TWI485875B - Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci - Google Patents

Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci Download PDF

Info

Publication number
TWI485875B
TWI485875B TW100122389A TW100122389A TWI485875B TW I485875 B TWI485875 B TW I485875B TW 100122389 A TW100122389 A TW 100122389A TW 100122389 A TW100122389 A TW 100122389A TW I485875 B TWI485875 B TW I485875B
Authority
TW
Taiwan
Prior art keywords
diffusion layer
type diffusion
forming
composition
glass
Prior art date
Application number
TW100122389A
Other languages
Chinese (zh)
Other versions
TW201214742A (en
Inventor
Tetsuya Satou
Masato Yoshida
Takeshi Nojiri
Kaoru Okaniwa
Youichi Machii
Mitsunori Iwamuro
Keiko Kizawa
Shuuichirou Adachi
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010144204A external-priority patent/JP5625538B2/en
Priority claimed from JP2010144203A external-priority patent/JP5625537B2/en
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201214742A publication Critical patent/TW201214742A/en
Application granted granted Critical
Publication of TWI485875B publication Critical patent/TWI485875B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

形成不純物擴散層的組成物、形成n型擴散層的組成物、n型擴散層的製造方法、形成p型擴散層的組成物、p型擴散層的製造方法及太陽能電池的製造方法Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for producing n-type diffusion layer, composition for forming p-type diffusion layer, method for producing p-type diffusion layer, and method for producing solar cell

本發明是有關於一種太陽能電池的形成n型擴散層的組成物、n型擴散層的製造方法、形成p型擴散層的組成物、p型擴散層的製造方法及太陽能電池的製造方法。更詳細而言,本發明是有關於一種能夠在作為半導體基板的矽基板的特定部位形成n型擴散層的技術,及關於一種形成p型擴散層的技術,其能夠降低作為半導體基板的矽基板的內部應力、抑制對結晶粒界(crystal grain boundary)的損害、抑制晶體缺陷(crystal defects)的增加,以及抑制翹曲。The present invention relates to a composition for forming an n-type diffusion layer of a solar cell, a method for producing an n-type diffusion layer, a composition for forming a p-type diffusion layer, a method for producing a p-type diffusion layer, and a method for producing a solar cell. More specifically, the present invention relates to a technique capable of forming an n-type diffusion layer at a specific portion of a germanium substrate as a semiconductor substrate, and a technique for forming a p-type diffusion layer capable of reducing a germanium substrate as a semiconductor substrate Internal stress, suppression of damage to the crystal grain boundary, suppression of increase in crystal defects, and suppression of warpage.

以下描述矽太陽能電池元件的習知製程。The conventional process of solar cell elements is described below.

首先,透過促進光學侷限效應(confinement effect)來謀求高效率,調製受光面上形成有紋理(texture)結構的p型矽基板,並且隨後將此p型矽基板在含有施體元素的化合物的三氯氧化磷(POCl3 )、氮氣和氧氣的混合氣體氣氛下,在800℃至900℃進行幾十分鐘的處理,從而於基板上均勻形成n型擴散層。根據此習知技術的方法,由於使用混合氣體來進行磷的擴散,故不僅於表面上形成n型擴散層,而且於側面、背面亦形成n型擴散層。由於這些原因,需要進行側蝕(side etching)來移除側面的n型擴散層。另外,需要將背面的n型擴散層轉換成p+ 型擴散層,於背面的n型擴散層上賦予鋁膏並將其燒結,以藉由鋁的 擴散而使n型擴散層轉換成p+ 型擴散層。First, by promoting an optical confinement effect to achieve high efficiency, a p-type germanium substrate having a texture structure formed on a light-receiving surface is modulated, and then the p-type germanium substrate is in the compound containing the donor element. The phosphorus oxychloride (POCl 3 ), a mixed gas of nitrogen and oxygen are subjected to a treatment at 800 ° C to 900 ° C for several tens of minutes to uniformly form an n-type diffusion layer on the substrate. According to the method of the prior art, since the diffusion of phosphorus is performed using the mixed gas, not only the n-type diffusion layer is formed on the surface but also the n-type diffusion layer is formed on the side surface and the back surface. For these reasons, side etching is required to remove the side n-type diffusion layer. In addition, it is necessary to convert the n-type diffusion layer on the back surface into a p + -type diffusion layer, and apply an aluminum paste on the n-type diffusion layer on the back surface and sinter it to convert the n-type diffusion layer into p + by diffusion of aluminum. Type diffusion layer.

另一方面,在半導體的製造領域中,例如像日本專利特開2002-75894號公報般,提出有作為含有施體元素的化合物,藉由塗佈含有如五氧化二磷(P2 O5 )或磷酸二氫銨(NH4 H2 PO4 )等的磷酸鹽溶液來形成n型擴散層的方法。然而,由於此方法中施體元素或含有施體元素的化合物自擴散源的溶液中飛散,故與上述使用混合氣體的氣相反應法相同,在形成擴散層時,磷的擴散亦到達側面及背面,而於塗佈以外的部分亦形成n型擴散層。On the other hand, in the field of semiconductor manufacturing, for example, as a compound containing a donor element, a coating containing, for example, phosphorus pentoxide (P 2 O 5 ) is proposed as disclosed in Japanese Laid-Open Patent Publication No. 2002-75894. A method of forming an n-type diffusion layer by a phosphate solution such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ). However, since the donor element or the compound containing the donor element is scattered from the solution of the diffusion source in this method, the diffusion of phosphorus also reaches the side when the diffusion layer is formed, as in the gas phase reaction method using the mixed gas described above. On the back side, an n-type diffusion layer is also formed in a portion other than the coating.

另外,在賦予上述之鋁膏而將n型擴散層轉換成p+ 型擴散層的方法中,由鋁膏所形成的鋁層具有低的電導率,為了降低片電阻(sheet resistance),通常形成於整個背面的鋁層於煅燒(燒結)後必需具有10μm~20μm左右的厚度。再者,若形成如上述般厚的鋁層,則由於矽的熱膨脹係數與鋁的熱膨脹係數相差較大,在燒結和冷卻過程中使矽基板中產生大的內部應力,而有晶粒界的損害、晶體缺陷的增加,以及翹曲的情況。Further, in the method of imparting the above-described aluminum paste to convert the n-type diffusion layer into the p + -type diffusion layer, the aluminum layer formed of the aluminum paste has a low electrical conductivity, and is usually formed in order to lower sheet resistance. The aluminum layer on the entire back surface must have a thickness of about 10 μm to 20 μm after calcination (sintering). Furthermore, if an aluminum layer as thick as described above is formed, since the coefficient of thermal expansion of the crucible differs greatly from the coefficient of thermal expansion of aluminum, large internal stress is generated in the crucible substrate during sintering and cooling, and there is a grain boundary. Damage, increased crystal defects, and warpage.

為了解決此問題,而有減少鋁膏的塗布量,使背面電極層變薄的方法。然而,若減少鋁膏的塗布量,則自p型矽半導體基板的表面擴散至內部的鋁的量變得不充分。其結果為無法達成所期望的背面電場(Back Surface Field,BSF)效果(生成載子(carrier)的收集效率(collection efficiency)因p+ 型擴散層的存在而有提高的效果),因此產生太陽能電池的特性下降的問題。In order to solve this problem, there is a method of reducing the amount of coating of the aluminum paste and thinning the back electrode layer. However, when the coating amount of the aluminum paste is reduced, the amount of aluminum diffused from the surface of the p-type germanium semiconductor substrate to the inside becomes insufficient. As a result, the desired back surface field (BSF) effect cannot be achieved (the collection efficiency of the generated carrier is improved by the presence of the p + -type diffusion layer), and thus solar energy is generated. The problem of degraded battery characteristics.

因此,例如於日本專利特開2003-223813號公報中,提出有一種膏狀組成物,其包括鋁粉末、有機媒劑(organic vehicle),以及熱膨脹係數小於鋁且熔融溫度、軟化溫度及分解溫度中的任一者高於鋁的熔點的無機化合物粉末。Thus, for example, Japanese Laid-Open Patent Publication No. 2003-223813 proposes a paste composition comprising aluminum powder, an organic vehicle, and a coefficient of thermal expansion smaller than aluminum and having a melting temperature, a softening temperature, and a decomposition temperature. Any of the inorganic compound powders having a higher melting point than aluminum.

如上所述,於形成n型擴散層時,使用三氯氧化磷的氣相反應中,n型擴散層不僅形成在必要的n型擴散層的一面(通常是受光側,或表面)上,而且甚至形成在其他面(非受光側,或後表面)或側面上。另外,於塗佈含有磷酸鹽的溶液並進行熱擴散的方法中也與氣相反應法相同,甚至在表面以外亦形成有n型擴散層。因此,為了獲得具有pn接合構造以作為元件,故必需於側面進行蝕刻,且必需於背面將n型擴散層轉換成p型擴散層。一般而言,於背面塗佈作為第13族元素(第IIIA族)的鋁的膏狀物,並進行煅燒(燒結),從而將n型擴散層轉換成p型擴散層。As described above, in the gas phase reaction using phosphorus oxychloride in forming the n-type diffusion layer, the n-type diffusion layer is formed not only on one side (usually the light-receiving side or the surface) of the necessary n-type diffusion layer, but also It is even formed on other faces (non-light-receiving side, or rear surface) or on the side. Further, in the method of applying a solution containing a phosphate and performing thermal diffusion, it is also the same as the gas phase reaction method, and an n-type diffusion layer is formed even outside the surface. Therefore, in order to obtain a pn junction structure as an element, it is necessary to perform etching on the side, and it is necessary to convert the n-type diffusion layer into a p-type diffusion layer on the back side. In general, a paste of aluminum as a Group 13 element (Group IIIA) is applied to the back surface, and calcination (sintering) is performed to convert the n-type diffusion layer into a p-type diffusion layer.

本發明是鑒於以上的先前的問題點而完成的發明,其課題在於提供能夠在使用矽基板的太陽能電池元件的製造方法中,短時間於特定部位上形成n型擴散層,而不形成不必要的n型擴散層的一種形成n型擴散層的組成物、n型擴散層的製造方法、以及太陽能電池的製造方法。The present invention has been made in view of the above problems, and an object of the invention is to provide an n-type diffusion layer that can be formed on a specific portion for a short period of time without causing unnecessary formation in a method for manufacturing a solar cell element using a germanium substrate. A composition for forming an n-type diffusion layer, a method for producing an n-type diffusion layer, and a method for producing a solar cell.

此外,即使使用了記載於先前的日本專利特開2003-223813號公報中的自n型擴散層轉換成p+ 型擴散層的膏狀組成物,亦有無法充分地抑制翹曲的情況。因此,本發明的課題在於提出能夠在使用矽基板一邊抑制矽基板 中的內部應力,以及抑制基板的翹曲的發生,且短時間形成p型擴散層的一種形成p型擴散層的組成物、p型擴散層的製造方法、以及太陽能電池元件的製造方法。In addition, even if the paste composition converted from the n-type diffusion layer into the p + -type diffusion layer described in the above-mentioned Japanese Patent Publication No. 2003-223813 is used, the warpage may not be sufficiently suppressed. Therefore, an object of the present invention is to provide a composition for forming a p-type diffusion layer which can suppress the internal stress in the ruthenium substrate and suppress the occurrence of warpage of the substrate while forming a p-type diffusion layer in a short time. A method of producing a p-type diffusion layer and a method of producing a solar cell element.

上述問題通過下列手段解決。The above problems are solved by the following means.

<1>一種形成不純物擴散層的組成物,其包括:含有施體元素(donor element)或受體元素(acceptor element)的玻璃粉末以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍。<1> A composition for forming an impurity diffusion layer, comprising: a glass powder containing a donor element or an acceptor element, and a dispersion medium, wherein a content ratio of the glass powder is 1% by mass or more It is in the range of 90% by mass or less.

<2>一種形成n型擴散層的組成物,其包括:含有施體元素(donor element)的玻璃粉末以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍。<2> A composition for forming an n-type diffusion layer, comprising: a glass powder containing a donor element, and a dispersion medium, wherein a content ratio of the glass powder is in a range of from 1% by mass or more to 90% by mass or less .

<3>如上述<2>所述之形成n型擴散層的組成物,其中上述施體元素是選自P(磷)以及Sb(銻)中的至少一種。<3> The composition for forming an n-type diffusion layer according to the above <2>, wherein the donor element is at least one selected from the group consisting of P (phosphorus) and Sb (antimony).

<4>如上述<2>或<3>中所述之形成n型擴散層的組成物,其中上述含有施體元素的玻璃粉末包括含有施體元素的物質以及玻璃成分物質,上述含有施體元素的物質選自P2 O3 、P2 O5 及Sb2 O3 中的至少一種,上述玻璃成分物質選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2 及MoO3 中的至少一種。<4> The composition for forming an n-type diffusion layer according to the above <2> or <3>, wherein the glass powder containing the donor element includes a substance containing a donor element and a glass component substance, and the above-mentioned donor body The substance of the element is at least one selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 , and the glass component is selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO. At least one of MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 .

<5>如上述<2>~<4>中任一項所述之形成n型擴散層的組成物,更包括選自Ag、Cu、Fe、Zn及Mn中 的至少一種金屬、Si或其組合。The composition for forming an n-type diffusion layer according to any one of <2> to <4> above, further comprising selected from the group consisting of Ag, Cu, Fe, Zn, and Mn. At least one metal, Si, or a combination thereof.

<6>如上述<5>所述之形成n型擴散層的組成物,其中上述金屬為Ag(銀)。<6> The composition for forming an n-type diffusion layer according to the above <5>, wherein the metal is Ag (silver).

<7>一種n型擴散層的製造方法,其包括:在半導體基板上塗佈如上述<2>~<6>中任一項所述之形成n型擴散層的組成物的步驟;以及實施熱擴散處理的步驟。<7> A method of producing an n-type diffusion layer, comprising: a step of applying a composition for forming an n-type diffusion layer according to any one of the above <2> to <6> on a semiconductor substrate; The step of thermal diffusion treatment.

<8>一種太陽能電池元件的製造方法,其包括:在半導體基板上塗佈如上述<2>~<6>中任一項所述之形成n型擴散層的組成物的步驟;實施熱擴散處理而形成n型擴散層的步驟;以及於所形成的n型擴散層上形成電極的步驟。(8) A method of producing a solar cell element, comprising: a step of applying a composition for forming an n-type diffusion layer according to any one of the above <2> to <6> on a semiconductor substrate; and performing thermal diffusion a step of forming an n-type diffusion layer; and forming an electrode on the formed n-type diffusion layer.

<9>一種形成p型擴散層的組成物,其包括:含有受體元素的玻璃粉末以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍。<9> A composition for forming a p-type diffusion layer, comprising: a glass powder containing an acceptor element; and a dispersion medium, wherein a content ratio of the glass powder is in a range of from 1% by mass to 90% by mass.

<10>如上述<9>所述之形成p型擴散層的組成物,其中上述受體元素是選自B(硼)、Al(鋁)以及Ga(鎵)中的至少一種。<10> The composition for forming a p-type diffusion layer according to the above <9>, wherein the acceptor element is at least one selected from the group consisting of B (boron), Al (aluminum), and Ga (gallium).

<11>如上述<9>或<10>中所述之形成p型擴散層的組成物,其中上述含有受體元素的玻璃粉末包括含有受體元素的物質以及玻璃成分物質,上述含有受體元素的物質選自B2 O3 、Al2 O3 及Ga2 O3 中的至少一種,上述玻璃成分物質選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、Tl2 O、SnO、ZrO2 及MoO3 中的至少一種。<11> The composition for forming a p-type diffusion layer according to the above <9> or <10>, wherein the glass powder containing the acceptor element includes a substance containing an acceptor element and a glass component substance, and the above-mentioned acceptor The substance of the element is at least one selected from the group consisting of B 2 O 3 , Al 2 O 3 and Ga 2 O 3 , and the glass component is selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO. At least one of MgO, BeO, ZnO, PbO, CdO, Tl 2 O, SnO, ZrO 2 and MoO 3 .

<12>一種p型擴散層的製造方法,其包括:在半導體基板上塗佈如上述<9>~<11>中任一項所述之形成p型擴散層的組成物的步驟;以及實施熱擴散處理的步驟。<12> A method of producing a p-type diffusion layer, comprising: a step of applying a composition for forming a p-type diffusion layer according to any one of the above <9> to <11> on a semiconductor substrate; The step of thermal diffusion treatment.

<13>一種太陽能電池元件的製造方法,其包括:在半導體基板上塗佈如上述<9>~<11>中任一項所述之形成p型擴散層的組成物的步驟;實施熱擴散處理而形成p型擴散層的步驟;以及於所形成的上述p型擴散層上形成電極的步驟。<13> A method of producing a solar cell element, comprising: a step of applying a composition for forming a p-type diffusion layer according to any one of the above <9> to <11> on a semiconductor substrate; performing thermal diffusion a step of forming a p-type diffusion layer; and forming an electrode on the formed p-type diffusion layer.

根據本發明,能夠在使用矽基板的太陽能電池的製造方法中,短時間在特定區域上形成n型擴散層,而不形成不必要的n型擴散層。According to the present invention, in the method of manufacturing a solar cell using a tantalum substrate, an n-type diffusion layer can be formed on a specific region in a short time without forming an unnecessary n-type diffusion layer.

另外,根據本發明,能夠在使用矽基板的太陽能電池的製造方法中,一邊抑制矽基板中的內部應力,以及抑制基板的翹曲的發生,且短時間形成p型擴散層。Further, according to the present invention, it is possible to form a p-type diffusion layer in a short time while suppressing internal stress in the ruthenium substrate and suppressing occurrence of warpage of the substrate in the method of manufacturing a solar cell using the ruthenium substrate.

本發明為一種形成不純物擴散層的組成物,其包括:含有施體元素或受體元素的玻璃粉末以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍。當形成不純物擴散層的組成物為形成n型擴散層的組成物時,上述玻璃粉末包括施體元素,當形成不純物擴散層的組成物為形成p型擴散層的組成物時,上述玻璃粉末包括受體元素。The present invention is a composition for forming an impurity diffusion layer, comprising: a glass powder containing a donor element or an acceptor element, and a dispersion medium, wherein a content ratio of the glass powder is in a range of from 1% by mass to 90% by mass. When the composition forming the impurity diffusion layer is a composition forming an n-type diffusion layer, the glass powder includes a donor element, and when the composition forming the impurity diffusion layer is a composition forming a p-type diffusion layer, the glass powder includes Receptor element.

當形成n型擴散層的組成物及形成p型擴散層的組成物中所含有的玻璃粉末的含有率為1質量%以上至90質量% 以下的範圍時,可以在短時間將形成於n型擴散層或p型擴散層上的玻璃層去除。此外,藉由施體元素或受體元素的擴散,充分地進行n型擴散層的形成或p型擴散層的形成。因此,依據本發明的形成n型擴散層的組成物及形成p型擴散層,可短時間於特定的部份形成n型擴散層或p型擴散層。The content of the glass powder contained in the composition forming the n-type diffusion layer and the composition forming the p-type diffusion layer is 1% by mass or more and 90% by mass or more In the following range, the glass layer formed on the n-type diffusion layer or the p-type diffusion layer can be removed in a short time. Further, the formation of the n-type diffusion layer or the formation of the p-type diffusion layer is sufficiently performed by diffusion of the donor element or the acceptor element. Therefore, according to the composition for forming an n-type diffusion layer of the present invention and the formation of the p-type diffusion layer, the n-type diffusion layer or the p-type diffusion layer can be formed in a specific portion for a short time.

首先,對本發明的形成n型擴散層的組成物及形成p型擴散層的組成物進行說明,其次對使用形成n型擴散層的組成物的n型擴散層的製造方法、使用形成p型擴散層的組成物的p型擴散層的製造方法,以及太陽能電池元件的製造方法進行說明。First, the composition for forming an n-type diffusion layer and the composition for forming a p-type diffusion layer of the present invention will be described. Next, a method for producing an n-type diffusion layer using a composition for forming an n-type diffusion layer, and a method for forming a p-type diffusion will be described. A method for producing a p-type diffusion layer of a composition of a layer and a method for producing a solar cell element will be described.

再者,於本說明書中,「步驟(process)」這一用語不僅是指獨立的步驟,亦包括在無法與其他步驟明確地加以區分的情況下,若該步驟能達成所預期的作用,則亦包括於本用語中。另外,於本說明書中,使用「~」表示數值的範圍時,「~」表示以其前後所記載的數值分別作為最小值及最大值所包括的範圍。Furthermore, in the present specification, the term "process" means not only an independent step but also a case where it cannot be clearly distinguished from other steps, and if the step can achieve the intended effect, then Also included in this term. In addition, in the present specification, when "~" is used to indicate the range of numerical values, "~" indicates a range including the numerical values described before and after the minimum value and the maximum value.

<形成n型擴散層的組成物><Formation of n-type diffusion layer>

本發明的形成n型擴散層的組成物包括至少含有施體元素的玻璃粉末(以下,有時僅稱為「玻璃粉末」)以及分散介質,進一步考慮到塗布性等,必要時亦可視需要含有其他添加劑。The composition for forming an n-type diffusion layer of the present invention includes a glass powder containing at least a donor element (hereinafter sometimes referred to simply as "glass powder") and a dispersion medium, and further, in consideration of coatability and the like, if necessary, it may be optionally contained. Other additives.

此處,所謂形成n型擴散層的組成物,其為包括了含有施體元素的玻璃粉末,且可藉由塗佈於矽基板上後,能 使上述施體元素熱擴散,以形成n型擴散層的材料。藉由使用本發明的形成n型擴散層的組成物,而僅於所期望的部位形成n型擴散層,而於背面或側面不形成不需要的n型擴散層。Here, the composition for forming an n-type diffusion layer is a glass powder containing a donor element, and can be applied to a ruthenium substrate, The donor element is thermally diffused to form a material of the n-type diffusion layer. By using the composition for forming an n-type diffusion layer of the present invention, an n-type diffusion layer is formed only at a desired portion, and an unnecessary n-type diffusion layer is not formed on the back surface or the side surface.

因此,若應用本發明的形成n型擴散層的組成物,則先前廣泛採用的氣相反應法中所必需的側蝕步驟就變得不必要,從而使步驟簡單化。另外,將形成於背面的n型擴散層轉換成p+ 型擴散層的步驟也變得不需要。因此,背面的p+ 型擴散層的形成方法,或者背面電極的材質、形狀及厚度不受限制,並且拓展了可應用的製造方法或材質、形狀的選擇項。另外,由於抑制了背面電極的厚度所引起的矽基板內的內部應力的產生,矽基板的翹曲亦得到抑制,詳細情況將後述。Therefore, if the composition for forming an n-type diffusion layer of the present invention is applied, the side etching step necessary in the gas phase reaction method which has been widely used previously becomes unnecessary, thereby simplifying the steps. Further, the step of converting the n-type diffusion layer formed on the back surface into a p + -type diffusion layer also becomes unnecessary. Therefore, the method of forming the p + -type diffusion layer on the back surface, or the material, shape, and thickness of the back surface electrode is not limited, and the applicable manufacturing method, material, and shape selection are expanded. Further, since the occurrence of internal stress in the ruthenium substrate due to the thickness of the back surface electrode is suppressed, warpage of the ruthenium substrate is also suppressed, and details will be described later.

再者,藉由煅燒而使本發明之形成n型擴散層的組成物中所含有的玻璃粉末熔融,從而於n型擴散層上形成玻璃層。但是,於先前的氣相反應法或塗佈含有磷酸鹽的溶液的方法中,亦於n型擴散層上形成玻璃層。因此,本發明中所生成的玻璃層可與先前的方法同樣地藉由蝕刻來去除。因此,即便與先前的方法相比,本發明的形成n型擴散層的組成物亦不產生不需要的生成物,亦不增加步驟。Further, the glass powder contained in the composition for forming the n-type diffusion layer of the present invention is melted by calcination to form a glass layer on the n-type diffusion layer. However, in the prior gas phase reaction method or the method of coating a solution containing a phosphate, a glass layer is also formed on the n-type diffusion layer. Therefore, the glass layer produced in the present invention can be removed by etching as in the prior method. Therefore, the composition for forming an n-type diffusion layer of the present invention does not produce an unnecessary product, and does not add a step, even if compared with the prior method.

在此,當形成n型擴散層的組成物中所含有的玻璃粉末的含有率為1質量%以上至90質量%以下的範圍時,可以短時間將形成於n型擴散層上的玻璃層去除。此外,藉由施體元素的擴散,n型擴散層的形成充分地被進行。When the content of the glass powder contained in the composition forming the n-type diffusion layer is in the range of 1% by mass or more to 90% by mass or less, the glass layer formed on the n-type diffusion layer can be removed in a short time. . Further, the formation of the n-type diffusion layer is sufficiently performed by diffusion of the donor element.

再者,在本發明中所謂用於「形成n型擴散層」所需的時間是指:用於形成n型擴散層加上用於將形成於n型擴散層之上的玻璃層去除所需要的總時間。據此,藉由短時間去除形成於n型擴散層的玻璃層,縮短用於形成n型擴散層的時間。Furthermore, the time required for "forming an n-type diffusion layer" in the present invention means: for forming an n-type diffusion layer plus for removing a glass layer formed on the n-type diffusion layer. Total time. According to this, the time for forming the n-type diffusion layer is shortened by removing the glass layer formed on the n-type diffusion layer in a short time.

另外,玻璃粉末中的施體成分於煅燒中亦難以揮發(sublimation),因此抑制了歸因於揮發氣體的產生而使n型擴散層不僅形成於表面甚至還形成於背面或側面的情況。其原因可認為由於施體成分與玻璃粉末中的元素結合、或者被導入至玻璃中,因此難以揮發。Further, since the donor component in the glass powder is hardly sublimated in the calcination, it is suppressed that the n-type diffusion layer is formed not only on the surface but also on the back surface or the side surface due to the generation of the volatilized gas. The reason for this is considered to be that it is difficult to volatilize because the donor component is combined with an element in the glass powder or introduced into the glass.

如此,本發明的形成n型擴散層的組成物可於所期望的部位形成所期望的濃度的n型擴散層,因此可形成n型摻雜物濃度高的選擇性的區域。另一方面,藉由使用n型擴散層的一般方法的氣體反應法、或使用含磷酸鹽的溶液一般而言難以形成高n型摻雜劑濃度的選擇性區域。As described above, the composition for forming an n-type diffusion layer of the present invention can form an n-type diffusion layer having a desired concentration at a desired portion, and thus can form a selective region having a high n-type dopant concentration. On the other hand, it is generally difficult to form a selective region of a high n-type dopant concentration by a gas reaction method using a general method of an n-type diffusion layer or a solution containing a phosphate.

對本發明之含有施體元素的玻璃粉末進行詳細說明。The glass powder containing the donor element of the present invention will be described in detail.

所謂施體元素,是指藉由摻雜於矽基板中而可形成n型擴散層的元素。作為施體元素可使用週期表第15族的元素,例如可列舉P(磷)、Sb(銻)、Bi(鉍)及As(砷)等。就安全性、玻璃化的容易度等的觀點而言,較合適的是P或Sb。The donor element refers to an element which can form an n-type diffusion layer by doping it in a germanium substrate. As the donor element, an element of Group 15 of the periodic table can be used, and examples thereof include P (phosphorus), Sb (antimony), Bi (antimony), and As (arsenic). From the viewpoints of safety, ease of vitrification, and the like, P or Sb is more preferable.

作為用於將施體元素導入至玻璃粉末中的含有施體元素的物質,可列舉P2 O3 、P2 O5 、Sb2 O3 、Bi2 O3 以及As2 O3 ,較佳為使用選自P2 O3 、P2 O5 及Sb2 O3 中的至少一種。Examples of the substance containing a donor element for introducing a donor element into the glass powder include P 2 O 3 , P 2 O 5 , Sb 2 O 3 , Bi 2 O 3 and As 2 O 3 , preferably At least one selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 is used.

另外,含有施體元素的玻璃粉末可視需要調整成分比率,藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化學耐久性等。較佳為進而包括以下所述的玻璃成分物質。Further, the glass powder containing the donor element may be adjusted in composition ratio as needed, thereby controlling the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, and the like. It is preferable to further include the glass component substance described below.

作為玻璃成分物質,可列舉:SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2 、MoO3 、La2 O3 、Nb2 O5 、Ta2 O5 、Y2 O3 、TiO2 、ZrO2 、GeO2 、TeO2 及Lu2 O3 等,較佳為使用選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2 及MoO3 中的至少一種。Examples of the glass component material include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , MoO 3 , and La 2 O. 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 , etc., preferably selected from SiO 2 , K 2 O, Na 2 At least one of O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 .

作為含有施體元素的玻璃粉末的具體例,可列舉包括上述含有施體元素的物質與上述玻璃成分物質兩者的體系,可列舉:P2 O5 -SiO2 體系(以含有施體元素的物質-玻璃成分物質的順序記載,以下相同)、P2 O5 -K2 O體系、P2 O5 -Na2 O體系、P2 O5 -Li2 O體系、P2 O5 -BaO體系、P2 O5 -SrO體系、P2 O5 -CaO體系、P2 O5 -MgO體系、P2 O5 -BeO體系、P2 O5 -ZnO體系、P2 O5 -CdO體系、P2 O5 -PbO體系、P2 O5 -V2 O5 體系、P2 O5 -SnO體系、P2 O5 -GeO2 體系、P2 O5 -TeO2 體系等包括P2 O5 作為含有施體元素的物質的體系,以及包括以Sb2 O3 來代替上述包括P2 O5 的體系的P2 O5 作為含有施體元素的物質的體系的玻璃粉末。Specific examples of the glass powder containing the donor element include a system containing both the donor element and the glass component, and examples thereof include a P 2 O 5 —SiO 2 system (containing a donor element). The order of the substance-glass component substance is the same as the following), P 2 O 5 -K 2 O system, P 2 O 5 -Na 2 O system, P 2 O 5 -Li 2 O system, P 2 O 5 -BaO system , P 2 O 5 -SrO system, P 2 O 5 -CaO system, P 2 O 5 -MgO system, P 2 O 5 -BeO system, P 2 O 5 -ZnO system, P 2 O 5 -CdO system, P 2 O 5 -PbO system, P 2 O 5 -V 2 O 5 system, P 2 O 5 -SnO system, P 2 O 5 -GeO 2 system, P 2 O 5 -TeO 2 system, etc. include P 2 O 5 as A system containing a substance of a donor element, and a glass powder comprising a system in which P 2 O 5 of the above-described system including P 2 O 5 is replaced by Sb 2 O 3 as a substance containing a donor element.

再者,亦可為如P2 O5 -Sb2 O3 體系、P2 O5 -As2 O3 體系等般,包括兩種以上的含有施體元素的物質的玻璃粉末。Further, it may be a glass powder containing two or more kinds of substances containing a donor element, such as a P 2 O 5 -Sb 2 O 3 system or a P 2 O 5 -As 2 O 3 system.

儘管於上述中例示了包括兩種成分的複合玻璃,然而亦可為P2 O5 -SiO2 -V2 O5 、P2 O5 -SiO2 -CaO等包括三種成分以 上的物質的玻璃粉末。Although the composite glass including the two components is exemplified above, it may be a glass powder including a substance of three or more components such as P 2 O 5 —SiO 2 —V 2 O 5 , P 2 O 5 —SiO 2 —CaO. .

