for electrode formation and electrode formation material
JP2010251138A (en) * 2009-04-16 2010-11-04 Nippon Electric Glass Co Ltd Glass composition for electrode formation, and electrode forming material
JP2012033614A (en) * 2010-07-29 2012-02-16 Kyocera Corp Ceramic body with conductive layer, and method of producing the same
JP2014241348A (en) * 2013-06-12 2014-12-25 株式会社ノリタケカンパニーリミテド Paste composition for backside fire-through of solar battery, method for manufacturing solar battery, and solar battery
JP2019079983A (en) * 2017-10-26 2019-05-23 京都エレックス株式会社 Conductive paste for external electrode formation of laminate chip component and laminate chip component
CN112750623A (en) * 2019-10-29 2021-05-04 株式会社村田制作所 Conductive paste and laminated electronic component
CN112750623B (en) * 2019-10-29 2022-08-09 株式会社村田制作所 Conductive paste and laminated electronic component

Also Published As

Publication number Publication date
JP4645383B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4647224B2 (en) Conductive paste for multilayer ceramic electronic component terminal electrode
JP5488282B2 (en) Conductive paste
EP3496112B1 (en) Conductive paste
JP2003246644A (en) Glass and conductor paste obtained by using the same
JP6885188B2 (en) Method for manufacturing conductive composition and terminal electrode
JP4645383B2 (en) Conductive paste and method for manufacturing ceramic electronic component using the same
JP3799933B2 (en) Conductive paste and ceramic electronic components
JP2011129884A (en) Method of manufacturing ceramic electronic component, and ceramic electronic component
JP4423832B2 (en) Glass composition and thick film paste using the same
JP3827060B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP2005085495A (en) Conductive paste and ceramic electronic component
JP2005317432A (en) Conductive paste and glass frit
JPH07105717A (en) Base metal composition for outside electrode of laminated electronic part
JP5556518B2 (en) Conductive paste
JP5056828B2 (en) Conductor paste
JP2003267750A (en) Glass composition for coating resistive element
JP4438090B2 (en) Glass powder for conductor paste
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH0541110A (en) Conductive paste
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP4702021B2 (en) Ceramic substrate with conductor layer and method for producing the same
JP4341428B2 (en) Conductive paste and ceramic electronic component using the same
JP2002343671A (en) Ceramic electronic component
JP2004149405A (en) Oxide porcelain composition, ceramic multi-layer substrate, and ceramic electronic component
JP2006202925A (en) Thick film resistor, its manufacturing method, and electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees