JPH04158514A - Impurity diffusion to semiconductor substrate - Google Patents

Impurity diffusion to semiconductor substrate

Info

Publication number
JPH04158514A
JPH04158514A JP28515690A JP28515690A JPH04158514A JP H04158514 A JPH04158514 A JP H04158514A JP 28515690 A JP28515690 A JP 28515690A JP 28515690 A JP28515690 A JP 28515690A JP H04158514 A JPH04158514 A JP H04158514A
Authority
JP
Japan
Prior art keywords
diffusion
gas atmosphere
semiconductor substrate
antimony
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28515690A
Other languages
Japanese (ja)
Inventor
Haruo Inoue
晴夫 井上
Takashi Nakada
孝 中田
Masayuki Takashima
正之 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP28515690A priority Critical patent/JPH04158514A/en
Publication of JPH04158514A publication Critical patent/JPH04158514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To suppress generation of rosettes at the time when impurity diffused layers are formed and thereby form satisfactory diffused layers by putting a silicon semiconductor substrate into a thermal diffusion furnace in which the gas atmosphere is kept oxidative and then by switching the gas atmosphere into an inactive one to diffuse arsenic or antimony in a coating film into the silicon substrate. CONSTITUTION:After a silicon semiconductor substrate is coated with a coating solution resulting from dissolution of a silica film containing arsenic or antimony to form a coating film, the silicon semiconductor substrate is put into a thermal diffusion furnace to keep its gas atmosphere oxidative, which is then switched into an inactive gas atmosphere to diffuse arsenic or antimony in the coating film into the silicon substrate. Diffusion temperature for diffusion using the above-mentioned coating solution is 1000-1500 deg.C, preferably, close to 1250 deg.C. The oxidative gas atmosphere at the beginning of diffusion is a mixture gas of oxygen and an inactive gas. The oxygen concentration is 5-50vol%, preferably, 5-10vol%, and the remaining inactive gas is preferably nitrogen. It is favorable that the time of switching into an inactive gas atmosphere is within 1/2Thr where the total treatment time for diffusion is Thr.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体基板への不純物の拡散方法、特にヒ素、
又はアンチモンを含有するシリカフィルムを溶解させた
塗布液を、シリコン基板上に塗布して熱拡散させる不純
物拡散方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for diffusing impurities into a semiconductor substrate, particularly arsenic,
Alternatively, the present invention relates to an impurity diffusion method in which a coating liquid in which a silica film containing antimony is dissolved is applied onto a silicon substrate and thermally diffused.

[従来の技術] 従来シリコン半導体基板にヒ素、又はアンチモン等の不
純物拡散層を形成する1つの方法として、ヒ素又はアン
チモン等の不純物を含有するシリカフィルムを有機溶媒
に溶解させた塗布液(以下塗布液という)を基板上に供
給し、スピンコード法によりフィルムを形成し、次いて
不純物を熱拡散する方法が行われてきた。この方法は、
シリコン基板上に二酸化ケイ素(SiL)膜を形成し、
SiO□膜を窓開きし、拡散層を形成しようとする部分
のシリコン基板の表面を露出させ、その上に塗布液をス
ピンコード法により塗布してシリカフィルム層を形成し
、熱処理を行って不純物拡散層を形成する手順で行われ
ていた。
[Prior Art] Conventionally, one method for forming an impurity diffusion layer such as arsenic or antimony on a silicon semiconductor substrate is to use a coating liquid (hereinafter referred to as coating) in which a silica film containing impurities such as arsenic or antimony is dissolved in an organic solvent. A conventional method has been to supply a liquid (referred to as liquid) onto a substrate, form a film using a spin code method, and then thermally diffuse impurities. This method is
Forming a silicon dioxide (SiL) film on a silicon substrate,
A window is opened in the SiO□ film to expose the surface of the silicon substrate where the diffusion layer is to be formed, and a coating liquid is applied thereon using a spin code method to form a silica film layer, and then heat treatment is performed to remove impurities. This was done by forming a diffusion layer.

しかし前記した技術においては、塗布液の熱処理により
結晶化ガラスが生成するという問題がある。この結晶化
ガラスは通称ロゼツト(Rosette)と呼ばれてい
るが、こうしたロゼツトが基板の不純物拡散層形成部分
に形成されたとすると、ロゼツトとシリコンの密着性は
極めて強いため、後の工程で塗布液により形成されたシ
リカフィルム層を除いても、ロゼツトはそのまま残存し
てしまうという問題かあった。
However, the above-mentioned technique has a problem in that crystallized glass is generated due to heat treatment of the coating liquid. This crystallized glass is commonly called a rosette, but if such a rosette is formed in the area where the impurity diffusion layer is to be formed on the substrate, the adhesion between the rosette and silicon is extremely strong, so the coating solution is removed in a later process. There was a problem in that even if the silica film layer formed by the method was removed, the rosette remained as it was.

又、SiO□膜にもロゼツトが形成されることが経験さ
れており、このロゼツトの領域では、不純物かSiL膜
を貫通して基板に拡散され、不要な不純物拡散層を形成
してしまう問題があった。
Furthermore, it has been experienced that rosettes are formed in SiO□ films, and in these rosette regions, impurities penetrate the SiL film and diffuse into the substrate, creating an unnecessary impurity diffusion layer. there were.

このロゼツトは基板を構成するシリコンよりも原子半径
の大きなヒ素やアンチモンを長時間拡散し、シリコン基
板表面のシート抵抗値を低くしようとする時、特に顕著
に発生する。
These rosettes are particularly noticeable when arsenic or antimony, which has an atomic radius larger than that of the silicon constituting the substrate, is diffused for a long period of time to lower the sheet resistance value of the silicon substrate surface.

このような現象に対し、従来ロゼツトを発生させない方
法も幾つか開発されている。その一つの方法に、例えば
特開昭55−143031号公報がある。
In response to this phenomenon, several methods have been developed to prevent the generation of rosettes. One such method is disclosed in, for example, Japanese Unexamined Patent Publication No. 143031/1982.

同報には、SiO2膜の上に形成した、実質上シリコン
基板中への拡散には全く寄与しないシリカフィルムを拡
散処理する前に窓あけした部分のみを残し、予め除去す
ることにより、ロゼツトの発生を防止する方法が記載さ
れている。類似の方法としてはその他に、特開昭62−
216322号公報、特開昭63−117419号公報
、特開平1−53414号公報等がある。  しかしこ
のような方法においては、5i02膜上に発生するロゼ
ッI・の発生は防止できても、拡散層形成部分即ち窓あ
けした部分に発生するロゼツトの問題は依然解決されず
、又、拡散層形成までの工程数が多くなり、製品の歩留
まりや製造コストの圧迫要因となり問題である。
The same report states that before the silica film formed on the SiO2 film, which does not substantially contribute to diffusion into the silicon substrate, is removed, only the apertured portion is left and removed before the diffusion treatment, resulting in a rosette. It describes how to prevent this from happening. Other similar methods include JP-A-62-
216322, JP-A-63-117419, JP-A-1-53414, etc. However, although this method can prevent the formation of rosettes I on the 5i02 film, it still does not solve the problem of rosettes occurring in the diffusion layer formation area, that is, the apertured area. This is a problem because the number of steps required for formation increases, which puts pressure on product yield and manufacturing costs.

特開平2−178920号公報では、塗布液を塗布した
後、02プラズマ処理又は03処理を行い、シリカフィ
ルム中の不純物を酸化させた後、拡散させることにより
、ロゼツト発生が少なく、且つ、低いシート抵抗値の半
導体基板を得ている。類似の方法としては特開平2−1
78921号公報がある。しかしこの方法においても、
拡散層形成までの工程数が多くなり、製品の歩留まりや
製造コストの圧迫要因となることに変わりはない。
In JP-A-2-178920, after applying a coating liquid, 02 plasma treatment or 03 treatment is performed to oxidize impurities in the silica film, and then diffused, thereby reducing the occurrence of rosettes and forming a low sheet. A semiconductor substrate with a high resistance value is obtained. A similar method is JP-A-2-1
There is a publication No. 78921. However, even with this method,
The number of steps required to form the diffusion layer increases, which continues to be a factor that puts pressure on product yield and manufacturing costs.

[発明が解決しようとする課題] 本発明はかかる従来技術の欠点、即ち、ヒ素又はアンチ
モンを含有するシリカフィルムをシリコン基板上に形成
して熱拡散させる場合の不純物拡散層形成時に生じるロ
ゼツトの発生を、極めて簡単な方法で抑制し、もって良
好な拡散層を形成させる方法を提供することを目的とす
る。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the prior art, namely, the generation of rosettes that occur when forming an impurity diffusion layer when a silica film containing arsenic or antimony is formed on a silicon substrate and thermally diffused. It is an object of the present invention to provide a method for suppressing this in an extremely simple manner and thereby forming a good diffusion layer.

[課題を解決するための手段] 本発明は、ヒ素、又はアンチモンを含有するシリカフィ
ルムを溶解した塗布液をシリコン半導体基板に塗布して
塗布膜形成後、シリコン半導体基板を熱拡散炉に入れ、
熱拡散炉のガス雰囲気を酸化性に保ち、次いで不活性ガ
ス雰囲気に切り換えて塗布膜中のヒ素、又はアンチモン
をシリコン基板中へ拡散させることを特徴とする半導体
基板への不純物拡散方法である。
[Means for Solving the Problems] The present invention applies a coating solution in which a silica film containing arsenic or antimony is dissolved to a silicon semiconductor substrate to form a coating film, and then places the silicon semiconductor substrate in a thermal diffusion furnace.
This method of diffusing impurities into a semiconductor substrate is characterized by keeping the gas atmosphere in a thermal diffusion furnace oxidizing and then switching to an inert gas atmosphere to diffuse arsenic or antimony in a coating film into a silicon substrate.

即ち、拡散の初期を酸化性ガス雰囲気で、その後不活性
ガス雰囲気に切り換えて拡散を行うことにより、510
2膜の上は勿論拡散層形成部分においても、ロゼツトの
発生の極めて少ない、且つ、シート抵抗値も良好な値が
得られることを見出し本発明を完成したものである。
That is, by performing diffusion in an oxidizing gas atmosphere at the initial stage and then switching to an inert gas atmosphere, 510
The present invention was completed by discovering that the occurrence of rosettes is extremely small and a good sheet resistance value can be obtained not only on the top of the two films but also in the portion where the diffusion layer is formed.

本発明に用いられる塗布液としては、ヒ素、アンチモン
を数%含有するシリカフィルムをアセトン等の有機溶媒
に溶解したものを用いる。市販の塗布液としては、Ac
cuspin@ 5b−273(住人化学工業■製)、
OCD Typel[F](東京応化工業■製)等を用
いることか出来る。
The coating liquid used in the present invention is prepared by dissolving a silica film containing several percent of arsenic and antimony in an organic solvent such as acetone. Commercially available coating liquids include Ac
cuspin @ 5b-273 (manufactured by Sumiya Kagaku Kogyo ■),
OCD Type [F] (manufactured by Tokyo Ohka Kogyo ■) etc. can be used.

上記塗布液を用いて拡散する際の拡散温度は、目的とす
るシート抵抗に応じて決定されるが、通常1000℃〜
1500″C1好ましくは1250℃付近である。
The diffusion temperature when diffusing using the above coating liquid is determined depending on the desired sheet resistance, but is usually 1000℃~
1500″C1, preferably around 1250°C.