玻璃粉末中的玻璃成分物質的含有比率較理想的是考慮熔融溫度、軟化溫度、玻璃轉移溫度、化學耐久性而適宜地設定,一般而言,較佳為0.1質量%以上至95質量%以下,更佳為0.5質量%以上至90質量%以下。The content ratio of the glass component in the glass powder is preferably set in consideration of the melting temperature, the softening temperature, the glass transition temperature, and the chemical durability, and is generally preferably 0.1% by mass or more and 95% by mass or less. More preferably, it is 0.5 mass% or more and 90 mass% or less.

玻璃粉末的軟化溫度就擴散處理時的擴散性、滴液(dripping)的觀點而言,較佳為200℃~1000℃,更佳為300℃~900℃。The softening temperature of the glass powder is preferably from 200 ° C to 1000 ° C, more preferably from 300 ° C to 900 ° C from the viewpoint of diffusibility at the time of diffusion treatment and dripping.

作為玻璃粉末的形狀,可列舉:大致球狀、扁平狀、塊狀、板狀及鱗片狀等,就製成形成n型擴散層的組成物時對於基板的塗佈性或均勻擴散性的觀點而言,較理想的是大致球狀、扁平狀、或板狀。玻璃粉末的粒徑較理想的是100μm以下。當使用具有100μm以下的粒徑的玻璃粉末時,易於獲得平滑的塗膜。進而,玻璃粉末的粒徑更理想的是50μm以下。再者,下限並無特別限制,但較佳為0.01μm以上。The shape of the glass powder includes a substantially spherical shape, a flat shape, a block shape, a plate shape, a scaly shape, and the like, and the coating property or the uniform diffusibility of the substrate when the composition for forming the n-type diffusion layer is formed. In general, it is preferably substantially spherical, flat, or plate-shaped. The particle diameter of the glass powder is preferably 100 μm or less. When a glass powder having a particle diameter of 100 μm or less is used, a smooth coating film is easily obtained. Further, the particle diameter of the glass powder is more preferably 50 μm or less. Further, the lower limit is not particularly limited, but is preferably 0.01 μm or more.

此處,玻璃的粒徑表示平均粒徑,可藉由雷射散射繞射法(laser scattering diffraction method)粒度分布(particle size distribution)測定裝置等來測定。Here, the particle diameter of the glass means an average particle diameter, and can be measured by a laser scattering diffraction method particle size distribution measuring apparatus or the like.

含有施體元素的玻璃粉末是藉由以下的步驟來製作。The glass powder containing the donor element was produced by the following procedure.

首先稱量原料(例如,上述含有施體元素的物質與玻璃成分物質)並將其填充至坩堝中。坩堝的材質可列舉鉑、鉑-銠、銥、氧化鋁、石英、碳等,可考慮熔融溫度、環境、與熔融物質的反應性等而適宜選擇。The raw material (for example, the above-mentioned substance containing the donor element and the glass component substance) is first weighed and filled into the crucible. Examples of the material of the crucible include platinum, platinum-rhodium, iridium, aluminum oxide, quartz, carbon, and the like, and are appropriately selected in consideration of the melting temperature, the environment, and the reactivity with the molten material.

其次,藉由電爐以對應於玻璃組成的溫度進行加熱而製成熔液。此時,較理想的是以使熔液變得均勻的方式進行攪拌。Next, a molten metal is prepared by heating in an electric furnace at a temperature corresponding to the composition of the glass. At this time, it is preferable to stir so that the melt becomes uniform.

繼而,使所獲得的熔液流出至氧化鋯基板或碳基板等上而將熔液玻璃化。Then, the obtained melt flows out onto a zirconia substrate, a carbon substrate or the like to vitrify the melt.

最後,粉碎玻璃作成粉末狀。粉碎可應用噴射磨機、珠磨機、球磨機等公知的方法。Finally, the glass is pulverized to form a powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.

基於塗佈性、施體元素的擴散性、不要的玻璃的蝕刻性等觀點的考量,形成n型擴散層的組成物中的含有施體元素的玻璃粉末的含有比率為1質量%以上至90質量%以下,理想的是5質量%以上至70質量%以下;進而基於充分地表示出低表面阻抗的觀點以及在蝕刻處理中不對基板造成損傷的浸漬時間的觀點而言,含有施體元素的玻璃粉末的含有比率更理想的是10質量%以上至30質量%以下。若玻璃粉末的含有比率超過90質量%,不要的玻璃成分的蝕刻處理變得困難。若玻璃粉末的含有比率小於1質量%,施體元素對基板的擴散性及塗佈性降低。The content ratio of the glass powder containing the donor element in the composition forming the n-type diffusion layer is 1% by mass or more and 90% from the viewpoints of the coating property, the diffusibility of the donor element, the etching property of the unnecessary glass, and the like. The mass% or less is preferably 5% by mass or more and 70% by mass or less. Further, based on the viewpoint of sufficiently exhibiting a low surface resistance and the immersion time which does not damage the substrate during the etching treatment, the donor element is contained. The content ratio of the glass powder is more preferably 10% by mass or more and 30% by mass or less. When the content ratio of the glass powder exceeds 90% by mass, etching treatment of an unnecessary glass component becomes difficult. When the content ratio of the glass powder is less than 1% by mass, the diffusibility and coatability of the donor element to the substrate are lowered.

另外,考慮到施體元素對基板的擴散性,形成n型擴散層的組成物中的含有施體元素的物質的含有率較佳為1質量%以上,更佳為2質量%以上。並且,即使在形成n型擴散層的組成物中添加一定量以上的施體元素,具有已形成n型擴散層的表面片電阻為一定值以上而不會降低。In addition, in consideration of the diffusibility of the donor element to the substrate, the content of the substance containing the donor element in the composition forming the n-type diffusion layer is preferably 1% by mass or more, and more preferably 2% by mass or more. Further, even if a certain amount or more of the donor element is added to the composition forming the n-type diffusion layer, the surface sheet resistance having the n-type diffusion layer formed is not less than a certain value and does not decrease.

以下,將描述分散介質。Hereinafter, the dispersion medium will be described.

分散介質是將上述玻璃粉末分散在組成物中的介 質。具體而言,採用粘合劑或溶劑等作為分散介質。The dispersion medium is a medium in which the above glass powder is dispersed in the composition. quality. Specifically, a binder, a solvent or the like is used as a dispersion medium.

作為粘合劑,例如可以適當地選擇:聚乙烯醇、聚丙烯醯胺類、聚乙烯基醯胺類、聚乙烯基吡咯烷酮、聚環氧乙烷類、聚磺酸、丙烯醯胺烷基磺酸、纖維素醚類、纖維素衍生物、羧甲基纖維素、羥乙基纖維素、乙基纖維素、明膠、澱粉和澱粉衍生物、海藻酸鈉類(sodium alginate)、三仙膠(xanthan)、瓜爾膠和瓜爾膠衍生物、硬葡聚糖和硬葡聚糖衍生物、黃蓍膠和黃蓍膠衍生物、糊精和糊精衍生物、(甲基)丙烯酸類樹脂、(甲基)丙烯酸酯類樹脂(例如烷基(甲基)丙烯酸樹脂、二甲基胺基乙基(甲基)丙烯酸樹脂等)、丁二烯類樹脂、苯乙烯類樹脂及它們的共聚物。以及亦可以適當地選擇矽氧烷樹脂。這些化合物可以單獨使用或以它們的兩種以上的組合使用。As the binder, for example, polyvinyl alcohol, polypropylene decylamine, polyvinyl decylamine, polyvinylpyrrolidone, polyethylene oxide, polysulfonic acid, acrylamide alkylsulfonate can be appropriately selected. Acids, cellulose ethers, cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate, Sanxian gum Xanthan), guar gum and guar derivatives, scleroglucans and scleroglucan derivatives, tragacanth and xanthan gum derivatives, dextrin and dextrin derivatives, (meth)acrylic resins (meth)acrylate resin (for example, alkyl (meth)acrylic resin, dimethylaminoethyl (meth)acrylic resin, etc.), butadiene resin, styrene resin, and copolymerization thereof Things. And the decane resin can also be appropriately selected. These compounds may be used singly or in combination of two or more kinds thereof.

粘合劑的分子量沒有特別的限制,並且優選為有鑑於作為組成物的所需粘度而適當地調整。The molecular weight of the binder is not particularly limited, and is preferably appropriately adjusted in view of the desired viscosity as a composition.

作為溶劑,可列舉例如丙酮、甲基乙基酮、甲基正丙基酮、甲基-異丙基酮、甲基-正丁基酮、甲基-異丁基酮、甲基-正戊基酮、甲基-正己基酮、二乙基酮、二丙基酮、二-異丁基酮、三甲基壬酮、環己酮、環戊酮、甲基環己酮、2,4-戊二酮、丙酮基丙酮、γ-丁內酯、γ-戊內酯等酮系溶劑;例如二乙基醚、甲基乙基醚、甲基-正丙基醚(methyl-n-propyl)、二-異丙基醚、四氫呋喃、甲基四氫呋喃、二噁烷(dioxane)、二甲基二噁烷、乙二醇二甲基醚、乙二醇二乙基醚、乙二醇二正丙基醚、乙二醇二丁基醚、 二甘醇二甲基醚、二甘醇二乙基醚、二甘醇甲基乙基醚、二甘醇甲基正丙基醚、二甘醇甲基正丁基醚、二甘醇二正丙基醚、二甘醇二正丁基醚、二甘醇甲基正己基醚、三甘醇二甲基醚、三甘醇二乙基醚、三甘醇甲基乙基醚、三甘醇甲基-正丁基醚、三甘醇二正丁基醚、三甘醇甲基正己基醚、四甘醇二甲基醚、四甘醇二乙基醚、四(二甘醇)(tetradiethylene glycol)甲基乙基醚、四甘醇甲基正丁基醚、二甘醇二正丁基醚、四甘醇甲基正己基醚、四甘醇二正丁基醚、丙二醇二甲基醚、丙二醇二乙基醚、丙二醇二正丙基醚、丙二醇二丁基醚、一縮二丙二醇二甲基醚、一縮二丙二醇二乙基醚、一縮二丙二醇甲基乙基醚(dipropylene glycol methyl ethyl ether)、一縮二丙二醇甲基正丁基醚、一縮二丙二醇二正丙基醚、一縮二丙二醇二正丁基醚、一縮二丙二醇甲基正己基醚、三丙二醇二甲基醚、三丙二醇二乙基醚、三丙二醇甲基乙基醚、三丙二醇甲基正丁基醚、三丙二醇二正丁基醚、三丙二醇甲基正己基醚、四丙二醇二甲基醚、四丙二醇二乙基醚、四(二丙二醇)(tetradipropylene glycol)甲基乙基醚、四丙二醇甲基正丁基醚、一縮二丙二醇二正丁基醚、四丙二醇甲基正己基醚、四丙二醇二正丁基醚等的醚系溶劑;例如乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸第二丁酯、乙酸正戊酯、乙酸第二戊酯、乙酸3-甲氧基丁酯、乙酸甲基戊酯、乙酸2-乙基丁酯、乙酸2-乙基己酯、乙酸2-(2-丁氧基乙氧基)乙酯、乙酸苄酯、 乙酸環己酯、乙酸甲基環己酯、乙酸壬酯、乙醯乙酸甲酯、乙醯乙酸乙酯、二甘醇單甲基醚乙酸酯、二甘醇單乙基醚乙酸酯、二甘醇單正丁基醚乙酸酯、一縮二丙二醇單甲基醚乙酸酯、一縮二丙二醇單乙基醚乙酸酯、乙二醇二乙酸酯、甲氧基三甘醇乙酸酯、丙酸乙酯、丙酸正丁酯、丙酸異戊酯、草酸二乙酯、草酸二-正丁酯、乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯等的酯系溶劑;例如,乙二醇甲基醚丙酸酯、乙二醇乙基醚丙酸酯、乙二醇甲基醚乙酸酯、乙二醇乙基醚乙酸酯、二甘醇甲基醚乙酸酯、二甘醇乙基醚乙酸酯、二甘醇-正丁基醚乙酸酯、丙二醇甲基醚乙酸酯、丙二醇乙基醚乙酸酯、丙二醇丙基醚乙酸酯、一縮二丙二醇甲基醚乙酸酯、一縮二丙二醇乙基醚乙酸酯等的醚乙酸酯系溶劑;例如乙腈、N-甲基吡咯烷酮、N-乙基吡咯烷酮、N-丙基吡咯烷酮、N-丁基吡咯烷酮、N-己基吡咯烷酮、N-環己基吡咯烷酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、二甲亞碸等的非質子(proton)極性溶劑;例如甲醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第二丁醇、第三丁醇、正戊醇、異戊醇、2-甲基丁醇、第二戊醇、第三戊醇、3-甲氧基丁醇、正己醇、2-甲基戊醇、第二己醇、2-乙基丁醇、第二庚醇、正辛醇、2-乙基己醇、第二辛醇、正壬醇、正癸醇、第二十一烷醇、三甲基壬醇、第二十四烷醇、第二十七烷醇、苯酚、環己醇、甲基環己醇、苄醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二甘醇、一縮二丙二醇、三甘醇、三丙二醇等的醇系溶劑;例如乙 二醇甲基醚、乙二醇乙基醚、乙二醇單苯基醚、二甘醇單甲基醚、二甘醇單乙基醚、二甘醇單正丁基醚、二甘醇單正己基醚、乙氧基三甘醇、四甘醇單正丁基醚、丙二醇單甲基醚、一縮二丙二醇單甲基醚、一縮二丙二醇單乙基醚、三丙二醇單甲基醚等的乙二醇單醚溶劑;例如α-萜品烯、α-萜品醇、月桂油烯、別羅勒烯(allo-ocimene)、檸檬烯、雙戊烯、α-蒎烯、β-蒎烯、松脂醇(terpineol)、香旱芹酮、蘿勒萜(ocimene)、水芹烯等萜(terpene)系溶劑;水等。這些材料可以單獨使用或以它們的兩種以上的組合使用。The solvent may, for example, be acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl-isopropyl ketone, methyl-n-butyl ketone, methyl-isobutyl ketone or methyl-n-pentane. Ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, di-isobutyl ketone, trimethyl fluorenone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2, 4 a ketone solvent such as pentanedione, acetonylacetone, γ-butyrolactone or γ-valerolactone; for example, diethyl ether, methyl ethyl ether, methyl-n-propyl ether ), di-isopropyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-butyl Propyl ether, ethylene glycol dibutyl ether, Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-butyl Propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol Methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol (tetraethylene glycol) Glycol) methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, diethylene glycol di-n-butyl ether, tetraethylene glycol methyl n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether , propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether (dipropylene glycol) Methyl ethyl ether), dipropylene glycol methyl n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl n-hexyl ether, tripropylene Dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl n-hexyl ether, tetrapropylene glycol dimethyl Ether, tetrapropylene glycol diethyl ether, tetradipropylene glycol methyl ethyl ether, tetrapropylene glycol methyl n-butyl ether, dipropylene glycol di-n-butyl ether, tetrapropylene glycol methyl n-hexyl ether An ether solvent such as tetrapropylene glycol di-n-butyl ether; for example, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, second butyl acetate, acetic acid N-amyl ester, second amyl acetate, 3-methoxybutyl acetate, methyl amyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2-(2-butoxy) acetate Ethoxyethyl ester, benzyl acetate, Cyclohexyl acetate, methylcyclohexyl acetate, decyl acetate, methyl acetate, ethyl acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, Diethylene glycol mono-n-butyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethylene glycol diacetate, methoxy triethylene glycol Acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate Ester solvent; for example, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, digan Alcohol methyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol-n-butyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether An ether acetate solvent such as acetate, dipropylene glycol methyl ether acetate or dipropylene glycol ethyl ether acetate; for example, acetonitrile, N-methylpyrrolidone, N-ethylpyrrolidone, N -C Aprons of pyrrolidone, N-butylpyrrolidone, N-hexylpyrrolidone, N-cyclohexylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylhydrazine, etc. Proton) a polar solvent; for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, second butanol, tert-butanol, n-pentanol, isoamyl alcohol, 2-methylbutanol , second pentanol, third pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, second hexanol, 2-ethylbutanol, second heptanol, n-octanol, 2-ethylhexanol, second octanol, n-nonanol, n-nonanol, twenty-first alkanol, trimethylnonanol, tetradecanol, heptadecyl alcohol, phenol, ring An alcohol solvent such as hexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-butanediol, diethylene glycol, dipropylene glycol, triethylene glycol or tripropylene glycol ; for example, B Glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol single n-Hexyl ether, ethoxy triethylene glycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether Ethylene glycol monoether solvent; for example, α-terpinene, α-terpineol, laurylene, allo-ocimene, limonene, dipentene, α-pinene, β-pinene , terpineol (terpineol), fragrant celery ketone, ocimene, celery (terpene) solvent; water, etc. These materials may be used singly or in combination of two or more kinds thereof.

分散介質在形成n型擴散層的組成物中的含有比率是考慮塗布性和施體濃度來決定的。The content ratio of the dispersion medium in the composition forming the n-type diffusion layer is determined in consideration of coatability and donor concentration.

考慮到塗佈性,形成n型擴散層的組成物的黏度較佳為10mPa.S以上至1000000mPa.S以下,更佳為50mPa.S以上至500000mPa.S以下。Considering the coating property, the viscosity of the composition forming the n-type diffusion layer is preferably 10 mPa. S above to 1000000mPa. Below S, more preferably 50mPa. S above to 500000mPa. S below.

此外,形成n型擴散層的組成物亦可含有其他添加劑。作為其他添加物,例如可列舉容易與上述玻璃粉末進行反應的金屬。Further, the composition forming the n-type diffusion layer may also contain other additives. As another additive, the metal which reacts easily with the said glass powder is mentioned, for example.

將形成n型擴散層的組成物塗佈於半導體基板上,並於高溫下進行熱處理,藉此形成n型擴散層,但此時於表面形成玻璃。將上述玻璃浸漬於氫氟酸等酸中而去除,但根據玻璃的種類,存在難以去除的玻璃。於此情況下,藉由預先添加Ag、Mn、Cu、Fe、Zn等金屬、Si或其組合,可以於酸清洗後可容易地去除玻璃。在它們中,較佳為使 用選自Ag、Si、Cu、Fe、Zn及Mn中的至少一種,更佳為使用選自Ag、Si及Zn中的至少一種,特佳為Ag。The composition forming the n-type diffusion layer is applied onto a semiconductor substrate and heat-treated at a high temperature to form an n-type diffusion layer, but at this time, glass is formed on the surface. The glass is immersed in an acid such as hydrofluoric acid and removed, but depending on the type of the glass, there is a glass which is difficult to remove. In this case, by previously adding a metal such as Ag, Mn, Cu, Fe, or Zn, Si, or a combination thereof, the glass can be easily removed after the acid cleaning. Among them, it is preferred to make It is more preferable to use at least one selected from the group consisting of Ag, Si, Cu, Fe, Zn, and Mn, and at least one selected from the group consisting of Ag, Si, and Zn, and particularly preferably Ag.

上述金屬的含有比率,較理想的是依據玻璃的種類或上述金屬的種類而適宜調整,一般而言,相對於上述玻璃粉末,上述金屬的含有比率較佳為0.01質量%以上至10質量%以下。而且,上述金屬可在金屬單體及金屬氧化物等的形態下來使用。The content ratio of the metal is preferably adjusted depending on the type of the glass or the type of the metal. Generally, the content of the metal is preferably 0.01% by mass or more and 10% by mass or less based on the glass powder. . Further, the above metal can be used in the form of a metal monomer or a metal oxide.

<形成p型擴散層的組成物><Composition for forming p-type diffusion layer>

本發明的形成p型擴散層的組成物包括至少含有受體元素的玻璃粉末(以下,有時僅稱為「玻璃粉末」)以及分散介質,進而考慮塗佈性等,亦可視需要含有其他添加劑。The composition for forming a p-type diffusion layer of the present invention includes a glass powder (hereinafter sometimes referred to simply as "glass powder") containing at least an acceptor element, and a dispersion medium, and further contains other additives as needed in consideration of coatability and the like. .

此處,所謂形成p型擴散層的組成物,是指含有受體元素的玻璃粉末,例如,可藉由塗佈於矽基板上後進行熱擴散處理(煅燒/燒結),使上述受體元素熱擴散來形成p型擴散層的材料。藉由使用本發明的形成p型擴散層的組成物,可分離形成p+ 型擴散層的步驟與形成歐姆接觸的步驟,從而拓展了對用於形成歐姆接觸的電極材料的選擇,並且還拓展了對電極構造的選擇。例如,若將銀等低電阻材料用於電極時,能夠以較薄的膜厚達成低電阻。另外,電極亦無需形成於整個面上,亦可如梳型等形狀般部分地形成梳型電極。藉由如以上般形成薄膜或梳型形狀等部分形狀,可一面抑制矽基板中的內部應力、基板的翹曲的產生,一面形成p型擴散層。Here, the composition forming the p-type diffusion layer means a glass powder containing an acceptor element, and for example, it can be applied to a ruthenium substrate and then subjected to thermal diffusion treatment (calcination/sintering) to form the above-mentioned acceptor element. Thermal diffusion to form a material of the p-type diffusion layer. By using the composition for forming a p-type diffusion layer of the present invention, the step of forming a p + -type diffusion layer and the step of forming an ohmic contact can be separated, thereby expanding the selection of an electrode material for forming an ohmic contact, and further expanding The choice of electrode construction. For example, when a low-resistance material such as silver is used for the electrode, a low resistance can be achieved with a thin film thickness. Further, the electrode does not need to be formed on the entire surface, and the comb-shaped electrode may be partially formed in a shape such as a comb shape. By forming a partial shape such as a film or a comb shape as described above, it is possible to form a p-type diffusion layer while suppressing internal stress in the ruthenium substrate and occurrence of warpage of the substrate.

因此,若應用本發明的形成p型擴散層的組成物,則 抑制先前廣泛採用的方法中所產生於基板中的內部應力及基板的翹曲的產生,前述之先前廣泛採用的方法為:印刷鋁膏,然後對其進行煅燒,與使n型擴散層變成p+ 型擴散層的同時獲得歐姆接觸的方法。Therefore, when the composition for forming a p-type diffusion layer of the present invention is applied, the generation of internal stress generated in the substrate and the warpage of the substrate in the previously widely used method are suppressed, and the previously widely used method is: printing The aluminum paste is then calcined, and a method of obtaining an ohmic contact while making the n-type diffusion layer into a p + -type diffusion layer.

進而,由於玻璃粉末中的受體成分於煅燒中亦難以揮發,因而抑制了p型擴散層因揮發氣體的產生而形成至所期望的區域以外的情況。其原因被認為是由於受體成分與玻璃粉末中的元素結合、或者被導入至玻璃中,因此難以揮發。Further, since the acceptor component in the glass powder is hardly volatilized during firing, it is suppressed that the p-type diffusion layer is formed outside the desired region due to the generation of volatile gas. The reason for this is considered to be that the acceptor component is bound to an element in the glass powder or introduced into the glass, so that it is difficult to volatilize.

另外,當形成p型擴散層的組成物中所含有的玻璃粉末的含有率為1質量%以上至90質量%以下的範圍時,可以在短時間將形成於p型擴散層上的玻璃層去除。此外,藉由受體元素的擴散,充分地進行p型擴散層的形成。In addition, when the content of the glass powder contained in the composition forming the p-type diffusion layer is in the range of 1% by mass or more to 90% by mass or less, the glass layer formed on the p-type diffusion layer can be removed in a short time. . Further, the formation of the p-type diffusion layer is sufficiently performed by diffusion of the acceptor element.

再者,在本發明中所謂用於「形成p型擴散層」所需的時間是指:用於形成p型擴散層加上用於將形成於p型擴散層之上的玻璃層去除所需要的總時間。據此,藉由短時間去除形成於p型擴散層的玻璃層,縮短用於形成p型擴散層的時間。Further, the time required for "forming a p-type diffusion layer" in the present invention means: for forming a p-type diffusion layer plus for removing a glass layer formed on the p-type diffusion layer. Total time. According to this, the time for forming the p-type diffusion layer is shortened by removing the glass layer formed on the p-type diffusion layer in a short time.

對本發明的含有受體元素的玻璃粉末進行詳細說明。The glass powder containing the acceptor element of the present invention will be described in detail.

所謂受體元素,是指藉由摻雜於矽基板中而可形成p型擴散層的元素。作為受體元素,可以使用週期表的第13族元素,例如可列舉:B(硼)、Al(鋁)及Ga(鎵)等。The term "receptor element" means an element which can form a p-type diffusion layer by being doped into a germanium substrate. As the acceptor element, a Group 13 element of the periodic table can be used, and examples thereof include B (boron), Al (aluminum), and Ga (gallium).

作為用於將受體元素導入至玻璃粉末中的含有受體元素的物質,可列舉B2 O3 、Al2 O3 及Ga2 O3 ,較佳為使用選 自B2 O3 、Al2 O3 及Ga2 O3 中的至少一種。Examples of the acceptor element-containing substance for introducing the acceptor element into the glass powder include B 2 O 3 , Al 2 O 3 and Ga 2 O 3 , preferably selected from B 2 O 3 and Al 2 . At least one of O 3 and Ga 2 O 3 .

另外,含有受體元素的玻璃粉末,可視需要調整成分比率,藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化學耐久性等。較佳為進而包括以下所述的成分。Further, the glass powder containing the acceptor element may be adjusted in composition ratio as needed, thereby controlling the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, and the like. It is preferred to further include the components described below.

作為玻璃成分物質,可列舉:SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、Tl2 O、SnO、ZrO2 、MoO3 、La2 O3 、Nb2 O5 、Ta2 O5 、Y2 O3 、TiO2 、GeO2 、TeO2 及Lu2 O3 等,較佳為使用選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、Tl2 O、SnO、ZrO2 及MoO3 中的至少一種。Examples of the glass component substance include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, SnO, ZrO 2 , and MoO 3 . , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , GeO 2 , TeO 2 , Lu 2 O 3 , etc., preferably selected from the group consisting of SiO 2 , K 2 O, Na At least one of 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, SnO, ZrO 2 and MoO 3 .

作為含有受體元素的玻璃粉末的具體例,可列舉包括上述含有受體元素的物質與上述玻璃成分物質兩者的體系,可列舉:B2 O3 -SiO2 體系(以含有受體元素的物質-玻璃成分物質的順序記載,以下相同)、B2 O3 -ZnO體系、B2 O3 -PbO體系、B2 O3 單獨體系等包括B2 O3 作為含有受體元素的物質的體系,Al2 O3 -SiO2 體系等包括Al2 O3 作為含有受體元素的物質的體系,Ga2 O3 -SiO2 體系等包括Ga2 O3 作為含有受體元素的物質的體系等的玻璃粉末。Specific examples of the glass powder containing the acceptor element include a system including both the above-described acceptor element-containing substance and the above-described glass component substance, and examples thereof include a B 2 O 3 —SiO 2 system (containing an acceptor element). The order of the substance-glass component substance is the same as the above, B 2 O 3 -ZnO system, B 2 O 3 -PbO system, B 2 O 3 individual system, etc., including B 2 O 3 as a system containing a receptor element. The Al 2 O 3 -SiO 2 system or the like includes a system in which Al 2 O 3 is a substance containing an acceptor element, and a Ga 2 O 3 -SiO 2 system or the like includes a system in which Ga 2 O 3 is a substance containing an acceptor element. Glass powder.

另外,亦可為如Al2 O3 -B2 O3 體系、Ga2 O3 -B2 O3 體系等般,玻璃粉末也可以包括兩種以上的含有受體元素的物質的玻璃粉末。Further, the glass powder may be a glass powder containing two or more kinds of substances containing an acceptor element, such as an Al 2 O 3 -B 2 O 3 system or a Ga 2 O 3 -B 2 O 3 system.

於上述中例示了包括一種成分的玻璃或包括兩種成分的複合玻璃,但視需要亦可為如B2 O3 -SiO2 -Na2 O體系等般,三種成分以上的複合玻璃。In the above, a glass containing one component or a composite glass including two components is exemplified, but a composite glass of three or more components such as a B 2 O 3 -SiO 2 -Na 2 O system may be used as needed.

玻璃粉末中的玻璃成分物質的含有比率較理想的是考慮熔融溫度、軟化溫度、玻璃轉移溫度、化學耐久性而適宜設定,一般而言,較佳為0.1質量%以上至95質量%以下,更佳為0.5質量%以上至90質量%以下。The content ratio of the glass component in the glass powder is preferably set in consideration of the melting temperature, the softening temperature, the glass transition temperature, and the chemical durability. In general, it is preferably 0.1% by mass or more and 95% by mass or less. It is preferably 0.5% by mass or more and 90% by mass or less.

玻璃粉末的軟化溫度就擴散處理時的擴散性、滴液(dripping)的觀點而言,較佳為200℃~1000℃,更佳為300℃~900℃。The softening temperature of the glass powder is preferably from 200 ° C to 1000 ° C, more preferably from 300 ° C to 900 ° C from the viewpoint of diffusibility at the time of diffusion treatment and dripping.

作為玻璃粉末的形狀,可列舉:大致球狀、扁平狀、塊狀、板狀及鱗片狀等,就製成形成p型擴散層的組成物時的對於基板的塗佈性或均勻擴散性的觀點而言,較理想的是大致球狀、扁平狀、或板狀。玻璃粉末的粒徑較理想的是50μm以下。當使用具有50μm以下的粒徑的玻璃粉末時,易於獲得平滑的塗膜。進而,玻璃粉末的粒徑更理想的是10μm以下。再者,下限並無特別限制,但較佳為0.01μm以上。Examples of the shape of the glass powder include a substantially spherical shape, a flat shape, a block shape, a plate shape, and a scaly shape, and the coating property or uniform diffusibility of the substrate when the composition for forming the p-type diffusion layer is formed. From the viewpoint, it is preferable to be substantially spherical, flat, or plate-shaped. The particle diameter of the glass powder is preferably 50 μm or less. When a glass powder having a particle diameter of 50 μm or less is used, a smooth coating film is easily obtained. Further, the particle diameter of the glass powder is more preferably 10 μm or less. Further, the lower limit is not particularly limited, but is preferably 0.01 μm or more.

此處,玻璃的粒徑表示平均粒徑,可藉由雷射散射繞射法(laser scattering diffraction method)粒度分布(particle size distribution)測定裝置等來測定。Here, the particle diameter of the glass means an average particle diameter, and can be measured by a laser scattering diffraction method particle size distribution measuring apparatus or the like.

含有受體元素的玻璃粉末是藉由以下的步驟來製作。The glass powder containing the acceptor element was produced by the following procedure.

首先,稱量原料並將其填充至坩堝中。坩堝的材質可列舉鉑、鉑-銠、銥、氧化鋁、石英、碳等,可考慮熔融溫度、環境、與熔融物質的反應性等而適宜選擇。First, the raw material is weighed and filled into the crucible. Examples of the material of the crucible include platinum, platinum-rhodium, iridium, aluminum oxide, quartz, carbon, and the like, and are appropriately selected in consideration of the melting temperature, the environment, and the reactivity with the molten material.

其次,藉由電爐以對應於玻璃組成的溫度進行加熱而製成熔液。此時,較理想的是以使熔液變得均勻的方式進 行攪拌。Next, a molten metal is prepared by heating in an electric furnace at a temperature corresponding to the composition of the glass. At this time, it is desirable to make the melt uniform. Stir.

繼而,使所獲得的熔液流出至氧化鋯基板或碳基板等上而將熔液玻璃化。Then, the obtained melt flows out onto a zirconia substrate, a carbon substrate or the like to vitrify the melt.

最後,粉碎玻璃而形成粉末狀。粉碎可應用噴射磨機、珠磨機、球磨機等公知的方法。Finally, the glass is pulverized to form a powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.

基於塗佈性、施體元素的擴散性、不要的玻璃的蝕刻性等觀點的考量,形成p型擴散層的組成物中的含有受體元素的玻璃粉末的含有比率為1質量%以上至90質量%以下,理想的是5質量%以上至70質量%以下;進而基於充分地表示出低表面阻抗的觀點以及在蝕刻處理中不對基板造成損傷的浸漬時間的觀點而言,含有受體元素的玻璃粉末的含有比率更理想的是10質量%以上至30質量%以下。若玻璃粉末的含有比率超過90質量%,不要的玻璃成分的蝕刻處理變得困難。若玻璃粉末的含有比率小於1質量%,受體對基板的擴散性及塗佈性降低。The content ratio of the glass powder containing the acceptor element in the composition of the p-type diffusion layer is 1% by mass or more and 90% or more based on the coating property, the diffusibility of the donor element, and the etching property of the glass. The mass% or less is preferably 5% by mass or more and 70% by mass or less. Further, based on the viewpoint of sufficiently exhibiting a low surface resistance and the immersion time which does not damage the substrate during the etching treatment, the receptor element is contained. The content ratio of the glass powder is more preferably 10% by mass or more and 30% by mass or less. When the content ratio of the glass powder exceeds 90% by mass, etching treatment of an unnecessary glass component becomes difficult. When the content ratio of the glass powder is less than 1% by mass, the diffusibility and coatability of the acceptor to the substrate are lowered.

另外,考慮到受體元素對基板的擴散性,形成p型擴散層的組成物中的含有受體元素的物質的含有率較佳為1質量%以上,更佳為2質量%以上。並且,即使在形成p型擴散層的組成物中添加一定量以上的受體元素,具有已形成p型擴散層的表面片電阻為一定值以上而不會降低。In addition, in consideration of the diffusibility of the acceptor element to the substrate, the content of the substance containing the acceptor element in the composition forming the p-type diffusion layer is preferably 1% by mass or more, and more preferably 2% by mass or more. Further, even if a certain amount or more of the acceptor element is added to the composition forming the p-type diffusion layer, the surface sheet resistance having the p-type diffusion layer formed is not less than a certain value and does not decrease.

以下,將描述分散介質。Hereinafter, the dispersion medium will be described.

形成p型擴散層的組成物中的分散介質,可以使用與形成n型擴散層的組成物中的分散介質相同的東西,且較佳的範圍亦相同。形成p型擴散層的組成物中的含有比率 考慮塗布性和受體濃度來決定的。The dispersion medium in the composition for forming the p-type diffusion layer may be the same as the dispersion medium in the composition for forming the n-type diffusion layer, and the preferred range is also the same. Content ratio in the composition forming the p-type diffusion layer It is determined by considering the coatability and the receptor concentration.

而且,考慮塗佈性,形成p型擴散層的組成物的黏度較佳為10mPa.S以上至1000000mPa.S以下,更佳為50mPa.S以上至500000mPa.S以下。Moreover, considering the coating property, the viscosity of the composition forming the p-type diffusion layer is preferably 10 mPa. S above to 1000000mPa. Below S, more preferably 50mPa. S above to 500000mPa. S below.

<n型擴散層及太陽能電池元件的製造方法><Method for manufacturing n-type diffusion layer and solar cell element>

接著,參照圖1(1)至圖1(6)來對本發明的n型擴散層及太陽能電池元件的製造方法進行說明。圖1(1)至圖1(6)是概念性地表示本發明的太陽能電池元件的製造步驟的一例的模式剖面圖。於以下的圖式中,對相同的構成要素標註同樣符號。Next, a method of manufacturing an n-type diffusion layer and a solar cell element of the present invention will be described with reference to FIGS. 1(1) to 1(6). 1(1) to 1(6) are schematic cross-sectional views conceptually showing an example of a manufacturing procedure of a solar cell element of the present invention. In the following drawings, the same components are denoted by the same reference numerals.

圖1(1)中,對作為p型半導體基板10的矽基板賦予鹼性溶液來去除損壞層,並藉由蝕刻而獲得紋理構造。In Fig. 1 (1), an alkaline solution is applied to a tantalum substrate as a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.

詳細而言,利用20質量%苛性鈉去除自鑄錠進行切片時所產生的矽表面的損壞層。繼而,利用1質量%苛性鈉與10質量%異丙醇的混合液進行蝕刻,形成紋理構造(圖中省略紋理構造的記載)。太陽能電池元件藉由在受光面(表面)側形成紋理構造,而可促進光學侷限效應,謀求高效率化。Specifically, the damaged layer of the crucible surface generated when slicing from the ingot was removed using 20% by mass of caustic soda. Then, etching was performed by a mixture of 1% by mass of caustic soda and 10% by mass of isopropyl alcohol to form a texture structure (the description of the texture structure is omitted in the drawing). By forming a texture structure on the light-receiving surface (surface) side, the solar cell element can promote an optical confinement effect and achieve high efficiency.

圖1(2)中,將上述形成n型擴散層的組成物塗佈於p型半導體基板10的表面即成為受光面的面上,以形成了形成n型擴散層的組成物層11。本發明中,塗佈方法並無限制,例如有印刷法、旋塗法、毛刷塗佈、噴霧法、刮刀法、輥塗機法、噴墨法等。In the first embodiment, the composition in which the n-type diffusion layer is formed is applied onto the surface of the p-type semiconductor substrate 10, that is, the surface on which the light-receiving surface is formed, to form the composition layer 11 on which the n-type diffusion layer is formed. In the present invention, the coating method is not limited, and examples thereof include a printing method, a spin coating method, a brush coating method, a spray method, a doctor blade method, a roll coater method, and an ink jet method.

上述形成n型擴散層的組成物的塗佈量並無特別限 制。例如,作為玻璃粉末量,可設定為0.001g/m2 ~1g/m2 ,較佳為0.015g/m2 ~0.15g/m2The coating amount of the composition forming the n-type diffusion layer is not particularly limited. For example, the amount of the glass powder can be set to 0.001 g/m 2 to 1 g/m 2 , preferably 0.015 g/m 2 to 0.15 g/m 2 .

再者,依據形成n型擴散層的組成物的組成,在有必要的情況下,可於塗佈後,進行使組成物中所含有的溶劑揮發的乾燥步驟。於此情況下,於80℃~300℃左右的溫度下,當使用加熱板時乾燥1分鐘~10分鐘,當使用乾燥機等時乾燥10分鐘~30分鐘左右。上述乾燥條件依存於形成n型擴散層的組成物的溶劑組成,於本發明中並不特別限定於上述條件。Further, depending on the composition of the composition forming the n-type diffusion layer, if necessary, a drying step of volatilizing the solvent contained in the composition may be performed after coating. In this case, it is dried for 1 minute to 10 minutes when using a hot plate at a temperature of about 80 ° C to 300 ° C, and dried for about 10 minutes to 30 minutes when using a dryer or the like. The drying conditions depend on the solvent composition of the composition forming the n-type diffusion layer, and are not particularly limited to the above conditions in the present invention.

另外,當使用本發明的製造方法時,背面的p+ 型擴散層(高濃度電場層)14的製造方法並不限定於藉由鋁將n型擴散層轉變成p型擴散層的方法,亦可採用先前公知的任何方法,可擴大製造方法的選擇項。因此,例如可賦予含有B(硼)等第13族的元素的組成物13來形成高濃度電場層14。Further, when the manufacturing method of the present invention is used, the method of manufacturing the p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface is not limited to the method of converting the n-type diffusion layer into a p-type diffusion layer by aluminum. Any of the previously known methods can be employed to expand the options of the manufacturing method. Therefore, for example, the composition 13 containing an element of Group 13 such as B (boron) can be imparted to form the high-concentration electric field layer 14.

之後,於600℃~1200℃下對形成有上述形成n型擴散層的組成物層11的半導體基板10進行熱擴散處理。藉由上述熱擴散處理,如圖1(3)所示,施體元素朝半導體基板中擴散,而形成n型擴散層12。熱擴散處理可應用公知的連續爐、分批式爐等。另外,熱擴散處理時的爐內環境亦可適宜調整成空氣、氧氣、氮氣等。Thereafter, the semiconductor substrate 10 on which the composition layer 11 forming the n-type diffusion layer is formed is subjected to thermal diffusion treatment at 600 ° C to 1200 ° C. By the above thermal diffusion treatment, as shown in FIG. 1 (3), the donor element is diffused into the semiconductor substrate to form the n-type diffusion layer 12. As the heat diffusion treatment, a known continuous furnace, a batch furnace, or the like can be applied. In addition, the furnace environment during the thermal diffusion treatment may be appropriately adjusted to air, oxygen, nitrogen, or the like.

熱擴散處理時間可對應於形成n型擴散層的組成物中所含有的施體元素的含有率等而適宜選擇。例如,可設定為1分鐘~60分鐘,更佳為2分鐘~30分鐘。The thermal diffusion treatment time can be appropriately selected in accordance with the content ratio of the donor element contained in the composition forming the n-type diffusion layer. For example, it can be set to 1 minute to 60 minutes, more preferably 2 minutes to 30 minutes.

由於所形成的n型擴散層12的表面形成有磷酸玻璃等玻璃層(未圖示),故藉由蝕刻以去除上述磷酸玻璃。蝕刻可應用浸漬於氫氟酸等酸中的方法、浸漬於苛性鈉等鹼中的方法等公知的方法。Since a glass layer (not shown) such as phosphoric acid glass is formed on the surface of the formed n-type diffusion layer 12, the phosphoric acid glass is removed by etching. The etching can be carried out by a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda.

如圖1(2)及圖1(3)所示,使用本發明的形成n型擴散層的組成物11而形成n型擴散層12的本發明的n型擴散層的形成方法中,於所期望的部位形成n型擴散層12,不於背面或側面形成不需要的n型擴散層。As shown in Fig. 1 (2) and Fig. 1 (3), in the method for forming an n-type diffusion layer of the present invention in which the n-type diffusion layer 12 of the present invention is formed to form the n-type diffusion layer 12, The n-type diffusion layer 12 is formed at a desired portion, and an unnecessary n-type diffusion layer is not formed on the back surface or the side surface.

因此,藉由先前廣泛採用的氣相反應法來形成n型擴散層的方法中,用於去除形成於側面的不需要的n型擴散層的側蝕步驟是必須的,然而,依據本發明的製造方法,不需要側蝕步驟,從而使步驟簡單化。Therefore, in the method of forming an n-type diffusion layer by a gas phase reaction method widely used previously, a step of etching for removing an unnecessary n-type diffusion layer formed on the side is necessary, however, according to the present invention The manufacturing method does not require a side etching step, thereby simplifying the steps.

另外,於先前的製造方法中,必需將形成於背面的不需要的n型擴散層轉換成p型擴散層,作為上述轉換方法,採用如下的方法:於背面的n型擴散層上塗佈作為第13族元素的鋁的膏狀物,並進行煅燒,使鋁擴散至n型擴散層而將n型擴散層轉換成p型擴散層。於上述方法中,為了充分地將n型擴散層轉換成p型擴散層,進而形成p+ 層的高濃度電場層,而需要某種程度以上的鋁量,因此必需將鋁層形成得較厚。然而,鋁的熱膨脹係數與用作基板的矽的熱膨脹係數相差較大,因此於煅燒及冷卻的過程中,在矽基板中產生較大的內部應力,而成為矽基板的翹曲的原因。Further, in the conventional manufacturing method, it is necessary to convert an unnecessary n-type diffusion layer formed on the back surface into a p-type diffusion layer, and as the conversion method, the following method is employed: coating on the n-type diffusion layer on the back surface A paste of aluminum of a Group 13 element is calcined to diffuse aluminum to the n-type diffusion layer to convert the n-type diffusion layer into a p-type diffusion layer. In the above method, in order to sufficiently convert the n-type diffusion layer into a p-type diffusion layer and further form a high-concentration electric field layer of the p + layer, a certain amount of aluminum is required, so it is necessary to form the aluminum layer thicker. . However, the coefficient of thermal expansion of aluminum differs greatly from the coefficient of thermal expansion of tantalum used as a substrate. Therefore, during the process of calcination and cooling, a large internal stress is generated in the tantalum substrate, which is a cause of warpage of the tantalum substrate.

上述內部應力對結晶的結晶粒界(crystal grain boundary)造成損傷,從而導致電力損失變大的問題。另外,翹曲於模組製程中的太陽能電池元件的搬送、或者與被稱為分支線路(tab wire)的銅線的連接過程中,容易使元件破損。近年來,由於切片加工技術的提高,因此矽基板的厚度正被薄型化,進而存在元件更加容易破裂的傾向。The above internal stress versus crystalline grain boundary Boundary) causes damage, resulting in a problem of increased power loss. Further, in the process of transferring the solar cell element in the module process or the connection with a copper wire called a tab wire, the element is easily broken. In recent years, as the slicing technology has been improved, the thickness of the tantalum substrate is being reduced in thickness, and the element tends to be more easily broken.

但是,依據本發明的製造方法,不於背面形成不需要的n型擴散層,因此無需進行自n型擴散層朝p型擴散層的轉換,而不必使鋁層變厚。其結果,可抑制矽基板內的內部應力的產生或翹曲。結果,可抑制電力損失的增大、或元件的破損。However, according to the manufacturing method of the present invention, since an unnecessary n-type diffusion layer is not formed on the back surface, conversion from the n-type diffusion layer to the p-type diffusion layer is not required, and it is not necessary to make the aluminum layer thick. As a result, generation or warpage of internal stress in the ruthenium substrate can be suppressed. As a result, an increase in power loss or breakage of the element can be suppressed.

另外,當使用本發明的製造方法時,背面的p+ 型擴散層(高濃度電場層)14的製造方法並不限定於藉由鋁來將n型擴散層轉換成p型擴散層的方法,亦可採用先前公知的任何方法,拓展了製造方法的選擇項。例如,也可以利用本發明的形成p型擴散層的組成物,來形成p+ 型擴散層。Further, when the manufacturing method of the present invention is used, the method of producing the p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface is not limited to the method of converting the n-type diffusion layer into a p-type diffusion layer by aluminum. The choice of manufacturing method can also be extended by any method previously known. For example, the p + -type diffusion layer can also be formed by using the composition for forming a p-type diffusion layer of the present invention.

另外,如後述般,用於背面的表面電極20的材料並不限定於第13族的鋁,例如可應用Ag(銀)或Cu(銅)等,背面的表面電極20的厚度亦可比先前的厚度更薄地形成。Further, as will be described later, the material of the surface electrode 20 for the back surface is not limited to aluminum of Group 13, for example, Ag (silver) or Cu (copper) may be applied, and the thickness of the surface electrode 20 on the back surface may be larger than that of the prior art. The thickness is formed thinner.

圖1(4)中,於n型擴散層12上形成抗反射膜16。抗反射膜16是應用公知的技術而形成。例如,當抗反射膜16為氮化矽膜時,藉由將SiH4 與NH3 的混合氣體作為原料的電漿化學氣相沈積(Chemical Vapor Deposition,CVD)法來形成。此時,氫於結晶中擴散,到不參與矽原子之鍵結的軌道中,即懸鍵(dangling bond)與氫鍵結,而使缺 陷鈍化(氫鈍化)。In FIG. 1 (4), an anti-reflection film 16 is formed on the n-type diffusion layer 12. The anti-reflection film 16 is formed using a well-known technique. For example, when the anti-reflection film 16 is a tantalum nitride film, it is formed by a plasma chemical vapor deposition (CVD) method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses in the crystal to the orbit that does not participate in the bonding of the germanium atom, that is, the dangling bond is hydrogen-bonded, and the defect is passivated (hydrogen passivation).

