JP2013026472A - N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element - Google Patents

N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element Download PDF

Info

Publication number
JP2013026472A
JP2013026472A JP2011160296A JP2011160296A JP2013026472A JP 2013026472 A JP2013026472 A JP 2013026472A JP 2011160296 A JP2011160296 A JP 2011160296A JP 2011160296 A JP2011160296 A JP 2011160296A JP 2013026472 A JP2013026472 A JP 2013026472A
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
solar cell
glass
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011160296A
Other languages
Japanese (ja)
Inventor
Shuichiro Adachi
修一郎 足立
Masato Yoshida
誠人 吉田
Takeshi Nojiri
剛 野尻
Yoichi Machii
洋一 町井
Mitsunori Iwamuro
光則 岩室
Akihiro Oda
明博 織田
Tetsuya Sato
鉄也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011160296A priority Critical patent/JP2013026472A/en
Publication of JP2013026472A publication Critical patent/JP2013026472A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide an n-type diffusion layer formation composition, a manufacturing method of an n-type diffusion layer, and a manufacturing method of a solar cell element capable of forming an n-type diffusion layer in a specific part without forming the n-type diffusion layer in an unnecessary region in a manufacturing step of a solar cell element using a silicon element and obtaining a sufficient ohmic contact by a simplified step.SOLUTION: An n-type diffusion layer formation composition contains a glass powder including a donor element and a dispersion medium. An n-type diffusion layer and a solar cell element having this n-type diffusion layer are manufactured by coating this n-type diffusion layer formation composition on a semiconductor substrate and performing thermal diffusion treatment.

Description

本発明は、太陽電池素子のn型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法に関するものであり、更に詳しくは、半導体基板であるシリコン基板の特定の部分にn型拡散層を形成することを可能とする技術に関するものである。   The present invention relates to an n-type diffusion layer forming composition for a solar cell element, a method for producing an n-type diffusion layer, and a method for producing a solar cell element, and more specifically, a specific portion of a silicon substrate that is a semiconductor substrate. The present invention relates to a technique that makes it possible to form an n-type diffusion layer.

従来のシリコン太陽電池素子の製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、受光面にテクスチャー構造を形成したp型シリコン基板を準備し、続いてドナー元素含有化合物であるオキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800℃〜900℃で数十分の処理を行って、基板に一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチング工程が必要であった。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面のn型拡散層の上にアルミニウムペーストを付与し、これを焼成して、アルミニウムの拡散によってn型拡散層からp型拡散層に変換させていた。
The manufacturing process of the conventional silicon solar cell element is demonstrated.
First, a p-type silicon substrate having a textured structure formed on the light receiving surface is prepared so as to promote the light confinement effect, and then a donor element-containing compound such as phosphorus oxychloride (POCl 3 ), nitrogen, oxygen In this mixed gas atmosphere, several tens of minutes are performed at 800 ° C. to 900 ° C. to uniformly form the n-type diffusion layer on the substrate. In this conventional method, since phosphorus is diffused using a mixed gas, n-type diffusion layers are formed not only on the surface but also on the side surface and the back surface. Therefore, a side etching process for removing the side n-type diffusion layer is necessary. Further, the n-type diffusion layer on the back surface needs to be converted into a p + -type diffusion layer. An aluminum paste is applied on the n-type diffusion layer on the back surface, and this is baked, and the n-type diffusion layer is diffused by aluminum diffusion. To a p + type diffusion layer.

一方で、半導体の製造分野では、ドナー元素含有化合物として、五酸化リン(P)あるいはリン酸二水素アンモニウム(NHPO)等のリン酸塩を含有する溶液の塗布によってn型拡散層を形成する方法が提案されている(例えば、特許文献1参照)。しかしながら、この方法ではドナー元素またはその含有化合物が、拡散源である溶液から飛散するため、上記混合ガスを用いる気相反応法と同様、拡散層形成時にリンの拡散が側面及び裏面にもおよび、表面のみならず、塗布した部分以外にもn型拡散層が形成される。 On the other hand, in the semiconductor manufacturing field, by applying a solution containing a phosphate such as phosphorus pentoxide (P 2 O 5 ) or ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) as a donor element-containing compound. A method for forming an n-type diffusion layer has been proposed (see, for example, Patent Document 1). However, in this method, since the donor element or a compound containing the same is scattered from the solution that is the diffusion source, the diffusion of phosphorus extends to the side surface and the back surface when the diffusion layer is formed, as in the gas phase reaction method using the mixed gas. An n-type diffusion layer is formed not only on the surface but also on the coated part.

特開2002−75894号公報JP 2002-75894 A

上述のように、n型拡散層形成の際、オキシ塩化リンを用いた気相反応では、本来n型拡散層が必要となる片面(通常は受光面、または表面)のみならず、もう一方の面(非受光面、または裏面)や側面にもn型拡散層が形成されてしまう。また、リン酸塩を含有する溶液を塗布して熱拡散させる方法でも、気相反応法と同様、表面以外にもn型拡散層が形成されてしまう。そのため、素子としてpn接合構造を有するためには、側面においてはエッチングを行い、裏面においてはn型拡散層をp型拡散層へ変換しなければならない。一般には、裏面に第13族元素であるアルミニウムのペーストを塗布、焼成し、n型拡散層をp型拡散層へ変換している。   As described above, in forming a n-type diffusion layer, in the gas phase reaction using phosphorus oxychloride, not only one side (usually the light receiving surface or the surface) that originally requires the n-type diffusion layer but also the other side An n-type diffusion layer is also formed on the surface (non-light-receiving surface or back surface) and side surfaces. Further, even in the method of applying a solution containing phosphate and thermally diffusing, an n-type diffusion layer is formed on the surface other than the surface as in the gas phase reaction method. Therefore, in order to have a pn junction structure as an element, it is necessary to perform etching on the side surface and convert the n-type diffusion layer to the p-type diffusion layer on the back surface. In general, an aluminum paste which is a Group 13 element is applied to the back surface and fired to convert the n-type diffusion layer into a p-type diffusion layer.

また、従来の気相反応法やリン酸塩含有の溶液を塗布する方法においても、n型拡散層の上にガラス層が形成される。n型拡散層の上にガラス層を介して電極を形成すると、ガラス層の電気抵抗により電極とn型拡散層間のオーミックコンタクトが阻害されるため、生成したガラス層をエッチングにより除去する工程が必要となっている。   In addition, a glass layer is formed on the n-type diffusion layer also in a conventional gas phase reaction method or a method of applying a phosphate-containing solution. When an electrode is formed on the n-type diffusion layer via the glass layer, the ohmic contact between the electrode and the n-type diffusion layer is hindered by the electrical resistance of the glass layer, so a step of removing the generated glass layer by etching is necessary. It has become.

本発明は、以上の従来の問題点に鑑みなされたものであり、シリコン基板を用いた太陽電池素子の製造工程において、不要な領域にn型拡散層を形成させることなく特定の部分にn型拡散層を形成することが可能で、工程を簡略化しても充分なオーミックコンタクトが得られるn型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池素子の製造方法の提供を課題とする。   The present invention has been made in view of the above-described conventional problems, and in a manufacturing process of a solar cell element using a silicon substrate, an n-type diffusion layer is not formed in a specific portion without forming an n-type diffusion layer in an unnecessary region. PROBLEM TO BE SOLVED: To provide an n-type diffusion layer forming composition capable of forming a diffusion layer and obtaining sufficient ohmic contact even if the process is simplified, a method for producing an n-type diffusion layer, and a method for producing a solar cell element And

前記課題を解決する手段は以下の通りである。
<1> ドナー元素及び酸化銀を含むガラス粉末と、分散媒と、を含有するn型拡散層形成組成物。
<2> 前記ドナー元素が、P(リン)及びSb(アンチモン)から選択される少なくとも1種である前記<1>に記載のn型拡散層形成組成物。
<3> 前記ドナー元素及び酸化銀を含むガラス粉末が、P、P及びSbから選択される少なくとも1種のドナー元素含有物質と、AgOと、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する前記<1>又は<2>に記載のn型拡散層形成組成物。
Means for solving the problems are as follows.
<1> An n-type diffusion layer forming composition containing a glass powder containing a donor element and silver oxide, and a dispersion medium.
<2> The n-type diffusion layer forming composition according to <1>, wherein the donor element is at least one selected from P (phosphorus) and Sb (antimony).
<3> The glass powder containing the donor element and silver oxide is at least one donor element-containing material selected from P 2 O 3 , P 2 O 5 and Sb 2 O 3 , AgO, SiO 2 , K At least one glass component selected from 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , and MoO 3 The composition for forming an n-type diffusion layer according to <1> or <2>, containing a substance.

<4> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するn型拡散層の製造方法。
<5> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、熱拡散処理を施してn型拡散層を形成する工程と、形成されたn型拡散層上に電極を形成する工程と、を有する太陽電池素子の製造方法。
<6> 前記n型拡散層を形成する工程と、前記電極を形成する工程との間で、前記n型拡散層上に形成したガラス層の除去を行わない、または前記ガラス層の一部を除去する前記<5>に記載の太陽電池素子の製造方法。
<4> An n-type diffusion comprising a step of applying the n-type diffusion layer forming composition according to any one of <1> to <3> on a semiconductor substrate and a step of performing a thermal diffusion treatment. Layer manufacturing method.
<5> A step of applying the n-type diffusion layer forming composition according to any one of <1> to <3> on the semiconductor substrate and a thermal diffusion treatment to form an n-type diffusion layer. The manufacturing method of the solar cell element which has a process and the process of forming an electrode on the formed n type diffused layer.
<6> The glass layer formed on the n-type diffusion layer is not removed between the step of forming the n-type diffusion layer and the step of forming the electrode, or a part of the glass layer is removed. The method for producing a solar cell element according to <5>, wherein the solar cell element is removed.

本発明によれば、シリコン基板を用いた太陽電池素子の製造工程において、不要な領域にn型拡散層を形成させることなく特定の部分にn型拡散層を形成することが可能となり、また工程を簡略化しても充分なオーミックコンタクトが得られる。   According to the present invention, in a manufacturing process of a solar cell element using a silicon substrate, it is possible to form an n-type diffusion layer in a specific portion without forming an n-type diffusion layer in an unnecessary region. Even if this is simplified, sufficient ohmic contact can be obtained.

本発明の太陽電池素子の製造工程の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the manufacturing process of the solar cell element of this invention. (A)は、太陽電池素子を表面から見た平面図であり、(B)は(A)の一部を拡大して示す斜視図である。(A) is the top view which looked at the solar cell element from the surface, (B) is the perspective view which expands and shows a part of (A).

まず、本発明のn型拡散層形成組成物について説明し、次にn型拡散層形成組成物を用いるn型拡散層及び太陽電池素子の製造方法について説明する。
尚、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
First, the n-type diffusion layer forming composition of the present invention will be described, and then the n-type diffusion layer and solar cell element manufacturing method using the n-type diffusion layer forming composition will be described.
In this specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended action of the process is achieved. included. In the present specification, “to” indicates a range including the numerical values described before and after the values as a minimum value and a maximum value, respectively.

本発明のn型拡散層形成組成物は、少なくともドナー元素と酸化銀を含むガラス粉末(以下、単に「ガラス粉末」と称する場合がある)と、分散媒と、を含有し、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。
ここで、n型拡散層形成組成物とは、ドナー元素及び酸化銀を含むガラス粉末を含有し、シリコン基板に塗布した後にこのドナー元素を熱拡散することでn型拡散層を形成することが可能な材料をいう。本発明のn型拡散層形成組成物を用いることで、所望の部位にn型拡散層が形成され、裏面や側面には不要なn型拡散層が形成されない。
The n-type diffusion layer forming composition of the present invention contains a glass powder containing at least a donor element and silver oxide (hereinafter sometimes simply referred to as “glass powder”) and a dispersion medium, and further has coating properties and the like. In consideration of the above, other additives may be contained as necessary.
Here, the n-type diffusion layer forming composition contains a glass powder containing a donor element and silver oxide, and after applying to a silicon substrate, the n-type diffusion layer is formed by thermally diffusing this donor element. A possible material. By using the n-type diffusion layer forming composition of the present invention, an n-type diffusion layer is formed at a desired site, and an unnecessary n-type diffusion layer is not formed on the back surface or side surface.

したがって、本発明のn型拡散層形成組成物を適用すれば、従来広く採用されている気相反応法では必須のサイドエッチング工程が不要となり、工程が簡易化される。また、裏面に形成されたn型拡散層をp型拡散層へ変換する工程も不要となる。そのため、裏面のp型拡散層の形成方法や、裏面電極の材質、形状及び厚さが制限されず、適用する製造方法や材質、形状の選択肢が広がる。また詳細は後述するが、裏面電極の厚さに起因したシリコン基板内の内部応力の発生が抑えられ、シリコン基板の反りも抑えられる。 Therefore, if the composition for forming an n-type diffusion layer of the present invention is applied, the side etching step that is essential in the gas phase reaction method that has been widely employed is not required, and the process is simplified. In addition, the step of converting the n-type diffusion layer formed on the back surface into the p + -type diffusion layer is not necessary. Therefore, the method for forming the p + -type diffusion layer on the back surface and the material, shape, and thickness of the back electrode are not limited, and the choice of manufacturing method, material, and shape to be applied is widened. Although details will be described later, generation of internal stress in the silicon substrate due to the thickness of the back electrode is suppressed, and warpage of the silicon substrate is also suppressed.

また、ガラス粉末中のドナー成分は焼成中でも揮散しにくいため、揮散ガスの発生によって表面のみでなく裏面や側面にまでn型拡散層が形成されるということが抑制される。この理由として、ドナー成分がガラス粉末中の元素と結合しているか、又はガラス中に取り込まれているため、揮散しにくいものと考えられる。   In addition, since the donor component in the glass powder is difficult to volatilize even during firing, it is suppressed that the n-type diffusion layer is formed not only on the surface but also on the back surface and side surfaces due to the generation of the volatilizing gas. The reason for this is considered that the donor component is bonded to an element in the glass powder or is taken into the glass, so that it is difficult to volatilize.

このように、本発明のn型拡散層形成組成物は、所望の部位に所望の濃度のn型拡散層を形成することが可能であることから、n型ドーパント濃度の高い選択的な領域を形成することが可能となる。一方、n型拡散層の一般的な方法である気相反応法や、リン酸塩含有溶液を用いる方法によってn型ドーパント濃度の高い選択的な領域を形成することは一般的には困難である。   Thus, since the n-type diffusion layer forming composition of the present invention can form an n-type diffusion layer having a desired concentration at a desired site, a selective region having a high n-type dopant concentration is formed. It becomes possible to form. On the other hand, it is generally difficult to form a selective region having a high n-type dopant concentration by a gas phase reaction method, which is a general method of an n-type diffusion layer, or a method using a phosphate-containing solution. .

なお、本発明のn型拡散層形成組成物に含有されるガラス粉末は焼成により溶融し、n型拡散層の上にガラス層を形成する。従来の気相反応法やリン酸塩含有の溶液を塗布する方法においてもn型拡散層の上にガラス層が生成するため、生成したガラス層はエッチングにより除去し、その後、n型拡散層上に電極を形成している。   In addition, the glass powder contained in the n type diffused layer formation composition of this invention fuse | melts by baking, and forms a glass layer on an n type diffused layer. In a conventional gas phase reaction method or a method of applying a phosphate-containing solution, a glass layer is formed on the n-type diffusion layer. Therefore, the generated glass layer is removed by etching, and then on the n-type diffusion layer. An electrode is formed on the substrate.

ここで本発明では、酸化銀を含有するガラス粉末を用いる。この酸化銀は、熱拡散処理工程を経て、n型拡散層の上に形成されたガラス層中に銀粒子として析出する。この銀粒子がガラス層中に分布することで、ガラス層自体の導電性を高めることができる。その結果、n型拡散層上に電極を形成する前のエッチング工程によりガラス層を除去しなくとも、電極とシリコン基板間に良好なオーミックコンタクトを形成することができる。そのため、本発明によればガラス層のエッチング工程を省いた場合でも、電極とn型拡散層間のオーミックコンタクトが充分なものとなる。   Here, in the present invention, glass powder containing silver oxide is used. This silver oxide is deposited as silver particles in a glass layer formed on the n-type diffusion layer through a thermal diffusion treatment step. When the silver particles are distributed in the glass layer, the conductivity of the glass layer itself can be increased. As a result, a good ohmic contact can be formed between the electrode and the silicon substrate without removing the glass layer by an etching step before forming the electrode on the n-type diffusion layer. Therefore, according to the present invention, even when the glass layer etching step is omitted, the ohmic contact between the electrode and the n-type diffusion layer is sufficient.

次に、本発明に係るドナー元素及び酸化銀を含むガラス粉末について、詳細に説明する。
ドナー元素とは、シリコン基板中にドーピングさせることによってn型拡散層を形成することが可能な元素である。ドナー元素としては第15族の元素が使用でき、例えばP(リン)、Sb(アンチモン)、Bi(ビスマス)、As(ヒ素)等が挙げられる。安全性、ガラス化の容易さ等の観点から、P又はSbが好適である。
Next, the glass powder containing the donor element and silver oxide according to the present invention will be described in detail.
A donor element is an element that can form an n-type diffusion layer by doping into a silicon substrate. As the donor element, a Group 15 element can be used, and examples thereof include P (phosphorus), Sb (antimony), Bi (bismuth), As (arsenic), and the like. From the viewpoints of safety, ease of vitrification, etc., P or Sb is preferred.

ガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化温度、ガラス転移温度、化学的耐久性等を制御することが可能である。   The glass powder can control the melting temperature, softening temperature, glass transition temperature, chemical durability, and the like by adjusting the component ratio as necessary.

ドナー元素をガラス粉末に導入するために用いるドナー元素含有物質としては、P、P、Sb、Bi及びAsが挙げられ、P、P及びSbから選択される少なくとも1種を用いることが好ましい。 Examples of the donor element-containing material used for introducing the donor element into the glass powder include P 2 O 3 , P 2 O 5 , Sb 2 O 3 , Bi 2 O 3 and As 2 O 3 , and P 2 O 3 It is preferable to use at least one selected from P 2 O 5 and Sb 2 O 3 .

ガラス粉末中のドナー元素含有物質の含有比率は、溶融温度、軟化温度、ドナー元素のドーピング挙動、化学的耐久性を考慮して適宜設定することが望ましく、一般には、1質量%以上90質量%以下であることが好ましく、3質量%以上80質量%以下であることがより好ましい。   The content ratio of the donor element-containing substance in the glass powder is preferably set appropriately in consideration of the melting temperature, the softening temperature, the doping behavior of the donor element, and chemical durability, and is generally 1% by mass or more and 90% by mass. The content is preferably 3% by mass or more and more preferably 80% by mass or less.

ガラス粉末中の酸化銀の含有比率は、銀粒子の析出量、溶融温度、軟化温度、化学的耐久性を考慮して適宜設定することが望ましく、一般には1質量%以上75質量%以下であることが好ましく、3質量%以上70質量%以下であることがより好ましい。
また、ガラス粉末中において、ドナー元素含有物質に対する酸化銀の含有率は、銀粒子の析出量、溶融温度、軟化温度、化学的耐久性を考慮して適宜設定することが望ましく、一般には2質量%以上200質量%以下であることが好ましく、5質量%以上150質量%以下であることがより好ましい。
The content ratio of silver oxide in the glass powder is preferably set in consideration of the precipitation amount of silver particles, the melting temperature, the softening temperature, and the chemical durability, and is generally 1% by mass to 75% by mass. It is preferably 3% by mass or more and 70% by mass or less.
Further, in the glass powder, the content of silver oxide with respect to the donor element-containing substance is preferably set appropriately in consideration of the precipitation amount of silver particles, the melting temperature, the softening temperature, and the chemical durability. % To 200% by mass, and more preferably 5% to 150% by mass.

また、ガラス粉末は、更に以下に記すガラス成分物質を含むことが好ましい。
ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、WO、MoO、MnO、La、Nb、Ta、Y、TiO、ZrO、GeO、TeO及びLu等が挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、及びMoOから選択される少なくとも1種を用いることが、好ましい。
Moreover, it is preferable that glass powder contains the glass component substance further described below.
Examples of glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , Examples include MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2, and Lu 2 O 3. SiO 2 , K Use at least one selected from 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , and MoO 3. Is preferred.

ドナー元素及び酸化銀を含むガラス粉末の具体例としては、前記ドナー元素含有物質と酸化銀と前記ガラス成分物質とを含む系が挙げられ、P−AgO−SiO系(ドナー元素含有物質−酸化銀−ガラス成分物質の順で記載、以下同様)、P−AgO−KO系、P−AgO−NaO系、P−AgO−LiO系、P−AgO−BaO系、P−AgO−SrO系、P−AgO−CaO系、P−AgO−MgO系、P−AgO−BeO系、P−AgO−ZnO系、P−AgO−CdO系、P−AgO−PbO系、P−AgO−V系、P−AgO−SnO系、P−AgO−GeO系、P−AgO−TeO系等のドナー元素含有物質としてPを含む系、前記のPを含む系のPの代わりにドナー元素含有物質としてSbを含む系のガラス粉末が挙げられる。 Specific examples of the glass powder containing a donor element and silver oxide include a system containing the donor element-containing substance, silver oxide, and the glass component substance, and a P 2 O 5 —AgO—SiO 2 system (containing a donor element) substances - silver oxide - described in the order of the glass component material, hereinafter the same), P 2 O 5 -AgO- K 2 O -based, P 2 O 5 -AgO-Na 2 O -based, P 2 O 5 -AgO-Li 2 O-based, P 2 O 5 -AgO-BaO based, P 2 O 5 -AgO-SrO-based, P 2 O 5 -AgO-CaO-based, P 2 O 5 -AgO-MgO-based, P 2 O 5 -AgO- BeO system, P 2 O 5 —AgO—ZnO system, P 2 O 5 —AgO—CdO system, P 2 O 5 —AgO—PbO system, P 2 O 5 —AgO—V 2 O 5 system, P 2 O 5 -AgO-SnO system, P 2 O 5 -AgO-GeO 2 , P 2 O 5 -AgO-TeO 2 system like system containing P 2 O 5 as a donor element-containing material, Sb 2 as a donor element-containing material instead of P 2 O 5 of system containing P 2 O 5 of the Examples thereof include glass powders containing O 3 .

なお、P−AgO−Sb系、P−AgO−As系等のように、2種類以上のドナー元素含有物質を含むガラス粉末でもよい。また、ガラス成分物質を含まないP−AgO系、Sb−AgO系等のガラス粉末でもよい。
上記では3成分を含む複合ガラスを例示したが、P−AgO−SiO−V、P−AgO−SiO−CaO等、必要に応じて4種類以上の成分を含むガラス粉末でもよい。
Note that glass powder containing two or more kinds of donor element-containing substances may be used, such as P 2 O 5 —AgO—Sb 2 O 3 system and P 2 O 5 —AgO—As 2 O 3 system. Further, P 2 O 5 -AgO system containing no glass component material may be a glass powder Sb 2 O 3 -AgO system or the like.
Although the composite glass containing three components was illustrated above, four or more kinds of components such as P 2 O 5 —AgO—SiO 2 —V 2 O 5 , P 2 O 5 —AgO—SiO 2 —CaO, and the like are necessary. Glass powder containing

ガラス粉末中の前記ガラス成分物質の含有比率は、溶融温度、軟化温度、ガラス転移温度、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。   The content ratio of the glass component substance in the glass powder is preferably set in consideration of the melting temperature, the softening temperature, the glass transition temperature, and the chemical durability, and is generally 0.1% by mass to 95% by mass. Or less, more preferably 0.5% by mass or more and 90% by mass or less.

具体的には、例えば、P−AgO−ZnO系のガラス粉末の場合には、ZnOの含有比率は、1質量%以上50質量%以下であることが好ましく、3質量%以上40質量%以下であることがより好ましい。 Specifically, for example, in the case of P 2 O 5 —AgO—ZnO-based glass powder, the content ratio of ZnO is preferably 1% by mass to 50% by mass, and preferably 3% by mass to 40% by mass. % Or less is more preferable.

ガラス粉末の軟化温度は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。   The softening temperature of the glass powder is preferably 200 ° C. to 1000 ° C., more preferably 300 ° C. to 900 ° C., from the viewpoints of diffusibility during the diffusion treatment and dripping.

ガラス粉末の形状としては、略球状、扁平状、ブロック状、板状及び鱗片状等が挙げられ、n型拡散層形成組成物とした場合の基板への塗布性や均一拡散性の点から、略球状、扁平状又は板状であることが望ましい。
ガラス粉末の粒径は、100μm以下であることが望ましい。100μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は50μm以下であることがより望ましい。なお、下限は特に制限されないが、0.01μm以上であることが好ましい。
ここで、ガラスの粒径は、平均粒子径を表し、レーザー散乱回折法粒度分布測定装置等により測定することができる。
Examples of the shape of the glass powder include a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of the application property to the substrate and the uniform diffusibility when it is an n-type diffusion layer forming composition, It is desirable to have a substantially spherical shape, a flat shape, or a plate shape.
The particle size of the glass powder is desirably 100 μm or less. When glass powder having a particle size of 100 μm or less is used, a smooth coating film is easily obtained. Furthermore, the particle size of the glass powder is more desirably 50 μm or less. The lower limit is not particularly limited, but is preferably 0.01 μm or more.
Here, the particle diameter of glass represents an average particle diameter, and can be measured by a laser scattering diffraction particle size distribution measuring apparatus or the like.

ドナー元素及び酸化銀を含むガラス粉末は、以下の手順で作製される。
最初に原料、例えば、前記ドナー元素含有物質と酸化銀と前記ガラス成分物質とを秤量し、るつぼに充填する。るつぼの材質としては白金、白金―ロジウム、金、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱し融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて得られた融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
A glass powder containing a donor element and silver oxide is produced by the following procedure.
First, raw materials, for example, the donor element-containing material, silver oxide, and the glass component material are weighed and filled in a crucible. Examples of the material for the crucible include platinum, platinum-rhodium, gold, iridium, alumina, quartz, carbon, and the like, which are appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
Next, it heats with the temperature according to a glass composition with an electric furnace, and is set as a melt. At this time, it is desirable to stir the melt uniformly.
Subsequently, the obtained melt is poured onto a zirconia substrate, a carbon substrate or the like to vitrify the melt.
Finally, the glass is crushed into powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.

n型拡散層形成組成物中のドナー元素及び酸化銀を含むガラス粉末の含有比率は、塗布性、ドナー元素の拡散性等を考慮し決定される。一般には、n型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましい。   The content ratio of the glass powder containing the donor element and silver oxide in the n-type diffusion layer forming composition is determined in consideration of the coating property, the diffusibility of the donor element, and the like. Generally, the content ratio of the glass powder in the n-type diffusion layer forming composition is preferably 0.1% by mass or more and 95% by mass or less, and more preferably 1% by mass or more and 90% by mass or less.

次に、分散媒について説明する。
分散媒とは、組成物中において上記ガラス粉末を分散させる媒体である。具体的に分散媒としては、バインダーや溶剤などが採用される。
Next, the dispersion medium will be described.
The dispersion medium is a medium in which the glass powder is dispersed in the composition. Specifically, a binder, a solvent, or the like is employed as the dispersion medium.

バインダーとしては、例えば、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリエチレンオキサイド類、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル類、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、(メタ)アクリル酸樹脂、(メタ)アクリル酸エステル樹脂(例えば、アルキル(メタ)アクリレート樹脂、ジメチルアミノエチル(メタ)アクリレート樹脂等)、ブタジエン樹脂、スチレン樹脂、又はこれらの共重合体、他にも、シロキサン樹脂を適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。   Examples of the binder include polyvinyl alcohol, polyacrylamides, polyvinyl amides, polyvinyl pyrrolidone, polyethylene oxides, polysulfonic acid, acrylamide alkyl sulfonic acid, cellulose ethers, cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch And starch derivatives, sodium alginates, xanthan, gua and gua derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives, (meth) acrylic acid resins, (meth) acrylic acid ester resins (e.g. , Alkyl (meth) acrylate resins, dimethylaminoethyl (meth) acrylate resins, etc.), butadiene resin , Styrene resin, or copolymers thereof, Additional be appropriately selected siloxane resin. These are used singly or in combination of two or more.

バインダーの分子量は特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが望ましい。   The molecular weight of the binder is not particularly limited, and it is desirable to adjust appropriately in view of the desired viscosity of the composition.

溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル系溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。   Examples of the solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, Ketone solvents such as diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl -N-propyl ether, di-iso-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether Ter, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether , Diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n- Butyl ether, G Ethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetradiethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, diethylene glycol di-n-butyl ether, tetraethylene glycol methyl n-hexyl Ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl Ether, zip Lopylene glycol methyl-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene Glycol methyl ethyl ether, tripropylene glycol methyl-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetradipropylene glycol methyl ethyl Ether, tetrapropylene glycol methyl-n-butyl ether Ether solvents such as dipropylene glycol di-n-butyl ether, tetrapropylene glycol methyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether; methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, acetic acid n-butyl, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2- Butoxyethoxy) ethyl, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol acetate Methyl ether, dipropylene glycol ethyl ether, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, lactic acid Methyl, ethyl lactate, n-butyl lactate, n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene Ester solvents such as glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ-butyrolactone, γ-valerolactone; N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, etc. Aprotic polar solvent: methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec -Pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, Alcohol solvents such as 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, Diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol Mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether Glycol monoether solvents such as α-terpinene, α-terpineol, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, terpineol, carvone, ocimene, and ferrandrene; water and the like It is done. These are used singly or in combination of two or more.

n型拡散層形成組成物中の分散媒の含有比率は、塗布性、ドナー濃度を考慮し決定される。
n型拡散層形成組成物の粘度は、塗布性を考慮して、10mPa・s以上1000000mPa・s以下であることが好ましく、50mPa・s以上500000mPa・s以下であることがより好ましい。
The content ratio of the dispersion medium in the n-type diffusion layer forming composition is determined in consideration of applicability and donor concentration.
The viscosity of the n-type diffusion layer forming composition is preferably 10 mPa · s or more and 1000000 mPa · s or less, more preferably 50 mPa · s or more and 500000 mPa · s or less in consideration of applicability.

次に、本発明のn型拡散層及び太陽電池素子の製造方法について、図1を参照しながら説明する。図1は、本発明の太陽電池素子の製造工程の一例を概念的に表す模式断面図である。以降の図面においては、共通する構成要素に同じ符号を付す。   Next, the manufacturing method of the n type diffused layer and solar cell element of this invention is demonstrated, referring FIG. FIG. 1 is a schematic cross-sectional view conceptually showing an example of the manufacturing process of the solar cell element of the present invention. In the subsequent drawings, common constituent elements are denoted by the same reference numerals.

図1(1)では、p型半導体基板10であるシリコン基板にアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する(図中ではテクスチャー構造の記載を省略する)。太陽電池素子は、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
In FIG. 1A, an alkaline solution is applied to a silicon substrate which is a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.
Specifically, the damaged layer on the silicon surface generated when slicing from the ingot is removed with 20% by mass caustic soda. Next, etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure (the description of the texture structure is omitted in the figure). In the solar cell element, by forming a texture structure on the light receiving surface (surface) side, a light confinement effect is promoted, and high efficiency is achieved.

図1(2)では、p型半導体基板10の表面すなわち受光面となる面に、上記n型拡散層形成組成物を塗布して、n型拡散層形成組成物層11を形成する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法が挙げられる。
上記n型拡散層形成組成物の塗布量としては特に制限は無いが、例えば、ガラス粉末量として0.01g/m〜100g/mとすることができ、0.1g/m〜10g/mであることが好ましい。
In FIG. 1B, the n-type diffusion layer forming composition layer 11 is formed by applying the n-type diffusion layer forming composition to the surface of the p-type semiconductor substrate 10, that is, the surface that becomes the light receiving surface. In the present invention, the coating method is not limited, and examples thereof include a printing method, a spin method, a brush coating, a spray method, a doctor blade method, a roll coater method, and an ink jet method.
Is not particularly limited as coated amount of the n-type diffusion layer forming composition, for example, be a 0.01g / m 2 ~100g / m 2 as a glass powder content, 0.1 g / m 2 to 10 g / M 2 is preferable.

なお、n型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80℃〜300℃程度の温度で、ホットプレートを使用する場合は1分〜10分、乾燥機などを用いる場合は10分〜30分程度で乾燥させる。この乾燥条件は、n型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。   Depending on the composition of the n-type diffusion layer forming composition, a drying step for volatilizing the solvent contained in the composition may be necessary after coating. In this case, drying is performed at a temperature of about 80 ° C. to 300 ° C. for 1 minute to 10 minutes when a hot plate is used, and about 10 minutes to 30 minutes when a dryer or the like is used. The drying conditions depend on the solvent composition of the n-type diffusion layer forming composition, and are not particularly limited to the above conditions in the present invention.

また、本発明の製造方法を用いる場合には、裏面のp型拡散層(高濃度電界層)14の製造方法はアルミニウムによるn型拡散層からp型拡散層への変換による方法に限定されることなく、従来公知のいずれの方法も採用でき、製造方法の選択肢が広がる。したがって、例えば、B(ボロン)などの第13族の元素を含む組成物13を付与し、高濃度電界層14を形成することができる。 Further, when the manufacturing method of the present invention is used, the manufacturing method of the p + -type diffusion layer (high concentration electric field layer) 14 on the back surface is limited to a method by conversion from an n-type diffusion layer to a p-type diffusion layer with aluminum. Therefore, any conventionally known method can be adopted, and the options of the manufacturing method are expanded. Therefore, for example, the high-concentration electric field layer 14 can be formed by applying the composition 13 containing a Group 13 element such as B (boron).

前記B(ボロン)等の第13族の元素を含む組成物13としては、例えば、ドナー元素を含むガラス粉末の代わりにアクセプタ元素を含むガラス粉末を用いて、n型拡散層形成組成物と同様にして構成されるp型拡散層形成組成物を挙げることができる。アクセプタ元素は第13族の元素であればよく、例えば、B(ボロン)、Al(アルミニウム)及びGa(ガリウム)等を挙げることができる。またアクセプタ元素を含むガラス粉末はB、Al及びGaから選択される少なくとも1種を含むことが好ましい。
さらにp型拡散層形成組成物をシリコン基板の裏面に付与する方法は、既述のn型拡散層形成組成物をシリコン基板上に塗布する方法と同様である。
裏面に付与されたp型拡散層形成組成物を、後述するn型拡散層形成組成物における熱拡散処理と同様に熱拡散処理することで、裏面に高濃度電界層14を形成することができる。尚、p型拡散層形成組成物の熱拡散処理は、n型拡散層形成組成物の熱拡散処理と同時に行なうことが好ましい。
As the composition 13 containing a Group 13 element such as B (boron), for example, a glass powder containing an acceptor element is used instead of a glass powder containing a donor element, and the same as the composition for forming an n-type diffusion layer. A p-type diffusion layer forming composition constituted as described above can be given. The acceptor element may be an element belonging to Group 13, and examples thereof include B (boron), Al (aluminum), and Ga (gallium). The glass powder containing acceptor element preferably comprises at least one selected from B 2 O 3, Al 2 O 3 and Ga 2 O 3.
Furthermore, the method for applying the p-type diffusion layer forming composition to the back surface of the silicon substrate is the same as the method for applying the n-type diffusion layer forming composition described above on the silicon substrate.
The high-concentration electric field layer 14 can be formed on the back surface by subjecting the p-type diffusion layer forming composition applied to the back surface to a thermal diffusion treatment similar to the thermal diffusion treatment in the n-type diffusion layer forming composition described later. . The thermal diffusion treatment of the p-type diffusion layer forming composition is preferably performed simultaneously with the thermal diffusion treatment of the n-type diffusion layer forming composition.

次いで、上記n型拡散層形成組成物層11を形成した半導体基板10を、600℃〜1200℃で熱拡散処理する。この熱拡散処理により、図1(3)に示すように半導体基板中へドナー元素が拡散し、n型拡散層12が形成される。熱拡散処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
熱拡散処理時間は、n型拡散層形成組成物に含まれるドナー元素の含有率に応じて適宜選択することができる。例えば、1分間〜60分間とすることができ、2分間〜30分間であることがより好ましい。
Next, the semiconductor substrate 10 on which the n-type diffusion layer forming composition layer 11 is formed is subjected to thermal diffusion treatment at 600 ° C. to 1200 ° C. By this thermal diffusion treatment, as shown in FIG. 1C, the donor element diffuses into the semiconductor substrate, and the n-type diffusion layer 12 is formed. A known continuous furnace, batch furnace, or the like can be applied to the thermal diffusion treatment. Further, the furnace atmosphere during the thermal diffusion treatment can be appropriately adjusted to air, oxygen, nitrogen or the like.
The thermal diffusion treatment time can be appropriately selected according to the content of the donor element contained in the n-type diffusion layer forming composition. For example, it may be 1 minute to 60 minutes, and more preferably 2 minutes to 30 minutes.

形成されたn型拡散層12の表面には、リン酸ガラスなどのガラス層(不図示)が形成されているため、通常の方法ではこのリン酸ガラスをエッチングにより除去する。エッチングとしては、フッ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。   Since a glass layer (not shown) such as phosphate glass is formed on the surface of the n-type diffusion layer 12 formed, this phosphate glass is removed by etching in a normal method. As the etching, a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda can be applied.

ここで、本発明によれば、n型拡散層12表面のガラス層には銀粒子が析出しており、ガラス層自体が高い導電性を示している。従って、前記エッチングを行わずに次の工程(反射防止膜の形成)に進めることもできる。またはガラス層を完全に除去せずに、一部残して次の工程に進めることもできる。前記エッチング工程の有無、更にエッチングの程度については、形成したガラス層の厚さや銀粒子の析出量、ガラス層の導電率などを考慮し、適宜選択することができる。したがって本発明の製造方法によれば、ガラス層のエッチング工程が不要となり、或いは完全にガラス層を除去するまでのエッチングが要求されず、工程が簡易化される。   Here, according to the present invention, silver particles are deposited on the glass layer on the surface of the n-type diffusion layer 12, and the glass layer itself exhibits high conductivity. Therefore, it is possible to proceed to the next step (formation of an antireflection film) without performing the etching. Alternatively, without completely removing the glass layer, it is possible to leave a part and proceed to the next step. The presence or absence of the etching step and the degree of etching can be appropriately selected in consideration of the thickness of the formed glass layer, the amount of silver particles deposited, the conductivity of the glass layer, and the like. Therefore, according to the manufacturing method of the present invention, the etching process of the glass layer becomes unnecessary, or etching until the glass layer is completely removed is not required, and the process is simplified.

図1(2)及び(3)に示される、本発明のn型拡散層形成組成物11を用いてn型拡散層12を形成する本発明のn型拡散層の形成方法では、所望の部位にn型拡散層12が形成され、裏面や側面には不要なn型拡散層が形成されない。
したがって、従来広く採用されている気相反応法によりn型拡散層を形成する方法では、側面に形成された不要なn型拡散層を除去するためのサイドエッチング工程が必須であったが、本発明の製造方法によれば、サイドエッチング工程が不要となり、工程が簡易化される。
In the method for forming an n-type diffusion layer of the present invention in which the n-type diffusion layer 12 is formed using the n-type diffusion layer forming composition 11 of the present invention shown in FIGS. Thus, the n-type diffusion layer 12 is formed, and no unnecessary n-type diffusion layer is formed on the back surface or the side surface.
Therefore, in the conventional method of forming an n-type diffusion layer by a gas phase reaction method, a side etching process for removing an unnecessary n-type diffusion layer formed on a side surface is essential. According to the manufacturing method of the invention, the side etching process is not required, and the process is simplified.

また、従来の製造方法では、裏面に形成された不要なn型拡散層をp型拡散層へ変換する必要があり、この変換方法としては、裏面のn型拡散層に、第13族元素であるアルミニウムのペーストを塗布、焼成し、n型拡散層にアルミニウムを拡散させてp型拡散層へ変換する方法が採用されている。この方法においてp型拡散層への変換を充分なものとし、更にp型拡散層の高濃度電界層を形成するためには、ある程度以上のアルミニウム量が必要であることから、アルミニウム層を厚く形成する必要があった。しかしながら、アルミニウムの熱膨張率は、基板として用いるシリコンの熱膨張率と大きく異なることから、焼成及び冷却の過程でシリコン基板中に大きな内部応力を発生させ、シリコン基板の反りの原因となっていた。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池素子の搬送や、タブ線と呼ばれる導線との接続において、素子を破損させ易くしていた。近年では、スライス加工技術の向上から、シリコン基板の厚みが薄型化されつつあり、更に素子が割れ易い傾向にある。
Further, in the conventional manufacturing method, it is necessary to convert an unnecessary n-type diffusion layer formed on the back surface into a p-type diffusion layer. As this conversion method, a group 13 element is added to the n-type diffusion layer on the back surface. A method is adopted in which an aluminum paste is applied and baked to diffuse aluminum into the n-type diffusion layer and convert it into a p-type diffusion layer. In this method, conversion to the p-type diffusion layer is sufficient, and in order to form a high-concentration electric field layer of the p + -type diffusion layer, a certain amount of aluminum is required. There was a need to form. However, since the thermal expansion coefficient of aluminum is significantly different from that of silicon used as a substrate, a large internal stress is generated in the silicon substrate during the firing and cooling process, causing warpage of the silicon substrate. .
This internal stress has a problem that the crystal grain boundary is damaged and the power loss increases. Further, the warp easily causes the element to be damaged in the transportation of the solar cell element in the module process and the connection with the lead wire called the tab wire. In recent years, the thickness of the silicon substrate has been reduced due to the improvement of the slice processing technique, and the elements tend to be easily broken.

しかし本発明の製造方法によれば、裏面に不要なn型拡散層が形成されないことから、n型拡散層からp型拡散層への変換を行う必要がなくなり、アルミニウム層を厚くする必然性がなくなる。その結果、シリコン基板内の内部応力の発生や反りを抑えることができる。結果として、電力損失の増大や、素子の破損を抑えることが可能となる。 However, according to the manufacturing method of the present invention, since an unnecessary n-type diffusion layer is not formed on the back surface, it is not necessary to perform conversion from the n-type diffusion layer to the p + -type diffusion layer, and it is necessary to increase the thickness of the aluminum layer. Disappear. As a result, generation of internal stress and warpage in the silicon substrate can be suppressed. As a result, it is possible to suppress an increase in power loss and damage to the element.

また、本発明の製造方法を用いる場合には、裏面のp型拡散層(高濃度電界層)14の製造方法はアルミニウムによるn型拡散層からp型拡散層への変換による方法に限定されることなく、いずれの方法も採用でき、製造方法の選択肢が広がる。
例えば、ドナー元素を含むガラス粉末の代わりにアクセプタ元素を含むガラス粉末を用いて、n型拡散層形成組成物と同様にして構成されるp型拡散層形成組成物を、シリコン基板の裏面(n型拡散層形成組成物を塗布した面とは反対側の面)に塗布し、焼成処理することで、裏面にp型拡散層(高濃度電界層)14を形成してもよい。
また後述するように、裏面の表面電極20に用いる材料は第13族のアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の表面電極20の厚さも従来のものよりも薄く形成することが可能となる。
When the manufacturing method of the present invention is used, the manufacturing method of the p + -type diffusion layer (high-concentration electric field layer) 14 on the back surface is limited to a method by conversion from an n-type diffusion layer by aluminum to a p + -type diffusion layer. However, either method can be adopted, and the choice of manufacturing method is expanded.
For example, using a glass powder containing an acceptor element instead of a glass powder containing a donor element, a p-type diffusion layer forming composition configured in the same manner as the n-type diffusion layer forming composition is formed on the back surface (n The p + -type diffusion layer (high-concentration electric field layer) 14 may be formed on the back surface by applying to the surface opposite to the surface on which the composition for forming the mold diffusion layer is applied and baking.
As will be described later, the material used for the back surface electrode 20 is not limited to Group 13 aluminum, and for example, Ag (silver), Cu (copper), or the like can be applied. In addition, it can be formed thinner than the conventional one.

図1(4)では、n型拡散層12の上に反射防止膜16を形成する。反射防止膜16は公知の技術を適用して形成される。例えば、反射防止膜16がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が13.3Pa(0.1Torr)〜266.6Pa(2Torr)、成膜時の温度が300℃〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
In FIG. 1 (4), an antireflection film 16 is formed on the n-type diffusion layer 12. The antireflection film 16 is formed by applying a known technique. For example, when the antireflection film 16 is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbits that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are combined to inactivate defects (hydrogen passivation).
More specifically, the mixed gas flow rate ratio NH 3 / SiH 4 is 0.05 to 1.0, the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr), It is formed under conditions where the temperature is 300 ° C. to 550 ° C. and the frequency for plasma discharge is 100 kHz or more.

図1(5)では、表面(受光面)の反射防止膜16上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極18を形成する。表面電極用金属ペーストは、(1)金属粒子と(2)ガラス粒子とを必須成分とし、必要に応じて(3)樹脂バインダー、(4)その他の添加剤などを含む。   In FIG. 1 (5), the surface electrode 18 is formed on the antireflection film 16 on the surface (light-receiving surface) by printing and drying the surface electrode metal paste by screen printing. The metal paste for a surface electrode contains (1) metal particles and (2) glass particles as essential components, and includes (3) a resin binder and (4) other additives as necessary.

次いで、上記裏面の高濃度電界層14上にも裏面電極20を形成する。前述のように、本発明では裏面電極20の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅等の金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極20を形成してもよい。このとき、裏面にも、モジュール工程における素子間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。   Next, the back electrode 20 is also formed on the high-concentration electric field layer 14 on the back surface. As described above, in the present invention, the material and forming method of the back electrode 20 are not particularly limited. For example, the back electrode 20 may be formed by applying and drying a back electrode paste containing a metal such as aluminum, silver, or copper. At this time, a silver paste for forming a silver electrode may be partially provided on the back surface for connection between elements in the module process.

図1(6)では、電極を焼成して、太陽電池素子を完成させる。600℃〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜16が溶融し、更にシリコン10表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板10と接触部を形成し凝固する。これにより、形成した表面電極18とシリコン基板10とが導通される。これはファイアースルーと称されている。   In FIG. 1 (6), an electrode is baked and a solar cell element is completed. When firing at a temperature of 600 ° C. to 900 ° C. for several seconds to several minutes, the antireflection film 16 that is an insulating film is melted by the glass particles contained in the electrode metal paste on the surface side, and the silicon 10 surface is also partially melted. The metal particles (for example, silver particles) in the paste form a contact portion with the silicon substrate 10 and solidify. Thereby, the formed surface electrode 18 and the silicon substrate 10 are electrically connected. This is called fire-through.

表面電極18の形状について説明する。表面電極18は、バスバー電極30、及び該バスバー電極30と交差しているフィンガー電極32で構成される。図2(A)は、表面電極18を、バスバー電極30、及び該バスバー電極30と交差しているフィンガー電極32からなる構成とした太陽電池素子を表面から見た平面図であり、図2(B)は、図2(A)の一部を拡大して示す斜視図である。   The shape of the surface electrode 18 will be described. The surface electrode 18 includes a bus bar electrode 30 and finger electrodes 32 intersecting with the bus bar electrode 30. FIG. 2A is a plan view of a solar cell element in which the surface electrode 18 includes a bus bar electrode 30 and a finger electrode 32 intersecting with the bus bar electrode 30 as viewed from the surface. FIG. 2B is an enlarged perspective view illustrating a part of FIG.

このような表面電極18は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着等の手段により形成することができる。バスバー電極30とフィンガー電極32とからなる表面電極18は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。   Such a surface electrode 18 can be formed by means such as screen printing of the above-described metal paste, plating of an electrode material, or vapor deposition of an electrode material by electron beam heating in a high vacuum. The surface electrode 18 composed of the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light receiving surface side and is well known, and it is possible to apply known forming means for the bus bar electrode and finger electrode on the light receiving surface side. it can.

上記では、表面にn型拡散層、裏面にp型拡散層を形成し、更にそれぞれの層の上に表面電極及び裏面電極を設けた太陽電池素子について説明したが、本発明のn型拡散層形成組成物を用いればバックコンタクト型の太陽電池素子を作製することも可能である。
バックコンタクト型の太陽電池素子は、電極を全て裏面に設けて受光面の面積を大きくするものである。つまりバックコンタクト型の太陽電池素子では、裏面にn型拡散部位及びp型拡散部位の両方を形成しpn接合構造とする必要がある。本発明のn型拡散層形成組成物は、特定の部位にn型拡散部位を形成することが可能であり、よってバックコンタクト型の太陽電池素子の製造に好適に適用することができる。
In the above description, the solar cell element in which the n-type diffusion layer is formed on the front surface, the p + -type diffusion layer is formed on the back surface, and the front surface electrode and the back surface electrode are further provided on the respective layers has been described. If a layer formation composition is used, it is also possible to produce a back contact type solar cell element.
The back contact type solar cell element has all electrodes provided on the back surface to increase the area of the light receiving surface. That is, in the back contact type solar cell element, it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure. The n-type diffusion layer forming composition of the present invention can form an n-type diffusion site at a specific site, and can therefore be suitably applied to the production of a back contact type solar cell element.

以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。   Examples of the present invention will be described more specifically below, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents. “%” Means “% by mass” unless otherwise specified.

[実施例1]
−AgO−V系ガラス(P:35.1%、AgO:40.3%、V:10%、BaO:10.4%、KO:4.2%)粉末(以下、「G01」と略記することがある)を調整した。得られたガラス粉末(G01)20gと、エチルセルロース0.3gと、酢酸2−(2−ブトキシエトキシ)エチル7gとを、自動乳鉢混練装置を用いて混合してペースト化し、n型拡散層形成組成物を調製した。
[Example 1]
P 2 O 5 -AgO-V 2 O 5 type glass (P 2 O 5: 35.1% , AgO: 40.3%, V 2 O 5: 10%, BaO: 10.4%, K 2 O: 4.2%) powder (hereinafter sometimes abbreviated as “G01”) was prepared. 20 g of the obtained glass powder (G01), 0.3 g of ethyl cellulose, and 7 g of 2- (2-butoxyethoxy) ethyl acetate were mixed using an automatic mortar kneader to make a paste, and an n-type diffusion layer forming composition A product was prepared.

次に、テクスチャーが形成されたp型シリコン基板表面に、調製したペーストをスクリーン印刷によって塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板を10%のフッ酸水溶液に5分間浸漬し、流水洗浄を行った。p型シリコン基板表面にガラス層は残存していなかった。   Next, the prepared paste was applied by screen printing to the p-type silicon substrate surface on which the texture was formed, and dried on a hot plate at 150 ° C. for 5 minutes. Subsequently, a thermal diffusion treatment was performed for 10 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in a 10% hydrofluoric acid aqueous solution for 5 minutes to remove the glass layer, and washed with running water. No glass layer remained on the p-type silicon substrate surface.

続いてn型拡散層を形成した面に、プラズマCVDにより反射防止膜(窒化ケイ素膜)を90nmの厚さで形成した。その受光面にスクリーン印刷法を用い、市販の銀電極ペースト(DuPont社製、商品名:PV159)を図2に示すような電極パターンとなるように印刷した。電極のパターンは150μm幅のフィンガーラインと1.5mm幅のバスバーで構成され、焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。   Subsequently, an antireflection film (silicon nitride film) having a thickness of 90 nm was formed on the surface on which the n-type diffusion layer was formed by plasma CVD. A commercially available silver electrode paste (manufactured by DuPont, trade name: PV159) was printed on the light receiving surface so as to have an electrode pattern as shown in FIG. The electrode pattern was composed of a finger line with a width of 150 μm and a bus bar with a width of 1.5 mm, and the printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the film thickness after firing was 20 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.

続いてアルミニウム電極ペースト(PVG Solutions社製、商品名:Hyper BSF Al Paste)を、上記と同様にスクリーン印刷法を用いて、裏面の全面に印刷した。またアルミニウム電極の膜厚が30μmとなるように、アルミニウム電極ペーストの印刷条件を適宜調整した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。   Subsequently, an aluminum electrode paste (manufactured by PVG Solutions, trade name: Hyper BSF Al Paste) was printed on the entire back surface using the screen printing method as described above. Moreover, the printing conditions of the aluminum electrode paste were appropriately adjusted so that the film thickness of the aluminum electrode was 30 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.

続いて、トンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子1を作製した。   Subsequently, using a tunnel furnace (manufactured by Noritake Co., Ltd., single-row transport W / B tunnel furnace), a heat treatment (firing) is performed in an air atmosphere at a firing maximum temperature of 800 ° C. and a holding time of 10 seconds. The formed solar cell element 1 was produced.

[実施例2]
熱拡散処理後のフッ酸処理及び流水洗浄を行わない状態で反射防止膜及び電極を形成したこと以外は、実施例1と同様にしてn型拡散層を形成し、太陽電池素子2を作製した。
[Example 2]
A solar cell element 2 was produced by forming an n-type diffusion layer in the same manner as in Example 1 except that the antireflection film and the electrode were formed without performing hydrofluoric acid treatment and running water washing after the thermal diffusion treatment. .

[実施例3]
熱拡散処理の時間を20分としたこと以外は実施例1と同様にしてn型拡散層を形成し、太陽電池素子3を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 3]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the thermal diffusion treatment time was 20 minutes, and a solar cell element 3 was produced. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例4]
熱拡散処理の時間を20分としたこと以外は実施例2と同様にしてn型拡散層を形成し、太陽電池素子4を作製した。
[Example 4]
An n-type diffusion layer was formed in the same manner as in Example 2 except that the thermal diffusion treatment time was 20 minutes, and a solar cell element 4 was produced.

[実施例5]
熱拡散処理の温度を900℃としたこと以外は実施例1と同様にしてn型拡散層を形成し、太陽電池素子5を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 5]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the temperature of the thermal diffusion treatment was set to 900 ° C., and a solar cell element 5 was produced. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例6]
熱拡散処理の温度を900℃としたこと以外は実施例2と同様にしてn型拡散層を形成し、太陽電池素子6を作製した。
[Example 6]
An n-type diffusion layer was formed in the same manner as in Example 2 except that the temperature of the thermal diffusion treatment was 900 ° C., and a solar cell element 6 was produced.

[実施例7]
ガラス粉末組成をP−AgO−SnO系ガラス(P:44.1%、AgO:25.8%、SnO:21.3%、CaO:8.8%、以下「G02」と略記することがある)としたこと以外は、実施例1と同様にしてn型拡散層を形成し、太陽電池素子7を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 7]
The glass powder composition was P 2 O 5 —AgO—SnO-based glass (P 2 O 5 : 44.1%, AgO: 25.8%, SnO: 21.3%, CaO: 8.8%, hereinafter “G02”) The solar cell element 7 was fabricated by forming an n-type diffusion layer in the same manner as in Example 1 except that the solar cell element 7 was abbreviated. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例8]
熱拡散処理後のフッ酸処理及び流水洗浄を行わない状態で反射防止膜及び電極を形成したこと以外は、実施例7と同様にしてn型拡散層を形成し、太陽電池素子8を作製した。
[Example 8]
An n-type diffusion layer was formed in the same manner as in Example 7 except that the antireflection film and the electrode were formed without performing hydrofluoric acid treatment and running water washing after the thermal diffusion treatment, and the solar cell element 8 was produced. .

[実施例9]
熱拡散処理の温度を900℃としたこと以外は実施例7と同様にしてn型拡散層を形成し、太陽電池素子9を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 9]
An n-type diffusion layer was formed in the same manner as in Example 7 except that the temperature of the thermal diffusion treatment was set to 900 ° C., and a solar cell element 9 was produced. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例10]
熱拡散処理の温度を900℃としたこと以外は実施例8と同様にしてn型拡散層を形成し、太陽電池素子10を作製した。
[Example 10]
An n-type diffusion layer was formed in the same manner as in Example 8 except that the temperature of the thermal diffusion treatment was set to 900 ° C., and a solar cell element 10 was produced.

[実施例11]
熱拡散処理の温度を800℃としたこと以外は実施例7と同様にしてn型拡散層を形成し、太陽電池素子11を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 11]
An n-type diffusion layer was formed in the same manner as in Example 7 except that the temperature of the thermal diffusion treatment was 800 ° C., and a solar cell element 11 was produced. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例12]
熱拡散処理の温度を800℃としたこと以外は実施例8と同様にしてn型拡散層を形成し、太陽電池素子12を作製した。
[Example 12]
An n-type diffusion layer was formed in the same manner as in Example 8 except that the temperature of the thermal diffusion treatment was 800 ° C., and a solar cell element 12 was produced.

[実施例13]
ガラス粉末組成をP−AgO−ZnO系ガラス(P:40.0%、AgO:40.0%、ZnO:10.5%、CaO:9.5%、以下「G03」と略記することがある)としたこと以外は、実施例1と同様にしてn型拡散層を形成し、太陽電池素子13を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 13]
The glass powder composition was P 2 O 5 —AgO—ZnO-based glass (P 2 O 5 : 40.0%, AgO: 40.0%, ZnO: 10.5%, CaO: 9.5%, hereinafter “G03”) The solar cell element 13 was fabricated by forming an n-type diffusion layer in the same manner as in Example 1 except that the solar cell element 13 was sometimes abbreviated. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例14]
熱拡散処理後のフッ酸処理及び流水洗浄を行わない状態で反射防止膜及び電極を形成したこと以外は、実施例13と同様にしてn型拡散層を形成し、太陽電池素子14を作製した。
[Example 14]
An n-type diffusion layer was formed in the same manner as in Example 13 except that the antireflection film and the electrode were formed without performing hydrofluoric acid treatment and washing with running water after the thermal diffusion treatment, and the solar cell element 14 was produced. .

[実施例15]
熱拡散処理の温度を950℃としたこと以外は実施例13と同様にしてn型拡散層を形成し、太陽電池素子15を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 15]
An n-type diffusion layer was formed in the same manner as in Example 13 except that the temperature of the thermal diffusion treatment was 950 ° C., and a solar cell element 15 was produced. No glass layer remained on the p-type silicon substrate surface after the hydrofluoric acid treatment.

[実施例16]
熱拡散処理の温度を950℃としたこと以外は実施例14と同様にしてn型拡散層を形成し、太陽電池素子16を作製した。
[Example 16]
An n-type diffusion layer was formed in the same manner as in Example 14 except that the temperature of the thermal diffusion treatment was 950 ° C., and a solar cell element 16 was produced.

[実施例17]
熱拡散処理の温度を900℃とし、処理時間を20分としたこと以外は、実施例13と同様にしてn型拡散層を形成し、太陽電池素子17を作製した。フッ酸処理後のp型シリコン基板表面にガラス層は残存していなかった。
[Example 17]
An n-type diffusion layer was formed in the same manner as in Example 13 except that the thermal diffusion treatment temperature was 900 ° C. and the treatment time was 20 minutes, and a solar cell element 17 was produced. The glass layer did not remain on the surface of the p-type silicon substrate after the hydrofluoric acid treatment.

[実施例18]
熱拡散処理の温度を900℃とし、処理時間を20分としたこと以外は、実施例14と同様にしてn型拡散層を形成し、太陽電池素子18を作製した。
[Example 18]
An n-type diffusion layer was formed in the same manner as in Example 14 except that the thermal diffusion treatment temperature was 900 ° C. and the treatment time was 20 minutes, and a solar cell element 18 was produced.

[比較例1]
テクスチャーが形成されたp型シリコン基板表面に、以下に示す一般的な手法でn型拡散層を形成した。まずシリコン基板を石英製ボートに立て、これを850℃に加熱した石英チューブ内に挿入した。ここにオキシ塩化リン(POCl)を拡散源としたガス拡散法により、基板全面にリンを拡散させることで、n型拡散層を形成した。具体的には、バブラー容器に満たした液体のPOCl内にキャリアガスとしての窒素(N)を通し、POClを石英チューブ内に導入した。POClは酸素(O)と混ざることでPがシリコン基板表面に堆積し、これが拡散源となってリンがシリコン基板に拡散する。尚加熱処理時間は30分とした。
[Comparative Example 1]
An n-type diffusion layer was formed on the p-type silicon substrate surface on which the texture was formed by the following general method. First, the silicon substrate was placed on a quartz boat and inserted into a quartz tube heated to 850 ° C. An n-type diffusion layer was formed by diffusing phosphorus over the entire surface of the substrate by a gas diffusion method using phosphorus oxychloride (POCl 3 ) as a diffusion source. Specifically, nitrogen (N 2 ) as a carrier gas was passed through liquid POCl 3 filled in a bubbler container, and POCl 3 was introduced into the quartz tube. When POCl 3 is mixed with oxygen (O 2 ), P 2 O 5 is deposited on the surface of the silicon substrate, and this serves as a diffusion source to diffuse phosphorus into the silicon substrate. The heat treatment time was 30 minutes.

その後10%のフッ酸水溶液処理をシリコン基板全面に施し、基板表面に形成されているリン酸塩ガラスを除去した。これ以降の反射防止膜の形成、電極ペーストの印刷および焼成は、実施例1と同様にして行い、太陽電池素子C1を作製した。   Thereafter, a 10% hydrofluoric acid aqueous solution treatment was applied to the entire surface of the silicon substrate, and the phosphate glass formed on the substrate surface was removed. Subsequent formation of the antireflection film, printing of the electrode paste, and baking were performed in the same manner as in Example 1 to fabricate a solar cell element C1.

[比較例2]
熱拡散処理後のフッ酸処理及び流水洗浄を行わない状態で反射防止膜及び電極を形成したこと以外は、比較例1と同様にしてn型拡散層を形成し、太陽電池素子C2を作製した。
[Comparative Example 2]
An n-type diffusion layer was formed in the same manner as in Comparative Example 1 except that the antireflection film and the electrode were formed without performing hydrofluoric acid treatment and running water washing after the thermal diffusion treatment, and a solar cell element C2 was produced. .

[比較例3]
−V系ガラス(P:55.1%、V:30.3%、BaO:10.4%、KO:4.2%)粉末(以下、「G04」と略記することがある)を調整した。得られたガラス粉末(G04)20gと、エチルセルロース0.3gと、酢酸2−(2−ブトキシエトキシ)エチル7gとを、自動乳鉢混練装置を用いて混合してペースト化し、n型拡散層形成組成物を調製した。
次に、テクスチャーが形成されたp型シリコン基板表面に、調製したペーストをスクリーン印刷によって塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、n型拡散層を形成した。
[Comparative Example 3]
P 2 O 5 -V 2 O 5 -based glass (P 2 O 5: 55.1% , V 2 O 5: 30.3%, BaO: 10.4%, K 2 O: 4.2%) powder ( Hereinafter, “G04” may be abbreviated). 20 g of the obtained glass powder (G04), 0.3 g of ethyl cellulose, and 7 g of 2- (2-butoxyethoxy) ethyl acetate were mixed using an automatic mortar kneader to make a paste, and an n-type diffusion layer forming composition A product was prepared.
Next, the prepared paste was applied by screen printing to the p-type silicon substrate surface on which the texture was formed, and dried on a hot plate at 150 ° C. for 5 minutes. Subsequently, a thermal diffusion treatment was performed for 10 minutes in an electric furnace set at 1000 ° C. to form an n-type diffusion layer.

その後、フッ酸処理を行わずに、実施例1と同様にして反射防止膜及び電極を形成し、太陽電池素子C3を作製した。   Thereafter, without performing hydrofluoric acid treatment, an antireflection film and an electrode were formed in the same manner as in Example 1 to produce a solar cell element C3.

[比較例4]
−ZnO系ガラス(P:45.0%、ZnO:45.5%、CaO:9.5%、以下「G05」と略記することがある)を調整した。得られたガラス粉末(G05)20gと、エチルセルロース0.3gと、酢酸2−(2−ブトキシエトキシ)エチル7gとを、自動乳鉢混練装置を用いて混合してペースト化し、n型拡散層形成組成物を調製した。
[Comparative Example 4]
P 2 O 5 —ZnO-based glass (P 2 O 5 : 45.0%, ZnO: 45.5%, CaO: 9.5%, hereinafter sometimes abbreviated as “G05”) was prepared. 20 g of the obtained glass powder (G05), 0.3 g of ethyl cellulose, and 7 g of 2- (2-butoxyethoxy) ethyl acetate were mixed using an automatic mortar kneader to make a paste, and an n-type diffusion layer forming composition A product was prepared.

次に、テクスチャーが形成されたp型シリコン基板表面に、調製したペーストをスクリーン印刷によって塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、n型拡散層を形成した。   Next, the prepared paste was applied by screen printing to the p-type silicon substrate surface on which the texture was formed, and dried on a hot plate at 150 ° C. for 5 minutes. Subsequently, a thermal diffusion treatment was performed for 10 minutes in an electric furnace set at 1000 ° C. to form an n-type diffusion layer.

その後、フッ酸処理を行わずに、実施例1と同様にして反射防止膜及び電極を形成し、太陽電池素子C4を作製した。   Thereafter, without performing hydrofluoric acid treatment, an antireflection film and an electrode were formed in the same manner as in Example 1 to fabricate a solar cell element C4.

実施例及び比較例におけるn型拡散層形成条件及び太陽電池の作製条件を、表1にまとめて示した。   Table 1 collectively shows the conditions for forming the n-type diffusion layer and the conditions for producing the solar cell in the examples and comparative examples.

<評価>
作製した太陽電池素子の評価は、擬似太陽光として(株)ワコム電創製WXS−155S−10、電流―電圧(I−V)評価測定器としてI−V CURVE TRACER MP−160(EKO INSTRUMENT社製)の測定装置を組み合わせて行った。太陽電池としての発電性能を示すJsc(短絡電流)、Voc(開放電圧)、FF(フィルファクター)、Eff(変換効率)は、それぞれJIS−C−8912、JIS−C−8913及びJIS−C−8914に準拠して測定を行うことで得られたものである。両面電極構造の太陽電池素子において、得られた各測定値を、比較例1(太陽電池素子C1)の測定値を100.0とした相対値に換算して表2に示した。
<Evaluation>
Evaluation of the produced solar cell element is as follows: WXS-155S-10 manufactured by Wacom Denso Co., Ltd. as pseudo-sunlight, and I-V CURVE TRACER MP-160 (manufactured by EKO INSTRUMENT Co., Ltd.) as a current-voltage (IV) evaluation measuring instrument. ) Was combined with the measuring device. Jsc (short-circuit current), Voc (open circuit voltage), FF (fill factor), and Eff (conversion efficiency) indicating power generation performance as a solar cell are JIS-C-8912, JIS-C-8913, and JIS-C-, respectively. It is obtained by performing measurement according to 8914. In the solar cell element having a double-sided electrode structure, the obtained measured values are converted into relative values with the measured value of Comparative Example 1 (solar cell element C1) as 100.0, and are shown in Table 2.



表2から、比較例2〜4においては、比較例1よりも発電性能が劣化したことが分かる。これは、以下のように考えることができる。比較例2においては、POClによるn型拡散層を形成した後にフッ酸処理を施さなかったため、n型拡散層表面にできたリン酸塩ガラスの抵抗によって、電極とシリコン基板上のn型拡散層間のオーミックコンタクトが阻害されたと考えられる。また比較例3及び比較例4においても、ガラス粉末に酸化銀を含まないために、熱拡散処理中に形成された溶融ガラス層の抵抗が増大し、電極とシリコン基板上のn型拡散層間のオーミックコンタクトが不充分であったと考えられる。 From Table 2, it can be seen that in Comparative Examples 2 to 4, the power generation performance was degraded as compared with Comparative Example 1. This can be considered as follows. In Comparative Example 2, since the hydrofluoric acid treatment was not performed after forming the n-type diffusion layer by POCl 3 , the resistance of the phosphate glass formed on the surface of the n-type diffusion layer caused the n-type diffusion on the electrode and the silicon substrate. It is thought that ohmic contact between layers was hindered. Also in Comparative Example 3 and Comparative Example 4, since the glass powder does not contain silver oxide, the resistance of the molten glass layer formed during the thermal diffusion treatment is increased, and the resistance between the electrode and the n-type diffusion layer on the silicon substrate is increased. It is thought that ohmic contact was insufficient.

一方、実施例1〜実施例18で作製した太陽電池素子の発電性能は、比較例1の太陽電池素子の測定値と比べほぼ同等であった。特に熱拡散処理後にフッ酸処理を施さなかった場合においても良好な発電性能を示した。これは、熱拡散処理中においてガラス中に銀粒子が析出し、導電性が向上したものと考えられる。   On the other hand, the power generation performance of the solar cell elements produced in Examples 1 to 18 was almost equal to the measured value of the solar cell element of Comparative Example 1. In particular, good power generation performance was exhibited even when hydrofluoric acid treatment was not performed after thermal diffusion treatment. This is presumably because the silver particles were precipitated in the glass during the thermal diffusion treatment and the conductivity was improved.

また、比較例1では、n型拡散層形成組成物を付与していない裏面のシート抵抗が40.4Ω/□であり、裏面にもn型拡散層が形成されていた。これに対して、実施例1〜実施例18では、n型拡散層形成組成物を付与していない裏面のシート抵抗は1000000を超えており、n型拡散層が実質的に形成されていないと判断された。したがって、実施例1〜実施例18のn型拡散層形成組成物を用いた場合には、不要な領域にn型拡散層を形成させることなく、特定の部分にn型拡散層を形成することができた。   In Comparative Example 1, the sheet resistance of the back surface to which the n-type diffusion layer forming composition was not applied was 40.4 Ω / □, and the n-type diffusion layer was also formed on the back surface. On the other hand, in Examples 1 to 18, the sheet resistance on the back surface to which the n-type diffusion layer forming composition was not applied exceeds 1000000, and the n-type diffusion layer is not substantially formed. It was judged. Therefore, when the n-type diffusion layer forming compositions of Examples 1 to 18 are used, the n-type diffusion layer is formed in a specific portion without forming the n-type diffusion layer in an unnecessary region. I was able to.

10 p型半導体基板
12 n型拡散層
14 高濃度電界層
16 反射防止膜
18 表面電極
20 裏面電極(電極層)
30 バスバー電極
32 フィンガー電極
10 p-type semiconductor substrate 12 n-type diffusion layer 14 high-concentration electric field layer 16 antireflection film 18 surface electrode 20 back electrode (electrode layer)
30 Busbar electrode 32 Finger electrode

Claims (6)

ドナー元素及び酸化銀を含むガラス粉末と、分散媒と、を含有するn型拡散層形成組成物。   An n-type diffusion layer forming composition containing a glass powder containing a donor element and silver oxide, and a dispersion medium. 前記ドナー元素が、P(リン)及びSb(アンチモン)から選択される少なくとも1種である請求項1に記載のn型拡散層形成組成物。   The n-type diffusion layer forming composition according to claim 1, wherein the donor element is at least one selected from P (phosphorus) and Sb (antimony). 前記ドナー元素及び酸化銀を含むガラス粉末が、P、P及びSbから選択される少なくとも1種のドナー元素含有物質と、AgOと、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する請求項1又は請求項2に記載のn型拡散層形成組成物。 The glass powder containing the donor element and silver oxide includes at least one donor element-containing material selected from P 2 O 3 , P 2 O 5 and Sb 2 O 3 , AgO, SiO 2 , K 2 O, At least one glass component material selected from Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , and MoO 3 ; The n-type diffused layer formation composition of Claim 1 or Claim 2 containing this. 半導体基板上に、請求項1〜請求項3のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するn型拡散層の製造方法。   A method for producing an n-type diffusion layer, comprising: a step of applying the n-type diffusion layer forming composition according to any one of claims 1 to 3 on a semiconductor substrate; and a step of applying a thermal diffusion treatment. . 半導体基板上に、請求項1〜請求項3のいずれか1項に記載のn型拡散層形成組成物を塗布する工程と、熱拡散処理を施してn型拡散層を形成する工程と、形成されたn型拡散層上に電極を形成する工程と、を有する太陽電池素子の製造方法。   The process of apply | coating the n-type diffused layer formation composition of any one of Claims 1-3 on a semiconductor substrate, the process of giving a thermal diffusion process, and forming an n-type diffused layer, and formation Forming an electrode on the formed n-type diffusion layer, and a method for manufacturing a solar cell element. 前記n型拡散層を形成する工程と、前記電極を形成する工程との間で、前記n型拡散層上に形成したガラス層の除去を行わない、または前記ガラス層の一部を除去する請求項5に記載の太陽電池素子の製造方法。   The glass layer formed on the n-type diffusion layer is not removed or a part of the glass layer is removed between the step of forming the n-type diffusion layer and the step of forming the electrode. Item 6. A method for producing a solar cell element according to Item 5.
JP2011160296A 2011-07-21 2011-07-21 N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element Withdrawn JP2013026472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160296A JP2013026472A (en) 2011-07-21 2011-07-21 N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160296A JP2013026472A (en) 2011-07-21 2011-07-21 N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element

Publications (1)

Publication Number Publication Date
JP2013026472A true JP2013026472A (en) 2013-02-04

Family

ID=47784447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160296A Withdrawn JP2013026472A (en) 2011-07-21 2011-07-21 N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element

Country Status (1)

Country Link
JP (1) JP2013026472A (en)

Similar Documents

Publication Publication Date Title
JP4868079B1 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5447397B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5573945B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5958485B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
WO2011162394A1 (en) IMPURITIES DIFFUSION LAYER FORMING COMPOSITION, n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING p-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL ELEMENTS
JP5176159B1 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP2013026344A (en) Manufacturing method of n-type diffusion layer, manufacturing method of solar cell element, and solar cell element
JP5541358B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5176158B1 (en) N-type diffusion layer forming composition, method for producing n-type diffusion layer, and method for producing solar cell element
JP2013026578A (en) Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element
JP5842431B2 (en) Method for producing n-type diffusion layer and method for producing solar cell element
JP2013026343A (en) Manufacturing method of p-type diffusion layer, manufacturing method of solar cell element, and solar cell element
JP5673694B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5703673B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5541359B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP2013026471A (en) P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP5626340B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP5333564B2 (en) Method for manufacturing solar battery cell
JP2013026472A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP2013026467A (en) Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element
JP2016006893A (en) n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD
JP2016036034A (en) Manufacturing method of n-type diffusion layer and manufacturing method of solar cell element
JP2012231013A (en) N-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, and method for manufacturing solar cell element
JP2013026477A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007