WO2016068315A1 - Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element - Google Patents

Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element Download PDF

Info

Publication number
WO2016068315A1
WO2016068315A1 PCT/JP2015/080806 JP2015080806W WO2016068315A1 WO 2016068315 A1 WO2016068315 A1 WO 2016068315A1 JP 2015080806 W JP2015080806 W JP 2015080806W WO 2016068315 A1 WO2016068315 A1 WO 2016068315A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
type diffusion
forming composition
layer forming
type
Prior art date
Application number
PCT/JP2015/080806
Other languages
French (fr)
Japanese (ja)
Inventor
鉄也 佐藤
野尻 剛
倉田 靖
芦沢 寅之助
岩室 光則
明博 織田
麻理 清水
佐藤 英一
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016556674A priority Critical patent/JPWO2016068315A1/en
Priority to CN201580056781.9A priority patent/CN107148662A/en
Publication of WO2016068315A1 publication Critical patent/WO2016068315A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an n-type diffusion layer forming composition, a method for producing an n-type diffusion layer, and a method for producing a solar cell element.
  • a manufacturing process of a conventional silicon solar cell element using, for example, a p-type silicon substrate as the semiconductor substrate will be described.
  • a p-type silicon substrate having a texture structure formed on the light receiving surface is prepared so as to promote the light confinement effect and increase the efficiency.
  • This p-type silicon substrate is uniformly n-type by performing several tens of minutes at 800 ° C. to 900 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ) which is a donor element-containing compound, nitrogen and oxygen.
  • a diffusion layer is formed.
  • n-type diffusion layers are formed not only on the surface of the p-type silicon substrate, but also on the side and back surfaces. Therefore, a side etching process for removing the side n-type diffusion layer is necessary. Further, the n-type diffusion layer on the back surface needs to be converted into a p + -type diffusion layer. An aluminum paste is applied on the n-type diffusion layer on the back surface, and the p + -type diffusion is performed from the n-type diffusion layer by the diffusion of aluminum. Was converted into a layer.
  • a donor element or a compound containing the donor element is scattered from a solution or paste as a diffusion source.
  • phosphorus may also diffuse into the side surface and the back surface of the p-type silicon substrate.
  • an n-type diffusion layer may be formed in addition to the applied part.
  • the vapor phase reaction method using phosphorus oxychloride is applicable only to one side (usually the light-receiving surface or the surface) of the p-type silicon substrate which originally requires the n-type diffusion layer.
  • an n-type diffusion layer is also formed on the other surface (non-light-receiving surface or back surface) and side surface.
  • an n-type diffusion layer is formed on the surface other than the surface of the p-type silicon substrate as in the gas phase reaction method. End up.
  • the p-type silicon substrate in order for the p-type silicon substrate to have a pn junction structure as a solar cell element, it is necessary to perform etching on the side surface and convert the n-type diffusion layer to the p + -type diffusion layer on the back surface.
  • an aluminum paste which is an element belonging to Group 13 is applied to the back surface of a p-type silicon substrate and baked to convert the n-type diffusion layer into a p + -type diffusion layer.
  • the compound containing the donor element in a method of forming a n-type diffusion layer by applying a conventionally known paste containing a donor element such as phosphorus to a p-type silicon substrate as a diffusion source, the compound containing the donor element is volatilized and gasified to form a donor element. Since the donor element is diffused in a region other than the region where the diffusion is required, it is difficult to selectively form a diffusion layer in a specific region.
  • a coating agent containing a phosphorus compound when used, there may be uneven concentration of diffused phosphorus on the micro scale in the plane of the n-type diffusion layer.
  • the coating amount of a coating agent containing a phosphorus compound when the coating amount of a coating agent containing a phosphorus compound is reduced, in the drying step of the coating agent containing a phosphorus compound, the solvent rapidly evaporates from the end of the coating region, and the cross-section of the coating region becomes concave. (Coffee ring phenomenon) may occur. Therefore, in the central part of the coating region, when the phosphorus compound abundance ratio is reduced and diffusion occurs in a state where the phosphorus compound abundance ratio is reduced, the phosphorus concentration differs on a microscale in the surface direction or thickness direction of the p-type silicon substrate. A non-uniform n-type diffusion layer may be formed. The presence of a non-uniform n-type diffusion layer leads to a decrease in conversion efficiency of the entire solar cell.
  • the present invention has been made in view of the above-described conventional problems, and is applicable to a solar cell element using a semiconductor substrate, and can be applied to a specific region without forming an n-type diffusion layer in an unnecessary region. It is an object of the present invention to provide an n-type diffusion layer forming composition capable of forming a uniform n-type diffusion layer, an n-type diffusion layer manufacturing method using the same, and a solar cell element manufacturing method.
  • An n-type diffusion layer forming composition comprising a glass powder containing a donor element and having a particle diameter d90 of 0.1 ⁇ m to 1.5 ⁇ m and a dispersion medium.
  • n-type diffusion layer forming composition according to ⁇ 1> wherein the glass powder has an average particle diameter d50 of 0.05 ⁇ m to 0.5 ⁇ m.
  • n-type diffusion layer forming composition according to ⁇ 1> or ⁇ 2> wherein the donor element is at least one selected from P (phosphorus) and Sb (antimony).
  • the glass powder includes at least one donor element-containing material selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 , SiO 2 , K 2 O, Na 2 O, Containing at least one glass component material selected from the group consisting of Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2, and MoO 3.
  • the n-type diffusion layer forming composition according to any one of ⁇ 3>.
  • ⁇ 5> a step of applying the n-type diffusion layer forming composition according to any one of ⁇ 1> to ⁇ 4> on a semiconductor substrate; Applying a thermal diffusion treatment to the semiconductor substrate after the application of the n-type diffusion layer forming composition; The manufacturing method of the n type diffused layer which has this.
  • ⁇ 6> a step of applying the n-type diffusion layer forming composition according to any one of ⁇ 1> to ⁇ 4> on a semiconductor substrate; Applying a thermal diffusion treatment to the semiconductor substrate after application of the n-type diffusion layer forming composition to form an n-type diffusion layer on the semiconductor substrate after application of the n-type diffusion layer formation composition; Forming an electrode on the formed n-type diffusion layer; The manufacturing method of the solar cell element which has this.
  • the present invention can be applied to a solar cell element using a semiconductor substrate and can form a uniform n-type diffusion layer in a specific region without forming an n-type diffusion layer in an unnecessary region. It is possible to provide a diffusion layer forming composition, a method for producing an n-type diffusion layer using the composition, and a method for producing a solar cell element.
  • n-type diffusion layer forming composition of the present invention First, an embodiment of the n-type diffusion layer forming composition of the present invention will be described, and then an embodiment of an n-type diffusion layer manufacturing method and a solar cell element manufacturing method using the n-type diffusion layer forming composition will be described.
  • the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended purpose of the process is achieved. included.
  • “ ⁇ ” indicates a range including the numerical values described before and after the values as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
  • the n-type diffusion layer forming composition of the present embodiment contains a glass powder containing a donor element and having a particle diameter d90 of 0.1 ⁇ m to 1.5 ⁇ m, and a dispersion medium.
  • the n-type diffusion layer forming composition of the present embodiment may further contain other additives as necessary in consideration of suitability (applicability) of the composition.
  • the n-type diffusion layer forming composition contains at least a glass powder containing a donor element, and can be formed on the semiconductor substrate by thermally diffusing the donor element after being applied to the semiconductor substrate. Say material.
  • n-type diffusion layer forming composition containing a donor element and containing a glass powder having a particle diameter d90 of 0.1 ⁇ m to 1.5 ⁇ m, the semiconductor in the coating region of the n-type diffusion layer forming composition during the drying process Even when the thickness of the central part in the surface direction of the substrate is reduced by the frame phenomenon, if the glass powder has a particle diameter in the above range, a high presence ratio of the glass powder can be ensured. Further, since the melting time of the glass powder can be shortened during the diffusion treatment, a glass layer having no pinhole can be formed on a micro scale. Thereby, an n-type diffusion layer having a more uniform phosphorus concentration is formed at a desired portion of the semiconductor substrate, and unnecessary n-type diffusion layers are not formed on the back surface and side surfaces of the semiconductor substrate.
  • the composition for forming an n-type diffusion layer of the present embodiment is applied, the side etching step that is essential in the gas phase reaction method widely used in the past is not necessary, and the process is simplified.
  • the step of converting the n-type diffusion layer formed on the back surface into the p + -type diffusion layer is not necessary. Therefore, the method for forming the p + -type diffusion layer on the back surface and the material, shape, and thickness of the back electrode are not limited, and the choice of the manufacturing method to be applied and the material and shape of the back electrode is expanded.
  • production of the internal stress in the semiconductor substrate resulting from the thickness of a back surface electrode is suppressed, and the curvature of a semiconductor substrate is also suppressed.
  • the glass powder contained in the n-type diffusion layer forming composition of the present embodiment is melted by firing to form a glass layer on the n-type diffusion layer.
  • the glass layer is formed on the n-type diffusion layer also in the conventional gas phase reaction method or the method of applying a phosphate-containing solution or paste. Therefore, the glass layer produced
  • the donor element in the glass powder is not easily volatilized even during the heat treatment (firing), the generation of the volatilizing gas suppresses the formation of n-type diffusion layers not only on the surface of the semiconductor substrate but also on the back surface and side surfaces. . For this reason, the donor element is considered to be difficult to volatilize because it is bonded to other elements as constituent elements in the glass.
  • the n-type diffusion layer forming composition of the present embodiment can form an n-type diffusion layer having a desired concentration in a desired portion of the semiconductor substrate, an n-type donor element (dopant). It is possible to form a selective region having a high concentration of.
  • a selective region having a high concentration of the n-type donor element is formed by a gas phase reaction method or a method using a phosphate-containing solution or paste, which is a general method for forming an n-type diffusion layer. That is generally difficult.
  • a donor element is an element that can form an n-type diffusion layer by diffusing (doping) into a semiconductor substrate.
  • a Group 15 element can be used, and examples thereof include P (phosphorus), Sb (antimony), Bi (bismuth), and As (arsenic). From the viewpoints of safety, easiness of vitrification, and the like, it is preferably at least one selected from P (phosphorus) and Sb (antimony).
  • the donor element-containing substance used to introduce the donor element to the glass powder for example, include P 2 O 3, P 2 O 5, Sb 2 O 3, Bi 2 O 3 and As 2 O 3, P 2 It is preferable to use at least one selected from the group consisting of O 3 , P 2 O 5 and Sb 2 O 3 .
  • the glass powder containing a donor element can control a melting temperature, a softening temperature, a glass transition temperature, chemical durability, etc. by adjusting a component ratio as needed. It is preferable that the glass powder containing a donor element further contains a glass component substance described below.
  • glass component material examples include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 can be mentioned, SiO 2 , K 2 O, Na It is preferable to use at least one selected from the group consisting of 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 and MnO.
  • the glass powder containing a donor element examples include a system containing both the donor element-containing substance and the glass component substance, and at least selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3. and one of the donor element-containing substance, the group consisting of SiO 2, K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 It is preferable that the glass powder contains at least one glass component substance selected more.
  • the glass powder containing a donor element examples include a P 2 O 5 —SiO 2 system (described in the order of a donor element-containing substance—a glass component substance, the same applies hereinafter), a P 2 O 5 —K 2 O system, P 2 O 5 -Na 2 O-based, P 2 O 5 -Li 2 O system, P 2 O 5 -BaO-based, P 2 O 5 -SrO based, P 2 O 5 -CaO-based, P 2 O 5 -MgO-based, P 2 O 5 —BeO, P 2 O 5 —ZnO, P 2 O 5 —CdO, P 2 O 5 —PbO, P 2 O 5 —SnO, P 2 O 5 —GeO 2 , P 2 O 5 -TeO 2 system such as a donor element-containing material as a system containing P 2 O 5, and including Sb 2 O 3 as a donor element-containing material instead of P 2 O 5 of system containing
  • a glass powder containing two or more kinds of donor element-containing substances such as a P 2 O 5 —Sb 2 O 3 system and a P 2 O 5 —As 2 O 3 system, may be used.
  • a composite glass containing two components has been exemplified, but a glass powder containing three or more components as required may be used, such as a P 2 O 5 —SiO 2 —MgO system.
  • the content ratio of the glass component substance in the glass powder is preferably set appropriately in consideration of the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, and the like, and generally 0.1 mass% to 95 mass%. It is preferably 0.5% by mass to 90% by mass.
  • the content ratio of SiO 2 in the case of the glass powder containing SiO 2 is preferably from 10 mass% to 90 mass%, more preferably from 10 wt% to 50 wt%, 10 More preferably, the content is from 30% by mass to 30% by mass.
  • the softening temperature of the glass powder is preferably 400 ° C. to 900 ° C. from the viewpoints of diffusibility during the diffusion treatment and dripping. Further, it is more preferably 600 ° C. to 800 ° C., and further preferably 700 ° C. to 800 ° C. If the softening temperature is 400 ° C. or higher, it is suppressed that the viscosity of the glass becomes too low during the diffusion treatment, and it is difficult for dripping to occur, so that the formation of the n-type diffusion layer other than the specific portion tends to be suppressed. It is in. Further, when the softening temperature is 900 ° C.
  • the softening temperature of the glass powder is in the range of 400 ° C. to 900 ° C., no dripping will occur, so that it is possible to form an n-type diffusion layer in a desired shape in a specific region after the diffusion treatment.
  • the n-type diffusion layer forming composition is applied in a linear pattern having a width of a ⁇ m, the linear width b after the diffusion treatment can hold a linear pattern in the range of b ⁇ 1.5 a ⁇ m.
  • the softening temperature of the glass powder can be obtained from a differential heat (DTA) curve or the like using a DTG-60H type differential heat / thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation.
  • DTA differential heat
  • Examples of the shape of the glass powder include a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, and a coating property (applicability to the substrate) and uniform diffusibility when an n-type diffusion layer forming composition is used. From this point, it is desirable that the shape is substantially spherical, flat or plate-like.
  • the particle diameter d90 of the glass powder needs to be 0.1 ⁇ m to 1.5 ⁇ m. Further, it is preferably 0.2 ⁇ m to 0.5 ⁇ m, and more preferably 0.2 ⁇ m to 0.3 ⁇ m.
  • the particle diameter d90 of the glass powder needs to be 0.1 ⁇ m to 1.5 ⁇ m. Further, it is preferably 0.2 ⁇ m to 0.5 ⁇ m, and more preferably 0.2 ⁇ m to 0.3 ⁇ m.
  • Whether a uniform n-type diffusion layer is formed can be determined by, for example, subjecting the semiconductor substrate on which the n-type diffusion layer is formed to a thermal oxidation treatment at 900 ° C. to 1000 ⁇ m or more formed on the semiconductor substrate in the n-type diffusion layer region. This can be confirmed by the variation of the oxide film of about 3000 mm.
  • the oxidation rate on the surface of a semiconductor substrate depends on the concentration of the diffused donor element. Therefore, when there is a region where the donor element is not sufficiently diffused, the variation of the oxide film thickness increases in the plane of the semiconductor substrate.
  • the thickness of the oxide film is measured using an ellipsometer MARY-102 manufactured by Fibravo.
  • the variation of the oxide film can be confirmed by measuring nine points in the plane and the ratio between the maximum value and the minimum value (maximum value / minimum value).
  • the variation in the oxide film thickness can be evaluated as a uniform n-type diffusion layer formed when the ratio (maximum value / minimum value) is 1.00 to 1.10.
  • the color of the oxide film is observed using an optical microscope, and it can be confirmed that the oxide film is uniformly formed from the uneven color.
  • a uniform n-type diffusion layer is formed on a microscale.
  • the micro scale indicates a range of 1 ⁇ m to 10 ⁇ m in the surface direction or thickness direction of the semiconductor substrate.
  • the particle diameter d90 refers to the particle diameter at which 90% of the total particle diameter is accumulated sequentially from the smallest particle diameter when a volume distribution integrated curve of particle diameter is drawn.
  • the volume distribution integrated curve can be measured with a laser scattering diffraction particle size distribution analyzer (manufactured by Beckman Coulter, Inc.) or the like.
  • the average particle diameter d50 of the glass powder used in this embodiment is preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • the average particle diameter d50 is more preferably 0.05 ⁇ m to 0.3 ⁇ m, and even more preferably 0.05 ⁇ m to 0.2 ⁇ m.
  • the average particle diameter d50 of the glass powder represents a volume average particle diameter, and can be measured by a laser scattering diffraction particle size distribution analyzer (manufactured by Beckman Coulter, Inc.).
  • the glass powder containing a donor element is produced by the following procedure.
  • raw materials for example, a donor element-containing material and a glass component material are weighed and filled in a crucible.
  • the crucible material include platinum, platinum-rhodium, iridium, alumina, quartz, and carbon.
  • the material of the crucible is appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
  • the donor element-containing material and the glass component material are heated to a melt by a temperature corresponding to the glass composition in an electric furnace. At this time, it is desirable to stir the melt uniformly.
  • the obtained melt is poured onto a zirconia substrate, a carbon substrate, or the like to vitrify the melt.
  • the glass is crushed into powder.
  • a known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.
  • the content ratio of the glass powder containing the donor element in the n-type diffusion layer forming composition is determined in consideration of application suitability (applicability), diffusibility of the donor element, and the like.
  • the content ratio of the glass powder in the n-type diffusion layer forming composition is preferably 0.1% by mass to 95% by mass, more preferably 1% by mass to 90% by mass.
  • the content is more preferably 5% by mass to 85% by mass, and particularly preferably 2% by mass to 80% by mass.
  • the content ratio of the metal particles in the n-type diffusion layer forming composition is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • a dispersion medium is a medium in which glass powder containing a donor element is dispersed in a composition. Specifically, at least one selected from the group consisting of a binder and a solvent is employed as the dispersion medium.
  • binder examples include polyvinyl alcohol, polyacrylamide, polyvinyl amide, polyvinyl pyrrolidone, polyethylene oxide, polysulfonic acid, acrylamide alkyl sulfonic acid, cellulose ether, cellulose derivative, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivative, Sodium alginate and sodium alginate derivatives, xanthan and xanthan derivatives, guar gum and guar gum derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives, poly (meth) acrylic acid, poly (meth) acrylic acid ester (For example, polyalkyl (meth) acrylate, polydimethyl Ruaminoechiru (meth) acrylate), polybutadiene, polystyrene, and copolymers thereof.
  • the molecular weight of the binder (for example, the weight average molecular weight) is not particularly limited, and it is desirable to appropriately adjust in view of the desired viscosity as the composition.
  • Solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-i-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone , Ketone solvents such as dipropyl ketone, di-i-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n- Propyl ether, di-i-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol di
  • n-type diffusion layer forming composition from the viewpoint of applicability to the substrate, at least one selected from the group consisting of terpineol, diethylene glycol mono-n-butyl ether and diethylene glycol mono-n-butyl ether acetate is preferred, and terpineol and At least one selected from diethylene glycol mono-n-butyl ether is a more preferable solvent.
  • the content ratio of the dispersion medium in the n-type diffusion layer forming composition is determined in consideration of applicability, donor concentration, and the like.
  • the viscosity of the n-type diffusion layer forming composition is preferably 10 mPa ⁇ s to 1000000 mPa ⁇ s at 25 ° C., more preferably 50 mPa ⁇ s to 200000 mPa ⁇ s at 25 ° C. in consideration of applicability. More preferably, it is s to 100,000 mPa ⁇ s.
  • the viscosity of the n-type diffusion layer forming composition is measured at 25 ° C. using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) at a rotation speed of 5 rpm (min ⁇ 1 ).
  • the n-type diffusion layer forming composition may contain other additives as necessary.
  • Other additives include organometallic compounds, silane coupling agents, organic fillers, inorganic fillers, thixotropic agents such as organic acid salts, wettability improvers, leveling agents, surfactants, plasticizers, fillers, Examples include antifoaming agents, stabilizers, antioxidants, and fragrances.
  • Other additives can be used in an amount of about 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the n-type diffusion layer forming composition. Moreover, these can be used individually or in combination of 2 or more types.
  • the method for producing an n-type diffusion layer includes a step of applying the n-type diffusion layer forming composition on a semiconductor substrate and a thermal diffusion on the semiconductor substrate after the application of the n-type diffusion layer forming composition. And a step of performing a process.
  • the manufacturing method of the solar cell element of this embodiment includes the step of applying the n-type diffusion layer forming composition on a semiconductor substrate, and the thermal diffusion to the semiconductor substrate after applying the n-type diffusion layer forming composition. And a step of forming an n-type diffusion layer on the semiconductor substrate after applying the n-type diffusion layer forming composition and a step of forming an electrode on the formed n-type diffusion layer. .
  • FIG. 1 is a schematic cross-sectional view conceptually showing an example of a manufacturing process of a solar cell element in the manufacturing method of the present embodiment.
  • 10 is a p-type semiconductor substrate
  • 12 is an n-type diffusion layer
  • 14 is a p + -type diffusion layer
  • 16 is an antireflection film
  • 18 is a front electrode
  • 20 is a back electrode (electrode layer).
  • an alkaline solution is applied to a silicon substrate which is a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.
  • a texture structure is obtained by etching.
  • the damaged layer on the silicon surface generated when slicing from the ingot is removed with 20% by mass caustic soda.
  • etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure (the description of the texture structure is omitted in the figure).
  • a texture structure on the light receiving surface (surface) side, a light confinement effect is promoted, and high efficiency is achieved.
  • an n-type diffusion layer forming composition layer 11 is formed by applying an n-type diffusion layer forming composition to the surface of the p-type semiconductor substrate 10, that is, the surface that serves as a light receiving surface.
  • coating method of an n type diffused layer formation composition For example, a printing method, a spin coat method, a brush coating method, a spray method, a doctor blade method, a roll coat method, and an inkjet method are mentioned. .
  • the coating amount of the n-type diffusion layer forming composition is not particularly limited.
  • the glass powder amount can be 5 g / m 2 to 100 g / m 2, and it can be 10 g / m 2 to 50 g / m 2. Is preferred.
  • the coating thickness may be thin at 5 g / m 2 to 15 g / m 2 , but when the particle diameter d90 of the glass powder is 0.1 ⁇ m to 1.5 ⁇ m, the glass layer does not penetrate during the diffusion treatment, A more uniform n-type diffusion layer can be formed on a scale.
  • a drying step for volatilizing the solvent contained in the composition may be necessary after application.
  • drying is performed at a temperature of about 80 ° C. to 300 ° C. for about 1 to 10 minutes when using a hot plate, and about 10 to 30 minutes when using a dryer or the like.
  • the drying conditions depend on the solvent composition of the n-type diffusion layer forming composition, and are not particularly limited to the above conditions in the present embodiment.
  • the manufacturing method of the p + -type diffusion layer (high concentration electric field layer) 14 on the back surface is a method based on conversion from an n-type diffusion layer to a p + -type diffusion layer by aluminum.
  • any conventionally known method can be adopted, and the options of the manufacturing method are expanded. Therefore, for example, the composition 13 containing a Group 13 element such as B (boron) is applied to the back surface of the p-type semiconductor substrate 10 (the surface opposite to the surface to which the n-type diffusion layer forming composition is applied). , P + -type diffusion layer 14 can be formed.
  • composition 13 containing a Group 13 element such as B (boron) for example, a glass powder containing an acceptor element is used instead of a glass powder containing a donor element, and the composition 13 is made in the same manner as the n-type diffusion layer forming composition.
  • a p-type diffusion layer forming composition may be mentioned.
  • the acceptor element may be a Group 13 element, and examples thereof include B (boron), Al (aluminum), and Ga (gallium).
  • the glass powder containing acceptor element comprising at least one member selected from the group consisting of B 2 O 3, Al 2 O 3 and Ga 2 O 3.
  • the method for applying the p-type diffusion layer forming composition to the back surface of the silicon substrate is the same as the method for applying the n-type diffusion layer forming composition described above to the silicon substrate.
  • the semiconductor substrate granted the p-type diffusion layer forming composition on the back side similarly to the thermal diffusion treatment of the applied semiconductor substrate of n-type diffusion layer forming composition described below by a thermal diffusion process, p on the back +
  • the mold diffusion layer 14 can be formed.
  • the thermal diffusion treatment of the p-type diffusion layer forming composition is preferably performed simultaneously with the thermal diffusion treatment of the n-type diffusion layer forming composition.
  • the p-type semiconductor substrate 10 on which the n-type diffusion layer forming composition layer 11 is formed is subjected to a thermal diffusion treatment at a temperature not lower than the melting point of the glass powder in the n-type diffusion layer forming composition, for example, 600 ° C. to 1200 ° C.
  • a thermal diffusion treatment as shown in FIG. 1C, the donor element diffuses into the semiconductor substrate, and the n-type diffusion layer 12 is formed.
  • a known continuous furnace, batch furnace, or the like can be applied to the thermal diffusion treatment. Further, the furnace atmosphere during the thermal diffusion treatment can be appropriately adjusted to air, oxygen, nitrogen or the like.
  • the thermal diffusion treatment time can be appropriately selected according to the content ratio of the glass powder containing the donor element contained in the n-type diffusion layer forming composition. For example, it can be 1 minute to 60 minutes, and preferably 2 minutes to 30 minutes.
  • a glass layer such as phosphate glass is formed on the surface of the formed n-type diffusion layer 12. For this reason, this phosphate glass is removed by etching.
  • etching any of known methods such as a method of immersing the p-type semiconductor substrate 10 in an acid such as hydrofluoric acid and a method of immersing the p-type semiconductor substrate 10 in an alkali such as caustic soda can be applied.
  • the immersion time is not particularly limited and is generally 0.5 minutes to 30 minutes, preferably 1 minute to 10 minutes. Can do.
  • the n-type diffusion layer 12 is formed at a desired site, and unnecessary n-type diffusion layers are not formed on the back surface and side surfaces. Therefore, in the conventional method of forming an n-type diffusion layer by a gas phase reaction method, a side etching process for removing an unnecessary n-type diffusion layer formed on a side surface is essential. According to the manufacturing method of the embodiment, the side etching process becomes unnecessary, and the process is simplified. As described above, by the manufacturing method of the present embodiment, a more uniform n-type diffusion layer having a desired shape is formed in a desired portion in a short time.
  • the thermal expansion coefficient of aluminum is significantly different from that of silicon used as a substrate, a large internal stress is generated in the silicon substrate during the firing and cooling process, causing warpage of the silicon substrate. .
  • This internal stress has a problem that the crystal grain boundary is damaged and the power loss increases.
  • the warpage easily damages the solar cell element when the solar cell element is transported in the module process and when the solar cell element is connected to a copper wire called a tab wire.
  • the thickness of the silicon substrate has been reduced due to the improvement of the slice processing technique, and the solar cell element tends to be easily broken.
  • n-type diffusion layer since an unnecessary n-type diffusion layer is not formed on the back surface, it is not necessary to convert the n-type diffusion layer to the p + -type diffusion layer, and it is necessary to increase the thickness of the aluminum layer. Disappears. As a result, generation of internal stress and warpage in the silicon substrate can be suppressed. As a result, increase in power loss and damage to the solar cell element can be suppressed.
  • the manufacturing method of the p + -type diffusion layer (high concentration electric field layer) 14 on the back surface is a method based on conversion from an n-type diffusion layer to a p + -type diffusion layer by aluminum.
  • any conventionally known method can be adopted, and the options of the manufacturing method are expanded.
  • a p-type diffusion layer forming composition configured in the same manner as the n-type diffusion layer forming composition is applied to the back surface of the silicon substrate.
  • the material used for the back electrode 20 is not limited to Group 13 aluminum, and Ag (silver), Cu (copper), or the like can be applied. Can also be formed thin.
  • an antireflection film 16 is formed on the n-type diffusion layer 12.
  • the antireflection film 16 is formed by applying a known technique.
  • the antireflection film 16 is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbitals that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are bonded to inactivate defects (hydrogen passivation).
  • the mixed gas flow ratio NH 3 / SiH 4 is 0.05 to 1.0
  • the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr)
  • the temperature during film formation The silicon nitride film is formed under the conditions of 300 ° C. to 550 ° C. and a frequency for plasma discharge of 100 kHz or more.
  • a surface electrode metal paste is printed on the antireflection film 16 on the surface (light-receiving surface) by screen printing and dried to form a surface electrode metal paste layer 17.
  • the metal paste for a surface electrode contains (1) metal particles and (2) glass particles as essential components, and includes (3) a resin binder and (4) other additives as necessary.
  • the metal paste layer 19 for the back electrode is also formed on the p + type diffusion layer 14 on the back surface.
  • the material and forming method of the back electrode metal paste layer 19 are not particularly limited.
  • the back electrode metal paste layer 19 may be formed by applying and drying a back electrode paste containing a metal such as aluminum, silver, or copper. At this time, you may provide the silver paste layer for silver electrode formation in a part of back surface for the connection between the solar cell elements in a module process.
  • the electrode metal paste layer 17 is fired to complete the solar cell element.
  • the antireflection film 16 that is an insulating film is melted by the glass particles contained in the electrode metal paste on the surface side, and a part of the surface of the p-type semiconductor substrate 10 is also partially formed.
  • the metal particles for example, silver particles
  • the paste form a contact portion with the p-type semiconductor substrate 10 and solidify. Thereby, the formed surface electrode 18 and the p-type semiconductor substrate 10 are electrically connected. This is called fire-through.
  • the back electrode metal paste of the back electrode metal paste layer 19 is baked to form the back electrode 20.
  • FIG. 2 is a plan view of a solar cell element in which the surface electrode 18 includes a bus bar electrode 30 and a finger electrode 32 intersecting with the bus bar electrode 30 as viewed from the surface.
  • FIG. It is a perspective view which expands and shows a part of solar cell element.
  • Such a surface electrode 18 can be formed by means such as screen printing of the above-described metal paste, plating of an electrode material, vapor deposition of an electrode material by electron beam heating in a high vacuum, and the like.
  • the surface electrode 18 composed of the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light receiving surface side and is well known, and it is possible to apply known forming means for the bus bar electrode and finger electrode on the light receiving surface side. it can.
  • the solar cell element in which the n-type diffusion layer is formed on the front surface, the p + -type diffusion layer is formed on the back surface, and the front surface electrode and the back surface electrode are further provided on the respective layers has been described.
  • a back contact type solar cell element can be produced.
  • the back contact type solar cell element has all electrodes provided on the back surface to increase the area of the light receiving surface. That is, in the back contact type solar cell element, it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure.
  • the n-type diffusion layer forming composition of the present embodiment can form an n-type diffusion site at a specific site. Therefore, the n-type diffusion layer forming composition of the present embodiment can be suitably applied to the production of the back contact type solar cell element.
  • the use of the n-type diffusion layer forming composition in the manufacture of an n-type diffusion layer, and the n-type diffusion layer in the manufacture of a solar cell element including the semiconductor substrate, the n-type diffusion layer, and an electrode The use of forming compositions is also encompassed.
  • a desired shape can be obtained in a specific region in a short time without forming an unnecessary n-type diffusion layer, and on a microscale.
  • a uniform n-type diffusion layer can be obtained.
  • a solar cell element having such an n-type diffusion layer can be obtained without forming an unnecessary n-type diffusion layer.
  • Example 1 P 2 O 5 —SiO 2 —MgO-based glass (softening temperature 700 ° C., P 2 O 5 : 58.58) having a substantially spherical particle shape, an average particle diameter d50 of 0.15 ⁇ m, and a particle diameter d90 of 0.25 ⁇ m.
  • SiO 2 : 29.7%, MgO: 12.1% 7.5 g of powder, 2.5 g of ethyl cellulose, and 40.0 g of terpineol were mixed using an automatic mortar kneader to make a paste, An n-type diffusion layer forming composition was prepared.
  • the shape of the glass powder was determined by observing with a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Corporation.
  • the average particle diameter d50 and particle diameter d90 of the glass powder were calculated using an LS 13 320 type laser scattering diffraction particle size distribution analyzer (measurement wavelength: 632 nm) manufactured by Beckman Coulter, Inc.
  • the prepared paste was applied to the surface of the p-type silicon substrate by screen printing so as to have a range of 45 mm ⁇ 45 mm, and dried on a hot plate at 150 ° C. for 5 minutes.
  • a thermal diffusion treatment is performed by holding in an electric furnace set at 950 ° C. for 20 minutes in an air flow (0.9 cm / s) atmosphere, and then the substrate is immersed in hydrofluoric acid for 5 minutes to remove the glass layer. And washed with running water. Thereafter, drying was performed.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 12 ⁇ / ⁇ , P (phosphorus) was diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the sheet resistance was measured at 25 ° C. by a four-probe method using a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation.
  • the silicon substrate on which the n-type diffusion layer was formed was thermally oxidized by holding it in an electric furnace set at 900 ° C. in an oxygen flow (0.9 cm / s) atmosphere for 180 minutes to form an oxide film. .
  • the in-plane oxide film thickness variation ⁇ was 1.03, and a uniform n-type diffusion layer was formed.
  • represents a ratio of maximum film thickness / minimum film thickness, and was calculated from nine oxide film thicknesses in the coated surface. The thickness of the oxide film was measured using an ellipsometer MARY-102 manufactured by Fibravo.
  • Example 2 An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.22 ⁇ m and the particle diameter d90 was 0.40 ⁇ m.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 13 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the variation ⁇ of the oxide film thickness formed on the n-type diffusion layer was 1.04, and a uniform n-type diffusion layer was formed.
  • Example 3 An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.35 ⁇ m and the particle diameter d90 was 0.80 ⁇ m.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 13 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the variation ⁇ of the oxide film thickness formed on the n-type diffusion layer was 1.05, and a uniform n-type diffusion layer was formed.
  • Example 4 P 2 O 5 —SiO 2 —MgO-based glass having an average particle diameter d50 of 0.15 ⁇ m and a particle diameter d90 of 0.25 ⁇ m (softening temperature 700 ° C., P 2 O 5 : 58.2%, SiO 2 : 29 .7%, MgO: 12.1%) n-type diffusion layer using 15 g of powder, 2.5 g of ethylcellulose, 31 g of terpineol, and 1.5 g of silane coupling agent KBM602 (manufactured by Shin-Etsu Chemical Co., Ltd.) An n-type diffusion layer was formed in the same manner as in Example 1 except that the forming composition was prepared.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 10 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the variation ⁇ of the oxide film thickness formed on the n-type diffusion layer was 1.04, and a uniform n-type diffusion layer was formed.
  • Example 5 P 2 O 5 —SiO 2 —MgO glass having an average particle diameter d50 of 0.15 ⁇ m and a particle diameter d90 of 0.25 ⁇ m (softening temperature 650 ° C., P 2 O 5 : 61.0%, SiO 2 : 25 0.1% MgO: 13.9%)
  • n-type diffusion layer using 15 g of powder, 2.5 g of ethylcellulose, 31 g of terpineol, and 1.5 g of silane coupling agent KBM602 (manufactured by Shin-Etsu Chemical Co., Ltd.) An n-type diffusion layer was formed in the same manner as in Example 1 except that the forming composition was prepared.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 10 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the variation ⁇ of the oxide film thickness formed on the n-type diffusion layer was 1.03, and a uniform n-type diffusion layer was formed.
  • n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.57 ⁇ m and the particle diameter d90 was 2.55 ⁇ m.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 15 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the variation ⁇ of the oxide film thickness formed on the n-type diffusion layer was 1.55, and the n-type diffusion layer was not uniform.
  • the color of the oxide film thickness was observed using an optical microscope, there was a region having a 3 ⁇ m square and a different color of the oxide film, and the variation of the oxide film thickness was confirmed.
  • n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.30 ⁇ m and the particle diameter d90 was 1.60 ⁇ m.
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 13 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 1000000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the variation ⁇ of the oxide film thickness formed on the n-type diffusion layer was 1.35, and the n-type diffusion layer was non-uniform.
  • the color of the oxide film thickness was observed using an optical microscope, the color of the oxide film was slightly different at 2 ⁇ m square, and the variation of the oxide film thickness was confirmed.
  • n-type diffusion layer was formed in the same manner as in Example 1 except that ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder was used instead of P 2 O 5 —SiO 2 —MgO glass powder. .
  • the sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 20 ⁇ / ⁇ , P (phosphorus) diffused, and an n-type diffusion layer was formed.
  • the sheet resistance on the back surface was 20 ⁇ / ⁇ , and an n-type diffusion layer was also formed on the back surface.

Abstract

Provided are: a composition for forming an n-type diffusion layer, the composition containing glass powder including a donor element and having a particle diameter d90 of 0.1-1.5 µm, and a dispersion medium; a method for producing an n-type diffusion layer by using the composition; and a method for manufacturing a solar cell element.

Description

n型拡散層形成組成物、n型拡散層の製造方法及び太陽電池素子の製造方法N-type diffusion layer forming composition, method for producing n-type diffusion layer, and method for producing solar cell element
 本発明は、n型拡散層形成組成物、n型拡散層の製造方法及び太陽電池素子の製造方法に関する。 The present invention relates to an n-type diffusion layer forming composition, a method for producing an n-type diffusion layer, and a method for producing a solar cell element.
 半導体基板として、例えばp型シリコン基板を用いる従来のシリコン太陽電池素子の製造工程について説明する。
 まず、光閉じ込め効果を促して高効率化を図るよう、受光面にテクスチャー構造を形成したp型シリコン基板を準備する。このp型シリコン基板に対して、ドナー元素含有化合物であるオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において800℃~900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、p型シリコン基板の表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチング工程が必要であった。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面のn型拡散層の上にアルミニウムペーストを付与して、アルミニウムの拡散によってn型拡散層からp型拡散層に変換させていた。
A manufacturing process of a conventional silicon solar cell element using, for example, a p-type silicon substrate as the semiconductor substrate will be described.
First, a p-type silicon substrate having a texture structure formed on the light receiving surface is prepared so as to promote the light confinement effect and increase the efficiency. This p-type silicon substrate is uniformly n-type by performing several tens of minutes at 800 ° C. to 900 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ) which is a donor element-containing compound, nitrogen and oxygen. A diffusion layer is formed. In this conventional method, since phosphorus is diffused using a mixed gas, n-type diffusion layers are formed not only on the surface of the p-type silicon substrate, but also on the side and back surfaces. Therefore, a side etching process for removing the side n-type diffusion layer is necessary. Further, the n-type diffusion layer on the back surface needs to be converted into a p + -type diffusion layer. An aluminum paste is applied on the n-type diffusion layer on the back surface, and the p + -type diffusion is performed from the n-type diffusion layer by the diffusion of aluminum. Was converted into a layer.
 一方で、半導体の製造分野では、特開2002-75894号公報に記載のように、ドナー元素含有化合物として、リン酸二水素アンモニウム(NHPO)等のリン酸塩を含有する溶液の塗布によってn型拡散層を形成する方法が提案されている。
 また、特許第4073968号公報に記載のように、ドナー元素としてリンを含むペーストを拡散源としてシリコン基板表面上に塗布し、熱拡散して拡散層を形成する技術も知られている。
On the other hand, in the semiconductor manufacturing field, as described in JP-A-2002-75894, a solution containing a phosphate such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) as a donor element-containing compound A method for forming an n-type diffusion layer by coating is proposed.
In addition, as described in Japanese Patent No. 4073968, a technique is also known in which a paste containing phosphorus as a donor element is applied as a diffusion source on the surface of a silicon substrate and thermally diffused to form a diffusion layer.
 しかしながら、特開2002-75894号公報又は特許第4073968号公報に記載の方法ではドナー元素又はその含有化合物が、拡散源である溶液又はペースト中から飛散するため、上記混合ガスを用いる気相反応法と同様に、拡散層の形成時にリンがp型シリコン基板の側面及び裏面にも拡散することがある。その結果、塗布した部分以外にもn型拡散層が形成されることがある。 However, in the method described in Japanese Patent Application Laid-Open No. 2002-75894 or Japanese Patent No. 4073968, a donor element or a compound containing the donor element is scattered from a solution or paste as a diffusion source. Similarly to the above, when the diffusion layer is formed, phosphorus may also diffuse into the side surface and the back surface of the p-type silicon substrate. As a result, an n-type diffusion layer may be formed in addition to the applied part.
 このように、n型拡散層の形成の際、オキシ塩化リンを用いた気相反応法では、本来n型拡散層が必要となるp型シリコン基板の片面(通常は受光面又は表面)のみならず、もう一方の面(非受光面又は裏面)及び側面にもn型拡散層が形成されてしまう。また、リンを含有する化合物を含む溶液又はペーストをp型シリコン基板に塗布して熱拡散させる方法でも、気相反応法と同様、p型シリコン基板の表面以外にもn型拡散層が形成されてしまう。そのため、p型シリコン基板が太陽電池素子としてpn接合構造を有するためには、側面においてはエッチングを行い、裏面においてはn型拡散層をp+型拡散層へ変換しなければならない。一般には、裏面に第13族元素であるアルミニウムのペーストをp型シリコン基板に塗布し、焼成し、n型拡散層をp+型拡散層へ変換している。さらに、従来知られているリン等のドナー元素を含むペーストを拡散源としてp型シリコン基板に塗布してn型拡散層を形成する方法では、ドナー元素を有する化合物が揮散ガス化して、ドナー元素の拡散が必要とされる領域以外にもドナー元素が拡散するため、選択的に特定の領域に拡散層を形成することが難しい。 As described above, when forming the n-type diffusion layer, the vapor phase reaction method using phosphorus oxychloride is applicable only to one side (usually the light-receiving surface or the surface) of the p-type silicon substrate which originally requires the n-type diffusion layer. In addition, an n-type diffusion layer is also formed on the other surface (non-light-receiving surface or back surface) and side surface. In addition, even when a solution or paste containing a phosphorus-containing compound is applied to a p-type silicon substrate and thermally diffused, an n-type diffusion layer is formed on the surface other than the surface of the p-type silicon substrate as in the gas phase reaction method. End up. Therefore, in order for the p-type silicon substrate to have a pn junction structure as a solar cell element, it is necessary to perform etching on the side surface and convert the n-type diffusion layer to the p + -type diffusion layer on the back surface. In general, an aluminum paste which is an element belonging to Group 13 is applied to the back surface of a p-type silicon substrate and baked to convert the n-type diffusion layer into a p + -type diffusion layer. Furthermore, in a method of forming a n-type diffusion layer by applying a conventionally known paste containing a donor element such as phosphorus to a p-type silicon substrate as a diffusion source, the compound containing the donor element is volatilized and gasified to form a donor element. Since the donor element is diffused in a region other than the region where the diffusion is required, it is difficult to selectively form a diffusion layer in a specific region.
 また、リン化合物を含む塗布剤を使用する場合、n型拡散層の面内で、ミクロスケールで、拡散したリンの濃度むらを生じることがある。特に、リン化合物を含む塗布剤の塗布量を少なくした場合、リン化合物を含む塗布剤の乾燥工程では、塗布領域の端部から溶媒が急激に蒸発し、塗布領域の断面が凹状となる額縁現象(コーヒーリング現象)が生じることがある。そのため、塗布領域の中央部では、リン化合物の存在比率が低減し、リン化合物の存在比率が低減した状態で拡散した場合、p型シリコン基板の面方向又は厚み方向においてミクロスケールでリン濃度の異なる不均一なn型拡散層が形成されることがある。不均一なn型拡散層の存在は、太陽電池全体の変換効率の低下につながる。 In addition, when a coating agent containing a phosphorus compound is used, there may be uneven concentration of diffused phosphorus on the micro scale in the plane of the n-type diffusion layer. In particular, when the coating amount of a coating agent containing a phosphorus compound is reduced, in the drying step of the coating agent containing a phosphorus compound, the solvent rapidly evaporates from the end of the coating region, and the cross-section of the coating region becomes concave. (Coffee ring phenomenon) may occur. Therefore, in the central part of the coating region, when the phosphorus compound abundance ratio is reduced and diffusion occurs in a state where the phosphorus compound abundance ratio is reduced, the phosphorus concentration differs on a microscale in the surface direction or thickness direction of the p-type silicon substrate. A non-uniform n-type diffusion layer may be formed. The presence of a non-uniform n-type diffusion layer leads to a decrease in conversion efficiency of the entire solar cell.
 本発明は、以上の従来の問題点に鑑みなされたものであり、半導体基板を用いた太陽電池素子に適用可能であり、不要な領域にn型拡散層を形成させることなく、特定の領域により均一なn型拡散層を形成可能なn型拡散層形成組成物、並びにこれを用いたn型拡散層の製造方法及び太陽電池素子の製造方法の提供を課題とする。 The present invention has been made in view of the above-described conventional problems, and is applicable to a solar cell element using a semiconductor substrate, and can be applied to a specific region without forming an n-type diffusion layer in an unnecessary region. It is an object of the present invention to provide an n-type diffusion layer forming composition capable of forming a uniform n-type diffusion layer, an n-type diffusion layer manufacturing method using the same, and a solar cell element manufacturing method.
 前記課題を達成するための具体的手段は以下の通りである。 The concrete means for achieving the above-mentioned problems are as follows.
<1> ドナー元素を含み粒子径d90が0.1μm~1.5μmであるガラス粉末と、分散媒と、を含有するn型拡散層形成組成物。 <1> An n-type diffusion layer forming composition comprising a glass powder containing a donor element and having a particle diameter d90 of 0.1 μm to 1.5 μm and a dispersion medium.
<2> 前記ガラス粉末の平均粒子径d50が、0.05μm~0.5μmである<1>に記載のn型拡散層形成組成物。 <2> The n-type diffusion layer forming composition according to <1>, wherein the glass powder has an average particle diameter d50 of 0.05 μm to 0.5 μm.
<3> 前記ドナー元素が、P(リン)及びSb(アンチモン)から選択される少なくとも1種である<1>又は<2>に記載のn型拡散層形成組成物。 <3> The n-type diffusion layer forming composition according to <1> or <2>, wherein the donor element is at least one selected from P (phosphorus) and Sb (antimony).
<4> 前記ガラス粉末が、P、P及びSbからなる群より選択される少なくとも1種のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO及びMoOからなる群より選択される少なくとも1種のガラス成分物質と、を含有する<1>~<3>のいずれか1項に記載のn型拡散層形成組成物。 <4> The glass powder includes at least one donor element-containing material selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 , SiO 2 , K 2 O, Na 2 O, Containing at least one glass component material selected from the group consisting of Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2, and MoO 3. The n-type diffusion layer forming composition according to any one of <3>.
<5> 半導体基板上に、<1>~<4>のいずれか1項に記載のn型拡散層形成組成物を付与する工程と、
 前記n型拡散層形成組成物を付与後の半導体基板に、熱拡散処理を施す工程と、
を有するn型拡散層の製造方法。
<5> a step of applying the n-type diffusion layer forming composition according to any one of <1> to <4> on a semiconductor substrate;
Applying a thermal diffusion treatment to the semiconductor substrate after the application of the n-type diffusion layer forming composition;
The manufacturing method of the n type diffused layer which has this.
<6> 半導体基板上に、<1>~<4>のいずれか1項に記載のn型拡散層形成組成物を付与する工程と、
 前記n型拡散層形成組成物を付与後の半導体基板に熱拡散処理を施して、前記n型拡散層形成組成物を付与後の半導体基板上にn型拡散層を形成する工程と、
 形成された前記n型拡散層上に電極を形成する工程と、
を有する太陽電池素子の製造方法。
<6> a step of applying the n-type diffusion layer forming composition according to any one of <1> to <4> on a semiconductor substrate;
Applying a thermal diffusion treatment to the semiconductor substrate after application of the n-type diffusion layer forming composition to form an n-type diffusion layer on the semiconductor substrate after application of the n-type diffusion layer formation composition;
Forming an electrode on the formed n-type diffusion layer;
The manufacturing method of the solar cell element which has this.
 本発明によれば、半導体基板を用いた太陽電池素子に適用可能であり、不要な領域にn型拡散層を形成させることなく、特定の領域により均一なn型拡散層を形成可能なn型拡散層形成組成物、並びにこれを用いたn型拡散層の製造方法及び太陽電池素子の製造方法の提供が可能となる。 The present invention can be applied to a solar cell element using a semiconductor substrate and can form a uniform n-type diffusion layer in a specific region without forming an n-type diffusion layer in an unnecessary region. It is possible to provide a diffusion layer forming composition, a method for producing an n-type diffusion layer using the composition, and a method for producing a solar cell element.
太陽電池素子の製造工程の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the manufacturing process of a solar cell element. 太陽電池素子を表面から見た平面図である。It is the top view which looked at the solar cell element from the surface. 図2の太陽電池素子の一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of solar cell element of FIG.
 まず、本発明のn型拡散層形成組成物の実施形態について説明し、次にn型拡散層形成組成物を用いるn型拡散層の製造方法及び太陽電池素子の製造方法の実施形態について説明する。
 尚、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また本明細書において「~」は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示すものとする。さらに本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
First, an embodiment of the n-type diffusion layer forming composition of the present invention will be described, and then an embodiment of an n-type diffusion layer manufacturing method and a solar cell element manufacturing method using the n-type diffusion layer forming composition will be described. .
In the present specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended purpose of the process is achieved. included. In the present specification, “˜” indicates a range including the numerical values described before and after the values as the minimum value and the maximum value, respectively. Furthermore, in this specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
In this specification, the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
<n型拡散層形成組成物>
 本実施形態のn型拡散層形成組成物は、ドナー元素を含み粒子径d90が0.1μm~1.5μmであるガラス粉末と、分散媒と、を含有する。本実施形態のn型拡散層形成組成物は、更に組成物の付与適性(塗布性)等を考慮してその他の添加剤を必要に応じて含有してもよい。
 ここで、n型拡散層形成組成物とは、ドナー元素を含むガラス粉末を少なくとも含有し、半導体基板に付与した後にこのドナー元素を熱拡散することでn型拡散層を形成することが可能な材料をいう。
<N-type diffusion layer forming composition>
The n-type diffusion layer forming composition of the present embodiment contains a glass powder containing a donor element and having a particle diameter d90 of 0.1 μm to 1.5 μm, and a dispersion medium. The n-type diffusion layer forming composition of the present embodiment may further contain other additives as necessary in consideration of suitability (applicability) of the composition.
Here, the n-type diffusion layer forming composition contains at least a glass powder containing a donor element, and can be formed on the semiconductor substrate by thermally diffusing the donor element after being applied to the semiconductor substrate. Say material.
 ドナー元素を含み粒子径d90が0.1μm~1.5μmであるガラス粉末を含有するn型拡散層形成組成物を用いることで、乾燥工程時にn型拡散層形成組成物の塗布領域の、半導体基板の面方向における中央部の厚みが額縁現象により薄くなった場合でも、ガラス粉末が前記範囲の粒子径であれば、ガラス粉末の存在比率を高く確保することができる。また、拡散処理時にガラス粉末の溶融時間を短縮できるので、ミクロスケールでピンホールの無いガラス層を形成できる。これにより、半導体基板の所望の部位にリン濃度がより均一なn型拡散層が形成され、半導体基板の裏面及び側面には不要なn型拡散層が形成されない。 By using an n-type diffusion layer forming composition containing a donor element and containing a glass powder having a particle diameter d90 of 0.1 μm to 1.5 μm, the semiconductor in the coating region of the n-type diffusion layer forming composition during the drying process Even when the thickness of the central part in the surface direction of the substrate is reduced by the frame phenomenon, if the glass powder has a particle diameter in the above range, a high presence ratio of the glass powder can be ensured. Further, since the melting time of the glass powder can be shortened during the diffusion treatment, a glass layer having no pinhole can be formed on a micro scale. Thereby, an n-type diffusion layer having a more uniform phosphorus concentration is formed at a desired portion of the semiconductor substrate, and unnecessary n-type diffusion layers are not formed on the back surface and side surfaces of the semiconductor substrate.
 したがって、本実施形態のn型拡散層形成組成物を適用すれば、従来広く採用されている気相反応法では必須のサイドエッチング工程が不要となり、工程が簡易化される。また、裏面に形成されたn型拡散層をp型拡散層へ変換する工程も不要となる。そのため、裏面のp型拡散層の形成方法並びに、裏面電極の材質、形状及び厚さが制限されず、適用する製造方法並びに裏面電極の材質及び形状の選択肢が広がる。また詳細は後述するが、裏面電極の厚さに起因した半導体基板内の内部応力の発生が抑えられ、半導体基板の反りも抑えられる。 Therefore, if the composition for forming an n-type diffusion layer of the present embodiment is applied, the side etching step that is essential in the gas phase reaction method widely used in the past is not necessary, and the process is simplified. In addition, the step of converting the n-type diffusion layer formed on the back surface into the p + -type diffusion layer is not necessary. Therefore, the method for forming the p + -type diffusion layer on the back surface and the material, shape, and thickness of the back electrode are not limited, and the choice of the manufacturing method to be applied and the material and shape of the back electrode is expanded. Moreover, although mentioned later for details, generation | occurrence | production of the internal stress in the semiconductor substrate resulting from the thickness of a back surface electrode is suppressed, and the curvature of a semiconductor substrate is also suppressed.
 なお、本実施形態のn型拡散層形成組成物に含有されるガラス粉末は焼成により溶融し、n型拡散層の上にガラス層を形成する。しかし、従来の気相反応法又はリン酸塩含有の溶液若しくはペーストを付与する方法においてもn型拡散層の上にガラス層が形成されている。よって、本実施形態において生成したガラス層は、従来の方法と同様に、エッチングにより除去することができる。したがって本実施形態のn型拡散層形成組成物は、従来の方法と比べても不要な生成物を発生させず、工程を増やすこともない。 The glass powder contained in the n-type diffusion layer forming composition of the present embodiment is melted by firing to form a glass layer on the n-type diffusion layer. However, the glass layer is formed on the n-type diffusion layer also in the conventional gas phase reaction method or the method of applying a phosphate-containing solution or paste. Therefore, the glass layer produced | generated in this embodiment can be removed by an etching similarly to the conventional method. Therefore, the n-type diffusion layer forming composition of the present embodiment does not generate unnecessary products and does not increase the number of steps as compared with the conventional method.
 また、ガラス粉末中のドナー元素は熱処理(焼成)中でも揮散しにくいため、揮散ガスの発生によって半導体基板の表面のみならず裏面及び側面にまでn型拡散層が形成されるということが抑制される。
 この理由として、ドナー元素はガラス中に構成元素として他の元素と結合しているため、揮発しにくいものと考えられる。
Further, since the donor element in the glass powder is not easily volatilized even during the heat treatment (firing), the generation of the volatilizing gas suppresses the formation of n-type diffusion layers not only on the surface of the semiconductor substrate but also on the back surface and side surfaces. .
For this reason, the donor element is considered to be difficult to volatilize because it is bonded to other elements as constituent elements in the glass.
 このように、本実施形態のn型拡散層形成組成物は、半導体基板の所望の部位に所望の濃度のn型拡散層を形成することが可能であることから、n型ドナー元素(ドーパント)の濃度の高い選択的な領域を形成することが可能となる。一方、n型拡散層を形成するための一般的な方法である、気相反応法又はリン酸塩含有の溶液若しくはペーストを用いる方法によってn型ドナー元素の濃度の高い選択的な領域を形成することは、一般的には困難である。 As described above, since the n-type diffusion layer forming composition of the present embodiment can form an n-type diffusion layer having a desired concentration in a desired portion of the semiconductor substrate, an n-type donor element (dopant). It is possible to form a selective region having a high concentration of. On the other hand, a selective region having a high concentration of the n-type donor element is formed by a gas phase reaction method or a method using a phosphate-containing solution or paste, which is a general method for forming an n-type diffusion layer. That is generally difficult.
 本実施形態で用いられるドナー元素を含むガラス粉末について、詳細に説明する。
 ドナー元素とは、半導体基板中に拡散(ドーピング)させることによってn型拡散層を形成することが可能な元素である。ドナー元素としては第15族の元素が使用でき、例えばP(リン)、Sb(アンチモン)、Bi(ビスマス)及びAs(ヒ素)が挙げられる。安全性、ガラス化の容易さ等の観点から、P(リン)及びSb(アンチモン)から選択される少なくとも1種であることが好ましい。
The glass powder containing the donor element used in this embodiment will be described in detail.
A donor element is an element that can form an n-type diffusion layer by diffusing (doping) into a semiconductor substrate. As the donor element, a Group 15 element can be used, and examples thereof include P (phosphorus), Sb (antimony), Bi (bismuth), and As (arsenic). From the viewpoints of safety, easiness of vitrification, and the like, it is preferably at least one selected from P (phosphorus) and Sb (antimony).
 ドナー元素をガラス粉末に導入するために用いるドナー元素含有物質としては、例えば、P、P、Sb、Bi及びAsが挙げられ、P、P及びSbからなる群より選択される少なくとも1種を用いることが好ましい。 As the donor element-containing substance used to introduce the donor element to the glass powder, for example, include P 2 O 3, P 2 O 5, Sb 2 O 3, Bi 2 O 3 and As 2 O 3, P 2 It is preferable to use at least one selected from the group consisting of O 3 , P 2 O 5 and Sb 2 O 3 .
 また、ドナー元素を含むガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化温度、ガラス転移温度、化学的耐久性等を制御することが可能である。ドナー元素を含むガラス粉末は、更に以下に記す、ガラス成分物質を含むことが好ましい。
 ガラス成分物質としては、例えば、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO、WO、MoO、MnO、La、Nb、Ta、Y、TiO、ZrO、GeO、TeO及びLuが挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO、WO、MoO及びMnOからなる群より選択される少なくとも1種を用いることが好ましく、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO及びMoOからなる群より選択される少なくとも1種を用いることがより好ましい。
Moreover, the glass powder containing a donor element can control a melting temperature, a softening temperature, a glass transition temperature, chemical durability, etc. by adjusting a component ratio as needed. It is preferable that the glass powder containing a donor element further contains a glass component substance described below.
Examples of the glass component material include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 can be mentioned, SiO 2 , K 2 O, Na It is preferable to use at least one selected from the group consisting of 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 and MnO. , SiO 2, K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO It is more preferable to use at least one selected from the group consisting of.
 ドナー元素を含むガラス粉末としては、前記ドナー元素含有物質と前記ガラス成分物質の双方を含む系が挙げられ、P、P及びSbからなる群より選択される少なくとも1種のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO及びMoOからなる群より選択される少なくとも1種のガラス成分物質と、を含有するガラス粉末であることが好ましい。
 ドナー元素を含むガラス粉末の具体例としては、P-SiO系(ドナー元素含有物質-ガラス成分物質の順で記載、以下同様)、P-KO系、P-NaO系、P-LiO系、P-BaO系、P-SrO系、P-CaO系、P-MgO系、P-BeO系、P-ZnO系、P-CdO系、P-PbO系、P-SnO系、P-GeO系、P-TeO系等のドナー元素含有物質としてPを含む系、前記のPを含む系のPの代わりにドナー元素含有物質としてSbを含む系などのガラス粉末が挙げられる。
 なお、P-Sb系、P-As系等のように、2種類以上のドナー元素含有物質を含むガラス粉末でもよい。
 上記では2成分を含む複合ガラスを例示したが、P-SiO-MgO系等必要に応じて3成分以上の物質を含むガラス粉末でもよい。
Examples of the glass powder containing a donor element include a system containing both the donor element-containing substance and the glass component substance, and at least selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3. and one of the donor element-containing substance, the group consisting of SiO 2, K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 It is preferable that the glass powder contains at least one glass component substance selected more.
Specific examples of the glass powder containing a donor element include a P 2 O 5 —SiO 2 system (described in the order of a donor element-containing substance—a glass component substance, the same applies hereinafter), a P 2 O 5 —K 2 O system, P 2 O 5 -Na 2 O-based, P 2 O 5 -Li 2 O system, P 2 O 5 -BaO-based, P 2 O 5 -SrO based, P 2 O 5 -CaO-based, P 2 O 5 -MgO-based, P 2 O 5 —BeO, P 2 O 5 —ZnO, P 2 O 5 —CdO, P 2 O 5 —PbO, P 2 O 5 —SnO, P 2 O 5 —GeO 2 , P 2 O 5 -TeO 2 system such as a donor element-containing material as a system containing P 2 O 5, and including Sb 2 O 3 as a donor element-containing material instead of P 2 O 5 of system containing P 2 O 5 of the Glass powders such as a system are mentioned.
Note that a glass powder containing two or more kinds of donor element-containing substances, such as a P 2 O 5 —Sb 2 O 3 system and a P 2 O 5 —As 2 O 3 system, may be used.
In the above, a composite glass containing two components has been exemplified, but a glass powder containing three or more components as required may be used, such as a P 2 O 5 —SiO 2 —MgO system.
 ガラス粉末中のガラス成分物質の含有比率は、溶融温度、軟化温度、ガラス転移温度、化学的耐久性等を考慮して適宜設定することが望ましく、一般には、0.1質量%~95質量%であることが好ましく、0.5質量%~90質量%であることがより好ましい。 The content ratio of the glass component substance in the glass powder is preferably set appropriately in consideration of the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, and the like, and generally 0.1 mass% to 95 mass%. It is preferably 0.5% by mass to 90% by mass.
 具体的には、ガラス粉末中にSiOを含む場合のSiOの含有比率は、10質量%~90質量%であることが好ましく、10質量%~50質量%であることがより好ましく、10質量%~30質量%であることが更に好ましい。 Specifically, the content ratio of SiO 2 in the case of the glass powder containing SiO 2 is preferably from 10 mass% to 90 mass%, more preferably from 10 wt% to 50 wt%, 10 More preferably, the content is from 30% by mass to 30% by mass.
 ガラス粉末の軟化温度は、拡散処理時の拡散性、液だれ等の観点から、400℃~900℃であることが好ましい。また、600℃~800℃であることがより好ましく、700℃~800℃であることが更に好ましい。軟化温度が400℃以上であれば、拡散処理時にガラスの粘度が低くなりすぎることが抑制され、液だれが生じにくくなるため、特定の部分以外へのn型拡散層の形成が抑制される傾向にある。また、軟化温度が900℃以下であれば、ガラス粉末が溶融しきれない状態が生じにくく、均一なn型拡散層が形成されやすい傾向にある。
 ガラス粉末の軟化温度が400℃~900℃の範囲内であれば、液だれが生じることもないため、拡散処理後に、特定の領域へ所望の形状にn型拡散層を形成することが可能となる。例えばaμm幅の線状パターンでn型拡散層形成組成物を付与した場合には、拡散処理後の線幅bは、b<1.5aμmの範囲の線状パターンを保持できる。
The softening temperature of the glass powder is preferably 400 ° C. to 900 ° C. from the viewpoints of diffusibility during the diffusion treatment and dripping. Further, it is more preferably 600 ° C. to 800 ° C., and further preferably 700 ° C. to 800 ° C. If the softening temperature is 400 ° C. or higher, it is suppressed that the viscosity of the glass becomes too low during the diffusion treatment, and it is difficult for dripping to occur, so that the formation of the n-type diffusion layer other than the specific portion tends to be suppressed. It is in. Further, when the softening temperature is 900 ° C. or lower, it is difficult for the glass powder to be completely melted, and a uniform n-type diffusion layer tends to be formed.
If the softening temperature of the glass powder is in the range of 400 ° C. to 900 ° C., no dripping will occur, so that it is possible to form an n-type diffusion layer in a desired shape in a specific region after the diffusion treatment. Become. For example, when the n-type diffusion layer forming composition is applied in a linear pattern having a width of a μm, the linear width b after the diffusion treatment can hold a linear pattern in the range of b <1.5 a μm.
 ガラス粉末の軟化温度は、(株)島津製作所製DTG-60H型示差熱・熱重量同時測定装置を用いて、示差熱(DTA)曲線等により求めることができる。 The softening temperature of the glass powder can be obtained from a differential heat (DTA) curve or the like using a DTG-60H type differential heat / thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation.
 ガラス粉末の形状としては、略球状、扁平状、ブロック状、板状、鱗片状等が挙げられ、n型拡散層形成組成物とした場合の基板への塗布性(付与適性)及び均一拡散性の点から、略球状、扁平状又は板状であることが望ましい。 Examples of the shape of the glass powder include a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, and a coating property (applicability to the substrate) and uniform diffusibility when an n-type diffusion layer forming composition is used. From this point, it is desirable that the shape is substantially spherical, flat or plate-like.
 ガラス粉末の粒子径d90は、0.1μm~1.5μmであることを要する。また、0.2μm~0.5μmであることが好ましく、0.2μm~0.3μmであることがより好ましい。
 ガラス粉末の粒子径d90を、1.5μm以下にすることで、乾燥工程時に塗布領域における厚みが薄くなった領域でも、ガラス粉末の存在比率が高く、短時間でガラス粉末を溶融でき、ぬけのないガラス層が得られやすくなる。そのため、半導体基板をより均一にガラス層で覆うことができ、拡散したドナー元素濃度にむらのないより均一なn型拡散層を形成できる。
 本実施形態において、ガラス粒子径が大きいほど、溶融困難となり、ガラス層が不均一になることから、混在する大きな粒子径のガラスを微粒子化するため、粒子径d90の値に注目している。
The particle diameter d90 of the glass powder needs to be 0.1 μm to 1.5 μm. Further, it is preferably 0.2 μm to 0.5 μm, and more preferably 0.2 μm to 0.3 μm.
By setting the particle diameter d90 of the glass powder to 1.5 μm or less, even in the area where the thickness in the coating area is thin during the drying process, the presence ratio of the glass powder is high, and the glass powder can be melted in a short time. It becomes easy to obtain a glass layer that is not present. Therefore, the semiconductor substrate can be covered more uniformly with the glass layer, and a more uniform n-type diffusion layer can be formed without unevenness in the diffused donor element concentration.
In this embodiment, the larger the glass particle diameter, the more difficult it is to melt and the non-uniform glass layer. Therefore, attention is paid to the value of the particle diameter d90 in order to finely mix the glass having a large particle diameter.
 均一なn型拡散層が形成されているか否かは、例えば、n型拡散層を形成した半導体基板を900℃で熱酸化処理し、n型拡散層領域の半導体基板上に形成された1000Å~3000Å程度の酸化膜のばらつきで確認することができる。一般に、半導体基板表面の酸化速度は拡散したドナー元素濃度に依存している。そのため、ドナー元素が十分に拡散されていない領域がある場合、半導体基板の面内で酸化膜厚のばらつきが大きくなる。本実施形態では、酸化膜の厚みは、ファイブラボ製エリプソメータMARY-102を用いて測定したものを採用する。また、酸化膜のばらつきは、面内の9点を測定し、最大値と最小値の比(最大値/最小値)で確認できる。例えば、酸化膜厚のばらつきは、比(最大値/最小値)が1.00~1.10を示す場合に、均一なn型拡散層が形成されているとして評価することができる。また、光学顕微鏡を用いて酸化膜の色を観察し、色むらから、酸化膜が均一に形成されていることを確認できる。面内で色むらが生じていない場合、ミクロスケールで均一なn型拡散層が形成されていると評価できる。
 ここで、ミクロスケールとは、半導体基板の面方向又は厚み方向における1μm~10μmの範囲を示す。
Whether a uniform n-type diffusion layer is formed can be determined by, for example, subjecting the semiconductor substrate on which the n-type diffusion layer is formed to a thermal oxidation treatment at 900 ° C. to 1000 μm or more formed on the semiconductor substrate in the n-type diffusion layer region. This can be confirmed by the variation of the oxide film of about 3000 mm. In general, the oxidation rate on the surface of a semiconductor substrate depends on the concentration of the diffused donor element. Therefore, when there is a region where the donor element is not sufficiently diffused, the variation of the oxide film thickness increases in the plane of the semiconductor substrate. In the present embodiment, the thickness of the oxide film is measured using an ellipsometer MARY-102 manufactured by Fibravo. The variation of the oxide film can be confirmed by measuring nine points in the plane and the ratio between the maximum value and the minimum value (maximum value / minimum value). For example, the variation in the oxide film thickness can be evaluated as a uniform n-type diffusion layer formed when the ratio (maximum value / minimum value) is 1.00 to 1.10. Further, the color of the oxide film is observed using an optical microscope, and it can be confirmed that the oxide film is uniformly formed from the uneven color. When no color unevenness occurs in the plane, it can be evaluated that a uniform n-type diffusion layer is formed on a microscale.
Here, the micro scale indicates a range of 1 μm to 10 μm in the surface direction or thickness direction of the semiconductor substrate.