3000°C未満では不純物の拡散には非常に長時間が
必要となり、1500°Cを越える温度では使用する拡
散用電気炉の性能上限界かある。
At temperatures below 3,000°C, a very long time is required for impurity diffusion, and at temperatures above 1,500°C, there is a limit to the performance of the electric furnace for diffusion used.

拡散初期の酸化性ガス雰囲気としては、酸素と不活性ガ
スの混合ガスを用いる。酸素濃度は5vo1%から50
vo1%、好ましくは5 vo1%からloVOI%で
ある。残りの不活性ガスとしてはヘリウムやアルゴン、
窒素等を用いることが出来るが、中でも窒素が好ましい
。酸素濃度が5volχ未満では拡散後のシート抵抗値
が低くならず、50VOI%を越えるとロゼツトの発生
が顕著となる。
A mixed gas of oxygen and an inert gas is used as the oxidizing gas atmosphere at the initial stage of diffusion. Oxygen concentration ranges from 5vo1% to 50
vo1%, preferably 5 vo1% to loVOI%. The remaining inert gases include helium, argon,
Although nitrogen etc. can be used, nitrogen is particularly preferred. If the oxygen concentration is less than 5 vol.chi., the sheet resistance value after diffusion will not be lowered, and if it exceeds 50 VOI%, the occurrence of rosettes will become noticeable.

酸化性ガス雰囲気から不活性ガス雰囲気へ切り換える不
活性ガスの濃度は酸素を含有しないものか用いられる。
The concentration of the inert gas used to switch from the oxidizing gas atmosphere to the inert gas atmosphere is one that does not contain oxygen.

不活性ガス雰囲気への切り換え時期は、拡散を行う総処
理時間をT hrとした場合1/2T hr以内に行う
のか良く、好ましくはl/2T hrから1/4Thr
の間である。1/2T hr以上酸化性ガス雰囲気で拡
散を行った場合はロゼツトの発生か顕著となり、又、酸
化性ガス雰囲気で拡散を行う時間か1/4Thr以下の
場合は、目的とするシート抵抗値を得ることができない
The timing of switching to the inert gas atmosphere should be within 1/2 T hr, preferably 1/2 T hr to 1/4 T hr, assuming the total processing time for diffusion is T hr.
It is between. If the diffusion is performed in an oxidizing gas atmosphere for more than 1/2 Thr, rosettes will be noticeable, and if the diffusion time is less than 1/4th of an oxidizing gas atmosphere, the desired sheet resistance value will not be achieved. can't get it.

[実施例] 本発明者の方法を具体的に説明するが、本発明は以下に
記載された実施例にのみに限定されるものではない。
[Example] Although the method of the present inventor will be specifically explained, the present invention is not limited to the examples described below.

実施例−1,2,3 P型シリコン基板上にSb1%を含有するシリカフィル
ムのアセトン溶液(Accuspin @ 5b−27
3(住人化学工業■製乃を用いてスピンコード法により
シリカフィルムを形成した。次に基板を110’Cのオ
ーブン中で有機溶媒を揮散させフィルムを乾燥させた後
、拡散炉(大和半導体装置■製C0BRA)中で125
0°C5hrの拡散を行った。この場合5hrの拡散処
理中のガス組成を、拡散初期を酸素10VOI%、窒素
90vo1%雰囲気、残りの時間を窒素100vo1%
の雰囲気で行い、酸素10vo1%を含む雰囲気での処
理時間を2.5hr、 1.5 hr、 1.25hr
と変化させて行った。
Examples 1, 2, 3 Acetone solution of silica film containing 1% Sb on P-type silicon substrate (Accuspin @ 5b-27
3. A silica film was formed by the spin-coding method using a silica film manufactured by Sumitomo Chemical Co., Ltd. ■Made in C0BRA) 125
Diffusion was performed at 0°C for 5 hours. In this case, the gas composition during the 5-hour diffusion process is such that the initial stage of the diffusion is an atmosphere of 10 VOI% oxygen and 90 VO1% nitrogen, and the remaining time is 100 VOI% nitrogen.
The treatment time was 2.5 hr, 1.5 hr, 1.25 hr in an atmosphere containing 10vol% oxygen.
I changed it.

拡散後はシリコン基板を拡散炉より取りだし、30%H
Fにてシリコン基板上のシリカフィルムを除去した後、
200倍レンズの光学顕微鏡にコン社製IC顕微鏡 X
6F−M)にてシリコン基板表面を観察し、発生してい
るロゼツトの数を測定した。
After diffusion, take out the silicon substrate from the diffusion furnace and heat it to 30%H.
After removing the silica film on the silicon substrate at F,
An optical microscope with a 200x lens and an IC microscope made by Kon
6F-M), and the number of rosettes generated was measured.

又、抵抗率測定器(共和理研社製に一705RD)によ
りシリコン基板表面のシート抵抗値を測定した。
Further, the sheet resistance value of the surface of the silicon substrate was measured using a resistivity measuring device (1705RD manufactured by Kyowa Riken Co., Ltd.).

各々の結果を第1表に示す。The results are shown in Table 1.

酸素を含むガス雰囲気での処理時間か短くなるほど、発
生する結晶化ガラスの数は顕著に減少した。
As the treatment time in the oxygen-containing gas atmosphere became shorter, the number of crystallized glass produced decreased significantly.

比較例−1,2 酸素10vo1%を含む雰囲気での処理時間を1.Oh
r、0.5hrで行うこと以外は、実施例1.2.3、
とまったく同一条件で拡散し、その後測定したロゼツト
の発生数、及びシート抵抗値を第2表に示す。
Comparative Examples 1 and 2 The treatment time in an atmosphere containing 10vol% oxygen was 1. Oh
Example 1.2.3, except that r, 0.5 hr.
Table 2 shows the number of rosettes and sheet resistance values measured after diffusion under exactly the same conditions as above.

第2表 ロゼツトの発生はほとんど無いが、シリコン基板表面の
シート抵抗値は実施例1.2.3に比べて高い値を示し
た。
Table 2 Although there was almost no rosette, the sheet resistance value of the silicon substrate surface was higher than that of Examples 1, 2, and 3.

比較例−3,4,5 拡散する際のガス組成を途中で切り換えることなく、 
0!/N2=0/100 、10/90 、25/75
.50150のガスを用いて行うこと以外は、実施例1
.2.3、とまったく同一条件で拡散した。
Comparative Examples 3, 4, 5 Without changing the gas composition during diffusion,
0! /N2=0/100, 10/90, 25/75
.. Example 1 except that 50150 gas was used.
.. It was diffused under exactly the same conditions as 2.3.

ロゼツトの発生数、及びシート抵抗値を第3表に示す。Table 3 shows the number of rosettes and sheet resistance values.

窒素100vo1%で拡散を行った後のシリコン表面に
は、ロゼツトの発生は全くなかったが、表面のシート抵
抗値は実施例!、2.3、に比べるとはるかに高いもの
であった。
Although no rosettes were observed on the silicon surface after diffusion with 100 vol 1% nitrogen, the sheet resistance value of the surface was as high as that of Example! , 2.3, was much higher.

酸素10vo1%、窒素90vo1%で拡散を行った後
のシリコン表面では、実施例1.2.3と同等のシート
抵抗値か得られているか、ロゼツトの発生は顕著であっ
た。
On the silicon surface after diffusion with 10 vol% oxygen and 90 vol% nitrogen, the sheet resistance value equivalent to that of Example 1.2.3 was obtained, and the occurrence of rosettes was remarkable.

酸素25vo1%と窒素75vo1%、酸素50vo1
%と窒素50vo1%で拡散を行った後のシリコン表面
では、結晶化ガラスの発生がより顕著となり、且つ、シ
ート抵抗値も実施例に比べると高い値を示した。
Oxygen 25vol1%, Nitrogen 75vol1%, Oxygen 50vol1
On the silicon surface after diffusion with 50vol% and nitrogen, the occurrence of crystallized glass became more noticeable, and the sheet resistance value also showed a higher value than in the example.

[発明の効果コ 以上のように本発明によれば、ヒ素又はアンチモンを含
存するシリカフィルムをシリコン半導体基板上に形成し
、熱拡散する際のロゼツト発生という問題を、拡散中の
ガス雰囲気を酸化性のものから不活性のものに切り換え
るという極めて簡単な方法で、その発生を著しく抑制し
、良好な拡散層の形成を行うことが出来る。
[Effects of the Invention] As described above, according to the present invention, a silica film containing arsenic or antimony is formed on a silicon semiconductor substrate, and the problem of rosette generation during thermal diffusion is solved by oxidizing the gas atmosphere during diffusion. By switching from a reactive material to an inactive material, which is an extremely simple method, its occurrence can be significantly suppressed and a good diffusion layer can be formed.

Claims (1)

【特許請求の範囲】[Claims] (1)ヒ素、又はアンチモンを含有するシリカフィルム
を溶解した塗布液をシリコン半導体基板に塗布して塗布
膜形成後、シリコン半導体基板を熱拡散炉に入れ、熱拡
散炉のガス雰囲気を酸化性に保ち、次いで不活性ガス雰
囲気に切り換えて塗布膜中のヒ素、又はアンチモンをシ
リコン基板中へ拡散させることを特徴とする半導体基板
への不純物拡散方法。
(1) After coating a silicon semiconductor substrate with a coating solution containing dissolved silica film containing arsenic or antimony to form a coating film, the silicon semiconductor substrate is placed in a thermal diffusion furnace, and the gas atmosphere in the thermal diffusion furnace is made oxidizing. 1. A method for diffusing impurities into a semiconductor substrate, the method comprising: maintaining the silicon substrate, and then switching to an inert gas atmosphere to diffuse arsenic or antimony in the coating film into the silicon substrate.
JP28515690A 1990-10-22 1990-10-22 Impurity diffusion to semiconductor substrate Pending JPH04158514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28515690A JPH04158514A (en) 1990-10-22 1990-10-22 Impurity diffusion to semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28515690A JPH04158514A (en) 1990-10-22 1990-10-22 Impurity diffusion to semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH04158514A true JPH04158514A (en) 1992-06-01

Family

ID=17687816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28515690A Pending JPH04158514A (en) 1990-10-22 1990-10-22 Impurity diffusion to semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH04158514A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090216A1 (en) * 2010-01-25 2011-07-28 日立化成工業株式会社 n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
WO2011096301A1 (en) * 2010-02-03 2011-08-11 日立化成工業株式会社 COMPOSITION FOR FORMATION OF p-TYPE DIFFUSION LAYER, PROCESS FOR PRODUCTION OF p-TYPE DIFFUSION LAYER, AND PROCESS FOR PRODUCTION OF SOLAR BATTERY CELL
WO2011132778A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 COMPOSITION THAT FORMS p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
WO2011132781A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD OF PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD OF PRODUCING SOLAR CELL ELEMENT
WO2011132777A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 COMPOSITION THAT FORMS n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
WO2011132779A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 n-TYPE DIFFUSION LAYER-FORMING COMPOSITION, n-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
WO2011132782A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD OF PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD OF PRODUCING SOLAR CELL ELEMENT
WO2011132780A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 p-TYPE DIFFUSION LAYER-FORMING COMPOSITION, p-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
WO2011162394A1 (en) * 2010-06-24 2011-12-29 日立化成工業株式会社 IMPURITIES DIFFUSION LAYER FORMING COMPOSITION, n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING p-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL ELEMENTS
WO2012005253A1 (en) * 2010-07-07 2012-01-12 日立化成工業株式会社 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868079B1 (en) * 2010-01-25 2012-02-01 日立化成工業株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
WO2011090216A1 (en) * 2010-01-25 2011-07-28 日立化成工業株式会社 n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
WO2011096301A1 (en) * 2010-02-03 2011-08-11 日立化成工業株式会社 COMPOSITION FOR FORMATION OF p-TYPE DIFFUSION LAYER, PROCESS FOR PRODUCTION OF p-TYPE DIFFUSION LAYER, AND PROCESS FOR PRODUCTION OF SOLAR BATTERY CELL
JP5541358B2 (en) * 2010-04-23 2014-07-09 日立化成株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
WO2011132781A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD OF PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD OF PRODUCING SOLAR CELL ELEMENT
WO2011132779A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 n-TYPE DIFFUSION LAYER-FORMING COMPOSITION, n-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
WO2011132782A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD OF PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD OF PRODUCING SOLAR CELL ELEMENT
WO2011132780A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 p-TYPE DIFFUSION LAYER-FORMING COMPOSITION, p-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
US9608143B2 (en) 2010-04-23 2017-03-28 Hitachi Chemical Co., Ltd. Composition for forming N-type diffusion layer, method of forming N-type diffusion layer, and method of producing photovoltaic cell
US9520529B2 (en) 2010-04-23 2016-12-13 Hitachi Chemical Co., Ltd. Composition for forming P-type diffusion layer, method of forming P-type diffusion layer, and method of producing photovoltaic cell
WO2011132777A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 COMPOSITION THAT FORMS n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
JP5541359B2 (en) * 2010-04-23 2014-07-09 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
WO2011132778A1 (en) * 2010-04-23 2011-10-27 日立化成工業株式会社 COMPOSITION THAT FORMS p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
JP5573945B2 (en) * 2010-04-23 2014-08-20 日立化成株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5573946B2 (en) * 2010-04-23 2014-08-20 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
KR101484833B1 (en) * 2010-04-23 2015-01-21 히타치가세이가부시끼가이샤 n-TYPE DIFFUSION LAYER-FORMING COMPOSITION, n-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
WO2011162394A1 (en) * 2010-06-24 2011-12-29 日立化成工業株式会社 IMPURITIES DIFFUSION LAYER FORMING COMPOSITION, n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING p-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL ELEMENTS
WO2012005253A1 (en) * 2010-07-07 2012-01-12 日立化成工業株式会社 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element

Similar Documents

Publication Publication Date Title
US6194327B1 (en) Rapid thermal etch and rapid thermal oxidation
KR0132036B1 (en) Method for treating a semiconductor substrate
KR20010092733A (en) An epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
JPH04158514A (en) Impurity diffusion to semiconductor substrate
JP3893608B2 (en) Annealed wafer manufacturing method
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JPH08306685A (en) Silicon oxide layer deposition method
CN1257306A (en) Combined preannel/oxidation process using quick heat treatment
JP3143670B2 (en) Oxide thin film forming method
US6339016B1 (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US5171708A (en) Method of boron diffusion into semiconductor wafers having reduced stacking faults
JPS60247935A (en) Manufacture of semiconductor wafer
JP3292545B2 (en) Heat treatment method for semiconductor substrate
JPH06244174A (en) Formation of insulating oxide film
JPH04369216A (en) Method of diffusing boron to semiconductor substrate
JP3334578B2 (en) Method for producing silicon single crystal thin film
JPS61135128A (en) Manufacture of semiconductor device
JP2005197534A (en) Surface protection film formation method for repairing tool for heat treatment and repairing tool for heat treatment
JPH03163821A (en) Manufacture of semiconductor device
JP2002299268A (en) Manufacturing method for silicon wafer
JPH02197128A (en) Epitaxial wafer and manufacture thereof
JPH0714827A (en) Manufacture of semiconductor device
JPH08195360A (en) Manufacture of semiconductor device
JPH07130676A (en) Boron diffusion into semiconductor wafer
JPH07130675A (en) Boron diffusion into semiconductor wafer