JP2005268204A - Conductive paste and ceramic electronic component - Google Patents

Conductive paste and ceramic electronic component Download PDF

Info

Publication number
JP2005268204A
JP2005268204A JP2005020853A JP2005020853A JP2005268204A JP 2005268204 A JP2005268204 A JP 2005268204A JP 2005020853 A JP2005020853 A JP 2005020853A JP 2005020853 A JP2005020853 A JP 2005020853A JP 2005268204 A JP2005268204 A JP 2005268204A
Authority
JP
Japan
Prior art keywords
powder
weight
conductor
conductive paste
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005020853A
Other languages
Japanese (ja)
Other versions
JP4333594B2 (en
Inventor
Takeshi Miki
武 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005020853A priority Critical patent/JP4333594B2/en
Publication of JP2005268204A publication Critical patent/JP2005268204A/en
Application granted granted Critical
Publication of JP4333594B2 publication Critical patent/JP4333594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the plating properties and the denseness of a conductive membrane serving as the external conductor, and enable easily mounting of ceramic electronic components on circuit board, moreover without causing bursting of the external conductor. <P>SOLUTION: This conductive paste contains conductive powders composed of mixed powders of spherical Ag powders, having 0.5 to 1.0 μm average particle diameter and flat shaped Ag powders, having 1.5 to 5.0 μm average particle diameter, 5 to 70 aspect ratio and 1/4 to 4 mixing ratio of weight, and glass powders, composed of borosilicate alkaline glass which are blended so that B<SB>2</SB>O<SB>3</SB>is 10 wt% or higher and 31 wt% or lower, SiO<SB>2</SB>is 65 wt% or higher and 86 wt% or lower, and M<SB>2</SB>O (here, M is an alkali metal element) is higher than 0.5 wt% and lower than 5 wt%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は導電性ペースト及びセラミック電子部品に関し、より詳しくはセラミック電子部品の外部導体に使用される導電性ペースト、及び該導電性ペーストを使用して製造される積層セラミックコンデンサ等のセラミック電子部品に関する。 The present invention relates to a conductive paste and a ceramic electronic component, and more particularly to a conductive paste used as an outer conductor of a ceramic electronic component, and a ceramic electronic component such as a multilayer ceramic capacitor manufactured using the conductive paste. .

積層セラミックコンデンサ等のセラミック電子部品では、一般に、セラミック素体の両端部に外部導体形成用の導電性ペーストを塗布し、乾燥させた後、焼成処理を行なうことにより形成される。また、外部導体上には、はんだ濡れ性やはんだ耐熱性の向上を目的として、Ni、Sn、はんだ等のめっき処理が施されている。   In a ceramic electronic component such as a multilayer ceramic capacitor, generally, a conductive paste for forming an external conductor is applied to both ends of a ceramic body, dried, and then fired. The outer conductor is plated with Ni, Sn, solder or the like for the purpose of improving solder wettability and solder heat resistance.

そして、上記外部導体形成用の導電性ペーストとしては、通常、Ag、Ag−Pd、Cu等の導電性粉末とガラス粉末(ガラスフリット)とを有機ビヒクル中に分散したものが使用され、従来より、ガラス粉末として、ホウケイ酸亜鉛系ガラスを使用した技術が提案されている(例えば、特許文献1、2)。   As the conductive paste for forming the outer conductor, a paste obtained by dispersing conductive powder such as Ag, Ag-Pd, Cu and glass powder (glass frit) in an organic vehicle is used. A technique using zinc borosilicate glass as a glass powder has been proposed (for example, Patent Documents 1 and 2).

特開昭59−184511号公報JP 59-184511 A 特開平6−349313号公報JP-A-6-349313

しかしながら、特許文献1、2では、ホウケイ酸亜鉛系ガラスを含有した導電性ペーストを使用して外部導体を形成しているが、ホウケイ酸亜鉛系ガラスは、一般に軟化点が低く、焼成処理を行なった場合、ガラス成分が外部導体の表面や外部導体とセラミック素体との界面に移動し、このため外部導体の内部に気孔が形成され易い。また、ガラス成分が外部導体の表面に移動し、該ガラス成分により表面が被覆されてしまうと、後工程でめっき処理を行なっても外部導体へのめっき付き性が悪化し、所望のはんだ濡れ性や耐熱性を確保することができないという問題点があった。   However, in Patent Documents 1 and 2, the outer conductor is formed using a conductive paste containing zinc borosilicate glass. However, zinc borosilicate glass generally has a low softening point and is subjected to a firing treatment. In this case, the glass component moves to the surface of the outer conductor or the interface between the outer conductor and the ceramic body, and therefore pores are easily formed inside the outer conductor. In addition, if the glass component moves to the surface of the outer conductor and the surface is covered with the glass component, the plating property to the outer conductor is deteriorated even if plating is performed in a later step, and the desired solder wettability. There is a problem that heat resistance cannot be ensured.

しかも、外部導体の内部に気孔が存在すると、めっき処理を行う際にめっき液が外部導体内部に浸入し易く、このため外部導体とセラミック素体との間の接着強度が低下するという問題点があった。   In addition, if pores exist inside the outer conductor, the plating solution is likely to enter the outer conductor during the plating process, and the adhesive strength between the outer conductor and the ceramic body is reduced. there were.

また、セラミック電子部品は、通常、回路基板に実装されて使用されるが、軟化点の低いホウケイ酸亜鉛系ガラス粉末はめっき液に溶けやすく、このためめっき処理時に外部導体内部に浸入しためっき液の水分が部品実装時の加熱により気化・膨張し、外部導体の爆ぜを招くおそれがあるという問題点があった。   Ceramic electronic components are usually mounted on a circuit board and used. However, zinc borosilicate glass powder with a low softening point is easy to dissolve in the plating solution. There is a problem in that the moisture of the gas may vaporize and expand due to heating during component mounting, resulting in explosion of the outer conductor.

本発明はこのような問題点に鑑みなされたものであって、外部導体となる導体膜のめっき付き性や緻密性を向上させることができ、しかも外部導体の爆ぜを招くこともなくセラミック電子部品を回路基板に容易に実装することができる導電性ペースト、及び該導電性ペーストを使用して製造されたセラミック電子部品を提供することを目的とする。   The present invention has been made in view of such problems, and can improve the plating property and denseness of the conductor film serving as the outer conductor, and without causing explosion of the outer conductor, the ceramic electronic component It is an object to provide a conductive paste that can be easily mounted on a circuit board, and a ceramic electronic component manufactured using the conductive paste.

本発明者は、上記目的を達成するために鋭意研究を行ったところ、特定の平均粒径を有する球形状粉末と、特定の平均粒径・形状を有する扁平状粉末とを特定比率で調合した導電性粉末を使用し、該導電性粉末と特定の成分組成を有するホウケイ酸アルカリガラスとを含有した導電性ペーストを使用してセラミック電子部品の外部導体を形成することにより、めっき付き性や緻密性の向上を図ることができ、しかも回路基板への実装時に加熱処理しても爆ぜることのない外部導体の形成が可能な導電性ペーストを得ることができるという知見を得た。   The present inventor conducted intensive research to achieve the above object, and prepared a spherical powder having a specific average particle diameter and a flat powder having a specific average particle diameter / shape at a specific ratio. By using a conductive powder and forming an outer conductor of a ceramic electronic component using a conductive paste containing the conductive powder and an alkali borosilicate glass having a specific component composition, it is possible to obtain a high plating density and a high density. It has been found that a conductive paste capable of forming an outer conductor that does not explode even when heat-treated during mounting on a circuit board can be obtained.

本発明はこのような知見に基づきなされたものであって、本発明に係る導電性ペーストは、導電性粉末とガラス粉末と有機ビヒクルとを含有した導電性ペーストにおいて、前記導電性粉末が、平均粒径が0.5〜1.0μmの球形状粉末と、平均粒径が1.5〜5.0μmであって平均厚みに対する最大径の比率(以下、「アスペクト比」という)が5〜70の扁平状粉末との混合粉で構成されると共に、前記扁平状粉末に対する前記球形状粉末の比率が重量比で1/4〜4となるように配合され、前記ガラス粉末が、10重量%以上31重量%以下のBと、65重量%以上86重量%以下のSiOと、0.5重量%を超え5重量%未満のMO(ただし、Mはアルカリ金属元素)とを含有したホウケイ酸アルカリガラスからなることを特徴としている。 The present invention has been made based on such knowledge, and the conductive paste according to the present invention is a conductive paste containing a conductive powder, a glass powder, and an organic vehicle. A spherical powder having a particle size of 0.5 to 1.0 μm and a ratio of a maximum diameter to an average thickness (hereinafter referred to as “aspect ratio”) of 5 to 70 with an average particle size of 1.5 to 5.0 μm. In addition, the glass powder is blended so that the ratio of the spherical powder to the flat powder is 1/4 to 4 by weight, and the glass powder is 10% by weight or more. 31 wt% or less of B 2 O 3 , 65 wt% or more and 86 wt% or less of SiO 2, and more than 0.5 wt% and less than 5 wt% of M 2 O (where M is an alkali metal element) Made of contained borosilicate alkali glass It is characterized by that.

また、本発明の導電性ペーストは、前記導電性ペーストが、Agを主成分としていることを特徴としている。   The conductive paste of the present invention is characterized in that the conductive paste contains Ag as a main component.

また、本発明に係るセラミック電子部品は、セラミック素体の表面に形成された外部導体が、上記導電性ペーストの焼結体からなることを特徴としている。   The ceramic electronic component according to the present invention is characterized in that the outer conductor formed on the surface of the ceramic body is made of a sintered body of the conductive paste.

また、本発明に係るセラミック電子部品は、前記セラミック素体に内部導体が埋設されると共に、該内部導体が前記外部導体に電気的に接続されていることを特徴としている。   The ceramic electronic component according to the present invention is characterized in that an inner conductor is embedded in the ceramic body and the inner conductor is electrically connected to the outer conductor.

上記導電性ペーストによれば、前記導電性粉末が、平均粒径が0.5〜1.0μmの球形状粉末と、平均粒径が1.5〜5.0μmであってアスペクト比が5〜70の扁平状粉末との混合粉で構成されると共に、前記扁平状粉末に対する前記球形状粉末の比率が重量比で1/4〜4となるように配合され、前記ガラス粉末が、10重量%以上31重量%以下のB化物と、65重量%以上86重量%以下のSiOと、0.5重量%を超え5重量%未満のMO(ただし、Mはアルカリ金属元素)とを含有したホウケイ酸アルカリガラスからなるので、導体膜の内部に気孔が形成されたりめっき液の導体膜内部への浸入もなく、めっき付き性や緻密性が良好な導体膜を得ることができ、はんだ濡れ性や耐熱性、機械的強度に優れた導体膜を得ることが可能となる。 According to the conductive paste, the conductive powder includes a spherical powder having an average particle size of 0.5 to 1.0 μm, an average particle size of 1.5 to 5.0 μm, and an aspect ratio of 5 to 5. The mixture is composed of a mixed powder of 70 flat powders, and is blended so that the ratio of the spherical powder to the flat powder is 1/4 to 4 by weight, and the glass powder is 10% by weight. 31 wt% or less of B 2 O 3 compound above, and SiO 2 of 65 wt% or more 86 wt% or less, less than 5% by weight greater than 0.5 wt% M 2 O (provided that, M an alkali metal element) As a result, it is possible to obtain a conductive film with good plating properties and fineness without forming pores inside the conductive film or intruding the plating solution into the conductive film. , A conductor with excellent solder wettability, heat resistance, and mechanical strength A film can be obtained.

また、本発明のセラミック電子部品によれば、セラミック素体の表面に形成された外部導体が上記導電性ペーストの焼結体からなるので、良好なめっき付き性と緻密性を有する外部導体を得ることができ、したがって、外部導体の表面には所望の膜厚を有するめっき皮膜を容易に形成することができ、かつ外部導体内部にめっき液が浸入することのない信頼性に優れたセラミック電子部品を得ることができる。   Moreover, according to the ceramic electronic component of the present invention, the outer conductor formed on the surface of the ceramic body is made of the sintered body of the conductive paste, so that an outer conductor having good plating property and denseness is obtained. Therefore, it is possible to easily form a plating film having a desired film thickness on the surface of the outer conductor and to provide a highly reliable ceramic electronic component in which the plating solution does not enter the outer conductor. Can be obtained.

また、本発明のセラミック電子部品によれば、前記セラミック素体に内部導体が埋設されると共に、該内部導体が前記外部導体に電気的に接続されているので、緻密化の良好な外部導体を有しており、したがってセラミック層と内部導体との界面にめっき液が浸入するのを回避することができ、セラミック層と内部導体との界面でデラミネーションが生じたりセラミック素体にクラックが発生するのを回避することができ、信頼性の優れた積層セラミックコンデンサ等のセラミック電子部品を得ることができる。   According to the ceramic electronic component of the present invention, the inner conductor is embedded in the ceramic body, and the inner conductor is electrically connected to the outer conductor. Therefore, it is possible to prevent the plating solution from entering the interface between the ceramic layer and the inner conductor, causing delamination at the interface between the ceramic layer and the inner conductor, and generating cracks in the ceramic body. Therefore, it is possible to obtain a ceramic electronic component such as a multilayer ceramic capacitor having excellent reliability.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

本発明の一実施の形態としての導電性ペーストは、球形状Ag粉末と扁平状Ag粉末との混合粉からなる導電性粉末と、ホウケイ酸アルカリガラスからなるガラス粉末とが有機ビヒクル中に分散されてなる。   The conductive paste according to one embodiment of the present invention includes a conductive powder composed of a mixed powder of spherical Ag powder and flat Ag powder and a glass powder composed of alkali borosilicate glass dispersed in an organic vehicle. It becomes.

球形状Ag粉末は平均粒径が0.5〜1.0μmであり、扁平状Ag粉末は平均粒径が1.5〜5.0μmであってアスペクト比が5〜70であり、しかも扁平状Ag粉末に対する球形状Ag粉末の混合比率(球形状Ag粉末/扁平状Ag粉末)は重量比で1/4〜4となるように配合されている。   The spherical Ag powder has an average particle size of 0.5 to 1.0 μm, the flat Ag powder has an average particle size of 1.5 to 5.0 μm, an aspect ratio of 5 to 70, and a flat shape. The mixing ratio of the spherical Ag powder to the Ag powder (spherical Ag powder / flat Ag powder) is blended so as to be 1/4 to 4 in weight ratio.

また、前記ガラス粉末は、10重量%以上31重量%以下のBと、65重量%以上86重量%以下のSiOと、0.5重量%を超え5重量%未満のMO(Mは、K、Li、Na等のアルカリ金属元素)とを含有したホウケイ酸アルカリガラスで構成されている。 Further, the glass powder includes 10% by weight or more and 31% by weight or less B 2 O 3 , 65% by weight or more and 86% by weight or less SiO 2, and more than 0.5% by weight and less than 5% by weight M 2 O. (M is an alkali metal element such as K, Li, Na, etc.).

すなわち、ガラス粉末は、
10重量%≦B≦31重量%
65重量%≦SiO≦86重量%
0.5重量%<MO<5重量%
を満足するように調合されている。
That is, the glass powder is
10% by weight ≦ B 2 O 3 ≦ 31% by weight
65% by weight ≦ SiO 2 ≦ 86% by weight
0.5 wt% <M 2 O <5 wt%
It is formulated to satisfy.

そして、上記導電性ペーストをセラミック素体等の被塗布物に塗布し、乾燥した後、焼成処理を行なうことにより、めっき付き性や緻密性が良好で引張応力等の機械的強度に優れた導体膜を得ることができる。   Then, the conductive paste is applied to an object to be coated such as a ceramic body, dried, and then subjected to a firing treatment, whereby a conductor having excellent plating strength and denseness and excellent mechanical strength such as tensile stress. A membrane can be obtained.

以下、球形状Ag粉末及び扁平状Ag粉末の平均粒径、アスペクト比、混合比率、及びガラス粉末の成分組成を上述のように限定した理由を詳述する。   Hereinafter, the reason why the average particle diameter, the aspect ratio, the mixing ratio, and the component composition of the glass powder of the spherical Ag powder and the flat Ag powder are limited as described above will be described in detail.

球形状Ag粉末及び扁平状Ag粉末の平均粒径
Ag粉末を含有した導電性ペーストをセラミック素体等の被塗布物の表面に塗布・乾燥した後、焼成処理を行なって導体膜を作製する場合、球形状Ag粉末の平均粒径が0.5μm未満、及び扁平状Ag粉末の平均粒径が1.5μm未満になると、これらの平均粒径が小さくなりすぎるため、導体膜の焼結性が過度に促進され、その結果、導体膜に亀裂が生じてめっき付き性が低下する。また、緻密性も低下してめっき液が導体膜内部に浸入し、回路基板への実装時における加熱処理により導体膜中に浸入しためっき液が気化・膨張して爆ぜてしまうおそれがある。
Average particle diameter of spherical Ag powder and flat Ag powder When conductive paste containing Ag powder is applied to the surface of an object to be coated, such as a ceramic body, and then fired to produce a conductor film When the average particle size of the spherical Ag powder is less than 0.5 μm and the average particle size of the flat Ag powder is less than 1.5 μm, the average particle size becomes too small, so that the sinterability of the conductor film is reduced. As a result, the conductor film is cracked and the plating property is deteriorated. In addition, the denseness also decreases, and the plating solution may enter the conductor film, and the plating solution that has entered the conductor film due to the heat treatment during mounting on the circuit board may vaporize and expand and explode.

一方、球形状Ag粉末の平均粒径が1.0μm、及び扁平状Ag粉末の平均粒径が5.0μmをそれぞれ超えた場合は、これらの平均粒径が大きくなりすぎ、導体膜の焼結性が悪化して緻密性の低下を招き、このため上述と同様、めっき液が導体膜内部に浸入し、回路基板への実装時における加熱処理によって導体膜(外部導体)中に浸入しためっき液が気化・膨張し、爆ぜてしまうおそれがある。   On the other hand, when the average particle diameter of the spherical Ag powder is 1.0 μm and the average particle diameter of the flat Ag powder exceeds 5.0 μm, the average particle diameter becomes too large, and the conductor film is sintered. As described above, the plating solution penetrates into the conductor film, and enters the conductor film (external conductor) by heat treatment during mounting on the circuit board, as described above. May vaporize, expand, and explode.

そこで、本実施の形態では、球形状Ag粉末の平均粒径が0.5〜1.0μm、扁平状Ag粉末の平均粒径が1.5〜5.0μmの粉末粒子を使用している。   Therefore, in the present embodiment, powder particles having an average particle size of spherical Ag powder of 0.5 to 1.0 μm and an average particle size of flat Ag powder of 1.5 to 5.0 μm are used.

(2)アスペクト比
扁平状Ag粉末と球形状Ag粉末との混合粉からなる導電性粉末は、導体膜のめっき付き性や緻密性向上に寄与するが、扁平状Ag粉末のアスペクト比が5未満になると、扁平状Ag粉末の最大径が相対的に小さくなって導体膜の焼結性が過度に促進され、その結果、導体膜に亀裂が生じてめっき付き性が低下する。また、緻密性も低下するためめっき液が導体膜内部に浸入し、回路基板への実装時における加熱処理により導体膜中に浸入しためっき液が気化・膨張して爆ぜてしまうおそれがある。
(2) Aspect ratio Conductive powder composed of a mixture of flat Ag powder and spherical Ag powder contributes to improving the plating properties and denseness of the conductor film, but the aspect ratio of the flat Ag powder is less than 5. Then, the maximum diameter of the flat Ag powder becomes relatively small, and the sinterability of the conductor film is excessively promoted. As a result, the conductor film is cracked and the plating property is lowered. In addition, since the denseness also decreases, the plating solution may enter the conductor film, and the plating solution that has entered the conductor film due to heat treatment during mounting on the circuit board may vaporize and expand and explode.

一方、扁平状Ag粉末のアスペクト比が70を超えると、扁平状Ag粉末の最大径が相対的に大きくなるため、導体膜の焼結性が悪化し、このため緻密性が低下してめっき液が導体膜内部に浸入し、回路基板への実装時における加熱処理により導体膜(外部導体)中に浸入しためっき液が気化・膨張して爆ぜてしまうおそれがある。   On the other hand, when the aspect ratio of the flat Ag powder exceeds 70, the maximum diameter of the flat Ag powder becomes relatively large, so that the sinterability of the conductor film is deteriorated, so that the denseness is lowered and the plating solution is reduced. May penetrate into the conductor film, and the plating solution that has entered the conductor film (external conductor) may vaporize and expand and explode due to the heat treatment during mounting on the circuit board.

そこで、本実施の形態では、扁平状Ag粉末のアスペクト比が5〜70となるようにしている。   Therefore, in this embodiment, the aspect ratio of the flat Ag powder is set to 5 to 70.

(3)混合比率
上述したように球形状Ag粉末と扁平状Ag粉末との混合粉からなる導電性粉末は、導体膜のめっき付き性や緻密性向上に寄与するが、扁平状Ag粉末に対する球形状Ag粉末の混合比率(球形状Ag粉末/扁平状Ag粉末)が重量比で1/4未満になると、扁平状Ag粉末の含有量が相対的に多くなりすぎて導体膜の焼結性が劣化し、このため緻密性が低下してめっき液が導体膜内部に浸入し、回路基板への実装時における加熱処理により導体膜中に浸入しためっき液が気化・膨張して爆ぜてしまうおそれがある。
(3) Mixing ratio As described above, the conductive powder made of the mixed powder of the spherical Ag powder and the flat Ag powder contributes to improving the plating property and the denseness of the conductor film. If the mixing ratio of spherical Ag powder (spherical Ag powder / flat Ag powder) is less than ¼ by weight, the content of the flat Ag powder becomes relatively large, and the sinterability of the conductor film is reduced. As a result, the denseness decreases and the plating solution penetrates into the conductor film, and the plating solution that penetrates into the conductor film due to heat treatment during mounting on the circuit board may vaporize and expand and explode. is there.

一方、混合比率が重量比で4を超えると、扁平状Ag粉末の含有量が少なくなりすぎ、このためめっき付き性や緻密性が低下し、回路基板への実装時に導体膜が爆ぜてしまうおそれがある。   On the other hand, when the mixing ratio exceeds 4 by weight, the content of the flat Ag powder becomes too small, and therefore, the plating property and the denseness deteriorate, and the conductor film may explode when mounted on the circuit board. There is.

そこで、本実施の形態では、混合比率を重量比で1/4〜4となるようにしている。   Therefore, in the present embodiment, the mixing ratio is set to ¼ to 4 by weight.

(4)ガラス粉末の成分組成
ガラス粉末材料としてホウケイ酸アルカリガラスを使用することにより、導体膜のめっき付き性や緻密性の向上を図ることができるが、ガラス粉末(ホウケイ酸アルカリガラス)中のBの含有量が10重量%未満となり、SiOの含有量が86重量%を超えると、導体膜の緻密性が悪化し、導体膜とセラミック素体等の被塗布物との間の接着強度が低下し、回路基板への実装時に導体膜が爆ぜてしまうおそれがある。
(4) Component composition of glass powder By using alkali borosilicate glass as a glass powder material, it is possible to improve the plating property and denseness of the conductor film, but in the glass powder (alkali borosilicate glass) When the content of B 2 O 3 is less than 10% by weight and the content of SiO 2 is more than 86% by weight, the denseness of the conductor film is deteriorated, and between the conductor film and an object to be coated such as a ceramic body. There is a risk that the conductive film will explode when mounted on a circuit board.

一方、ガラス粉末中のBの含有量が31重量%を超え、SiOの含有量が65重量%未満になると、導体膜の緻密性低下と共にめっき付き性も低下し、導体膜とセラミック素体等の被塗布物との間の接着強度が低下し、この場合も回路基板への実装時に導体膜が爆ぜてしまうおそれがある。 On the other hand, when the content of B 2 O 3 in the glass powder exceeds 31% by weight and the content of SiO 2 is less than 65% by weight, the denseness of the conductive film is lowered and the plating property is also reduced. The adhesive strength between the ceramic body and other objects to be coated is lowered, and in this case, the conductor film may explode when mounted on the circuit board.

また、ガラス粉末中のMOの含有量が0.5重量%以下になると、導体膜の緻密性が低下し、導体膜とセラミック素体等の被塗布物との間の接着強度が低下し、回路基板への実装時に導体膜が爆ぜてしまうおそれがある。 Further, when the content of M 2 O in the glass powder is 0.5% by weight or less, the compactness of the conductor film is lowered, and the adhesive strength between the conductor film and the coated object such as the ceramic body is lowered. However, the conductor film may explode when mounted on the circuit board.

一方、ガラス粉末中のMOの含有量が5.0重量%以上になると、導体膜の緻密性劣化と共にめっき付き性も低下し、導体膜とセラミック素体等の被塗布物との間の接着強度が低下し、この場合も回路基板への実装時に導体膜が爆ぜてしまうおそれがある。 On the other hand, when the content of M 2 O in the glass powder is 5.0% by weight or more, the denseness of the conductor film is deteriorated and the plating property is also reduced, and the gap between the conductor film and the coated object such as the ceramic body is reduced. In this case, the conductor film may explode when mounted on the circuit board.

そこで、本実施の形態では、ガラス粉末の成分組成が、
10重量%≦B≦31重量%
65重量%≦SiO≦86重量%
0.5重量%<MO<5重量%
となるように含有量を調製している。
Therefore, in the present embodiment, the component composition of the glass powder is
10% by weight ≦ B 2 O 3 ≦ 31% by weight
65% by weight ≦ SiO 2 ≦ 86% by weight
0.5 wt% <M 2 O <5 wt%
The content is adjusted so that.

そして、本導電性ペーストは以下のようにして製造される。   And this electrically conductive paste is manufactured as follows.

すなわち、10重量%≦B≦31重量%、65重量%≦SiO≦86重量%、0.5重量%<MO<5重量%となるようにB、SiO、及びMOを調合し、温度1000〜1600℃で所定時間保持して溶融させ、次いでこの溶融物を純水中に流し込み、ボールミル等で湿式粉砕した後、乾燥し、これによりガラス粉末を作製する。 That is, B 2 O 3 , SiO 2 so that 10 wt% ≦ B 2 O 3 ≦ 31 wt%, 65 wt% ≦ SiO 2 ≦ 86 wt%, 0.5 wt% <M 2 O <5 wt%. , And M 2 O, held at a temperature of 1000 to 1600 ° C. for a predetermined time and melted, and then the melt was poured into pure water, wet pulverized with a ball mill or the like, and then dried. Make it.

次に、平均粒径が0.5〜1.0μmの球形状Ag粉末と平均粒径が1.5〜5.0μmであってアスペクト比が5〜70の扁平状Ag粉末を混合比率が重量比で1/4〜4となるように秤量し、導電性粉末を調合する。   Next, a spherical Ag powder having an average particle diameter of 0.5 to 1.0 μm and a flat Ag powder having an average particle diameter of 1.5 to 5.0 μm and an aspect ratio of 5 to 70 are mixed by weight. Weigh so that the ratio is 1/4 to 4, and prepare conductive powder.

次に、この導電性粉末及びガラス粉末を有機ビヒクル中に混合し、三本ロールミルで混練して分散させ、これにより導電性ペーストが作製される。尚、有機ビヒクルとしては、例えば、所定量のエチルセルロース樹脂をテルピネオール等の有機溶剤中に分散させたものを使用することができる。   Next, this conductive powder and glass powder are mixed in an organic vehicle, and are kneaded and dispersed by a three-roll mill, thereby producing a conductive paste. In addition, as an organic vehicle, what disperse | distributed predetermined amount ethylcellulose resin in organic solvents, such as terpineol, can be used, for example.

このようにして作製された導電性ペーストは、平均粒径が0.5〜1.0μmの球形状Ag粉末と、平均粒径が1.5〜5.0μmであってアスペクト比が5〜70の偏平状Ag粉末との混合粉で構成され混合比率が重量比で1/4〜4とされた導電性粉末と、B:10重量%以上31重量%以下、SiO:65重量%以上86重量%以下、MO:5重量%を超え5重量%未満となるように調合されたホウケイ酸アルカリガラスからなるガラス粉末とを含有しているので、導体膜のめっき付き性や緻密性が良好となり、はんだ濡れ性や耐熱性向上を図ることができると共に、導体膜中にめっき液が浸入するのを回避することができ、機械的強度の優れた導体膜を形成することが可能となる。 The conductive paste thus produced has a spherical Ag powder having an average particle diameter of 0.5 to 1.0 μm, an average particle diameter of 1.5 to 5.0 μm, and an aspect ratio of 5 to 70. A conductive powder composed of a mixed powder of a flat Ag powder and a mixing ratio of 1/4 to 4 by weight, B 2 O 3 : 10 wt% or more and 31 wt% or less, SiO 2 : 65 wt% % To 86% by weight or less, M 2 O: glass powder made of alkali borosilicate glass prepared so as to be more than 5% by weight and less than 5% by weight. It is possible to improve the wettability and heat resistance, and to prevent the plating solution from entering the conductor film, and to form a conductor film with excellent mechanical strength. It becomes possible.

次に、上記導電性ペーストを使用して製造されたセラミック電子部品としての積層セラミックコンデンサについて詳説する。   Next, a multilayer ceramic capacitor as a ceramic electronic component manufactured using the conductive paste will be described in detail.

図1は積層セラミックコンデンサの一実施の形態を模式的に示した断面図である。   FIG. 1 is a cross-sectional view schematically showing an embodiment of a multilayer ceramic capacitor.

該積層セラミックコンデンサは、セラミック素体1に内部導体2(2a〜2f)が埋設されると共に、該セラミック素体1の両端部には外部導体3a、3bが形成され、さらに該外部導体3a、3bの表面には第1のめっき皮膜4a、4b及び第2のめっき皮膜5a、5bが形成されている。   In the multilayer ceramic capacitor, the inner conductor 2 (2a to 2f) is embedded in the ceramic body 1, and outer conductors 3a and 3b are formed at both ends of the ceramic body 1, and the outer conductor 3a, First plating films 4a and 4b and second plating films 5a and 5b are formed on the surface of 3b.

具体的には、各内部導体2a〜2fは積層方向に並設されると共に、内部導体2a、2c、2eは外部導体3aと電気的に接続され、内部導体2b、2d、2fは外部導体3bと電気的に接続されている。そして、内部導体2a、2c、2eと内部導体2b、2d、2fとの対向面間で静電容量を取得している。   Specifically, the inner conductors 2a to 2f are arranged in parallel in the stacking direction, the inner conductors 2a, 2c, and 2e are electrically connected to the outer conductor 3a, and the inner conductors 2b, 2d, and 2f are the outer conductor 3b. And are electrically connected. And the electrostatic capacitance is acquired between the opposing surfaces of the internal conductors 2a, 2c, and 2e and the internal conductors 2b, 2d, and 2f.

上記積層セラミックコンデンサは以下のようにして製造される。   The multilayer ceramic capacitor is manufactured as follows.

まず、チタン酸バリウム等の誘電体材料を主成分とするセラミックグリーンシートを用意し、次いで、Ag及びPdのうちの少なくとも一方からなる貴金属材料を主成分とした内部導体形成用の導電性ペーストを使用し、セラミックグリーンシート上にスクリーン印刷を施して所定形状の導電パターンを形成する。尚、内部導体用の金属としては、NiやCu等の卑金属を用いることもできるが、AgやPd等の貴金属の方が酸化されにくいため好ましい。   First, a ceramic green sheet mainly composed of a dielectric material such as barium titanate is prepared, and then a conductive paste for forming an inner conductor composed mainly of a noble metal material composed of at least one of Ag and Pd. Then, screen printing is performed on the ceramic green sheet to form a conductive pattern having a predetermined shape. As the metal for the inner conductor, a base metal such as Ni or Cu can be used, but a noble metal such as Ag or Pd is preferable because it is less likely to be oxidized.

そしてこの後、導電パターンが形成されたセラミックグリーンシートを所定方向に複数枚積層し、導電パターンの形成されていないセラミックグリーンシートで挟持・圧着し、所定寸法に切断してセラミック積層体を作製する。しかる後、温度約500℃で脱バインダ処理を行ない、その後、温度1000〜1500℃の大気中で所定時間焼成処理を行い、これにより内部導体2が埋設されたセラミック素体1を作製する。   After that, a plurality of ceramic green sheets on which conductive patterns are formed are laminated in a predetermined direction, and are sandwiched and pressure-bonded with ceramic green sheets on which conductive patterns are not formed, and cut into predetermined dimensions to produce a ceramic laminate. . Thereafter, a binder removal process is performed at a temperature of about 500 ° C., and then a firing process is performed in an atmosphere at a temperature of 1000 to 1500 ° C. for a predetermined time, thereby producing a ceramic body 1 in which the internal conductor 2 is embedded.

次いで、上述した本導電性ペーストをセラミック素体1の両端面に塗布した後、乾燥し、大気中温度800〜900℃で所定時間焼成処理を施し、外部導体3a、3bを形成する。   Next, the conductive paste described above is applied to both end faces of the ceramic body 1 and then dried and fired at a temperature in the atmosphere of 800 to 900 ° C. for a predetermined time to form the external conductors 3a and 3b.

次に、電解めっきを施して外部導体3a、3bの表面にNi、Cu等からなる第1のめっき皮膜4a、4bを形成し、さらに該第1のめっき皮膜4a、4bの表面にはんだやSn等からなる第2のめっき皮膜5a、5bを形成し、これにより積層セラミックコンデンサが製造される。   Next, electrolytic plating is performed to form first plating films 4a and 4b made of Ni, Cu or the like on the surfaces of the outer conductors 3a and 3b, and solder or Sn is further formed on the surfaces of the first plating films 4a and 4b. The second plating films 5a and 5b made of the like are formed, whereby a multilayer ceramic capacitor is manufactured.

このように本積層セラミックコンデンサは、上述した導電性ペーストを使用してセラミック素体1の両端面に外部導体3a、3bが形成されているので、めっき付き性や緻密性の良好な外部導体3a、3bを得ることができ、はんだ濡れ性や耐熱性に優れた外部導体3a、3bを有する積層セラミックコンデンサを得ることができる。また、外部導体3a、3bの緻密性が良好であることから該外部導体3a、3bの内部や内部導体にめっき液が浸入するのを回避することが可能となり、したがって回路基板への実装時に外部電極が爆ぜることのない積層セラミックコンデンサを得ることができる。   In this way, in the present multilayer ceramic capacitor, the outer conductors 3a and 3b are formed on both end faces of the ceramic body 1 using the conductive paste described above. 3b can be obtained, and a multilayer ceramic capacitor having the outer conductors 3a and 3b excellent in solder wettability and heat resistance can be obtained. Further, since the denseness of the outer conductors 3a and 3b is good, it is possible to prevent the plating solution from entering the inside of the outer conductors 3a and 3b and the inner conductor. A multilayer ceramic capacitor can be obtained in which the electrode does not explode.

しかも、外部導体が緻密であることから内部導体へのめっき液の浸入を回避することが可能となり、したがってセラミック層と内部導体との界面でデラミネーションが生じたりセラミック素体にクラックが発生することもなく、信頼性の優れた積層セラミックコンデンサを高効率で得ることができる。   Moreover, since the outer conductor is dense, it is possible to avoid the penetration of the plating solution into the inner conductor, and therefore delamination occurs at the interface between the ceramic layer and the inner conductor, and cracks occur in the ceramic body. In addition, a multilayer ceramic capacitor having excellent reliability can be obtained with high efficiency.

尚、本発明は上記実施の形態に限定されることはない、例えば、上記実施の形態では、導電性粉末としてAg粉末を使用したが、Ag粉末以外の単体金属粉末、例えばCu粉末にも適用でき、またAg−Pd粉末のような合金粉末にも適用できるのはいうまでもない。   The present invention is not limited to the above embodiment. For example, in the above embodiment, Ag powder is used as the conductive powder. However, the present invention is also applicable to simple metal powders other than Ag powder, such as Cu powder. Needless to say, the present invention can also be applied to alloy powders such as Ag-Pd powder.

また、上記実施の形態では、本導電性ペーストを積層セラミックコンデンサに応用した場合について述べたが、他のセラミック電子部品についても同様に適用できるのはいうまでもない。   In the above embodiment, the case where the conductive paste is applied to a multilayer ceramic capacitor has been described. Needless to say, the present invention can also be applied to other ceramic electronic components.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

まず、表1に示すような組成を有するようにB、SiO、及びMO(KO、LiO、NaO)を秤量し、白金製の坩堝に入れて温度1000〜1600℃で60分間保持し、完全に溶融したことを確認した後、坩堝から取り出して純水中に投入し、ボールミルで湿式粉砕した後乾燥し、これにより平均粒径0.5〜2.0μmの実施例1〜8及び比較例1〜4のガラス粉末を作製した。 First, B 2 O 3 , SiO 2 , and M 2 O (K 2 O, Li 2 O, Na 2 O) are weighed so as to have a composition as shown in Table 1, and placed in a platinum crucible at a temperature. After holding at 1000-1600 ° C. for 60 minutes and confirming that it has been completely melted, it is taken out from the crucible, poured into pure water, wet-ground with a ball mill and dried, whereby an average particle size of 0.5-2 Glass powders of Examples 1 to 8 and Comparative Examples 1 to 4 having a thickness of 0.0 μm were prepared.

次に、これらガラス粉末の軟化点を示差熱分析装置により測定した。尚、前記ガラス粉末をX線回折法により分析したところ、非晶質であることが確認された。   Next, the softening point of these glass powders was measured with a differential thermal analyzer. When the glass powder was analyzed by X-ray diffraction, it was confirmed to be amorphous.

表1は各実施例及び比較例におけるガラス粉末の成分組成と軟化点を示している。

Figure 2005268204
次に、平均粒径が0.7μmの球形状Ag粉末:35.5重量%、平均粒径が3.5μmであってアスペクト比が30の扁平状Ag粉末:35.5重量%、上記ガラス粉末:5.0重量%、有機ビヒクル:24.0重量%となるように配合し、三本ロールミルで混練して外部電極形成用の導電性ペーストを作製した。尚、有機ビヒクルは、エチルセルロース樹脂が20重量%となるように有機溶剤としてのテルピネオール中にエチルセルロース樹脂を溶解したものを使用した。 Table 1 shows the component composition and softening point of the glass powder in each Example and Comparative Example.
Figure 2005268204
Next, spherical Ag powder having an average particle size of 0.7 μm: 35.5% by weight, flat Ag powder having an average particle size of 3.5 μm and an aspect ratio of 30: 35.5% by weight, the glass The mixture was blended so that the powder was 5.0% by weight and the organic vehicle was 24.0% by weight, and kneaded by a three-roll mill to prepare a conductive paste for forming an external electrode. In addition, the organic vehicle used what melt | dissolved ethyl cellulose resin in the terpineol as an organic solvent so that ethyl cellulose resin might be 20 weight%.

次に、チタン酸バリウムを主成分とするセラミックグリーンシートを準備し、一方の端縁がセラミックグリーンシートの何れかの端面に露出するように、該セラミックグリーンシートの表面にAgを主成分とする導電性ペーストを用いて内部導体となるべき導電パターンをスクリーン印刷した。次に、導電パターンの形成されたセラミックグリーンシートを所定枚数積層し、次いで、導電パターンの形成されていないセラミックグリーンシートで挟持した後、圧着してセラミック積層体を作製し、その後温度約500℃で脱バインダ処理を行なった後、温度1000〜1500℃の大気中で焼成処理を行ない、これによりセラミック焼結体を作製し、セラミック素体を得た。   Next, a ceramic green sheet containing barium titanate as a main component is prepared, and Ag is used as a main component on the surface of the ceramic green sheet so that one end edge is exposed on any end face of the ceramic green sheet. A conductive pattern to be an inner conductor was screen printed using a conductive paste. Next, a predetermined number of ceramic green sheets on which conductive patterns are formed are stacked, and then sandwiched between ceramic green sheets on which conductive patterns are not formed, followed by pressure bonding to produce a ceramic laminate, and then a temperature of about 500 ° C. After the binder removal treatment, firing treatment was performed in the air at a temperature of 1000 to 1500 ° C., thereby producing a ceramic sintered body and obtaining a ceramic body.

次に、このセラミック素体の両端部に前記導電ペーストを浸漬法で塗布した後、乾燥し、その後、大気雰囲気下、温度850℃で20分間焼成処理を施し、外部導体を形成した。   Next, the conductive paste was applied to both ends of this ceramic body by a dipping method, dried, and then fired at a temperature of 850 ° C. for 20 minutes to form an external conductor.

次に、外部導体の形成されたセラミック素体に電解Niめっき処理、及び電解Snめっき処理を順次施し、外部導体の表面にNi皮膜及びSn皮膜を形成し、縦1.0mm、横0.5mm、厚み0.5mmからなる実施例1〜7及び比較例1〜4の積層セラミックコンデンサを得た。   Next, an electrolytic Ni plating process and an electrolytic Sn plating process are sequentially performed on the ceramic body on which the outer conductor is formed, and a Ni film and an Sn film are formed on the surface of the outer conductor. The laminated ceramic capacitors of Examples 1 to 7 and Comparative Examples 1 to 4 having a thickness of 0.5 mm were obtained.

次に、各実施例及び比較例について、めっき皮膜の膜厚、及び外部導体の接着強度を測定し、更にははんだ飛散の有無を観察して外部導体の爆ぜの有無を評価した。   Next, for each of the examples and comparative examples, the film thickness of the plating film and the adhesive strength of the external conductor were measured, and further, the presence / absence of explosion of the external conductor was evaluated by observing the presence / absence of solder scattering.

ここで、めっき皮膜の膜厚は、実施例及び比較例の各5個について、X線膜厚計で測定し、その平均値を求めた。   Here, the film thickness of the plating film was measured with an X-ray film thickness meter for each of the five examples and comparative examples, and the average value was obtained.

接着強度は、実施例及び比較例の各10個について、外部導体にリード線をはんだ付けし、引張り強度を測定し、平均値を求めた。   Regarding the adhesive strength, for each of the ten examples and comparative examples, lead wires were soldered to the outer conductor, the tensile strength was measured, and the average value was obtained.

はんだ飛散の有無は、実施例及び比較例の各1000個について、外部導体の表面にSn−Pb共晶のクリームはんだを塗布した後、最高温度を250℃に設定したリフロー炉に2回通し、はんだ飛散の個数を計測した。   The presence or absence of solder scattering was applied twice to a reflow oven set at a maximum temperature of 250 ° C. after applying Sn-Pb eutectic cream solder to the surface of the outer conductor for each of 1000 examples and comparative examples. The number of solder splashes was measured.

表2は各実施例及び比較例におけるめっき皮膜、接着強度の測定結果、及びはんだ飛散の個数を示している。

Figure 2005268204
この表2から明らかなように比較例1は、ガラス粉末中のBの含有量が9.0重量%と少なく、SiOの含有量が88重量%と多いため、接着強度が2Nと低く、緻密性に欠け1000個中150個の試料にはんだ飛散が認められた。 Table 2 shows the plating film, the measurement result of the adhesive strength, and the number of solder splashes in each example and comparative example.
Figure 2005268204
Comparative As is clear from Table 2 Example 1, the content of B 2 O 3 in the glass powder is as small as 9.0 wt%, since the content of SiO 2 is large and 88% by weight, the adhesive strength is 2N As a result, solder scattering was observed in 150 samples out of 1,000 samples.

比較例2は、ガラス粉末中のBの含有量が32.0重量%と多く、SiOの含有量が64重量%と少ないため、Ni皮膜の膜厚が0.84μmと薄く、またSn皮膜の膜厚も1.22μmと薄く、めっき付き性に劣り、しかも接着強度が3Nと低く、緻密性に欠け1000個中135個の試料にはんだ飛散が認められた。 In Comparative Example 2, since the content of B 2 O 3 in the glass powder is as large as 32.0% by weight and the content of SiO 2 is as small as 64% by weight, the Ni film thickness is as thin as 0.84 μm, Also, the Sn film thickness was as thin as 1.22 μm, inferior in plating property, and the adhesive strength was as low as 3N, lacking in denseness, and solder scattering was observed in 135 samples out of 1000 samples.

比較例3は、ガラス粉末中のKOの含有量が5.0重量%と多すぎるため、Ni皮膜の膜厚が0.95μmと薄く、またSn皮膜の膜厚も1.35μmと薄く、めっき付き性に劣り、また接着強度が2Nと低く、緻密性に欠け1000個中153個の試料にはんだ飛散が認められた。 In Comparative Example 3, since the content of K 2 O in the glass powder is too large at 5.0% by weight, the Ni film has a thin film thickness of 0.95 μm, and the Sn film has a thin film thickness of 1.35 μm. In addition, the adhesion with plating was inferior, and the adhesive strength was as low as 2N.

比較例4は、ガラス粉末中のKOの含有量が0.5重量%と少ないため、接着強度が2Nと低く、緻密性に欠け1000個中168個の試料にはんだ飛散が認められた。 In Comparative Example 4, since the content of K 2 O in the glass powder was as low as 0.5% by weight, the adhesive strength was as low as 2N, and it was not dense and solder scattering was observed in 168 samples out of 1000 samples. .

これに対して実施例1〜8は本発明範囲内の導電性粉末及びガラス粉末を含有した導電性ペーストを使用して外部導体を形成しているので、Ni皮膜の膜厚が2.07〜2.26μm、Sn皮膜の膜厚が3.77〜3.97μmであり、めっき付き性が良好で耐熱性やはんだ濡れ性の優れた外部導体を得ることができた。しかも、接着強度も10〜14Nと大きく、緻密性も良好で実装時にもはんだ飛散が生じず外部導体が爆ぜるのを回避できることが分かった。   On the other hand, since Examples 1-8 have formed the external conductor using the electrically conductive paste containing the electrically conductive powder and glass powder in the range of this invention, the film thickness of Ni membrane | film | coat is 2.07- An outer conductor having a thickness of 2.26 [mu] m and a Sn film thickness of 3.77 to 3.97 [mu] m, good plating properties and excellent heat resistance and solder wettability could be obtained. In addition, it has been found that the adhesive strength is as high as 10 to 14 N, the denseness is good, solder scattering does not occur even during mounting, and the external conductor can be prevented from exploding.

表3に示すような平均粒径、アスペクト比、混合比率(球形状Ag粉末/扁平状Ag粉末)を有するように導電性粉末としてのAg粉末を調合した。   Ag powder as a conductive powder was prepared so as to have an average particle size, an aspect ratio, and a mixing ratio (spherical Ag powder / flat Ag powder) as shown in Table 3.

次いで、Ag粉末:71重量%、表1の実施例2で作製した本発明ガラス粉末:5.0重量%、有機ビヒクル:24.0重量%となるように配合し、三本ロールミルで混練して外部電極形成用の導電性ペーストを作製した。尚、有機ビヒクルは、〔実施例1〕と同様、エチルセルロース樹脂が20重量%となるように有機溶剤としてのテルピネオール中にエチルセルロース樹脂を溶解したものを使用した。   Next, Ag powder: 71% by weight, inventive glass powder prepared in Example 2 of Table 1: 5.0% by weight, organic vehicle: 24.0% by weight, and kneaded in a three-roll mill. Thus, a conductive paste for forming external electrodes was produced. In addition, the organic vehicle used what melt | dissolved ethylcellulose resin in the terpineol as an organic solvent so that ethylcellulose resin might be 20 weight% similarly to [Example 1].

そして、この導電性ペーストを使用し、〔実施例1〕と同様の方法・手順で、実施例11〜19及び比較例11〜18の積層セラミックコンデンサを作製した。   Then, using this conductive paste, multilayer ceramic capacitors of Examples 11 to 19 and Comparative Examples 11 to 18 were produced by the same method and procedure as in [Example 1].

次に、〔実施例1〕と同様の方法で、めっき皮膜の膜厚、接着強度、及びはんだ飛散数を求めた。   Next, the film thickness of the plating film, the adhesive strength, and the number of scattered solder were determined in the same manner as in [Example 1].

表3はその結果を示している。

Figure 2005268204
この表3から明らかなように比較例11は、球形状Ag粉末の平均粒径が0.4μmと小さいため、Ni皮膜の膜厚が0.97μmと薄く、またSn皮膜の膜厚も1.25μmと薄く、めっき付き性に劣り、さらに接着強度も5Nと低く、緻密性に欠け1000個中30個の試料にはんだ飛散が認められた。 Table 3 shows the results.
Figure 2005268204
As apparent from Table 3, in Comparative Example 11, since the average particle diameter of the spherical Ag powder is as small as 0.4 μm, the Ni film thickness is as thin as 0.97 μm, and the Sn film thickness is 1. It was as thin as 25 μm, inferior in plating property, and the adhesive strength was as low as 5 N. It was not dense and solder scattering was observed in 30 samples out of 1000 samples.

比較例12は、球形状Ag粉末の平均粒径が1.1μmと大きいため、接着強度が9Nと低く、緻密性に欠け1000個中41個の試料にはんだ飛散が認められた。   In Comparative Example 12, since the average particle diameter of the spherical Ag powder was as large as 1.1 μm, the adhesive strength was as low as 9 N, and the solder was scattered in 41 samples out of 1000 samples lacking denseness.

比較例13は、扁平状Ag粉末の平均粒径が1.3μmと小さいため、Ni皮膜の膜厚が0.93μmと薄く、またSn皮膜の膜厚も1.33μmと薄く、めっき付き性に劣り、また接着強度も5Nと低く、緻密性に欠け1000個中35個の試料にはんだ飛散が認められた。   In Comparative Example 13, since the average particle diameter of the flat Ag powder is as small as 1.3 μm, the Ni film thickness is as thin as 0.93 μm, and the Sn film thickness is as thin as 1.33 μm. It was inferior and the adhesive strength was as low as 5N, and it was not dense and solder scattering was observed in 35 samples out of 1000 samples.

比較例14は、扁平状Ag粉末の平均粒径が5.5μmと大きいため、接着強度が8Nと低く、緻密性に欠け1000個中66個の試料にはんだ飛散が認められた。   In Comparative Example 14, since the average particle diameter of the flat Ag powder was as large as 5.5 μm, the adhesive strength was as low as 8 N, and the solder was scattered in 66 samples out of 1,000 samples lacking denseness.

比較例15は、扁平状Ag粉末のアスペクト比が4と小さいため、Ni皮膜の膜厚が0.88μmと薄く、またSn皮膜の膜厚も1.18μmと薄く、めっき付き性に劣り、また接着強度も4Nと低く、緻密性に欠け1000個中28個の試料にはんだ飛散が認められた。   In Comparative Example 15, since the aspect ratio of the flat Ag powder is as small as 4, the Ni film thickness is as thin as 0.88 μm, the Sn film thickness is as thin as 1.18 μm, and the inferior plating property is poor. Adhesive strength was as low as 4N, and solder scattering was observed in 28 samples out of 1000 samples.

比較例16は、扁平状Ag粉末のアスペクト比が75と大きいため、接着強度が8Nと低く、緻密性に欠け1000個中58個の試料にはんだ飛散が認められた。   In Comparative Example 16, since the aspect ratio of the flat Ag powder was as high as 75, the adhesive strength was as low as 8N, and the solder was scattered in 58 samples out of 1000 samples lacking in denseness.

比較例17は、扁平状Ag粉末に対する球形状Ag粉末の混合比率が重量比で1/9と小さいため、接着強度が7Nと低く、緻密性に欠け1000個中72個の試料にはんだ飛散が認められた。   In Comparative Example 17, since the mixing ratio of the spherical Ag powder to the flat Ag powder was as small as 1/9 by weight, the adhesive strength was as low as 7N, lacking denseness, and solder scattering occurred in 72 samples out of 1000 samples. Admitted.

比較例18は、前記混合比率が9/1と大きいため、Ni皮膜の膜厚が0.98μmと薄く、またSn皮膜の膜厚も1.25μmと薄く、めっき付き性に劣り、また接着強度も5Nと低く、緻密性に欠け1000個中42個の試料にはんだ飛散が認められた。   In Comparative Example 18, since the mixing ratio was as large as 9/1, the Ni film thickness was as thin as 0.98 μm, the Sn film thickness was as thin as 1.25 μm, and the plating property was inferior. Also, it was as low as 5N, lacking denseness, and solder scattering was observed in 42 samples out of 1000 samples.

これに対して実施例11〜19は、球形状Ag粉末及び扁平状Ag粉末の平均粒径、アスペクト比、混合比率が本発明範囲内の導電性粉末を使用しているので、Ni皮膜の膜厚が2.06〜2.20μm、Sn皮膜の膜厚が3.77〜3.97μmであり、めっき付き性が良好で耐熱性やはんだ濡れ性に優れた外部導体を得ることができた。   On the other hand, since Examples 11-19 use the conductive powder in which the average particle diameter, aspect ratio, and mixing ratio of the spherical Ag powder and the flat Ag powder are within the range of the present invention, the film of the Ni film is used. The thickness was 2.06 to 2.20 μm, the thickness of the Sn film was 3.77 to 3.97 μm, and an external conductor with good plating property and excellent heat resistance and solder wettability could be obtained.

しかも、接着強度も11〜14Nと大きく、機械的強度も強く緻密性が良好で、実装時にもはんだ飛散が生じず外部導体が爆ぜるのを回避できることが分かった。   Moreover, it has been found that the adhesive strength is as large as 11 to 14N, the mechanical strength is strong and the denseness is good, and solder scattering does not occur even during mounting, and the external conductor can be prevented from exploding.

本発明に係るセラミック電子部品としての積層セラミックコンデンサの一実施の形態を模式的に示した断面図である。1 is a cross-sectional view schematically showing an embodiment of a multilayer ceramic capacitor as a ceramic electronic component according to the present invention.

符号の説明Explanation of symbols

1 セラミック素体
2 内部導体
3a、3b 外部導体
1 Ceramic body 2 Inner conductor 3a, 3b Outer conductor

Claims (4)

導電性粉末とガラス粉末と有機ビヒクルとを含有した導電性ペーストにおいて、
前記導電性粉末が、平均粒径が0.5〜1.0μmの球形状粉末と、平均粒径が1.5〜5.0μmであって平均厚みに対する最大径の比率が5〜70の扁平状粉末との混合粉で構成されると共に、前記扁平状粉末に対する前記球形状粉末の比率が重量比で1/4〜4となるように配合され、
前記ガラス粉末が、10重量%以上31重量%以下のBと、65重量%以上86重量%以下のSiOと、0.5重量%を超え5重量%未満のMO(ただし、Mはアルカリ金属元素)とを含有したホウケイ酸アルカリガラスからなることを特徴とする導電性ペースト。
In the conductive paste containing conductive powder, glass powder and organic vehicle,
The conductive powder is a spherical powder having an average particle diameter of 0.5 to 1.0 μm and a flat powder having an average particle diameter of 1.5 to 5.0 μm and a ratio of the maximum diameter to the average thickness of 5 to 70. It is composed of a mixed powder with a powder and is blended so that the ratio of the spherical powder to the flat powder is 1/4 to 4 by weight ratio,
The glass powder comprises 10% by weight to 31% by weight B 2 O 3 , 65% by weight to 86% by weight SiO 2, and more than 0.5% by weight and less than 5% by weight M 2 O (however, , M is an alkali metal borosilicate glass containing an alkali metal element).
前記導電性粉末は、Agを主成分としていることを特徴とする請求項1記載の導電性ペースト。   The conductive paste according to claim 1, wherein the conductive powder contains Ag as a main component. セラミック素体の表面に形成された外部導体が、請求項1又は請求項2記載の導電性ペーストの焼結体からなることを特徴とするセラミック電子部品。   A ceramic electronic component, wherein the outer conductor formed on the surface of the ceramic body is made of a sintered body of the conductive paste according to claim 1 or 2. 前記セラミック素体に内部導体が埋設されると共に、該内部導体が前記外部導体に電気的に接続されていることを特徴とする請求項3記載のセラミック電子部品。   4. The ceramic electronic component according to claim 3, wherein an inner conductor is embedded in the ceramic body, and the inner conductor is electrically connected to the outer conductor.
JP2005020853A 2004-02-19 2005-01-28 Conductive paste and ceramic electronic components Active JP4333594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020853A JP4333594B2 (en) 2004-02-19 2005-01-28 Conductive paste and ceramic electronic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004042274 2004-02-19
JP2005020853A JP4333594B2 (en) 2004-02-19 2005-01-28 Conductive paste and ceramic electronic components

Publications (2)

Publication Number Publication Date
JP2005268204A true JP2005268204A (en) 2005-09-29
JP4333594B2 JP4333594B2 (en) 2009-09-16

Family

ID=35092506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020853A Active JP4333594B2 (en) 2004-02-19 2005-01-28 Conductive paste and ceramic electronic components

Country Status (1)

Country Link
JP (1) JP4333594B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115755A (en) * 2005-10-18 2007-05-10 Murata Mfg Co Ltd Electronic component and its manufacturing method
WO2010026952A1 (en) * 2008-09-04 2010-03-11 日本電気硝子株式会社 Glass composition for electrode formation and electrode formation material
JP2010251138A (en) * 2009-04-16 2010-11-04 Nippon Electric Glass Co Ltd Glass composition for electrode formation, and electrode forming material
WO2013128957A1 (en) * 2012-02-29 2013-09-06 株式会社村田製作所 Conductive paste, electronic component, and method for producing electronic component
JP2014182891A (en) * 2013-03-18 2014-09-29 Fdk Corp Conductive paste, laminated chip inductor, and ceramic electronic component
JP2014209550A (en) * 2013-03-26 2014-11-06 株式会社村田製作所 Ceramic electronic component and glass paste

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100306A (en) * 1981-12-09 1983-06-15 松下電器産業株式会社 Conductive paste
JPH01315903A (en) * 1988-06-14 1989-12-20 Tdk Corp Electricaly conductive paste and chip parts
JPH07211133A (en) * 1994-01-19 1995-08-11 Matsushita Electric Ind Co Ltd Conductive paste for forming terminal electrode of electronic part
JPH0836914A (en) * 1994-07-26 1996-02-06 Taiyo Yuden Co Ltd Baking type conductive paste for ceramic electronic part, and ceramic electronic part
JPH0896623A (en) * 1994-09-28 1996-04-12 Murata Mfg Co Ltd Conductive paste
JPH0897527A (en) * 1994-09-29 1996-04-12 Mitsubishi Materials Corp Conductive paste
JPH10194828A (en) * 1996-11-12 1998-07-28 Sumitomo Kinzoku Electro Device:Kk Ceramic multilayered substrate fired at low temperature and its production
JPH11251700A (en) * 1998-02-26 1999-09-17 Kyocera Corp Copper-metallized composition and glass ceramic wiring board using the composition
JP2000182435A (en) * 1998-12-15 2000-06-30 Murata Mfg Co Ltd Conductive paste and ceramic electronic component
JP2002056717A (en) * 2000-08-10 2002-02-22 Shoei Chem Ind Co Terminal electrode paste for laminated ceramic electronic component
JP2004172383A (en) * 2002-11-20 2004-06-17 Murata Mfg Co Ltd Conductive paste and method for manufacturing ceramic electronic parts

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100306A (en) * 1981-12-09 1983-06-15 松下電器産業株式会社 Conductive paste
JPH01315903A (en) * 1988-06-14 1989-12-20 Tdk Corp Electricaly conductive paste and chip parts
JPH07211133A (en) * 1994-01-19 1995-08-11 Matsushita Electric Ind Co Ltd Conductive paste for forming terminal electrode of electronic part
JPH0836914A (en) * 1994-07-26 1996-02-06 Taiyo Yuden Co Ltd Baking type conductive paste for ceramic electronic part, and ceramic electronic part
JPH0896623A (en) * 1994-09-28 1996-04-12 Murata Mfg Co Ltd Conductive paste
JPH0897527A (en) * 1994-09-29 1996-04-12 Mitsubishi Materials Corp Conductive paste
JPH10194828A (en) * 1996-11-12 1998-07-28 Sumitomo Kinzoku Electro Device:Kk Ceramic multilayered substrate fired at low temperature and its production
JPH11251700A (en) * 1998-02-26 1999-09-17 Kyocera Corp Copper-metallized composition and glass ceramic wiring board using the composition
JP2000182435A (en) * 1998-12-15 2000-06-30 Murata Mfg Co Ltd Conductive paste and ceramic electronic component
JP2002056717A (en) * 2000-08-10 2002-02-22 Shoei Chem Ind Co Terminal electrode paste for laminated ceramic electronic component
JP2004172383A (en) * 2002-11-20 2004-06-17 Murata Mfg Co Ltd Conductive paste and method for manufacturing ceramic electronic parts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115755A (en) * 2005-10-18 2007-05-10 Murata Mfg Co Ltd Electronic component and its manufacturing method
WO2010026952A1 (en) * 2008-09-04 2010-03-11 日本電気硝子株式会社 Glass composition for electrode formation and electrode formation material
JP2010251138A (en) * 2009-04-16 2010-11-04 Nippon Electric Glass Co Ltd Glass composition for electrode formation, and electrode forming material
WO2013128957A1 (en) * 2012-02-29 2013-09-06 株式会社村田製作所 Conductive paste, electronic component, and method for producing electronic component
KR20140123979A (en) * 2012-02-29 2014-10-23 가부시키가이샤 무라타 세이사쿠쇼 Conductive paste, electronic component, and method for producing electronic component
KR101655348B1 (en) 2012-02-29 2016-09-07 가부시키가이샤 무라타 세이사쿠쇼 Conductive paste, electronic component, and method for producing electronic component
US9653211B2 (en) 2012-02-29 2017-05-16 Murata Manufacturing Co., Ltd. Conductive paste, electronic component and method for manufacturing electronic component
US10090108B2 (en) 2012-02-29 2018-10-02 Murata Manufacturing Co., Ltd. Conductive paste, electronic component, and method for manufacturing electronic component
JP2014182891A (en) * 2013-03-18 2014-09-29 Fdk Corp Conductive paste, laminated chip inductor, and ceramic electronic component
JP2014209550A (en) * 2013-03-26 2014-11-06 株式会社村田製作所 Ceramic electronic component and glass paste

Also Published As

Publication number Publication date
JP4333594B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4952723B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR102102800B1 (en) Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode
JP4645594B2 (en) Conductive paste and ceramic electronic component using the same
KR101645625B1 (en) Electronic component and method for forming junction structure between electronic component and object to be joined
US7285232B2 (en) Conductive paste and ceramic electronic component
JP2001307947A (en) Laminated chip component and its manufacturing method
WO2015045625A1 (en) Laminated ceramic electronic component
JP4333594B2 (en) Conductive paste and ceramic electronic components
JP3422233B2 (en) Conductive paste for via hole and method for manufacturing multilayer ceramic substrate using the same
JP4973546B2 (en) Conductive paste, multilayer ceramic electronic component and multilayer ceramic substrate
JP4816202B2 (en) Conductive paste and method for manufacturing ceramic electronic component
JP2005085495A (en) Conductive paste and ceramic electronic component
JP4269795B2 (en) Conductive paste and inductor
JP2007294633A (en) Ceramic electronic component and conductive paste therefor
JP5166049B2 (en) Ceramic electronic component and method for manufacturing the same
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
JP4380145B2 (en) Method for manufacturing conductive paste and ceramic electronic component
JP2005228610A (en) Conductive paste and ceramic electronic component
JP2973558B2 (en) Conductive paste for chip-type electronic components
JP3744710B2 (en) Multilayer ceramic capacitor
JP2001122680A (en) Glass ceramic substrate and method of producing the same
JP2000058375A (en) Laminated ceramic electronic component and manufacture thereof
JP2001028207A (en) Conductive paste and ceramic electronic component
JP4085587B2 (en) Metal powder manufacturing method, metal powder, conductive paste and multilayer ceramic electronic component
JP2002313664A (en) Conductive paste and laminated ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4