 ここで、粒子径d90とは、粒子径の体積分布積算曲線を描いた時に粒子径の最も小さい粒子から順次積算して全体の90%に達するところの粒子径をさす。体積分布積算曲線は、レーザー散乱回折法粒度分布測定装置(ベックマンコールター社製)等により測定することができる。 Here, the particle diameter d90 refers to the particle diameter at which 90% of the total particle diameter is accumulated sequentially from the smallest particle diameter when a volume distribution integrated curve of particle diameter is drawn. The volume distribution integrated curve can be measured with a laser scattering diffraction particle size distribution analyzer (manufactured by Beckman Coulter, Inc.) or the like.
 本実施形態に用いられるガラス粉末の平均粒子径d50は0.05μm~0.5μmが好ましい。また、平均粒子径d50は0.05μm~0.3μmがより好ましく、0.05μm~0.2μmが更に好ましい。ガラス粉末の平均粒子径d50は、体積平均粒子径を表し、レーザー散乱回折法粒度分布測定装置(ベックマンコールター社製)等により測定することができる。 The average particle diameter d50 of the glass powder used in this embodiment is preferably 0.05 μm to 0.5 μm. The average particle diameter d50 is more preferably 0.05 μm to 0.3 μm, and even more preferably 0.05 μm to 0.2 μm. The average particle diameter d50 of the glass powder represents a volume average particle diameter, and can be measured by a laser scattering diffraction particle size distribution analyzer (manufactured by Beckman Coulter, Inc.).
 ドナー元素を含むガラス粉末は、以下の手順で作製される。
 最初に原料、例えば、ドナー元素含有物質とガラス成分物質を秤量し、るつぼに充填する。るつぼの材質としては白金、白金-ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられる。るつぼの材質は、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選択される。
 次に、ドナー元素含有物質及びガラス成分物質を、電気炉でガラス組成に応じた温度で加熱し融液とする。このとき融液が均一となるよう撹拌することが望ましい。
 続いて、得られた融液をジルコニア基板、カーボン基板等の上に流し出して融液をガラス化する。
 最後に、ガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
The glass powder containing a donor element is produced by the following procedure.
First, raw materials, for example, a donor element-containing material and a glass component material are weighed and filled in a crucible. Examples of the crucible material include platinum, platinum-rhodium, iridium, alumina, quartz, and carbon. The material of the crucible is appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
Next, the donor element-containing material and the glass component material are heated to a melt by a temperature corresponding to the glass composition in an electric furnace. At this time, it is desirable to stir the melt uniformly.
Subsequently, the obtained melt is poured onto a zirconia substrate, a carbon substrate, or the like to vitrify the melt.
Finally, the glass is crushed into powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.
 n型拡散層形成組成物中のドナー元素を含むガラス粉末の含有比率は、付与適性(塗布性)、ドナー元素の拡散性等を考慮し決定される。一般には、n型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%~95質量%であることが好ましく、1質量%~90質量%であることがより好ましく、1.5質量%~85質量%であることが更に好ましく、2質量%~80質量%であることが特に好ましい。
 また、n型拡散層形成組成物中の金属粒子の含有比率は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
The content ratio of the glass powder containing the donor element in the n-type diffusion layer forming composition is determined in consideration of application suitability (applicability), diffusibility of the donor element, and the like. In general, the content ratio of the glass powder in the n-type diffusion layer forming composition is preferably 0.1% by mass to 95% by mass, more preferably 1% by mass to 90% by mass. The content is more preferably 5% by mass to 85% by mass, and particularly preferably 2% by mass to 80% by mass.
Further, the content ratio of the metal particles in the n-type diffusion layer forming composition is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less.
 次に、分散媒について説明する。
 分散媒とは、組成物中においてドナー元素を含むガラス粉末を分散させる媒体である。具体的に分散媒としては、バインダー及び溶剤からなる群より選択される少なくとも1種が採用される。
Next, the dispersion medium will be described.
A dispersion medium is a medium in which glass powder containing a donor element is dispersed in a composition. Specifically, at least one selected from the group consisting of a binder and a solvent is employed as the dispersion medium.
 バインダーとしては、例えば、ポリビニルアルコール、ポリアクリルアミド、ポリビニルアミド、ポリビニルピロリドン、ポリエチレンオキサイド、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム及びアルギン酸ナトリウム誘導体、キサンタン及びキサンタン誘導体、グアーガム及びグアーガム誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル(例えば、ポリアルキル(メタ)アクリレート、ポリジメチルアミノエチル(メタ)アクリレート等)、ポリブタジエン、ポリスチレン、並びにこれらの共重合体が挙げられる。また、他にも、ポリシロキサンを適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。 Examples of the binder include polyvinyl alcohol, polyacrylamide, polyvinyl amide, polyvinyl pyrrolidone, polyethylene oxide, polysulfonic acid, acrylamide alkyl sulfonic acid, cellulose ether, cellulose derivative, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivative, Sodium alginate and sodium alginate derivatives, xanthan and xanthan derivatives, guar gum and guar gum derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives, poly (meth) acrylic acid, poly (meth) acrylic acid ester (For example, polyalkyl (meth) acrylate, polydimethyl Ruaminoechiru (meth) acrylate), polybutadiene, polystyrene, and copolymers thereof. In addition, polysiloxane can be appropriately selected. These are used singly or in combination of two or more.
 バインダーの分子量(例えば、重量平均分子量)は特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが望ましい。 The molecular weight of the binder (for example, the weight average molecular weight) is not particularly limited, and it is desirable to appropriately adjust in view of the desired viscosity as the composition.
 溶剤としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-i-プロピルケトン、メチル-n-ブチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジ-i-プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル等のエーテル溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸s-ブチル、酢酸n-ペンチル、酢酸s-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、s-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、s-オクタノール、n-ノニルアルコール、n-デカノール、s-ウンデシルアルコール、トリメチルノニルアルコール、s-テトラデシルアルコール、s-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;水などが挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。n型拡散層形成組成物とした場合、基板への付与適性の観点から、テルピネオール、ジエチレングリコールモノ-n-ブチルエーテル及びジエチレングリコールモノ-n-ブチルエーテルアセテートからなる群より選択される少なくとも一種が好ましく、テルピネオール及びジエチレングリコールモノ-n-ブチルエーテルから選択される少なくとも一種がより好ましい溶剤として挙げられる。 Solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-i-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone , Ketone solvents such as dipropyl ketone, di-i-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n- Propyl ether, di-i-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol Di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di- n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene Glycol meth -N-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether, tetraethylene glycol di-n- Butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl-n- Butyl ether, dipropylene glycol di -N-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl-n- Butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether, tetrapropylene Glycolmethyl-n-hexyl ether, tetrapropylene Ether solvents such as glycol di-n-butyl ether; methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, s-butyl acetate, n-pentyl acetate, s-acetate Pentyl, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, Ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate, glycol diacetate, methoxytriethylene glycol acetate, propion Ethyl, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, ethylene glycol methyl ether propionate, Ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, diethylene glycol mono-n-butyl ether acetate, γ-butyrolactone, Ester solvents such as γ-valerolactone; acetonitrile, N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propyl Aprotic polar solvents such as loridinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide; methanol, ethanol, n-propanol, i -Propanol, n-butanol, i-butanol, s-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, t-pentanol, 3-methoxybutanol, n -Hexanol, 2-methylpentanol, s-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, s-octanol, n-nonyl alcohol, n-decanol, s-undecylal Cole, trimethylnonyl alcohol, s-tetradecyl alcohol, s-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol Alcohol solvents such as triethylene glycol and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n -Hexyl ether, ethoxytriglycol, te Glycol monoether solvents such as raethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether; terpinene, terpineol, myrcene, alloocimene, limonene, dipentene Terpene solvents such as pinene, carvone, ocimene, and ferrandrene; water and the like. These are used singly or in combination of two or more. In the case of an n-type diffusion layer forming composition, from the viewpoint of applicability to the substrate, at least one selected from the group consisting of terpineol, diethylene glycol mono-n-butyl ether and diethylene glycol mono-n-butyl ether acetate is preferred, and terpineol and At least one selected from diethylene glycol mono-n-butyl ether is a more preferable solvent.
 n型拡散層形成組成物中の分散媒の含有比率は、塗布性、ドナー濃度等を考慮し決定される。
 n型拡散層形成組成物の粘度は、付与適性を考慮して、25℃において10mPa・s~1000000mPa・sであることが好ましく、50mPa・s~200000mPa・sであることがより好ましく、1000mPa・s~100000mPa・sであることが更に好ましい。
 尚、n型拡散層形成組成物の粘度は、25℃において、E型粘度計(東京計器社製)を用いて5rpm(min-1)の回転速度で測定される。
The content ratio of the dispersion medium in the n-type diffusion layer forming composition is determined in consideration of applicability, donor concentration, and the like.
The viscosity of the n-type diffusion layer forming composition is preferably 10 mPa · s to 1000000 mPa · s at 25 ° C., more preferably 50 mPa · s to 200000 mPa · s at 25 ° C. in consideration of applicability. More preferably, it is s to 100,000 mPa · s.
The viscosity of the n-type diffusion layer forming composition is measured at 25 ° C. using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) at a rotation speed of 5 rpm (min −1 ).
 更に、n型拡散層形成組成物は、必要に応じて、その他の添加剤を含有してもよい。その他の添加物としては、有機金属化合物、シランカップリング剤、有機フィラー、無機フィラー、有機酸塩等のチキソ性付与剤、濡れ性向上剤、レベリング剤、界面活性剤、可塑剤、充填剤、消泡剤、安定剤、酸化防止剤、香料などが挙げられる。その他の添加剤は、n型拡散層形成組成物の総量100質量部に対して各々0.01質量部~20質量部程度使用することができる。また、これらは単独で又は2種類以上を組み合わせて使用することができる。 Furthermore, the n-type diffusion layer forming composition may contain other additives as necessary. Other additives include organometallic compounds, silane coupling agents, organic fillers, inorganic fillers, thixotropic agents such as organic acid salts, wettability improvers, leveling agents, surfactants, plasticizers, fillers, Examples include antifoaming agents, stabilizers, antioxidants, and fragrances. Other additives can be used in an amount of about 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the n-type diffusion layer forming composition. Moreover, these can be used individually or in combination of 2 or more types.
<n型拡散層の製造方法及び太陽電池素子の製造方法>
 本実施形態のn型拡散層の製造方法は、半導体基板上に、前記n型拡散層形成組成物を付与する工程と、前記n型拡散層形成組成物を付与後の半導体基板に、熱拡散処理を施す工程と、を有する。
 また、本実施形態の太陽電池素子の製造方法は、半導体基板上に、前記n型拡散層形成組成物を付与する工程と、前記n型拡散層形成組成物を付与後の半導体基板に熱拡散処理を施して、前記n型拡散層形成組成物を付与後の半導体基板上にn型拡散層を形成する工程と、形成された前記n型拡散層上に電極を形成する工程と、を有する。
<The manufacturing method of an n type diffused layer, and the manufacturing method of a solar cell element>
The method for producing an n-type diffusion layer according to this embodiment includes a step of applying the n-type diffusion layer forming composition on a semiconductor substrate and a thermal diffusion on the semiconductor substrate after the application of the n-type diffusion layer forming composition. And a step of performing a process.
Moreover, the manufacturing method of the solar cell element of this embodiment includes the step of applying the n-type diffusion layer forming composition on a semiconductor substrate, and the thermal diffusion to the semiconductor substrate after applying the n-type diffusion layer forming composition. And a step of forming an n-type diffusion layer on the semiconductor substrate after applying the n-type diffusion layer forming composition and a step of forming an electrode on the formed n-type diffusion layer. .
 本実施形態のn型拡散層及び太陽電池素子の製造方法(以下、両者をまとめて、本実施形態の製造方法と称することがある)について、図1を参照しながら説明する。なお、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 図1は、本実施形態の製造方法における太陽電池素子の製造工程の一例を概念的に表す模式断面図である。また、図1中、10はp型半導体基板、12はn型拡散層、14はp型拡散層、16は反射防止膜、18は表面電極、20は裏面電極(電極層)をそれぞれ示す。以降の図面においては、共通する構成要素に同じ符号を付し、説明を省略する。なお、以下、p型半導体基板としてシリコン基板を用いる例について説明するが、半導体基板はシリコン基板に限定されない。
A method for manufacturing the n-type diffusion layer and solar cell element of the present embodiment (hereinafter, both may be collectively referred to as the manufacturing method of the present embodiment) will be described with reference to FIG. In addition, the magnitude | size of the member in each figure is notional, The relative relationship of the magnitude | size between members is not limited to this.
FIG. 1 is a schematic cross-sectional view conceptually showing an example of a manufacturing process of a solar cell element in the manufacturing method of the present embodiment. In FIG. 1, 10 is a p-type semiconductor substrate, 12 is an n-type diffusion layer, 14 is a p + -type diffusion layer, 16 is an antireflection film, 18 is a front electrode, and 20 is a back electrode (electrode layer). . In the subsequent drawings, common constituent elements are denoted by the same reference numerals and description thereof is omitted. Hereinafter, an example in which a silicon substrate is used as the p-type semiconductor substrate will be described, but the semiconductor substrate is not limited to a silicon substrate.
 図1(1)では、p型半導体基板10であるシリコン基板にアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
 詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する(図中ではテクスチャー構造の記載を省略する)。太陽電池素子は、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
In FIG. 1A, an alkaline solution is applied to a silicon substrate which is a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.
Specifically, the damaged layer on the silicon surface generated when slicing from the ingot is removed with 20% by mass caustic soda. Next, etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure (the description of the texture structure is omitted in the figure). In the solar cell element, by forming a texture structure on the light receiving surface (surface) side, a light confinement effect is promoted, and high efficiency is achieved.
 図1(2)では、p型半導体基板10の表面すなわち受光面となる面に、n型拡散層形成組成物を付与して、n型拡散層形成組成物層11を形成する。本実施形態では、n型拡散層形成組成物の付与方法には制限はなく、例えば、印刷法、スピンコート法、刷毛塗り法、スプレー法、ドクターブレード法、ロールコート法及びインクジェット法が挙げられる。
 n型拡散層形成組成物の塗布量としては特に制限は無く、例えば、ガラス粉末量として5g/m~100g/mとすることができ、10g/m~50g/mであることが好ましい。特に5g/m~15g/mでは塗布厚が薄くなることがあるが、ガラス粉末の粒子径d90が0.1μm~1.5μmである場合、拡散処理時にガラス層はぬけることなく、ミクロスケールでより均一なn型拡散層を形成できる。
In FIG. 1B, an n-type diffusion layer forming composition layer 11 is formed by applying an n-type diffusion layer forming composition to the surface of the p-type semiconductor substrate 10, that is, the surface that serves as a light receiving surface. In this embodiment, there is no restriction | limiting in the application | coating method of an n type diffused layer formation composition, For example, a printing method, a spin coat method, a brush coating method, a spray method, a doctor blade method, a roll coat method, and an inkjet method are mentioned. .
The coating amount of the n-type diffusion layer forming composition is not particularly limited. For example, the glass powder amount can be 5 g / m 2 to 100 g / m 2, and it can be 10 g / m 2 to 50 g / m 2. Is preferred. In particular, the coating thickness may be thin at 5 g / m 2 to 15 g / m 2 , but when the particle diameter d90 of the glass powder is 0.1 μm to 1.5 μm, the glass layer does not penetrate during the diffusion treatment, A more uniform n-type diffusion layer can be formed on a scale.
 なお、n型拡散層形成組成物の組成によっては、付与後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80℃~300℃程度の温度で、ホットプレートを使用する場合は1分~10分、乾燥機等を用いる場合は10分~30分程度で乾燥させる。この乾燥条件は、n型拡散層形成組成物の溶剤組成に依存しており、本実施形態では特に上記条件に限定されない。 Depending on the composition of the n-type diffusion layer forming composition, a drying step for volatilizing the solvent contained in the composition may be necessary after application. In this case, drying is performed at a temperature of about 80 ° C. to 300 ° C. for about 1 to 10 minutes when using a hot plate, and about 10 to 30 minutes when using a dryer or the like. The drying conditions depend on the solvent composition of the n-type diffusion layer forming composition, and are not particularly limited to the above conditions in the present embodiment.
 また、本実施形態の製造方法を用いる場合には、裏面のp型拡散層(高濃度電界層)14の製造方法はアルミニウムによるn型拡散層からp+型拡散層への変換による方法に限定されることなく、従来公知のいずれの方法も採用でき、製造方法の選択肢が広がる。したがって、例えば、B(ボロン)等の第13族の元素を含む組成物13をp型半導体基板10の裏面(n型拡散層形成組成物を付与した面とは反対側の面)に付与し、p型拡散層14を形成することができる。
 B(ボロン)等の第13族の元素を含む組成物13としては、例えば、ドナー元素を含むガラス粉末の代わりにアクセプタ元素を含むガラス粉末を用いて、n型拡散層形成組成物と同様にして構成されるp型拡散層形成組成物を挙げることができる。アクセプタ元素は第13族の元素であればよく、B(ボロン)、Al(アルミニウム)、Ga(ガリウム)等を挙げることができる。またアクセプタ元素を含むガラス粉末はB、Al及びGaからなる群より選択される少なくとも1種を含むことが好ましい。
 さらにp型拡散層形成組成物をシリコン基板の裏面に付与する方法は、既述のn型拡散層形成組成物をシリコン基板上に付与する方法と同様である。
When the manufacturing method of the present embodiment is used, the manufacturing method of the p + -type diffusion layer (high concentration electric field layer) 14 on the back surface is a method based on conversion from an n-type diffusion layer to a p + -type diffusion layer by aluminum. Without limitation, any conventionally known method can be adopted, and the options of the manufacturing method are expanded. Therefore, for example, the composition 13 containing a Group 13 element such as B (boron) is applied to the back surface of the p-type semiconductor substrate 10 (the surface opposite to the surface to which the n-type diffusion layer forming composition is applied). , P + -type diffusion layer 14 can be formed.
As the composition 13 containing a Group 13 element such as B (boron), for example, a glass powder containing an acceptor element is used instead of a glass powder containing a donor element, and the composition 13 is made in the same manner as the n-type diffusion layer forming composition. A p-type diffusion layer forming composition may be mentioned. The acceptor element may be a Group 13 element, and examples thereof include B (boron), Al (aluminum), and Ga (gallium). Further, it is preferable that the glass powder containing acceptor element comprising at least one member selected from the group consisting of B 2 O 3, Al 2 O 3 and Ga 2 O 3.
Furthermore, the method for applying the p-type diffusion layer forming composition to the back surface of the silicon substrate is the same as the method for applying the n-type diffusion layer forming composition described above to the silicon substrate.
 裏面にp型拡散層形成組成物の付与された半導体基板を、後述するn型拡散層形成組成物の付与された半導体基板の熱拡散処理と同様に熱拡散処理することで、裏面にp型拡散層14を形成することができる。尚、p型拡散層形成組成物の熱拡散処理は、n型拡散層形成組成物の熱拡散処理と同時に行なうことが好ましい。 The semiconductor substrate granted the p-type diffusion layer forming composition on the back side, similarly to the thermal diffusion treatment of the applied semiconductor substrate of n-type diffusion layer forming composition described below by a thermal diffusion process, p on the back + The mold diffusion layer 14 can be formed. The thermal diffusion treatment of the p-type diffusion layer forming composition is preferably performed simultaneously with the thermal diffusion treatment of the n-type diffusion layer forming composition.
 次いで、n型拡散層形成組成物層11を形成したp型半導体基板10を、n型拡散層形成組成物中のガラス粉末の融点以上の温度、例えば600℃~1200℃で熱拡散処理する。この熱拡散処理により、図1(3)に示すように半導体基板中へドナー元素が拡散し、n型拡散層12が形成される。熱拡散処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
 熱拡散処理時間は、n型拡散層形成組成物に含まれるドナー元素を含むガラス粉末の含有比率に応じて適宜選択することができる。例えば、1分間~60分間とすることができ、2分間~30分間であることが好ましい。
Next, the p-type semiconductor substrate 10 on which the n-type diffusion layer forming composition layer 11 is formed is subjected to a thermal diffusion treatment at a temperature not lower than the melting point of the glass powder in the n-type diffusion layer forming composition, for example, 600 ° C. to 1200 ° C. By this thermal diffusion treatment, as shown in FIG. 1C, the donor element diffuses into the semiconductor substrate, and the n-type diffusion layer 12 is formed. A known continuous furnace, batch furnace, or the like can be applied to the thermal diffusion treatment. Further, the furnace atmosphere during the thermal diffusion treatment can be appropriately adjusted to air, oxygen, nitrogen or the like.
The thermal diffusion treatment time can be appropriately selected according to the content ratio of the glass powder containing the donor element contained in the n-type diffusion layer forming composition. For example, it can be 1 minute to 60 minutes, and preferably 2 minutes to 30 minutes.
 形成されたn型拡散層12の表面には、リン酸ガラス等のガラス層(不図示)が形成される。このため、このリン酸ガラスをエッチングにより除去する。エッチングとしては、フッ酸等の酸にp型半導体基板10を浸漬する方法、苛性ソーダ等のアルカリにp型半導体基板10を浸漬する方法など、公知の方法のいずれもが適用できる。フッ酸等の酸にp型半導体基板10を浸漬するエッチング方法を用いる場合、浸漬時間には、とくに制限はなく、一般に、0.5分~30分、好ましくは1分~10分とすることができる。 A glass layer (not shown) such as phosphate glass is formed on the surface of the formed n-type diffusion layer 12. For this reason, this phosphate glass is removed by etching. As the etching, any of known methods such as a method of immersing the p-type semiconductor substrate 10 in an acid such as hydrofluoric acid and a method of immersing the p-type semiconductor substrate 10 in an alkali such as caustic soda can be applied. When using an etching method in which the p-type semiconductor substrate 10 is immersed in an acid such as hydrofluoric acid, the immersion time is not particularly limited and is generally 0.5 minutes to 30 minutes, preferably 1 minute to 10 minutes. Can do.
 図1(2)及び(3)に示される本実施形態の製造方法では、所望の部位にn型拡散層12が形成され、裏面及び側面には不要なn型拡散層が形成されない。
 したがって、従来広く採用されている気相反応法によりn型拡散層を形成する方法では、側面に形成された不要なn型拡散層を除去するためのサイドエッチング工程が必須であったが、本実施形態の製造方法によれば、サイドエッチング工程が不要となり、工程が簡易化される。このように、本実施形態の製造方法によって、短時間で、所望の部位に、所望の形状の、より均一なn型拡散層が形成される。
In the manufacturing method of the present embodiment shown in FIGS. 1 (2) and (3), the n-type diffusion layer 12 is formed at a desired site, and unnecessary n-type diffusion layers are not formed on the back surface and side surfaces.
Therefore, in the conventional method of forming an n-type diffusion layer by a gas phase reaction method, a side etching process for removing an unnecessary n-type diffusion layer formed on a side surface is essential. According to the manufacturing method of the embodiment, the side etching process becomes unnecessary, and the process is simplified. As described above, by the manufacturing method of the present embodiment, a more uniform n-type diffusion layer having a desired shape is formed in a desired portion in a short time.
 また、従来の製造方法では、裏面に形成された不要なn型拡散層をp+型拡散層へ変換する必要がある。この変換方法としては、裏面のn型拡散層に、第13族元素であるアルミニウムのペーストを塗布し、焼成し、n型拡散層にアルミニウムを拡散させてp+型拡散層へ変換する方法が採用されている。この方法においてp+型拡散層への変換を充分なものとし、更にp型拡散層の高濃度電界層を形成するためには、ある程度以上のアルミニウム量が必要であることから、アルミニウム層を厚く形成する必要があった。しかしながら、アルミニウムの熱膨張率は、基板として用いるシリコンの熱膨張率と大きく異なることから、焼成及び冷却の過程でシリコン基板中に大きな内部応力を発生させ、シリコン基板の反りの原因となっていた。
 この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池素子の搬送の際及びタブ線と呼ばれる銅線との接続の際において、太陽電池素子を破損させ易くしていた。近年では、スライス加工技術の向上から、シリコン基板の厚みが薄型化されつつあり、更に太陽電池素子が割れ易い傾向にある。
In the conventional manufacturing method, it is necessary to convert an unnecessary n-type diffusion layer formed on the back surface into a p + -type diffusion layer. As this conversion method, there is a method in which an n-type diffusion layer on the back surface is coated with a paste of aluminum which is a Group 13 element, baked, and aluminum is diffused into the n-type diffusion layer to convert it into a p + -type diffusion layer. It has been adopted. In this method, in order to make sufficient conversion to the p + type diffusion layer and to form a high concentration electric field layer of the p + type diffusion layer, an aluminum amount of a certain amount or more is required. It was necessary to form it thickly. However, since the thermal expansion coefficient of aluminum is significantly different from that of silicon used as a substrate, a large internal stress is generated in the silicon substrate during the firing and cooling process, causing warpage of the silicon substrate. .
This internal stress has a problem that the crystal grain boundary is damaged and the power loss increases. In addition, the warpage easily damages the solar cell element when the solar cell element is transported in the module process and when the solar cell element is connected to a copper wire called a tab wire. In recent years, the thickness of the silicon substrate has been reduced due to the improvement of the slice processing technique, and the solar cell element tends to be easily broken.
 しかし本実施形態の製造方法によれば、裏面に不要なn型拡散層が形成されないことから、n型拡散層からp+型拡散層への変換を行う必要がなくなり、アルミニウム層を厚くする必然性がなくなる。その結果、シリコン基板内の内部応力の発生及び反りを抑えることができる。結果として、電力損失の増大及び太陽電池素子の破損を抑えることが可能となる。 However, according to the manufacturing method of the present embodiment, since an unnecessary n-type diffusion layer is not formed on the back surface, it is not necessary to convert the n-type diffusion layer to the p + -type diffusion layer, and it is necessary to increase the thickness of the aluminum layer. Disappears. As a result, generation of internal stress and warpage in the silicon substrate can be suppressed. As a result, increase in power loss and damage to the solar cell element can be suppressed.
 また、本実施形態の製造方法を用いる場合には、裏面のp型拡散層(高濃度電界層)14の製造方法はアルミニウムによるn型拡散層からp+型拡散層への変換による方法に限定されることなく、従来から公知のいずれの方法も採用でき、製造方法の選択肢が広がる。
 例えば、ドナー元素を含むガラス粉末の代わりにアクセプタ元素を含むガラス粉末を用いて、n型拡散層形成組成物と同様にして構成されるp型拡散層形成組成物を、シリコン基板の裏面に付与し、焼成処理することで、裏面にp型拡散層(高濃度電界層)14を形成することが好ましい。
 また後述するように、裏面電極20に用いる材料は第13族のアルミニウムに限定されず、Ag(銀)、Cu(銅)等を適用することができ、裏面電極20の厚さも従来のものよりも薄く形成することが可能となる。
When the manufacturing method of the present embodiment is used, the manufacturing method of the p + -type diffusion layer (high concentration electric field layer) 14 on the back surface is a method based on conversion from an n-type diffusion layer to a p + -type diffusion layer by aluminum. Without limitation, any conventionally known method can be adopted, and the options of the manufacturing method are expanded.
For example, using a glass powder containing an acceptor element instead of a glass powder containing a donor element, a p-type diffusion layer forming composition configured in the same manner as the n-type diffusion layer forming composition is applied to the back surface of the silicon substrate. Then, it is preferable to form a p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface by firing treatment.
As will be described later, the material used for the back electrode 20 is not limited to Group 13 aluminum, and Ag (silver), Cu (copper), or the like can be applied. Can also be formed thin.
 図1(4)では、n型拡散層12の上に反射防止膜16を形成する。反射防止膜16は公知の技術を適用して形成される。例えば、反射防止膜16がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、ケイ素原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
 より具体的には、混合ガス流量比NH/SiHが0.05~1.0、反応室の圧力が13.3Pa(0.1Torr)~266.6Pa(2Torr)、成膜時の温度が300℃~550℃、プラズマの放電のための周波数が100kHz以上の条件下でシリコン窒化膜が形成される。
In FIG. 1 (4), an antireflection film 16 is formed on the n-type diffusion layer 12. The antireflection film 16 is formed by applying a known technique. For example, when the antireflection film 16 is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbitals that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are bonded to inactivate defects (hydrogen passivation).
More specifically, the mixed gas flow ratio NH 3 / SiH 4 is 0.05 to 1.0, the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr), and the temperature during film formation The silicon nitride film is formed under the conditions of 300 ° C. to 550 ° C. and a frequency for plasma discharge of 100 kHz or more.
 図1(5)では、表面(受光面)の反射防止膜16上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布し、乾燥させ、表面電極用金属ペースト層17を形成する。表面電極用金属ペーストは、(1)金属粒子と(2)ガラス粒子とを必須成分とし、必要に応じて(3)樹脂バインダー、(4)その他の添加剤を含む。 In FIG. 1 (5), a surface electrode metal paste is printed on the antireflection film 16 on the surface (light-receiving surface) by screen printing and dried to form a surface electrode metal paste layer 17. The metal paste for a surface electrode contains (1) metal particles and (2) glass particles as essential components, and includes (3) a resin binder and (4) other additives as necessary.
 次いで、裏面のp型拡散層14上にも裏面電極用金属ペースト層19を形成する。前述のように、本実施形態では裏面電極用金属ペースト層19の材質及び形成方法は特に限定されない。例えば、アルミニウム、銀、銅等の金属を含む裏面電極用ペーストを付与し、乾燥させて、裏面電極用金属ペースト層19を形成してもよい。このとき、モジュール工程における太陽電池素子間の接続のために、裏面の一部に銀電極形成用銀ペースト層を設けてもよい。 Next, the metal paste layer 19 for the back electrode is also formed on the p + type diffusion layer 14 on the back surface. As described above, in this embodiment, the material and forming method of the back electrode metal paste layer 19 are not particularly limited. For example, the back electrode metal paste layer 19 may be formed by applying and drying a back electrode paste containing a metal such as aluminum, silver, or copper. At this time, you may provide the silver paste layer for silver electrode formation in a part of back surface for the connection between the solar cell elements in a module process.
 図1(6)では、電極用金属ペースト層17を焼成して、太陽電池素子を完成させる。600℃~900℃の範囲で数秒~数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜16が溶融し、更にp型半導体基板10表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がp型半導体基板10と接触部を形成し凝固する。これにより、形成した表面電極18とp型半導体基板10とが導通される。これはファイアースルーと称されている。また、裏面側でも同様に、裏面電極用金属ペースト層19の裏面電極用金属ペーストが焼成されて、裏面電極20が形成される。 1 (6), the electrode metal paste layer 17 is fired to complete the solar cell element. When baked in the range of 600 ° C. to 900 ° C. for several seconds to several minutes, the antireflection film 16 that is an insulating film is melted by the glass particles contained in the electrode metal paste on the surface side, and a part of the surface of the p-type semiconductor substrate 10 is also partially formed. When melted, the metal particles (for example, silver particles) in the paste form a contact portion with the p-type semiconductor substrate 10 and solidify. Thereby, the formed surface electrode 18 and the p-type semiconductor substrate 10 are electrically connected. This is called fire-through. Similarly, on the back side, the back electrode metal paste of the back electrode metal paste layer 19 is baked to form the back electrode 20.
 表面電極18の形状について図2を参照して説明する。なお、図2において、30はバスバー電極、32はフィンガー電極を示す。表面電極18は、バスバー電極30、及びバスバー電極30と交差しているフィンガー電極32で構成される。図2は、表面電極18を、バスバー電極30、及びバスバー電極30と交差しているフィンガー電極32からなる構成とした太陽電池素子を表面から見た平面図であり、図3は、図2の太陽電池素子の一部を拡大して示す斜視図である。 The shape of the surface electrode 18 will be described with reference to FIG. In FIG. 2, 30 indicates a bus bar electrode, and 32 indicates a finger electrode. The surface electrode 18 includes a bus bar electrode 30 and finger electrodes 32 intersecting with the bus bar electrode 30. FIG. 2 is a plan view of a solar cell element in which the surface electrode 18 includes a bus bar electrode 30 and a finger electrode 32 intersecting with the bus bar electrode 30 as viewed from the surface. FIG. It is a perspective view which expands and shows a part of solar cell element.
 このような表面電極18は、例えば、上述の金属ペーストのスクリーン印刷、電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着等の手段により形成することができる。バスバー電極30とフィンガー電極32とからなる表面電極18は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。 Such a surface electrode 18 can be formed by means such as screen printing of the above-described metal paste, plating of an electrode material, vapor deposition of an electrode material by electron beam heating in a high vacuum, and the like. The surface electrode 18 composed of the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light receiving surface side and is well known, and it is possible to apply known forming means for the bus bar electrode and finger electrode on the light receiving surface side. it can.
 上記では、表面にn型拡散層、裏面にp型拡散層を形成し、更にそれぞれの層の上に表面電極及び裏面電極を設けた太陽電池素子について説明したが、本実施形態のn型拡散層形成組成物を用いればバックコンタクト型の太陽電池素子を作製することも可能である。
 バックコンタクト型の太陽電池素子は、電極を全て裏面に設けて受光面の面積を大きくするものである。つまりバックコンタクト型の太陽電池素子では、裏面にn型拡散部位及びp型拡散部位の両方を形成しpn接合構造とする必要がある。本実施形態のn型拡散層形成組成物は、特定の部位にn型拡散部位を形成することが可能である。よって、バックコンタクト型の太陽電池素子の製造に、好適に本実施形態のn型拡散層形成組成物を適用することができる。
In the above description, the solar cell element in which the n-type diffusion layer is formed on the front surface, the p + -type diffusion layer is formed on the back surface, and the front surface electrode and the back surface electrode are further provided on the respective layers has been described. If the diffusion layer forming composition is used, a back contact type solar cell element can be produced.
The back contact type solar cell element has all electrodes provided on the back surface to increase the area of the light receiving surface. That is, in the back contact type solar cell element, it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure. The n-type diffusion layer forming composition of the present embodiment can form an n-type diffusion site at a specific site. Therefore, the n-type diffusion layer forming composition of the present embodiment can be suitably applied to the production of the back contact type solar cell element.
 本実施形態には、n型拡散層の製造における前記n型拡散層形成組成物の使用、及び、前記半導体基板とn型拡散層と電極とを含む太陽電池素子の製造における前記n型拡散層形成組成物の使用も、包含される。上述したように、本実施形態のn型拡散層形成組成物を用いることにより、不要なn型拡散層を形成させることなく、短時間で、特定の領域に所望の形状で、ミクロスケールでより均一なn型拡散層を得ることができる。また、このようなn型拡散層を有する太陽電池素子を、不要なn型拡散層を形成させることなく得ることができる。 In the present embodiment, the use of the n-type diffusion layer forming composition in the manufacture of an n-type diffusion layer, and the n-type diffusion layer in the manufacture of a solar cell element including the semiconductor substrate, the n-type diffusion layer, and an electrode The use of forming compositions is also encompassed. As described above, by using the n-type diffusion layer forming composition of the present embodiment, a desired shape can be obtained in a specific region in a short time without forming an unnecessary n-type diffusion layer, and on a microscale. A uniform n-type diffusion layer can be obtained. Moreover, a solar cell element having such an n-type diffusion layer can be obtained without forming an unnecessary n-type diffusion layer.
 以下、本発明を実施例に基づきさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。さらに、「cm/s」は断りがない限り、炉内に流入するガスの流量を電気炉の断面積で割った「線速度」を意味する。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents. “%” Means “% by mass” unless otherwise specified. Further, “cm / s” means “linear velocity” obtained by dividing the flow rate of the gas flowing into the furnace by the cross-sectional area of the electric furnace unless otherwise specified.
[実施例1]
 粒子形状が略球状で、平均粒子径d50が0.15μm、及び粒子径d90が0.25μmであるP-SiO-MgO系ガラス(軟化温度700℃、P:58.2%、SiO:29.7%、MgO:12.1%)粉末7.5gと、エチルセルロース2.5gと、テルピネオール40.0gとを、自動乳鉢混練装置を用いて混合してペースト化し、n型拡散層形成組成物を調製した。
[Example 1]
P 2 O 5 —SiO 2 —MgO-based glass (softening temperature 700 ° C., P 2 O 5 : 58.58) having a substantially spherical particle shape, an average particle diameter d50 of 0.15 μm, and a particle diameter d90 of 0.25 μm. 2%, SiO 2 : 29.7%, MgO: 12.1%) 7.5 g of powder, 2.5 g of ethyl cellulose, and 40.0 g of terpineol were mixed using an automatic mortar kneader to make a paste, An n-type diffusion layer forming composition was prepared.
 なお、ガラス粉末の形状は、(株)日立ハイテクノロジーズ製TM-1000型走査型電子顕微鏡を用いて観察して判定した。ガラス粉末の平均粒子径d50及び粒子径d90はベックマン・コールター(株)製LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:632nm)を用いて算出した。 The shape of the glass powder was determined by observing with a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Corporation. The average particle diameter d50 and particle diameter d90 of the glass powder were calculated using an LS 13 320 type laser scattering diffraction particle size distribution analyzer (measurement wavelength: 632 nm) manufactured by Beckman Coulter, Inc.
 次に、調製したペーストをスクリーン印刷によって45mm×45mmの範囲となるようにp型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、大気フロー(0.9cm/s)雰囲気中、950℃に設定した電気炉で20分間保持することで熱拡散処理を行い、その後ガラス層を除去するため基板をフッ酸に5分間浸漬し、流水洗浄を行った。その後、乾燥を行った。 Next, the prepared paste was applied to the surface of the p-type silicon substrate by screen printing so as to have a range of 45 mm × 45 mm, and dried on a hot plate at 150 ° C. for 5 minutes. Subsequently, a thermal diffusion treatment is performed by holding in an electric furnace set at 950 ° C. for 20 minutes in an air flow (0.9 cm / s) atmosphere, and then the substrate is immersed in hydrofluoric acid for 5 minutes to remove the glass layer. And washed with running water. Thereafter, drying was performed.
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は12Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 12Ω / □, P (phosphorus) was diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
 なお、シート抵抗は、三菱化学(株)製Loresta-EP MCP-T360型低抵抗率計を用いて四探針法により25℃で測定した。 The sheet resistance was measured at 25 ° C. by a four-probe method using a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation.
 また、n型拡散層を形成したシリコン基板を、酸素フロー(0.9cm/s)雰囲気中、900℃に設定した電気炉で180分間保持することで熱酸化処理を行い、酸化膜を形成した。n型拡散層を形成した領域で、面内の酸化膜厚のばらつきσは1.03であり、均一なn型拡散層が形成されていた。
 σは、最大膜厚/最小膜厚の比を示し、塗布した面内の9点の酸化膜厚より算出した。なお、酸化膜の厚みは、ファイブラボ製エリプソメータMARY-102を用いて測定した。
The silicon substrate on which the n-type diffusion layer was formed was thermally oxidized by holding it in an electric furnace set at 900 ° C. in an oxygen flow (0.9 cm / s) atmosphere for 180 minutes to form an oxide film. . In the region where the n-type diffusion layer was formed, the in-plane oxide film thickness variation σ was 1.03, and a uniform n-type diffusion layer was formed.
σ represents a ratio of maximum film thickness / minimum film thickness, and was calculated from nine oxide film thicknesses in the coated surface. The thickness of the oxide film was measured using an ellipsometer MARY-102 manufactured by Fibravo.
[実施例2]
 ガラス粉末の平均粒子径d50が0.22μm、及び粒子径d90が0.40μmとした以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は13Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。また、n型拡散層上に形成された酸化膜厚のばらつきσは1.04であり、均一なn型拡散層が形成されていた。
[Example 2]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.22 μm and the particle diameter d90 was 0.40 μm.
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 13Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed. Further, the variation σ of the oxide film thickness formed on the n-type diffusion layer was 1.04, and a uniform n-type diffusion layer was formed.
[実施例3]
 ガラス粉末の平均粒子径d50が0.35μm、及び粒子径d90が0.80μmとした以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は13Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。また、n型拡散層上に形成された酸化膜厚のばらつきσは1.05であり、均一なn型拡散層が形成されていた。
[Example 3]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.35 μm and the particle diameter d90 was 0.80 μm.
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 13Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed. The variation σ of the oxide film thickness formed on the n-type diffusion layer was 1.05, and a uniform n-type diffusion layer was formed.
[実施例4]
 平均粒子径d50が0.15μm、及び粒子径d90が0.25μmであるP-SiO-MgO系ガラス(軟化温度700℃、P:58.2%、SiO:29.7%、MgO:12.1%)粉末15gと、エチルセルロース2.5gと、テルピネオール31gと、シランカップリング剤KBM602(信越化学工業(株)製)1.5gとを用いてn型拡散層形成組成物を調製した以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は10Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。また、n型拡散層上に形成された酸化膜厚のばらつきσは1.04であり、均一なn型拡散層が形成されていた。
[Example 4]
P 2 O 5 —SiO 2 —MgO-based glass having an average particle diameter d50 of 0.15 μm and a particle diameter d90 of 0.25 μm (softening temperature 700 ° C., P 2 O 5 : 58.2%, SiO 2 : 29 .7%, MgO: 12.1%) n-type diffusion layer using 15 g of powder, 2.5 g of ethylcellulose, 31 g of terpineol, and 1.5 g of silane coupling agent KBM602 (manufactured by Shin-Etsu Chemical Co., Ltd.) An n-type diffusion layer was formed in the same manner as in Example 1 except that the forming composition was prepared.
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 10Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed. Further, the variation σ of the oxide film thickness formed on the n-type diffusion layer was 1.04, and a uniform n-type diffusion layer was formed.
[実施例5]
 平均粒子径d50が0.15μm、及び粒子径d90が0.25μmであるP-SiO-MgO系ガラス(軟化温度650℃、P:61.0%、SiO:25.1%、MgO:13.9%)粉末15gと、エチルセルロース2.5gと、テルピネオール31gと、シランカップリング剤KBM602(信越化学工業(株)製)1.5gとを用いてn型拡散層形成組成物を調製した以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は10Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。また、n型拡散層上に形成された酸化膜厚のばらつきσは1.03であり、均一なn型拡散層が形成されていた。
[Example 5]
P 2 O 5 —SiO 2 —MgO glass having an average particle diameter d50 of 0.15 μm and a particle diameter d90 of 0.25 μm (softening temperature 650 ° C., P 2 O 5 : 61.0%, SiO 2 : 25 0.1% MgO: 13.9%) n-type diffusion layer using 15 g of powder, 2.5 g of ethylcellulose, 31 g of terpineol, and 1.5 g of silane coupling agent KBM602 (manufactured by Shin-Etsu Chemical Co., Ltd.) An n-type diffusion layer was formed in the same manner as in Example 1 except that the forming composition was prepared.
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 10Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed. The variation σ of the oxide film thickness formed on the n-type diffusion layer was 1.03, and a uniform n-type diffusion layer was formed.
[比較例1]
 ガラス粉末の平均粒子径d50が0.57μm、及び粒子径d90が2.55μmとした以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は15Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。しかし、n型拡散層上に形成された酸化膜厚のばらつきσは1.55であり、n型拡散層は不均一であった。光学顕微鏡を用いて、酸化膜厚の色を観察したところ、3μm角で酸化膜の色が異なる領域が存在しており、酸化膜厚のばらつきを確認した。
[Comparative Example 1]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.57 μm and the particle diameter d90 was 2.55 μm.
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 15Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed. However, the variation σ of the oxide film thickness formed on the n-type diffusion layer was 1.55, and the n-type diffusion layer was not uniform. When the color of the oxide film thickness was observed using an optical microscope, there was a region having a 3 μm square and a different color of the oxide film, and the variation of the oxide film thickness was confirmed.
[比較例2]
 ガラス粉末の平均粒子径d50が0.30μm、及び粒子径d90が1.60μmとした以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は13Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。他方、裏面のシート抵抗は1000000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。しかし、n型拡散層上に形成された酸化膜厚のばらつきσは1.35であり、n型拡散層は不均一であった。光学顕微鏡を用いて、酸化膜厚の色を観察したところ、2μm角で酸化膜の色が僅かに異なっており、酸化膜厚のばらつきを確認した。
[Comparative Example 2]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the average particle diameter d50 of the glass powder was 0.30 μm and the particle diameter d90 was 1.60 μm.
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 13Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. On the other hand, the sheet resistance on the back surface was 1000000 Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed. However, the variation σ of the oxide film thickness formed on the n-type diffusion layer was 1.35, and the n-type diffusion layer was non-uniform. When the color of the oxide film thickness was observed using an optical microscope, the color of the oxide film was slightly different at 2 μm square, and the variation of the oxide film thickness was confirmed.
[比較例3]
 P-SiO-MgO系ガラス粉末に替えてリン酸二水素アンモニウム(NHPO)粉末を用いた以外は実施例1と同様にして、n型拡散層形成を行った。
 n型拡散層形成組成物を塗布した側の表面のシート抵抗は20Ω/□であり、P(リン)が拡散し、n型拡散層が形成されていた。しかしながら、裏面のシート抵抗は20Ω/□であり、裏面にもn型拡散層が形成されていた。
[Comparative Example 3]
An n-type diffusion layer was formed in the same manner as in Example 1 except that ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder was used instead of P 2 O 5 —SiO 2 —MgO glass powder. .
The sheet resistance of the surface on which the n-type diffusion layer forming composition was applied was 20Ω / □, P (phosphorus) diffused, and an n-type diffusion layer was formed. However, the sheet resistance on the back surface was 20Ω / □, and an n-type diffusion layer was also formed on the back surface.
 尚、日本出願2014-222012の開示はその全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 It should be noted that the entire disclosure of the Japanese application 2014-2222012 is incorporated herein by reference. In addition, all the documents, patent applications, and technical standards described in this specification are the same as when individual documents, patent applications, and technical standards are specifically and individually described to be incorporated by reference. Which is incorporated herein by reference.

Claims (6)

  1.  ドナー元素を含み粒子径d90が0.1μm~1.5μmであるガラス粉末と、分散媒と、を含有するn型拡散層形成組成物。 An n-type diffusion layer forming composition comprising a glass powder containing a donor element and having a particle diameter d90 of 0.1 μm to 1.5 μm and a dispersion medium.
  2.  前記ガラス粉末の平均粒子径d50が、0.05μm~0.5μmである請求項1に記載のn型拡散層形成組成物。 2. The n-type diffusion layer forming composition according to claim 1, wherein the glass powder has an average particle diameter d50 of 0.05 μm to 0.5 μm.
  3.  前記ドナー元素が、P(リン)及びSb(アンチモン)から選択される少なくとも1種である請求項1又は請求項2に記載のn型拡散層形成組成物。 The n-type diffusion layer forming composition according to claim 1 or 2, wherein the donor element is at least one selected from P (phosphorus) and Sb (antimony).
  4.  前記ガラス粉末が、P、P及びSbからなる群より選択される少なくとも1種のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO及びMoOからなる群より選択される少なくとも1種のガラス成分物質と、を含有する請求項1~請求項3のいずれか1項に記載のn型拡散層形成組成物。 The glass powder includes at least one donor element-containing material selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 , SiO 2 , K 2 O, Na 2 O, Li 2 O. , BaO, SrO, CaO, MgO , BeO, ZnO, PbO, CdO, SnO, claim comprising at least one glass component material selected from the group consisting of ZrO 2 and MoO 3, from 1 to claim 3 The n type diffused layer formation composition of any one of these.
  5.  半導体基板上に、請求項1~請求項4のいずれか1項に記載のn型拡散層形成組成物を付与する工程と、
     前記n型拡散層形成組成物を付与後の半導体基板に、熱拡散処理を施す工程と、
    を有するn型拡散層の製造方法。
    Applying the n-type diffusion layer forming composition according to any one of claims 1 to 4 on a semiconductor substrate;
    Applying a thermal diffusion treatment to the semiconductor substrate after the application of the n-type diffusion layer forming composition;
    The manufacturing method of the n type diffused layer which has this.
  6.  半導体基板上に、請求項1~請求項4のいずれか1項に記載のn型拡散層形成組成物を付与する工程と、
     前記n型拡散層形成組成物を付与後の半導体基板に熱拡散処理を施して、前記n型拡散層形成組成物を付与後の半導体基板上にn型拡散層を形成する工程と、
     形成された前記n型拡散層上に電極を形成する工程と、
    を有する太陽電池素子の製造方法。
    Applying the n-type diffusion layer forming composition according to any one of claims 1 to 4 on a semiconductor substrate;
    Applying a thermal diffusion treatment to the semiconductor substrate after application of the n-type diffusion layer forming composition to form an n-type diffusion layer on the semiconductor substrate after application of the n-type diffusion layer formation composition;
    Forming an electrode on the formed n-type diffusion layer;
    The manufacturing method of the solar cell element which has this.
PCT/JP2015/080806 2014-10-30 2015-10-30 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element WO2016068315A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556674A JPWO2016068315A1 (en) 2014-10-30 2015-10-30 N-type diffusion layer forming composition, method for producing n-type diffusion layer, and method for producing solar cell element
CN201580056781.9A CN107148662A (en) 2014-10-30 2015-10-30 The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222012 2014-10-30
JP2014-222012 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016068315A1 true WO2016068315A1 (en) 2016-05-06

Family

ID=55857648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080806 WO2016068315A1 (en) 2014-10-30 2015-10-30 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element

Country Status (4)

Country Link
JP (1) JPWO2016068315A1 (en)
CN (1) CN107148662A (en)
TW (1) TW201626588A (en)
WO (1) WO2016068315A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067119A1 (en) * 2010-11-17 2012-05-24 日立化成工業株式会社 Method for producing solar cell
WO2013005738A1 (en) * 2011-07-05 2013-01-10 日立化成工業株式会社 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
JP2015115487A (en) * 2013-12-12 2015-06-22 日立化成株式会社 Manufacturing method of semiconductor substrate, semiconductor substrate, manufacturing method of solar cell element, and solar cell element
WO2015093608A1 (en) * 2013-12-20 2015-06-25 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074679A (en) * 2006-09-22 2008-04-03 Ngk Spark Plug Co Ltd Multilayer ceramic component and its production method
JP2008105913A (en) * 2006-10-27 2008-05-08 Kyocera Corp Glass powder and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067119A1 (en) * 2010-11-17 2012-05-24 日立化成工業株式会社 Method for producing solar cell
WO2013005738A1 (en) * 2011-07-05 2013-01-10 日立化成工業株式会社 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
JP2015115487A (en) * 2013-12-12 2015-06-22 日立化成株式会社 Manufacturing method of semiconductor substrate, semiconductor substrate, manufacturing method of solar cell element, and solar cell element
WO2015093608A1 (en) * 2013-12-20 2015-06-25 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element

Also Published As

Publication number Publication date
CN107148662A (en) 2017-09-08
TW201626588A (en) 2016-07-16
JPWO2016068315A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP4868079B1 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5447397B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5958485B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP2014146808A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP5176159B1 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5176158B1 (en) N-type diffusion layer forming composition, method for producing n-type diffusion layer, and method for producing solar cell element
JP5541358B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5842431B2 (en) Method for producing n-type diffusion layer and method for producing solar cell element
JP2013026578A (en) Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element
JP2013026343A (en) Manufacturing method of p-type diffusion layer, manufacturing method of solar cell element, and solar cell element
JP6582747B2 (en) Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell
WO2016068315A1 (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element
JP5834578B2 (en) Method for producing n-type diffusion layer and method for producing solar cell element
JP5333564B2 (en) Method for manufacturing solar battery cell
JP2016036034A (en) Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element
JP2016006893A (en) n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2013026477A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2012231013A (en) N-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar cell element
JP2017054918A (en) Composition for n-type diffusion layer formation, method for manufacturing semiconductor substrate having n-type diffusion layer, and method for manufacturing solar battery element
JP2017028122A (en) N-type diffusion layer forming composition, method for manufacturing semiconductor substrate with n-type diffusion layer, method for manufacturing solar cell element, and solar cell element
JP2014146813A (en) P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP2013026472A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853767

Country of ref document: EP

Kind code of ref document: A1