更具體而言,於上述混合氣體流量比NH3 /SiH4 為0.05~1.0,反應室的壓力為13.3Pa(0.1Torr)~266.6Pa(2Torr),成膜時的溫度為300℃~550℃,利用電漿放電的頻率為100kHz以上的條件下形成。More specifically, the mixed gas flow rate ratio NH 3 /SiH 4 is 0.05 to 1.0, the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr), and the film forming temperature is 300 ° C to 550 ° C. It is formed under the condition that the frequency of the plasma discharge is 100 kHz or more.

圖1(5)中,於表面(受光面)的抗反射膜16上,藉由網版印刷法印刷塗佈表面電極用金屬膏並使其乾燥,而形成表面電極18。表面電極用金屬膏是將(1)金屬粒子與(2)玻璃粒子作為必需成分,且視需要包括(3)樹脂粘合劑,以及(4)其他添加劑等。In Fig. 1 (5), a surface electrode 18 is formed by printing and coating a metal paste for a surface electrode on a surface (light-receiving surface) of the anti-reflection film 16 by a screen printing method. The metal paste for a surface electrode contains (1) metal particles and (2) glass particles as essential components, and if necessary, (3) a resin binder, and (4) other additives.

繼而,於上述背面的高濃度電場層14上亦形成背面電極20。如上所述,本發明中背面電極20的材質或形成方法並無特別限定。例如,塗佈包括鋁、銀或銅等金屬的背面電極用膏,並使其乾燥,亦可形成背面電極20。此時,為了模組製程中的元件間的連接,亦可於背面的一部分上設置銀電極形成用銀膏。Then, the back surface electrode 20 is also formed on the high-concentration electric field layer 14 on the back surface. As described above, the material or formation method of the back surface electrode 20 in the present invention is not particularly limited. For example, a paste for a back electrode including a metal such as aluminum, silver or copper may be applied and dried to form the back electrode 20. At this time, in order to connect the components in the module process, a silver paste for silver electrode formation may be provided on a part of the back surface.

圖1(6)中,對電極進行煅燒,製成太陽能電池元件。若於600℃~900℃的範圍內煅燒幾秒~幾分鐘,則於表面側,作為絕緣膜的抗反射膜16因電極用金屬膏中所含有的玻璃粒子而熔融,進而矽10表面的一部分亦熔融,膏狀物中的金屬粒子(例如銀粒子)與矽基板10形成接觸部並凝固。藉此,所形成的表面電極18與矽基板10被導通。將此稱為燒透(fire through)。In Fig. 1 (6), the electrode was calcined to prepare a solar cell element. When calcined in the range of 600 ° C to 900 ° C for several seconds to several minutes, the antireflection film 16 as an insulating film is melted on the surface side by the glass particles contained in the metal paste for the electrode, and further, a part of the surface of the crucible 10 It is also melted, and metal particles (for example, silver particles) in the paste form a contact portion with the tantalum substrate 10 and solidify. Thereby, the formed surface electrode 18 and the germanium substrate 10 are electrically connected. This is called fire through.

對表面電極18的形狀進行說明。表面電極18是由匯 流條電極30、以及與上述匯流條電極30交叉的指狀電極32所構成。圖2(A)是自表面觀察到的將表面電極18設定為包括匯流條電極30、以及與上述匯流條電極30交叉的指狀電極32所構成的太陽能電池元件的平面圖,圖2(B)是將圖2(A)的一部分擴大表示的立體圖。The shape of the surface electrode 18 will be described. Surface electrode 18 is made up of sink The strip electrode 30 and the finger electrode 32 that intersects the bus bar electrode 30 are formed. 2(A) is a plan view of the solar cell element formed by the surface electrode 18 as viewed from the surface, including the bus bar electrode 30 and the finger electrode 32 crossing the bus bar electrode 30, and FIG. 2(B) This is a perspective view in which a part of Fig. 2(A) is enlarged.

此種表面電極18,可藉由例如上述金屬膏的網版印刷、或者電極材料的鍍敷、於高真空中利用電子束加熱的電極材料的蒸鍍等方法而形成。眾所周知,包括匯流條電極30與指狀電極32的表面電極18一般是用作受光面側的電極,可應用受光面側的匯流條電極及指狀電極的公知的形成方法。Such a surface electrode 18 can be formed by, for example, screen printing of the above-described metal paste, plating of an electrode material, vapor deposition of an electrode material by electron beam heating in a high vacuum, or the like. As is well known, the surface electrode 18 including the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light-receiving surface side, and a known method of forming the bus bar electrode and the finger electrode on the light-receiving surface side can be applied.

<p型擴散層及太陽能電池元件的製造方法><P-type diffusion layer and method of manufacturing solar cell element>

接著,對本發明的p型擴散層及太陽能電池元件的製造方法進行說明。Next, a method of manufacturing the p-type diffusion layer and the solar cell element of the present invention will be described.

首先,對作為p型半導體基板的矽基板賦予鹼性溶液來去除損壞層,並藉由蝕刻而獲得紋理構造。此步驟,與於n型擴散層的形成同樣一邊參照圖1(1)一邊說明步驟。First, an alkaline solution is applied to a tantalum substrate as a p-type semiconductor substrate to remove the damaged layer, and a texture structure is obtained by etching. In this step, the steps will be described with reference to Fig. 1 (1) in the same manner as the formation of the n-type diffusion layer.

其次,於三氯氧化磷(POCl3 )、氮氣、氧氣的混合氣體環境下以800℃~900℃進行幾十分鐘的處理,從而同樣地形成n型擴散層。此時,於使用三氯氧化磷環境的方法中,磷的擴散亦到達側面及背面,n型擴散層不僅形成於表面,而且亦形成於側面、背面。因此,為了去除側面的n型擴散層而實施側蝕刻。Next, the treatment is performed at 800 ° C to 900 ° C for several tens of minutes in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen gas, and oxygen gas to form an n-type diffusion layer in the same manner. At this time, in the method using the phosphorus oxychloride environment, the diffusion of phosphorus also reaches the side surface and the back surface, and the n-type diffusion layer is formed not only on the surface but also on the side surface and the back surface. Therefore, side etching is performed in order to remove the n-type diffusion layer on the side.

然後,將上述形成p型擴散層的組成物塗佈於p型半 導體基板的背面即不是受光面的n型擴散層的面上。本發明中,塗佈方法並無限制,例如有印刷法、旋塗法、毛刷塗佈、噴霧法、刮刀法、輥塗機法、噴墨法等。Then, the composition for forming the p-type diffusion layer described above is applied to the p-type half. The back surface of the conductor substrate is not the surface of the n-type diffusion layer of the light receiving surface. In the present invention, the coating method is not limited, and examples thereof include a printing method, a spin coating method, a brush coating method, a spray method, a doctor blade method, a roll coater method, and an ink jet method.

上述形成p型擴散層的組成物的塗佈量並無特別限制。例如,作為玻璃粉末的塗佈量,可設定為0.05g/m2 ~1.05g/m2 ,較佳為0.065g/m2 ~0.02g/m2The coating amount of the composition forming the p-type diffusion layer is not particularly limited. For example, the coating amount of the glass powder can be set to 0.05 g/m 2 to 1.05 g/m 2 , preferably 0.065 g/m 2 to 0.02 g/m 2 .

再者,依據形成p型擴散層的組成物的組成,在有必要的情況下,可於塗佈後,進行使組成物中所含有的溶劑揮發的乾燥步驟。於此情況下,於80℃~300℃左右的溫度下,當使用加熱板時乾燥1分鐘~10分鐘,當使用乾燥機等時乾燥10分鐘~30分鐘左右。上述乾燥條件依存於形成p型擴散層的組成物的溶劑組成,於本發明中並不特別限定於上述條件。Further, depending on the composition of the composition forming the p-type diffusion layer, if necessary, a drying step of volatilizing the solvent contained in the composition may be performed after coating. In this case, it is dried for 1 minute to 10 minutes when using a hot plate at a temperature of about 80 ° C to 300 ° C, and dried for about 10 minutes to 30 minutes when using a dryer or the like. The drying conditions depend on the solvent composition of the composition forming the p-type diffusion layer, and are not particularly limited to the above conditions in the present invention.

將塗佈有上述形成p型擴散層的組成物的半導體基板,於600℃~1200℃下進行熱處理。藉由此熱處理,使受體元素朝半導體基板中擴散,而形成p+ 型擴散層。熱處理可應用公知的連續爐、分批式爐等。另外,熱擴散處理時的爐內環境亦可適宜調整成空氣、氧氣、氮氣等。The semiconductor substrate coated with the composition forming the p-type diffusion layer described above is heat-treated at 600 ° C to 1200 ° C. By this heat treatment, the acceptor element is diffused into the semiconductor substrate to form a p + -type diffusion layer. A known continuous furnace, a batch furnace, or the like can be applied to the heat treatment. In addition, the furnace environment during the thermal diffusion treatment may be appropriately adjusted to air, oxygen, nitrogen, or the like.

熱擴散處理時間可對應於形成p型擴散層的組成物中所含有的受體元素的含有率等而適宜選擇。例如,可設定為1分鐘~60分鐘,更佳為2分鐘~30分鐘。The thermal diffusion treatment time can be appropriately selected in accordance with the content ratio of the acceptor element contained in the composition forming the p-type diffusion layer. For example, it can be set to 1 minute to 60 minutes, more preferably 2 minutes to 30 minutes.

因於p+ 型擴散層的表面形成有玻璃層,故藉由蝕刻而去除上述玻璃。蝕刻可應用浸漬於氫氟酸等酸中的方法、浸漬於苛性鈉等鹼中的方法等公知的方法。Since the glass layer is formed on the surface of the p + -type diffusion layer, the glass is removed by etching. The etching can be carried out by a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda.

此處,若使用本發明之玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍的形成p型擴散層的組成物,形成於p型擴散層上的玻璃層在短時間被去除。Here, when the composition for forming a p-type diffusion layer is used in a range in which the content ratio of the glass powder of the present invention is from 1% by mass or more to 90% by mass or less, the glass layer formed on the p-type diffusion layer is removed in a short time. .

另外,於先前的製造方法中,於背面印刷鋁膏,然後對其進行煅燒,使n型擴散層轉變成p+ 型擴散層的同時獲得歐姆接觸。但是,由鋁膏所形成的鋁層的導電率低,為了降低片電阻,通常形成於整個背面的鋁層於煅燒後必需具有10μm~20μm左右的厚度。進而,若形成如上述般厚的鋁層,則由於矽的熱膨脹係數與鋁的熱膨脹係數相差較大,因此於煅燒及冷卻的過程中,在矽基板中產生較大的內部應力,而成為翹曲的原因。Further, in the prior manufacturing method, the aluminum paste was printed on the back side and then calcined to convert the n-type diffusion layer into a p + -type diffusion layer while obtaining an ohmic contact. However, the aluminum layer formed of the aluminum paste has a low electrical conductivity, and in order to lower the sheet resistance, the aluminum layer usually formed on the entire back surface must have a thickness of about 10 μm to 20 μm after firing. Further, when the aluminum layer having the thickness as described above is formed, since the coefficient of thermal expansion of the crucible differs greatly from the coefficient of thermal expansion of aluminum, a large internal stress is generated in the crucible substrate during the calcination and cooling, and becomes a warp. The reason for the song.

存在上述內部應力對結晶的結晶粒界造成損傷,電力損失變大的課題。另外,翹曲於模組製程中的太陽能電池元件的搬送、或者與被稱為分支線路(tab wire)的銅線的連接過程中,容易使元件破損。近年來,由於切片加工技術的提高,因此矽基板的厚度正被薄型化,而存在元件更加容易破裂的傾向。There is a problem that the internal stress causes damage to the crystal grain boundary of the crystal and the power loss increases. Further, in the process of transferring the solar cell element in the module process or the connection with a copper wire called a tab wire, the element is easily broken. In recent years, as the slicing technology has been improved, the thickness of the tantalum substrate is being thinned, and the element tends to be more easily broken.

但是,依據本發明的製造方法,於藉由上述本發明的形成p型擴散層的組成物將n型擴散層轉換成p+ 型擴散層後,在上述p+ 型擴散層上另外設置電極。因此,用於背面的電極的材料並不限定於鋁,例如可應用Ag(銀)或Cu(銅)等,背面的電極的厚度亦可比先前的厚度更薄地形成,另外亦無需形成於整個面上。因此,可減少於煅燒及冷卻的過程中所產生的矽基板中的內部應力及翹曲。However, according to the manufacturing method of the present invention, after the n-type diffusion layer is converted into the p + -type diffusion layer by the composition for forming a p-type diffusion layer of the present invention, an electrode is additionally provided on the p + -type diffusion layer. Therefore, the material of the electrode for the back surface is not limited to aluminum. For example, Ag (silver) or Cu (copper) may be applied, and the thickness of the electrode on the back surface may be formed thinner than the previous thickness, and it is not necessary to form the entire surface. on. Therefore, internal stress and warpage in the tantalum substrate generated during the calcination and cooling can be reduced.

並且,藉由蝕刻去除玻璃後,於上述所形成的n型擴散層上形成抗反射膜。此步驟,與於n型擴散層的形成同樣一邊參照圖1(4)一邊說明步驟。Then, after the glass is removed by etching, an anti-reflection film is formed on the n-type diffusion layer formed as described above. In this step, the steps will be described with reference to FIG. 1 (4) in the same manner as the formation of the n-type diffusion layer.

於表面(受光面)的抗反射膜上,藉由網版印刷法印刷塗佈表面電極用金屬膏並使其乾燥,而形成表面電極。此步驟,與於n型擴散層的形成同樣一邊參照圖1(5)一邊說明步驟。On the antireflection film of the surface (light-receiving surface), a metal paste for surface electrode coating was applied by screen printing and dried to form a surface electrode. In this step, the steps will be described with reference to Fig. 1 (5) in the same manner as the formation of the n-type diffusion layer.

接著,於上述背面的p+ 型擴散層上亦形成背面電極。上述背面電極的形成步驟,也與在n型擴散層的說明相同。Next, a back surface electrode is also formed on the p + -type diffusion layer on the back surface. The step of forming the back electrode described above is also the same as that described for the n-type diffusion layer.

對上述電極進行煅燒,製成太陽能電池元件。此步驟,與於n型擴散層的形成同樣一邊參照圖1(6)一邊說明步驟。The above electrode was calcined to prepare a solar cell element. In this step, the steps will be described with reference to FIG. 1 (6) in the same manner as the formation of the n-type diffusion layer.

再者,於上述的p型擴散層及太陽能電池元件的製造方法中,為了於作為p型半導體基板的矽基板上形成n型擴散層,而使用三氯氧化磷(POCl3 )、氮氣及氧氣的混合氣體,但亦可使用上述的形成n型擴散層的組成物來形成n型擴散層。Further, in the above-described p-type diffusion layer and method for producing a solar cell element, in order to form an n-type diffusion layer on a germanium substrate as a p-type semiconductor substrate, phosphorus oxychloride (POCl 3 ), nitrogen, and oxygen are used. The mixed gas may be formed using the above-described composition forming the n-type diffusion layer to form an n-type diffusion layer.

於將上述形成n型擴散層的組成物用於n型擴散層的形成的方法中,首先,於作為p型半導體基板的表面的受光面塗佈形成n型擴散層的組成物,於背面塗佈本發明的形成p型擴散層的組成物,然後於600℃~1200℃下進行熱擴散處理。藉由上述熱擴散處理,施體元素於表面向p型半導體基板中擴散而形成n型擴散層,受體元素則於背面擴散而形成p+ 型擴散層。除上述步驟以外,藉由與上述 方法相同的步驟來製作太陽能電池元件。In the method of forming the composition for forming an n-type diffusion layer for the formation of an n-type diffusion layer, first, a composition for forming an n-type diffusion layer is applied to a light-receiving surface of a surface of a p-type semiconductor substrate, and is coated on the back surface. The composition for forming a p-type diffusion layer of the present invention is then subjected to thermal diffusion treatment at 600 ° C to 1200 ° C. By the above-described thermal diffusion treatment, the donor element diffuses into the p-type semiconductor substrate to form an n-type diffusion layer, and the acceptor element diffuses on the back surface to form a p + -type diffusion layer. In addition to the above steps, the solar cell element was fabricated by the same steps as the above method.

於上述中,對在表面形成n型擴散層,在背面形成p+ 型擴散層,進而在各個層上設置有表面電極及背面電極的太陽能電池元件進行了說明,但若使用本發明的形成n型擴散層的組成物及形成p型擴散層的組成物,則亦可製作背接觸型(back contact)的太陽能電池元件。In the above, a solar cell element in which an n-type diffusion layer is formed on the surface, a p + -type diffusion layer is formed on the back surface, and a surface electrode and a back surface electrode are provided on each layer has been described. However, if the present invention is used to form n A back contact solar cell element can also be produced as a composition of the diffusion layer and a composition for forming the p-type diffusion layer.

背接觸型的太陽能電池元件是將電極全部設置於背面而增大受光面的面積的太陽能電池元件。即,於背接觸型的太陽能電池元件中,必需於背面形成n型擴散部位及p+ 型擴散部位兩者來形成pn接合構造。本發明的形成n型擴散層的組成物及形成p型擴散層的組成物,可僅於特定的部位形成n型擴散部位及p型擴散部位,因此可較佳地應用於背接觸型的太陽能電池元件的製造。The back contact type solar cell element is a solar cell element in which all of the electrodes are provided on the back surface to increase the area of the light receiving surface. In other words, in the back contact type solar cell element, it is necessary to form both the n-type diffusion portion and the p + -type diffusion portion on the back surface to form a pn junction structure. The composition for forming an n-type diffusion layer and the composition for forming a p-type diffusion layer of the present invention can form an n-type diffusion portion and a p-type diffusion portion only at a specific portion, and thus can be preferably applied to a back contact type solar energy. Manufacturing of battery components.

再者,藉由參照而將日本申請案2010-144203號及日本申請案2010--144204號中所揭示的全部內容引用於本說明書中。In addition, the entire contents disclosed in Japanese Patent Application No. 2010-144203 and Japanese Application No. 2010-144204 are hereby incorporated by reference.

本說明書中所記載的所有文獻、專利申請案及技術規格是以與具體地且個別地記載藉由參照而引用各個文獻、專利申請案及技術規格時相同的程度,藉由參照而引用於本說明書中。All of the documents, patent applications, and technical specifications described in the specification are the same as those which are specifically and individually described by reference to the respective documents, patent applications, and technical specifications, which are incorporated herein by reference. In the manual.

[實例][Example]

以下,更具體地說明本發明的實例,但本發明並不受這些實例限制。再者,只要事先無特別記述,則化學品全部使用試劑。另外,只要事先無說明,則「%」表示「質量 %」。Hereinafter, examples of the invention will be more specifically described, but the invention is not limited by these examples. In addition, as long as there is no special description in advance, all reagents are used as chemicals. In addition, "%" means "quality" as long as there is no explanation beforehand. %".

[實例1A][Example 1A]

使用自動乳缽(mortar)混練裝置(kneading machine)將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末20g與乙基纖維素0.08g、乙酸2-(2-丁氧基乙氧基)乙酯2.14g加以混合並膏化,以調製成玻璃含有率90%的形成n型擴散層的組成物。20 g of powder of P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) and 0.08 g of ethyl cellulose, 2-(2-acetic acid) using an automatic kneading machine (kneading machine) 2.14 g of 2-butoxyethoxy)ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 90%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中90分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為11Ω/□,P(磷)擴散而形成了n型擴散層。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 11 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

並且,片電阻是使用三菱化學(公司)製的Loresta-EP MCP-T360型的低電阻率計藉由四探針法所測定的。Further, the sheet resistance was measured by a four-probe method using a low resistivity meter of the Loresta-EP MCP-T360 type manufactured by Mitsubishi Chemical Corporation.

[實例2A][Example 2A]

使用自動乳缽混練裝置將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末8g與乙基纖維素0.17g、乙酸2-(2-丁氧基乙氧基)乙酯4.27g加以混合並膏化,以調製成玻璃含有率65%的形成n型擴散層的組成物。P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) powder 8 g and ethyl cellulose 0.17 g, 2-(2-butoxyethoxy) acetate using an automatic mortar mixing device 4.27 g of ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 65%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型 矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中40分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste is applied to the p-type by screen printing. The substrate was rubbed on the surface of the substrate and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 40 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為12Ω/□,P(磷)擴散而形成了n型擴散層。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition for forming the n-type diffusion layer was applied was 12 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

[實例3A][Example 3A]

使用自動乳缽混練裝置將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末6g與乙基纖維素0.91g、乙酸2-(2-丁氧基乙氧基)乙酯23.1g加以混合並膏化,以調製成玻璃含有率20%的形成n型擴散層的組成物。P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) powder 6g and ethyl cellulose 0.91g, acetic acid 2-(2-butoxyethoxy) using an automatic mortar mixing device 23.1 g of ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 20%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為11Ω/□,P(磷)擴散而形成了n型擴散層。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 11 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

[實例4A][Example 4A]

使用自動乳缽混練裝置將P2 O5 -ZnO體系玻璃(P2 O5 : 30%、ZnO:70%)粉末3g與乙基纖維素1.02g、乙酸2-(2-丁氧基乙氧基)乙酯26.0g加以混合並膏化,以調製成玻璃含有率10%的形成n型擴散層的組成物。P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) powder 3g and ethyl cellulose 1.02g, 2-(2-butoxyethoxy) acetate using an automatic mortar mixing device 26.0 g of ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 10%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為17Ω/□,P(磷)擴散而形成了n型擴散層。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition for forming the n-type diffusion layer was applied was 17 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

[實例5A][Example 5A]

使用自動乳缽混練裝置將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末0.5g與乙基纖維素0.36g、乙酸2-(2-丁氧基乙氧基)乙酯9.14g加以混合並膏化,以調製成玻璃含有率5%的形成n型擴散層的組成物。P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) powder 0.5 g with ethyl cellulose 0.36 g, 2-(2-butoxy B acetate) using an automatic mortar mixing device 9.14 g of oxy)ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 5%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為20Ω/□,P(磷)擴散而形成了n型擴散層。背面 的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition for forming the n-type diffusion layer was applied was 20 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. back The sheet resistance was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was judged that the n-type diffusion layer was not substantially formed.

[實例6A][Example 6A]

使用自動乳缽混練裝置將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末0.3g與乙基纖維素0.56g、乙酸2-(2-丁氧基乙氧基)乙酯14.1g加以混合並膏化,以調製成玻璃含有率2%的形成n型擴散層的組成物。P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) powder 0.3 g with ethyl cellulose 0.56 g, 2-(2-butoxy B acetate) using an automatic mortar mixing device 14.1 g of oxy)ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 2%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為56Ω/□,P(磷)擴散而形成了n型擴散層。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 56 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

[比較例1A][Comparative Example 1A]

將磷酸二氫銨(NH4 H2 PO4 )粉末20g、乙基纖維素3g與乙酸2-(2-丁氧基乙氧基)乙酯7g混合並製成膏狀物,以調製成形成n型擴散層的組成物。20 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder, 3 g of ethyl cellulose and 7 g of 2-(2-butoxyethoxy)ethyl acetate were mixed to prepare a paste to prepare n. The composition of the type of diffusion layer.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入氫氟酸中5分鐘,以移除玻璃層,進行 流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer. Wash and dry with running water.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為14Ω/□,P(磷)擴散而形成了n型擴散層。然而,背面的片電阻為50Ω/□,在背面也形成了n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 14 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. However, the sheet resistance of the back surface was 50 Ω/□, and an n-type diffusion layer was also formed on the back surface.

[比較例2A][Comparative Example 2A]

將磷酸二氫銨(NH4 H2 PO4 )粉末1g、純水7g、聚乙烯醇0.7g與異丙醇1.5g混合並調製成溶液,以調製成形成n型擴散層的組成物。1 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder, 7 g of pure water, 0.7 g of polyvinyl alcohol, and 1.5 g of isopropyl alcohol were mixed to prepare a solution to prepare a composition for forming an n-type diffusion layer.

接著,通過旋塗機(2000rpm,30秒)將所調製的溶液塗佈到p型矽基板表面上,並且在電熱板上在150℃乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入氫氟酸中5分鐘,以移除玻璃層,隨後用流水洗滌並乾燥。Next, the prepared solution was applied onto the surface of the p-type ruthenium substrate by a spin coater (2000 rpm, 30 seconds), and dried at 150 ° C for 5 minutes on a hot plate. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, followed by washing with running water and drying.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為10Ω/□,P(磷)擴散而形成了n型擴散層。然而,背面的片電阻為100Ω/□,在背面也形成了n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 10 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. However, the sheet resistance of the back surface was 100 Ω/□, and an n-type diffusion layer was also formed on the back surface.

[比較例3A][Comparative Example 3A]

將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末30g與乙基纖維素0.06g、乙酸2-(2-丁氧基乙氧基)乙酯1.52g加以混合並膏化,以調製成玻璃含有率95%的形成n型擴散層的組成物。30 g of powder of P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) and 0.06 g of ethyl cellulose and 1.52 g of 2-(2-butoxyethoxy)ethyl acetate These were mixed and pasteified to prepare a composition which forms an n-type diffusion layer having a glass content of 95%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。 然後,將基板浸入2.5%的氫氟酸中90分鐘,以移除玻璃層。之後,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. The substrate was then immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer. After that, it was washed with running water and dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為10Ω/□,P(磷)擴散而形成了n型擴散層。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 10 Ω/□, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

[比較例4A][Comparative Example 4A]

將P2 O5 -ZnO體系玻璃(P2 O5 :30%、ZnO:70%)粉末0.05g與乙基纖維素0.38g、乙酸2-(2-丁氧基乙氧基)乙酯9.57g加以混合並膏化,以調製成玻璃含有率0.5%的形成n型擴散層的組成物。P 2 O 5 -ZnO system glass (P 2 O 5 : 30%, ZnO: 70%) powder 0.05g and ethyl cellulose 0.38g, 2-(2-butoxyethoxy)ethyl acetate 9.57 g was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 0.5%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到p型矽基板表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌。之後,進行乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer and subjected to running water washing. After that, it is dried.

在塗佈了形成n型擴散層的組成物的那一側的表面的片電阻為186Ω/□,P(磷)的擴散並不充分。背面的片電阻為1000000Ω/□以上的無法測定的片電阻,而被判定實質上沒有形成n型擴散層。The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 186 Ω/□, and the diffusion of P (phosphorus) was not sufficient. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was determined that substantially no n-type diffusion layer was formed.

[實例1B][Example 1B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)20g與乙基纖維素0.08g、乙酸 2-(2-丁氧基乙氧基)乙酯2.14g加以混合並膏化,以調製成玻璃含有率90%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 20 g using an automatic mortar mixing device 0.08 g of ethyl cellulose and 2.14 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition for forming a p-type diffusion layer having a glass content of 90%.

接著,通過絲網印刷,以塗佈量成為0.065g/m2 般,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中90分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, by screen printing, the applied amount of the paste was applied to the surface of the p-type germanium substrate having the n-type diffusion layer formed thereon at a coating amount of 0.065 g/m 2 , and at 150 ° C. Dry on a hot plate for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer, washed by running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為30Ω/□,B(硼)擴散而形成了p型擴散層。另外,沒有發生基板的翹曲。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 30 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur.

[實例2B][Example 2B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)8g與乙基纖維素0.17g、乙酸2-(2-丁氧基乙氧基)乙酯4.27g加以混合並膏化,以調製成玻璃含有率65%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 8 g using an automatic mortar mixing device 0.17 g of ethyl cellulose and 4.27 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition for forming a p-type diffusion layer having a glass content of 65%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中40分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 40 minutes to remove the glass layer, washed with running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為48Ω/□,B(硼)擴散而形成了p型擴散層。另外, 沒有發生基板的翹曲。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 48 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, No warpage of the substrate occurred.

[實例3B][Example 3B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)6g與乙基纖維素0.91g、乙酸2-(2-丁氧基乙氧基)乙酯23.1g加以混合並膏化,以調製成玻璃含有率20%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 6 g using an automatic mortar mixing device 0.91 g of ethyl cellulose and 23.1 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition for forming a p-type diffusion layer having a glass content of 20%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer, washed with running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為75Ω/□,B(硼)擴散而形成了p型擴散層。另外,沒有發生基板的翹曲。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 75 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur.

[實例4B][Example 4B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)3g與乙基纖維素1.02g、乙酸2-(2-丁氧基乙氧基)乙酯26.0g加以混合並膏化,以調製成玻璃含有率10%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 3 g using an automatic mortar mixing device 1.02 g of ethyl cellulose and 26.0 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition which forms a p-type diffusion layer having a glass content of 10%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐 中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, in an electric furnace set to 1000 ° C The thermal diffusion treatment was carried out for 10 minutes. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer, washed with running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為83Ω/□,B(硼)擴散而形成了p型擴散層。另外,沒有發生基板的翹曲。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 83 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur.

[實例5B][Example 5B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)0.5g與乙基纖維素0.3g、乙酸2-(2-丁氧基乙氧基)乙酯9.14g加以混合並膏化,以調製成玻璃含有率5%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 0.5 using an automatic mortar mixing device g and 0.3 g of ethyl cellulose and 9.14 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition which forms a p-type diffusion layer having a glass content of 5%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer, washed with running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為110Ω/□,B(硼)擴散而形成了p型擴散層。另外,沒有發生基板的翹曲。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 110 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur.

[實例6B][Example 6B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)0.3g與乙基纖維素0.56g、乙酸2-(2-丁氧基乙氧基)乙酯14.1g加以混合並膏化,以調 製成玻璃含有率2%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 0.3 using an automatic mortar mixing device g and 0.56 g of ethyl cellulose and 14.1 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition which forms a p-type diffusion layer having a glass content of 2%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中30分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer, washed with running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為160Ω/□,B(硼)擴散而形成了p型擴散層。另外,沒有發生基板的翹曲。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 160 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur.

[比較例1B][Comparative Example 1B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)30g與乙基纖維素0.06g、乙酸2-(2-丁氧基乙氧基)乙酯1.52g加以混合並膏化,以調製成玻璃含有率95%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 30 g using an automatic mortar mixing device 0.06 g of ethyl cellulose and 1.52 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and paste-formed to prepare a composition which forms a p-type diffusion layer having a glass content of 95%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中90分鐘,以移除玻璃層。之後,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. The substrate was then immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer. After that, it was washed with running water and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為42Ω/□,B(硼)已擴散。The sheet resistance of the surface on the side where the composition for forming the p-type diffusion layer was applied was 42 Ω/□, and B (boron) was diffused.

[比較例2B][Comparative Example 2B]

使用自動乳缽混練裝置將B2 O3 -SiO2 -R2 O(R:Na、K、Li)系玻璃粉末(商品名稱:TMX-603C,由Tokan Material Technology Co.,Ltd.生產)0.05g與乙基纖維素0.38g、乙酸2-(2-丁氧基乙氧基)乙酯9.57g加以混合並膏化,以調製成玻璃含有率0.5%的形成p型擴散層的組成物。B 2 O 3 -SiO 2 -R 2 O (R:Na, K, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 0.05 using an automatic mortar mixing device g and 0.38 g of ethyl cellulose and 9.57 g of 2-(2-butoxyethoxy)ethyl acetate were mixed and pasteified to prepare a composition for forming a p-type diffusion layer having a glass content of 0.5%.

接著,通過絲網印刷,將所調製的膏狀物塗佈到表面形成有n型擴散層的p型矽基板的表面上,並且在150℃的電熱板上乾燥5分鐘。隨後,在設定為1000℃的電爐中進行熱擴散處理10分鐘。然後,將基板浸入2.5%的氫氟酸中90分鐘,以移除玻璃層,進行流水洗滌、乾燥。Next, the prepared paste was applied onto the surface of the p-type ruthenium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set to 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer, washed by running water, and dried.

在塗佈了形成p型擴散層的組成物的那一側的表面的片電阻為320Ω/□,B(硼)並沒有充分地擴散。The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 320 Ω/□, and B (boron) was not sufficiently diffused.

10‧‧‧p型半導體基板10‧‧‧p type semiconductor substrate

11‧‧‧形成n型擴散層的組成物層11‧‧‧ Forming the composition layer of the n-type diffusion layer

12‧‧‧n型擴散層12‧‧‧n type diffusion layer

13‧‧‧組成物13‧‧‧Composition

14‧‧‧p+ 型擴散層14‧‧‧p + diffusion layer

16‧‧‧抗反射膜16‧‧‧Anti-reflective film

18‧‧‧表面電極18‧‧‧ surface electrode

20‧‧‧背面電極20‧‧‧Back electrode

30‧‧‧匯流條電極30‧‧‧Bus Bar Electrode

32‧‧‧指狀電極32‧‧‧ finger electrode

圖1(1)至圖1(6)是概念性地表示本發明的太陽能電池元件的製造步驟的一個實例的剖面圖。1(1) to 1(6) are cross-sectional views conceptually showing an example of a manufacturing procedure of a solar cell element of the present invention.

圖2(A)是自表面所觀察到的太陽能電池元件的平面圖,圖2(B)是將圖2(A)的局部放大表示的立體圖。Fig. 2(A) is a plan view of the solar cell element viewed from the surface, and Fig. 2(B) is a perspective view showing a part of Fig. 2(A) in an enlarged manner.

10‧‧‧p型半導體基板10‧‧‧p type semiconductor substrate

11‧‧‧形成n型擴散層的組成物層11‧‧‧ Forming the composition layer of the n-type diffusion layer

12‧‧‧n型擴散層12‧‧‧n type diffusion layer

13‧‧‧組成物13‧‧‧Composition

14‧‧‧p+ 型擴散層14‧‧‧p + diffusion layer

16‧‧‧抗反射膜16‧‧‧Anti-reflective film

18‧‧‧表面電極18‧‧‧ surface electrode

20‧‧‧背面電極20‧‧‧Back electrode

Claims (13)

一種形成不純物擴散層的組成物,包括:含有施體元素或受體元素的玻璃粉末;以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍,上述形成不純物擴散層的組成物是用於不純物擴散層的製造方法中,上述不純物擴散層的製造方法包括於半導體基板上塗佈上述形成不純物擴散層的組成物而形成形成不純物擴散層的組成物層的步驟、對形成有上述形成不純物擴散層的組成物層的上述半導體基板進行熱處理而於上述半導體基板中形成不純物擴散層的步驟以及去除形成於上述不純物擴散層的表面的玻璃的步驟。 A composition for forming an impurity diffusion layer, comprising: a glass powder containing a donor element or an acceptor element; and a dispersion medium, wherein a content ratio of the glass powder is in a range of from 1% by mass to 90% by mass, and the above-mentioned impurity is formed The composition of the diffusion layer is a manufacturing method for the impurity diffusion layer, and the method for producing the impurity diffusion layer includes the step of applying the composition for forming the impurity diffusion layer on the semiconductor substrate to form a composition layer for forming the impurity diffusion layer. And a step of heat-treating the semiconductor substrate on which the composition layer for forming the impurity diffusion layer is formed to form an impurity diffusion layer in the semiconductor substrate, and removing the glass formed on the surface of the impurity diffusion layer. 一種形成n型擴散層的組成物,包括:含有施體元素的玻璃粉末;以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍,上述形成n型擴散層的組成物是用於n型擴散層的製造方法中,上述n型擴散層的製造方法包括於半導體基板上塗佈上述形成n型擴散層的組成物而形成形成n型擴散層的組成物層的步驟、對形成有上述形成n型擴散層的組成物層的上述半導體基板進行熱處理而於上述半導體基板中形成n型擴散層的步驟以及去除形成於上述n型擴散層 的表面的玻璃的步驟。 A composition for forming an n-type diffusion layer, comprising: a glass powder containing a donor element; and a dispersion medium, wherein a content ratio of the glass powder is in a range of from 1% by mass to 90% by mass, and the n-type diffusion layer is formed as described above In the method for producing an n-type diffusion layer, the method for manufacturing the n-type diffusion layer includes applying the composition forming the n-type diffusion layer on the semiconductor substrate to form a composition layer forming the n-type diffusion layer. a step of heat-treating the semiconductor substrate on which the composition layer forming the n-type diffusion layer is formed to form an n-type diffusion layer in the semiconductor substrate, and removing the n-type diffusion layer formed on the semiconductor substrate The steps of the surface of the glass. 如申請專利範圍第2項所述之形成n型擴散層的組成物,其中上述施體元素是選自P(磷)以及Sb(銻)中的至少一種。 The composition for forming an n-type diffusion layer according to claim 2, wherein the donor element is at least one selected from the group consisting of P (phosphorus) and Sb (antimony). 如申請專利範圍第2項所述之形成n型擴散層的組成物,其中上述含有施體元素的玻璃粉末包括含有施體元素的物質以及玻璃成分物質,上述含有施體元素的物質選自P2 O3 、P2 O5 及Sb2 O3 中的至少一種,上述玻璃成分物質選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2 及MoO3 中的至少一種。The composition for forming an n-type diffusion layer according to the second aspect of the invention, wherein the glass powder containing the donor element comprises a substance containing a donor element and a glass component, and the substance containing the donor element is selected from the group consisting of P At least one of 2 O 3 , P 2 O 5 and Sb 2 O 3 , the glass component is selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO. At least one of PbO, CdO, SnO, ZrO 2 and MoO 3 . 如申請專利範圍第2項所述之形成n型擴散層的組成物,更包括選自Ag、Cu、Fe、Zn及Mn中的至少一種金屬、Si或其組合。 The composition for forming an n-type diffusion layer as described in claim 2, further comprising at least one metal selected from the group consisting of Ag, Cu, Fe, Zn, and Mn, Si, or a combination thereof. 如申請專利範圍第5項所述之形成n型擴散層的組成物,其中上述金屬為Ag(銀)。 The composition for forming an n-type diffusion layer according to claim 5, wherein the metal is Ag (silver). 一種n型擴散層的製造方法,包括:在半導體基板上塗佈如申請專利範圍第2項至第6項中任一項所述之形成n型擴散層的組成物的步驟;以及實施熱擴散處理的步驟。 A method of producing an n-type diffusion layer, comprising: coating a semiconductor substrate with a composition for forming an n-type diffusion layer according to any one of claims 2 to 6; and performing thermal diffusion The steps of processing. 一種太陽能電池元件的製造方法,包括:在半導體基板上塗佈如申請專利範圍第2項至第6項中任一項所述之形成n型擴散層的組成物的步驟;實施熱擴散處理而形成n型擴散層的步驟;以及 於所形成的上述n型擴散層上形成電極的步驟。 A method of manufacturing a solar cell element, comprising: coating a semiconductor substrate with a composition for forming an n-type diffusion layer according to any one of claims 2 to 6; performing thermal diffusion treatment a step of forming an n-type diffusion layer; A step of forming an electrode on the formed n-type diffusion layer. 一種形成p型擴散層的組成物,包括:含有受體元素的玻璃粉末;以及分散介質,其中上述玻璃粉末的含有比率為1質量%以上至90質量%以下的範圍,上述形成p型擴散層的組成物是用於p型擴散層的製造方法中,上述p型擴散層的製造方法包括於半導體基板上塗佈上述形成p型擴散層的組成物而形成形成p型擴散層的組成物層的步驟、對形成有上述形成p型擴散層的組成物層的上述半導體基板進行熱處理而於上述半導體基板中形成p型擴散層的步驟以及去除形成於上述p型擴散層的表面的玻璃的步驟。 A composition for forming a p-type diffusion layer, comprising: a glass powder containing an acceptor element; and a dispersion medium, wherein a content ratio of the glass powder is in a range of from 1% by mass to 90% by mass, and the p-type diffusion layer is formed as described above The composition is a method for producing a p-type diffusion layer, and the method for manufacturing the p-type diffusion layer includes applying the composition forming the p-type diffusion layer on the semiconductor substrate to form a composition layer forming the p-type diffusion layer. a step of heat-treating the semiconductor substrate on which the composition layer forming the p-type diffusion layer is formed, forming a p-type diffusion layer in the semiconductor substrate, and removing the glass formed on the surface of the p-type diffusion layer . 如申請專利範圍第9項所述之形成p型擴散層的組成物,其中上述受體元素是選自B(硼)、Al(鋁)以及Ga(鎵)中的至少一種。 The composition for forming a p-type diffusion layer according to claim 9, wherein the acceptor element is at least one selected from the group consisting of B (boron), Al (aluminum), and Ga (gallium). 如申請專利範圍第9項所述之形成p型擴散層的組成物,其中上述含有受體元素的玻璃粉末包括含有受體元素的物質以及玻璃成分物質,上述含有受體元素的物質選自B2 O3 、Al2 O3 及Ga2 O3 中的至少一種,上述玻璃成分物質選自SiO2 、K2 O、Na2 O、Li2 O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、Tl2 O、SnO、ZrO2 及MoO3 中的至少一種。The composition for forming a p-type diffusion layer according to claim 9, wherein the glass powder containing the acceptor element includes a substance containing an acceptor element and a glass component substance, and the substance containing the acceptor element is selected from the group consisting of B At least one of 2 O 3 , Al 2 O 3 and Ga 2 O 3 , the glass component is selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO. At least one of PbO, CdO, Tl 2 O, SnO, ZrO 2 and MoO 3 . 一種p型擴散層的製造方法,包括: 在半導體基板上塗佈如申請專利範圍第9項至第11項中任一項所述之形成p型擴散層的組成物的步驟;以及實施熱擴散處理的步驟。 A method for manufacturing a p-type diffusion layer, comprising: A step of forming a composition for forming a p-type diffusion layer as described in any one of claims 9 to 11 on a semiconductor substrate; and a step of performing a thermal diffusion treatment. 一種太陽能電池元件的製造方法,包括:在半導體基板上塗佈如申請專利範圍第9項至第11項中任一項所述之形成p型擴散層的組成物的步驟;實施熱擴散處理而形成p型擴散層的步驟;以及於所形成的上述p型擴散層上形成電極的步驟。 A method of manufacturing a solar cell element, comprising: coating a semiconductor substrate with a composition for forming a p-type diffusion layer according to any one of claims 9 to 11; performing thermal diffusion treatment a step of forming a p-type diffusion layer; and a step of forming an electrode on the formed p-type diffusion layer.
TW100122389A 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci TWI485875B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010144204A JP5625538B2 (en) 2010-06-24 2010-06-24 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP2010144203A JP5625537B2 (en) 2010-06-24 2010-06-24 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method

Publications (2)

Publication Number Publication Date
TW201214742A TW201214742A (en) 2012-04-01
TWI485875B true TWI485875B (en) 2015-05-21

Family

ID=45371560

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104112405A TW201532302A (en) 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition and method for forming n-type diffusion layer, composition and method for forming p-type diffusion layer, and method for producing photovoltaic cell
TW100122389A TWI485875B (en) 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104112405A TW201532302A (en) 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition and method for forming n-type diffusion layer, composition and method for forming p-type diffusion layer, and method for producing photovoltaic cell

Country Status (4)

Country Link
KR (1) KR20130098180A (en)
CN (2) CN104844268A (en)
TW (2) TW201532302A (en)
WO (1) WO2011162394A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013125252A1 (en) * 2012-02-23 2015-07-30 日立化成株式会社 Impurity diffusion layer forming composition, method for producing semiconductor substrate with impurity diffusion layer, and method for producing solar cell element
WO2013129002A1 (en) * 2012-02-29 2013-09-06 日立化成株式会社 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
JP6232993B2 (en) * 2013-12-12 2017-11-22 日立化成株式会社 Semiconductor substrate manufacturing method, semiconductor substrate, solar cell element manufacturing method, and solar cell element
JPWO2015093608A1 (en) * 2013-12-20 2017-03-23 日立化成株式会社 Semiconductor substrate manufacturing method, semiconductor substrate, solar cell element manufacturing method, and solar cell element
KR102044381B1 (en) * 2018-04-18 2019-11-13 한국과학기술연구원 Method of manufacturing silicon wafer, silicon wafer manufactured therefrom and solar cell comprising the semiconductor wafer
CN113782423B (en) * 2021-08-25 2022-08-23 中国科学院宁波材料技术与工程研究所 Impurity diffusion method and solar cell manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW492081B (en) * 1999-03-11 2002-06-21 Merck Patent Gmbh Dopant pastes for the production of p, p+ and n, n+ regions in semiconductors
JP2009200276A (en) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd Conductive composition for forming electrode, and method of forming solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105696B2 (en) * 1988-12-15 1994-12-21 シャープ株式会社 Method for manufacturing semiconductor device
JPH04158514A (en) * 1990-10-22 1992-06-01 Sumitomo Chem Co Ltd Impurity diffusion to semiconductor substrate
JPH04174517A (en) * 1990-11-07 1992-06-22 Canon Inc Manufacture of diamond semiconductor
CN100350641C (en) * 1995-11-06 2007-11-21 日亚化学工业株式会社 Nitride semiconductor device
DE102005061820B4 (en) * 2005-12-23 2014-09-04 Infineon Technologies Austria Ag Process for producing a solar cell
US8236598B2 (en) * 2007-08-31 2012-08-07 Ferro Corporation Layered contact structure for solar cells
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW492081B (en) * 1999-03-11 2002-06-21 Merck Patent Gmbh Dopant pastes for the production of p, p+ and n, n+ regions in semiconductors
JP2009200276A (en) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd Conductive composition for forming electrode, and method of forming solar cell

Also Published As

Publication number Publication date
TW201532302A (en) 2015-08-16
KR20130098180A (en) 2013-09-04
CN104844268A (en) 2015-08-19
WO2011162394A1 (en) 2011-12-29
TW201214742A (en) 2012-04-01
CN102959684A (en) 2013-03-06

Similar Documents

Publication Publication Date Title
TWI480930B (en) Method for producing photovoltaic cell
TWI667695B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
TWI558676B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI485875B (en) Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci
TWI499070B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI575762B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI603386B (en) Composition for forming n-type diffusion layer, method of producing semiconductor substrate having n-type diffusion layer, and method of producing photovoltaic cell element
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI480929B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI495118B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI488222B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI556289B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP5333564B2 (en) Method for manufacturing solar battery cell
JP2015053401A (en) Method for manufacturing semiconductor substrate having p-type diffusion layer, method for manufacturing solar battery element, and solar battery element
TW201530791A (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer and method for producing photovoltaic cell
WO2016068315A1 (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element
JP2017054918A (en) Composition for n-type diffusion layer formation, method for manufacturing semiconductor substrate having n-type diffusion layer, and method for manufacturing solar battery element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees