JP2005197534A - Surface protection film formation method for repairing tool for heat treatment and repairing tool for heat treatment - Google Patents

Surface protection film formation method for repairing tool for heat treatment and repairing tool for heat treatment Download PDF

Info

Publication number
JP2005197534A
JP2005197534A JP2004003461A JP2004003461A JP2005197534A JP 2005197534 A JP2005197534 A JP 2005197534A JP 2004003461 A JP2004003461 A JP 2004003461A JP 2004003461 A JP2004003461 A JP 2004003461A JP 2005197534 A JP2005197534 A JP 2005197534A
Authority
JP
Japan
Prior art keywords
layer
sic
heat treatment
film
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004003461A
Other languages
Japanese (ja)
Other versions
JP4608884B2 (en
Inventor
Akihiro Kimura
明浩 木村
Michihiko Mizuno
亨彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004003461A priority Critical patent/JP4608884B2/en
Publication of JP2005197534A publication Critical patent/JP2005197534A/en
Application granted granted Critical
Publication of JP4608884B2 publication Critical patent/JP4608884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the surface protection film formation method of a preparing tool for heat treatment for forming the SiC film of a plurality of layers on the surface of a repairing tool for heat treatment so as to sufficiently decrease impurity concentration in the SiC film, especially, the impurity concentration of the uppersurface layer of the SiC film. <P>SOLUTION: The surface protection film formation method of a repairing tool for heat treatment for forming the SiC film of a plurality of layers for protecting the surface of a repairing tool for heat treatment is characterized by forming the SiC film of the plurality of layers, using a CVD furnace different for each layer on the base material of the repairing tool for heat treatment by a CVD method, and at least by forming the SiC layer of the first layer on the base material, and then removing the surface layer of the SiC layer of the first layer before forming the SiC layer of the second layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体製造における熱処理工程で使用される熱処理用治具の表面に保護膜を形成する方法に関し、特に、CVD法により複数層のSiC膜を形成する方法に関する。   The present invention relates to a method for forming a protective film on the surface of a heat treatment jig used in a heat treatment step in semiconductor manufacturing, and more particularly to a method for forming a plurality of SiC films by a CVD method.

例えば半導体ウェーハを用いてデバイスを作製する場合、ウェーハの加工プロセスから素子の形成プロセスまで多数の工程が介在し、その一つに熱処理工程がある。熱処理工程は、ウェーハの表層における無欠陥層の形成、ゲッタリング、結晶化、酸化膜形成、不純物拡散等を目的として行われる重要なプロセスである。   For example, when a device is manufactured using a semiconductor wafer, a number of steps are involved from a wafer processing process to an element formation process, one of which is a heat treatment step. The heat treatment step is an important process performed for the purpose of forming a defect-free layer on the surface layer of the wafer, gettering, crystallization, oxide film formation, impurity diffusion, and the like.

このようなウェーハの熱処理工程に用いられる熱処理炉としては、図2に示す熱処理炉を挙げることができる。
この熱処理炉20は、半導体ウェーハを投入するためのSiC製等の熱処理チューブ21と、熱処理チューブ21が挿入されるライナー管22と、ライナー管22の周囲に配置されたヒーター23とを有する。また、熱処理チューブ21は、熱処理空間を形成し、長手方向にほぼ均一な内径を有する直胴部24と、直胴部24の一方の端にプロセスガスを導入するためのガス導入部25が形成されている。通常、ガス導入部25は、直胴部24よりも小径である。ガス導入部25はジョイント28を介してガス供給管29と接続される。一方、直胴部24のもう一方の端にはウェーハWを投入する開口部26が形成されている。そして、多数枚のウェーハWをウェーハボート27上に並べて、開口部26から熱処理炉20内に投入し、熱処理を行う。
An example of the heat treatment furnace used in such a heat treatment process for a wafer is the heat treatment furnace shown in FIG.
The heat treatment furnace 20 includes a heat treatment tube 21 made of SiC or the like for introducing a semiconductor wafer, a liner tube 22 into which the heat treatment tube 21 is inserted, and a heater 23 disposed around the liner tube 22. The heat treatment tube 21 forms a heat treatment space and includes a straight body portion 24 having a substantially uniform inner diameter in the longitudinal direction and a gas introduction portion 25 for introducing a process gas to one end of the straight body portion 24. Has been. Usually, the gas introduction part 25 has a smaller diameter than the straight body part 24. The gas introduction part 25 is connected to a gas supply pipe 29 through a joint 28. On the other hand, an opening 26 for introducing the wafer W is formed at the other end of the straight body portion 24. Then, a large number of wafers W are arranged on the wafer boat 27 and put into the heat treatment furnace 20 from the opening 26 to perform heat treatment.

また、熱処理炉としては、図2に示したような多数枚の半導体ウェーハをまとめて熱処理するいわゆるバッチ式の熱処理炉の他、図3に示すように半導体ウェーハを一枚ずつ熱処理する枚葉式の熱処理炉が使用される場合もある。
この枚葉式の熱処理炉30では、炉内に配置されたサセプタ31の上にウェーハWを載置して熱処理が行われる。ウェーハWを熱処理する際には、ランプ33等による加熱が行われるとともに、ガス導入管34からプロセスガスが導入され、反応室32内を通って、ガス排気管35から外部に排出される。
In addition to the so-called batch-type heat treatment furnace that heat-treats a large number of semiconductor wafers as shown in FIG. 2 as a heat treatment furnace, a single-wafer type that heat-treats semiconductor wafers one by one as shown in FIG. In some cases, a heat treatment furnace is used.
In this single wafer heat treatment furnace 30, the wafer W is placed on a susceptor 31 disposed in the furnace and heat treatment is performed. When the wafer W is heat-treated, the lamp 33 and the like are heated, and a process gas is introduced from the gas introduction pipe 34, passes through the reaction chamber 32, and is discharged to the outside from the gas exhaust pipe 35.

このような熱処理炉で用いられる、ウェーハボート、熱処理チューブ、サセプタ等の熱処理用治具として、化学蒸着法(以下、CVD法という)により基材の表面に炭化珪素の保護膜(以下、SiC膜という)を形成したもの、つまり基材をCVD−SiC膜でコーティングしたものが使用されている。熱処理用治具では、基材の純度が低い為に、熱処理中に基材から不純物が周囲に拡散することが問題となる。そのため、純度の高いCVD−SiC膜で基材をコーティングし、基材から熱処理用治具の周囲や熱処理されるウェーハなどへ、不純物が拡散しないようにしている。   As a heat treatment jig used in such a heat treatment furnace, such as a wafer boat, a heat treatment tube, and a susceptor, a silicon carbide protective film (hereinafter referred to as an SiC film) is formed on the surface of the substrate by a chemical vapor deposition method (hereinafter referred to as a CVD method). ), That is, a substrate coated with a CVD-SiC film is used. In the jig for heat treatment, since the purity of the substrate is low, there is a problem that impurities are diffused from the substrate to the surroundings during the heat treatment. Therefore, the base material is coated with a high-purity CVD-SiC film so that impurities are not diffused from the base material to the periphery of the jig for heat treatment or the wafer to be heat-treated.

熱処理用治具の表面を保護するために、該表面に形成されるCVD−SiC膜は、例えば特許文献1に紹介されている。
すなわち、基材表面にCVD−SiC膜を1回成長したもの(以下第1の従来例という。)、複数回の成長を行ったもの(以下第2の従来例という。)、複数回成長の各回において最表層のCVD−SiC層表面を研削し、その研削面に更にCVD−SiC層を形成したものがある(以下第3の従来例という。)。
In order to protect the surface of the heat treatment jig, a CVD-SiC film formed on the surface is introduced, for example, in Patent Document 1.
That is, a CVD-SiC film grown once on the surface of the substrate (hereinafter referred to as a first conventional example), a plurality of times grown (hereinafter referred to as a second conventional example), and a plurality of times of growth. In each case, the surface of the outermost CVD-SiC layer is ground, and a CVD-SiC layer is further formed on the ground surface (hereinafter referred to as a third conventional example).

また、基材の表面に対してほぼ平行な複数の層のCVD−SiC膜を成長させるもので、それら層のうち少なくとも1つの層を核形成層とし、その他の層を通常結晶層とし、この2つの層を交互に成長させることにより、核形成層と通常結晶層の間の結晶成長を不連続にした複数層のCVD−SiC膜を形成したものがある(以下第4の従来例という)。このとき、通常結晶層の結晶成長を厚み方向に連続して行ってもよい。   Also, a plurality of layers of CVD-SiC films that are substantially parallel to the surface of the substrate are grown. At least one of these layers is a nucleation layer, and the other layers are normal crystal layers. There is a film in which a plurality of CVD-SiC films in which the crystal growth between the nucleation layer and the normal crystal layer is discontinuous are formed by alternately growing two layers (hereinafter referred to as a fourth conventional example). . At this time, the crystal growth of the normal crystal layer may be continuously performed in the thickness direction.

しかし、第1〜第4の従来例で形成されたCVD−SiC膜は、特に最表面付近の不純物濃度が依然として高い。そのため、このようなSiC膜が形成された熱処理用治具を熱処理工程で長時間使用すると、SiC膜から不純物が拡散し、該不純物により半導体ウェーハなどを汚染してしまうという問題があった。
また、第3の従来例はSiC膜表面を研削するものであるが、研削の際、研削砥石から不純物がSiC膜に取り込まれる可能性が高いし、再度炉に投入する際、炉内の熱処理用治具に付着している不純物はそのまま存在するので、SiC膜成長を行うと、それらの不純物が成長中のSiC膜に取り込まれる恐れがある。しかも、CVD−SiC膜の研削は、例えばサセプタ等の単純形状のものであれば容易に行うことが出来るが、ウェーハボート、熱処理チューブ等の複雑な形状のものでは作業が困難である。
However, the CVD-SiC films formed in the first to fourth conventional examples still have a high impurity concentration particularly near the outermost surface. Therefore, when the heat treatment jig on which such an SiC film is formed is used for a long time in the heat treatment step, there is a problem that impurities diffuse from the SiC film and the semiconductor wafer or the like is contaminated by the impurities.
The third conventional example grinds the surface of the SiC film. During grinding, there is a high possibility that impurities will be taken into the SiC film from the grinding wheel. Since impurities adhering to the jig are present as they are, if SiC film growth is performed, these impurities may be taken into the growing SiC film. Moreover, the CVD-SiC film can be easily ground if it has a simple shape such as a susceptor, but is difficult to work with a complicated shape such as a wafer boat or a heat treatment tube.

特開平7−335728号公報JP-A-7-335728

本発明は、このような問題点に鑑みてなされたもので、熱処理用治具の表面に複数層のSiC膜を形成する方法であって、該SiC膜中の不純物濃度、特にSiC膜の最表層の不純物濃度を、十分に下げることができる熱処理用治具の表面保護膜形成方法を提供することを目的とする。また、本発明は、熱処理工程において、不純物の拡散が少なく、そのため、ウェーハなどへの不純物汚染を抑えることができる熱処理用治具を提供することを目的とする。   The present invention has been made in view of such problems, and is a method of forming a plurality of layers of SiC films on the surface of a heat treatment jig, and the impurity concentration in the SiC film, particularly the highest concentration of the SiC film. It is an object of the present invention to provide a method for forming a surface protective film of a heat treatment jig that can sufficiently reduce the impurity concentration of a surface layer. Another object of the present invention is to provide a heat treatment jig capable of suppressing impurity contamination on a wafer or the like because diffusion of impurities is small in the heat treatment step.

本発明は、上記課題を解決するために、熱処理用治具の表面に、該表面を保護するための複数層のSiC膜を形成する方法であって、該複数層のSiC膜を、CVD法により熱処理用治具の基材上に1層毎に異なるCVD炉を用いて形成するとともに、少なくとも、基材上に第1層目のSiC層を形成した後、第2層目のSiC層を形成する前に、前記第1層目のSiC層の表層を除去することを特徴とする熱処理用治具の表面保護膜形成方法を提供する(請求項1)。   In order to solve the above-mentioned problems, the present invention is a method for forming a plurality of SiC films for protecting the surface on the surface of a jig for heat treatment, wherein the plurality of SiC films are formed by a CVD method. By using a different CVD furnace for each layer on the base material of the jig for heat treatment, at least after forming the first SiC layer on the base material, the second SiC layer is formed Provided is a surface protection film forming method for a heat treatment jig, wherein the surface layer of the first SiC layer is removed before the formation.

このように、保護膜を1層成長させるごとにCVD炉を変えれば、基材から直接CVD炉内に揮発拡散した不純物が取り込まれるSiC層は、保護膜のない基材上にSiC膜を形成させる時に用いられるCVD炉で形成した第1層目のみとなる。すなわち、他のCVD炉で第1層目のSiC層の上に第2層目のSiC層を形成させれば、基材上には既に保護膜が形成されていることになるため、基材中の不純物の炉内雰囲気への揮発拡散が、第1層目のSiC層により阻まれて少なくなる。そのため、特に、SiC膜の最表層のSiC層では、当該SiC層形成の際に炉内雰囲気から取り込まれる不純物が少なくなる。さらに、SiC膜の最表層のSiC層では、基材表面からの距離も大きくなるので、外方拡散による不純物汚染も少ない。すなわち、不純物濃度はそれより基材に近いSiC層の濃度より小さくすることができる。   In this way, if the CVD furnace is changed each time a protective film is grown, the SiC layer in which impurities volatilized and diffused directly from the base material into the CVD furnace is formed on the base material without the protective film. This is only the first layer formed in the CVD furnace that is used. That is, if a second SiC layer is formed on the first SiC layer in another CVD furnace, a protective film is already formed on the base material. Volatile diffusion of impurities in the furnace atmosphere is reduced by the first SiC layer. Therefore, in particular, in the SiC layer as the outermost layer of the SiC film, impurities taken in from the furnace atmosphere when forming the SiC layer are reduced. Furthermore, since the distance from the substrate surface is increased in the outermost SiC layer of the SiC film, impurity contamination due to outward diffusion is small. That is, the impurity concentration can be made smaller than the concentration of the SiC layer closer to the substrate.

ところで、不純物は各SiC層の表層に偏析することが知られている。
本発明では、不純物濃度が特に高い第1層目のSiC層の表層を除去するので、第1層目のSiC層中の不純物濃度をさらに下げることができる。第1層目のSiC層中の不純物濃度が低いと、その直上に第2層目のSiC層を形成する際に、第1層目のSiC層から炉内雰囲気中に揮発拡散する不純物の濃度をさらに減らすことができる上に、第1層目のSiC層から第2層目のSiC層へ外方拡散する不純物の濃度もさらに減らすことができる。そして、SiC膜の最表層のSiC層では、さらに不純物濃度を減らすことができる。
したがって、このようにして複数層のSiC膜を形成すれば、その最表層のSiC層の不純物濃度を十分に小さくすることができる。
By the way, it is known that impurities segregate in the surface layer of each SiC layer.
In the present invention, since the surface layer of the first SiC layer having a particularly high impurity concentration is removed, the impurity concentration in the first SiC layer can be further reduced. If the impurity concentration in the first SiC layer is low, the concentration of the impurity that volatilizes and diffuses from the first SiC layer into the furnace atmosphere when the second SiC layer is formed immediately above the SiC layer. In addition, the concentration of impurities diffused outward from the first SiC layer to the second SiC layer can be further reduced. The impurity concentration can be further reduced in the outermost SiC layer of the SiC film.
Therefore, when a plurality of SiC films are formed in this way, the impurity concentration of the outermost SiC layer can be sufficiently reduced.

そして、前記複数層のSiC膜を、1層毎に異なるCVD炉を用いて形成する場合に、炉の順番を固定して決めて、各層毎の専用炉として用いることが好ましい(請求項2)。   And when forming the said multiple layers of SiC film | membrane using a different CVD furnace for every layer, it is preferable to fix and decide the order of a furnace and to use as a dedicated furnace for each layer (Claim 2). .

このようにすれば、より上層のSiC層を成長させるのに用いられるCVD炉では、それまでに形成された1層以上のSiC層の効果により基材から炉内雰囲気への不純物の揮発拡散が少ないため、炉内雰囲気をより不純物の少ない状態に維持できる。そのため、炉内雰囲気からSiC層へ取り込まれる不純物がより少なくなり、該CVD炉で成長させたSiC層の不純物濃度をより小さくすることができる。   In this way, in the CVD furnace used to grow the upper SiC layer, the volatile diffusion of impurities from the base material to the furnace atmosphere is caused by the effect of one or more SiC layers formed so far. Therefore, the furnace atmosphere can be maintained in a state with fewer impurities. As a result, less impurities are taken into the SiC layer from the furnace atmosphere, and the impurity concentration of the SiC layer grown in the CVD furnace can be further reduced.

この場合、前記複数層のSiC膜の第2層目以降の各SiC層の表層を、各SiC層が形成される毎に除去するのが好ましい(請求項3)。   In this case, it is preferable that the surface layer of each SiC layer after the second layer of the plurality of SiC films is removed every time each SiC layer is formed.

このように、第1層目のSiC層の上に順次形成される第2層目以降のSiC層についても、その表層を、各SiC層が形成される毎に除去すると、不純物濃度がさらに小さいSiC膜を得ることができる。すなわち、上述のように、SiC層を成長させるごとにCVD炉を変更するため、それまでに形成されたSiC層を成長させる際にCVD炉内雰囲気へ揮発した不純物の影響は受けない。しかし、その一方で、既に形成されたSiC層からは、多少の不純物の揮発があり、その不純物が成長中のSiC層の表層に取り込まれる。そこで、SiC層の成長後、不純物濃度の高いSiC層の表層を除去してやれば、既に形成されたSiC層からの不純物の揮発を大幅に減らすことができる。その結果、SiC膜の最表層の不純物濃度をさらに小さくすることができる。   As described above, the second and subsequent SiC layers sequentially formed on the first SiC layer also have a lower impurity concentration when the surface layer is removed each time each SiC layer is formed. A SiC film can be obtained. That is, as described above, since the CVD furnace is changed every time the SiC layer is grown, the growth of the SiC layer formed so far is not affected by the impurities volatilized in the atmosphere in the CVD furnace. However, on the other hand, some impurities are volatilized from the already formed SiC layer, and the impurities are taken into the surface layer of the growing SiC layer. Therefore, if the surface layer of the SiC layer having a high impurity concentration is removed after the growth of the SiC layer, the volatilization of impurities from the already formed SiC layer can be greatly reduced. As a result, the impurity concentration of the outermost layer of the SiC film can be further reduced.

この場合、前記SiC層の表層の除去は、前記SiC層の表層に酸化膜を形成した後に行うのが好ましい(請求項4)。   In this case, the surface layer of the SiC layer is preferably removed after an oxide film is formed on the surface layer of the SiC layer.

このように、不純物濃度の高いSiC層の表層をシリコン酸化膜とすれば、該酸化膜は、SiCと異なり、薬液によって除去し易いので、不純物が高濃度に含まれるSiC層の表層を、薬液により簡便に溶解除去することができる。   In this way, if the surface layer of the SiC layer having a high impurity concentration is a silicon oxide film, unlike the SiC, the oxide film can be easily removed by a chemical solution. Can be easily dissolved and removed.

この場合、SiC層の表層の除去は、フッ酸を含む薬液を用いて行うことができる(請求項5)。   In this case, the surface layer of the SiC layer can be removed using a chemical solution containing hydrofluoric acid (Claim 5).

フッ酸を含む薬液は、特に、シリコン酸化膜を速やかに除去することができる。そのため、SiC層の表層に酸化膜を形成した場合に、その酸化膜を除去するのに特に好適である。   In particular, the chemical solution containing hydrofluoric acid can quickly remove the silicon oxide film. Therefore, when an oxide film is formed on the surface layer of the SiC layer, it is particularly suitable for removing the oxide film.

この場合、前記フッ酸を含む薬液は、フッ硝酸であることがより好ましい(請求項6)。   In this case, the chemical solution containing hydrofluoric acid is more preferably hydrofluoric acid (Claim 6).

SiC層の表層を酸化して得られるシリコン酸化膜がSiOのみから成れば、該酸化膜を、フッ酸の作用により、速やかに除去することが可能である。しかし、実際には、酸化膜中にはxが2未満のSiOxも存在することがある。その場合には、酸化力のある硝酸とシリコン酸化膜の除去速度が速いフッ酸を混合した薬液(フッ硝酸)を用いることにより、シリコン酸化膜を、十分に除去することが可能である。
また、フッ酸と硝酸は、高純度のものが市販されており、入手が容易で、半導体製造工程において一般的に使用されているものであるので、使用するのに特に好適である。
If the silicon oxide film obtained by oxidizing the surface layer of the SiC layer is made of only SiO 2, the oxide film can be quickly removed by the action of hydrofluoric acid. However, in practice, there may be SiOx in which x is less than 2 in the oxide film. In that case, the silicon oxide film can be sufficiently removed by using a chemical solution (fluoric nitric acid) in which nitric acid having oxidizing power and hydrofluoric acid with a high removal rate of the silicon oxide film are used.
Also, hydrofluoric acid and nitric acid are particularly suitable for use because they are commercially available in high purity, are readily available, and are commonly used in semiconductor manufacturing processes.

この場合、前記SiC層の表層の除去は、少なくとも厚さ1μm以上行うのが好ましい(請求項7)。   In this case, it is preferable that the surface layer of the SiC layer is removed at least 1 μm in thickness (Claim 7).

SiC層に取り込まれた不純物は、SiC層表面近傍に偏析するため、特に、SiC層の表層に高い濃度で存在する。したがって、SiC層の表層を、少なくとも厚さ1μm以上除去すれば、高い濃度で存在する不純物を除去することができるので、SiC層の不純物濃度をより小さくすることができる。したがって、SiC膜の最表層の不純物濃度を一層小さくすることができる。   Impurities taken into the SiC layer are segregated in the vicinity of the surface of the SiC layer, so that they are present particularly at a high concentration in the surface layer of the SiC layer. Therefore, if the surface layer of the SiC layer is removed by at least a thickness of 1 μm or more, impurities present at a high concentration can be removed, so that the impurity concentration of the SiC layer can be further reduced. Therefore, the impurity concentration of the outermost layer of the SiC film can be further reduced.

また、本発明では、上記本発明の熱処理用治具の表面保護膜形成方法により複数層のSiC膜が形成された熱処理用治具が提供される(請求項8)。   Further, the present invention provides a heat treatment jig in which a plurality of layers of SiC films are formed by the method for forming a surface protective film of the heat treatment jig of the present invention.

このような熱処理用治具であれば、該治具のSiC膜最表層の不純物濃度が非常に小さいため、長時間、熱処理工程で使用しても、熱処理用治具からの不純物の拡散が少なく、したがって、熱処理されるウェーハ等の基板が不純物で汚染されるのを抑えることができる。   With such a heat treatment jig, the impurity concentration in the outermost layer of the SiC film of the jig is very small, so even when used in a heat treatment process for a long time, there is little diffusion of impurities from the heat treatment jig. Therefore, it is possible to prevent the substrate such as a wafer to be heat-treated from being contaminated with impurities.

そして、このような熱処理用治具は、前記複数層のSiC膜において、各層の表層の金属汚染量が1×1015atoms/cm以下であるのが好ましい(請求項9)。 In such a heat treatment jig, it is preferable that the amount of metal contamination on the surface layer of each of the plurality of SiC films is 1 × 10 15 atoms / cm 3 or less (claim 9).

複数層のSiC膜において、各層の表層の金属汚染量を1×1015atoms/cm以下に抑えてSiC膜を形成させれば、SiC膜の最表層の不純物濃度をさらに小さくすることができる。したがって、このようなSiC膜が形成された熱処理用治具は、熱処理工程で使用しても、ウェーハ等をほとんど汚染することがないため、熱処理用治具として好適なものである。 In a multi-layered SiC film, the impurity concentration of the outermost layer of the SiC film can be further reduced by forming the SiC film while suppressing the amount of metal contamination on the surface layer of each layer to 1 × 10 15 atoms / cm 3 or less. . Accordingly, the heat treatment jig on which such an SiC film is formed is suitable as a heat treatment jig because it hardly contaminates the wafer or the like even when used in the heat treatment step.

以上説明したように、本発明によれば、熱処理用治具の表面に複数層のSiC膜を形成する際に、SiC膜を1層成長させるごとにCVD炉を変えるとともに、少なくとも、第2層目のSiC層を形成する前に、第1層目のSiC層の表層を除去することで、SiC膜中の不純物濃度、特にSiC膜の最表層の不純物濃度を、十分に下げることが可能である。また、このように形成されたSiC膜を有する熱処理用治具を、半導体ウェーハなどを製造するための熱処理工程で使用すれば、熱処理用治具からの不純物の拡散が少なく、したがって、熱処理されるウェーハ等の汚染を抑えることが可能である。   As described above, according to the present invention, when a plurality of SiC films are formed on the surface of the heat treatment jig, the CVD furnace is changed every time an SiC film is grown, and at least the second layer is formed. By removing the surface layer of the first SiC layer before forming the first SiC layer, it is possible to sufficiently reduce the impurity concentration in the SiC film, particularly the impurity concentration in the outermost layer of the SiC film. is there. Further, if the heat treatment jig having the SiC film formed in this way is used in a heat treatment step for manufacturing a semiconductor wafer or the like, the diffusion of impurities from the heat treatment jig is small, and therefore the heat treatment is performed. It is possible to suppress contamination of wafers and the like.

以下、本発明についてより詳細に説明するが、本発明はこれらに限定されるものではない。
本発明者らは、半導体ウェーハなどを製造するための一工程である熱処理工程において、熱処理されるウェーハなどが、熱処理用治具から発生する不純物により汚染されるのを抑えるために、熱処理用治具の表面に形成するSiC膜の不純物濃度を下げる方法について検討を重ねた。
ここで、不純物としてFeを例に取って説明する。一般に、熱処理用治具の基材、特にSiC基材中のFe濃度は約1×1017atoms/cm程度かそれ以上である。本発明者らは、CVD法によるSiC膜の成長初期に、基材からSiC膜へのFeの外方拡散と、基材から炉内雰囲気中へ揮発拡散したFeのSiC膜への取り込みとが起きることにより、Feが基材中からSiC膜中に取り込まれることに着目した。そこで、CVD法により形成したSiC膜の深さ方向の不純物分析をSIMS(Secondary Ion Mass Spectrometry)で行ったところ、SiC膜表面のFe濃度(1×1017atoms/cm程度以上)の方が、該膜表面から5μm程度内部の濃度(1×1015atoms/cm程度)より高いことが判った。CVD−SiC膜中に取り込まれたFe等の不純物は、CVD成長中に該SiC膜の成長方向に移動してSiC膜表面に偏析することが推定されており、CVD炉内雰囲気から取り込まれた不純物も、基材や成長中のCVD−SiC層より内部に形成されたCVD−SiC層から拡散してきた不純物も該SiC膜表面に偏析するため、このように、CVD−SiC膜表面の不純物濃度の方が、該SiC膜内部に比べて高濃度になる、と考えられる。したがって、より不純物量を制御しやすいCVD炉雰囲気中の不純物を減少させることが重要であることが判った。
Hereinafter, although this invention is demonstrated in detail, this invention is not limited to these.
In the heat treatment process, which is a process for manufacturing a semiconductor wafer or the like, the present inventors have performed heat treatment treatment in order to prevent the heat-treated wafer from being contaminated by impurities generated from the heat treatment jig. The method of lowering the impurity concentration of the SiC film formed on the surface of the tool was studied repeatedly.
Here, Fe will be described as an example of impurities. Generally, the Fe concentration in the base material of the jig for heat treatment, particularly the SiC base material, is about 1 × 10 17 atoms / cm 3 or more. The inventors of the present invention are directed to the outward diffusion of Fe from the base material to the SiC film and the incorporation of Fe into the SiC film volatilized and diffused from the base material into the furnace atmosphere at the initial stage of the growth of the SiC film by the CVD method. Attention was paid to the fact that Fe is taken into the SiC film from the base material by the occurrence. Therefore, when the impurity analysis in the depth direction of the SiC film formed by the CVD method is performed by SIMS (Secondary Ion Mass Spectrometry), the Fe concentration (about 1 × 10 17 atoms / cm 3 or more) on the surface of the SiC film is better. It was found that the concentration was higher than the internal concentration (about 1 × 10 15 atoms / cm 3 ) by about 5 μm from the film surface. Impurities such as Fe incorporated in the CVD-SiC film are estimated to move in the growth direction of the SiC film during the CVD growth and segregate on the surface of the SiC film, and are incorporated from the atmosphere in the CVD furnace. Since impurities diffused from the CVD-SiC layer formed inside the substrate and the growing CVD-SiC layer are segregated on the surface of the SiC film, the impurity concentration on the surface of the CVD-SiC film is thus obtained. This is considered to be higher in concentration than in the inside of the SiC film. Therefore, it has been found that it is important to reduce the impurities in the CVD furnace atmosphere in which the amount of impurities can be controlled more easily.

ところで、揮発拡散したFeはSiC膜の成長が進んでも炉内雰囲気中に残存していると考えられ、これが成長中のSiC膜に取り込まれる。さらに、炉内雰囲気中に揮発拡散したFeはCVD炉内の他の熱処理用治具に付着する可能性が高く、これがSiC膜成長中に剥離して成長中のSiC膜中に取り込まれる。つまり、どんなに純度の高いSiC膜を成長させようとしても、当初の基材に高濃度に含まれるFe等の不純物の影響を受けることになる。   By the way, it is considered that the volatilized and diffused Fe remains in the furnace atmosphere even if the SiC film grows, and this is taken into the growing SiC film. Further, Fe that has volatilized and diffused in the furnace atmosphere has a high possibility of adhering to other heat treatment jigs in the CVD furnace, and this peels off during the SiC film growth and is taken into the growing SiC film. That is, no matter how high the purity of the SiC film is grown, it is affected by impurities such as Fe contained in a high concentration in the initial base material.

例えば前述の第1〜第4の従来例では、第1層目のSiC層が基材表面に形成されるまでは基材が直接CVD炉内雰囲気に暴露されている状態なので、基材から大量の不純物が炉内雰囲気に揮発拡散する。したがって、たとえ複数層のSiC膜を成長させても炉内雰囲気には大量の不純物が残留しているし、CVD炉の熱処理用治具にも不純物が付着しているため、各層の成長ごとに不純物が取り込まれ、その表面に偏析する。   For example, in the above-described first to fourth conventional examples, the substrate is directly exposed to the atmosphere in the CVD furnace until the first SiC layer is formed on the substrate surface. The impurities are volatilized and diffused in the furnace atmosphere. Therefore, even if a plurality of layers of SiC films are grown, a large amount of impurities remain in the furnace atmosphere, and impurities adhere to the heat treatment jig of the CVD furnace. Impurities are taken in and segregate on the surface.

このように、炉内雰囲気中に揮発しているFeや、炉内の熱処理用治具に付着しているFeは、成長中のSiC層に取り込まれ、その表面に偏析するため、各SiC層の表面付近の不純物濃度が上昇する。そのため、その直上に形成される層へFeが外方拡散しやすくなる。したがって、Feを基材から炉内雰囲気中へ揮発させないか、揮発したFeを排除することが重要になる。   Thus, Fe volatilized in the furnace atmosphere and Fe adhering to the jig for heat treatment in the furnace are taken into the growing SiC layer and segregate on the surface thereof. Impurity concentration in the vicinity of the surface increases. Therefore, it becomes easy for Fe to diffuse outward to the layer formed immediately above. Therefore, it is important not to volatilize Fe from the base material into the furnace atmosphere or to eliminate volatilized Fe.

そこで、本発明者らは、熱処理用治具の表面に複数層のSiC膜を形成する際に、SiC層を1層成長させるごとにCVD炉を変えることで、基材から炉内雰囲気中へ揮発した不純物を比較的簡単に排除することができ、さらに、特に不純物濃度の高い第1層目のSiC層の表層を除去することで、第1層目のSiC層の不純物が、第2層目以降の成長において炉内雰囲気中へ揮発拡散し、あるいは第2層目以降のSiC層へ外方拡散するのを一層抑えることができることに想到し、本発明を完成させた。   Therefore, the present inventors changed the CVD furnace each time an SiC layer was grown when forming a plurality of layers of SiC films on the surface of the heat treatment jig, so that the substrate was brought into the furnace atmosphere. Volatile impurities can be removed relatively easily, and the surface of the first SiC layer having a particularly high impurity concentration is removed, so that the impurities in the first SiC layer can be removed from the second layer. The present invention has been completed by conceiving that it is possible to further suppress volatile diffusion into the furnace atmosphere in the subsequent growth or outward diffusion to the second and subsequent SiC layers.

ここで、図1に、本発明の表面保護膜形成方法により熱処理用治具表面に形成する表面保護膜の概略断面図を示す。
図1には、熱処理用治具の基材11表面に、該表面を保護するために複数層のSiC膜12が形成されているものが示されている。この場合、SiC膜12は、5層のSiC層(12a〜12e)からなる。
Here, FIG. 1 shows a schematic cross-sectional view of a surface protective film formed on the surface of the heat treatment jig by the surface protective film forming method of the present invention.
FIG. 1 shows a structure in which a plurality of layers of SiC films 12 are formed on the surface of a base material 11 of a heat treatment jig in order to protect the surface. In this case, the SiC film 12 includes five SiC layers (12a to 12e).

そして、本発明では、このような表面保護膜を以下のように形成する。
すなわち、本発明の熱処理用治具の表面保膜形成方法は、熱処理用治具の表面に、該表面を保護するための複数層のSiC膜を形成する方法であって、該複数層のSiC膜を、CVD法により熱処理用治具の基材上に1層毎に異なるCVD炉を用いて形成するとともに、少なくとも、基材上に第1層目のSiC層を形成した後、第2層目のSiC層を形成する前に、前記第1層目のSiC層の表層を除去することを特徴とする。
In the present invention, such a surface protective film is formed as follows.
That is, the method for forming a surface retention film of a heat treatment jig according to the present invention is a method of forming a plurality of SiC films for protecting the surface on the surface of the heat treatment jig, the method comprising: The film is formed on the base material of the heat treatment jig by a CVD method using a different CVD furnace for each layer, and at least after the first SiC layer is formed on the base material, the second layer is formed. Before forming the first SiC layer, the surface layer of the first SiC layer is removed.

このように、基材11上に第1層目のSiC層12aを成長させた後に、CVD炉を変えて、第1層目のSiC層12aの上に、第2層目のSiC層12bの成長を行えば、第2層目のSiC層12bの成長の際に使用するCVD炉の炉内雰囲気中や炉内の治具上には第1層目の成長の際に揮発したFe等の不純物が存在しないので、その影響を受けなくなる。その上、第2層目の成長時には基材11の表面に第1層目のSiC層12aが形成されているので、基材11からの不純物の揮発拡散は第1層目の成長時よりも少なくなり、第2層目のSiC層12bの成長時に炉内雰囲気へ放出される、もしくは炉内の熱処理用治具に付着する不純物を減少させることができる。そのため、炉を変えて複数回のSiC層の成長を行えば、前回の成長時に揮発した不純物の影響を受けることがなくなる。また、SiC層の成長回数が多くなるほど、SiC膜の合計膜厚は厚くなるから、成長中に揮発する不純物が減少するし、基材表面からの距離も大きくなるので、外方拡散による不純物汚染も少なくなる。したがって、SiC膜の最表層のSiC層12eでは、不純物濃度が低くなる。   As described above, after the first SiC layer 12a is grown on the base material 11, the CVD furnace is changed, and the second SiC layer 12b is formed on the first SiC layer 12a. When the growth is performed, Fe or the like volatilized during the growth of the first layer is formed in the furnace atmosphere of the CVD furnace or the jig in the furnace used for the growth of the second SiC layer 12b. Since there is no impurity, it is not affected. In addition, since the first SiC layer 12a is formed on the surface of the base material 11 during the growth of the second layer, the volatile diffusion of impurities from the base material 11 is greater than that during the growth of the first layer. This reduces the amount of impurities released into the furnace atmosphere during the growth of the second SiC layer 12b or adhering to the heat treatment jig in the furnace. Therefore, if the SiC layer is grown a plurality of times by changing the furnace, it will not be affected by the impurities volatilized during the previous growth. Further, as the number of times of growth of the SiC layer increases, the total film thickness of the SiC film increases, so that impurities that volatilize during the growth decrease and the distance from the substrate surface also increases. Less. Accordingly, the impurity concentration is low in the outermost SiC layer 12e of the SiC film.

しかも、本発明では、不純物濃度が特に高い第1層目のSiC層12aの表層を除去するので、第1層目のSiC層12a中の不純物濃度をさらに下げることができる。第1層目のSiC層12a中の不純物濃度が低いと、第2層目のSiC層12bを形成する際に、第1層目のSiC層12aから炉内雰囲気中に揮発拡散する不純物の濃度をさらに減らすことができる上に、第1層目のSiC層12aから第2層目のSiC層12bへ外方拡散する不純物の濃度もさらに減らすことができる。そして、SiC膜の最表層のSiC層12eでは、さらに不純物濃度を減らすことができる。
したがって、本発明によれば、Fe等の不純物が十分に少ないSiC膜表面を有する熱処理用治具を得る事ができる。
Moreover, in the present invention, since the surface layer of the first SiC layer 12a having a particularly high impurity concentration is removed, the impurity concentration in the first SiC layer 12a can be further reduced. If the impurity concentration in the first SiC layer 12a is low, the concentration of impurities that volatilizes and diffuses from the first SiC layer 12a into the furnace atmosphere when forming the second SiC layer 12b. In addition, the concentration of impurities diffused outward from the first SiC layer 12a to the second SiC layer 12b can be further reduced. The impurity concentration can be further reduced in the outermost SiC layer 12e of the SiC film.
Therefore, according to the present invention, it is possible to obtain a heat treatment jig having a SiC film surface with a sufficiently small amount of impurities such as Fe.

このとき、前記複数層のSiC膜を、1層毎に異なるCVD炉を用いて形成する場合に、炉の順番を固定して決めて、各層毎の専用炉として用いるのが好ましい。このように、使用するCVD炉の順番を固定して決めることで、より上層のSiC層を成長させる炉は、SiC層成長時のFe等の不純物の揮発拡散が少ないため、炉内雰囲気や炉内熱処理用治具の汚染もより少なくなり、より不純物の少ないSiC膜を得る事ができる。   At this time, when the plurality of SiC films are formed using different CVD furnaces for each layer, it is preferable to fix the order of the furnaces and use them as dedicated furnaces for each layer. Thus, by fixing the order of the CVD furnace to be used, the furnace for growing the upper SiC layer has less volatile diffusion of impurities such as Fe during the growth of the SiC layer. The contamination of the inner heat treatment jig is also reduced, and a SiC film with fewer impurities can be obtained.

また、前記複数層のSiC膜の第2層目以降の各SiC層についても、その表層を、各SiC層が形成される毎に除去するのが好ましい。上述のように、SiC層を成長させるごとにCVD炉を変更することで、それまでに形成されたSiC層を成長させる際にCVD炉内雰囲気へ揮発した不純物の影響は受けない。しかし、その一方で、既に形成されたSiC層から多少の不純物の揮発があり、その不純物が成長中のSiC層の表層に取り込まれる。そこで、各SiC層の成長後、不純物濃度の比較的高い各SiC層の表層を除去してやれば、既に形成されたSiC層からの不純物の揮発を大幅に減らすことができ、SiC膜の最表層の不純物濃度をさらに小さくすることができる。   Further, it is preferable that the surface layer of each of the second and subsequent SiC layers of the plurality of SiC films is removed every time each SiC layer is formed. As described above, the CVD furnace is changed every time the SiC layer is grown, so that it is not affected by impurities volatilized into the atmosphere in the CVD furnace when the SiC layer formed so far is grown. However, on the other hand, some impurities are volatilized from the already formed SiC layer, and the impurities are taken into the surface layer of the growing SiC layer. Therefore, if the surface layer of each SiC layer having a relatively high impurity concentration is removed after the growth of each SiC layer, the volatilization of impurities from the already formed SiC layer can be greatly reduced, and the outermost layer of the SiC film can be reduced. The impurity concentration can be further reduced.

この時、SiC層の表層の除去は、SiC層の表層を酸化して酸化膜を形成した後に、酸エッチングなどにより行うことが好ましい。酸化膜は、SiC層を形成した基材を、酸化炉に投入し、Pyro酸化処理(例えば、O−10%HO雰囲気下1200℃、100時間熱処理)を行うことでSiC層の表層に形成することができる。このようにして、SiC層の表層には酸化珪素(SiOx)の膜が形成される。このSiOxの膜は、フッ酸を含む薬液を用いて速やかに除去することができる。特に、半導体製造工程で一般的に使用されている高純度フッ酸(HF)と高純度硝酸(HNO)の混合液(フッ硝酸)でエッチングすれば、酸化膜中にxが2未満のSiOxが存在しても硝酸で酸化してSiOにすることができ、そのSiOはフッ酸でより速やかに除去することができるので好ましい。このように、フッ酸によるSiOに対するエッチング速度は速く、かつ、SiC層の表層には不純物が高濃度に偏析したままの状態になっているので、フッ硝酸を用いれば、薬液からの不純物汚染を防止しつつ、不純物濃度の高いSiC層の表層を除去することができる。
尚、フッ酸を含む薬液には、上記のように硝酸を混合する他、xが2未満のSiOxをSiOに酸化できる酸であれば、いずれでも好ましく、たとえば硫酸を混合しても良い。
At this time, the removal of the surface layer of the SiC layer is preferably performed by acid etching or the like after the surface layer of the SiC layer is oxidized to form an oxide film. The oxide film is formed by putting the base material on which the SiC layer is formed into an oxidation furnace and performing a Pyro oxidation process (for example, heat treatment at 1200 ° C. for 100 hours in an O 2 -10% H 2 O atmosphere). Can be formed. In this way, a silicon oxide (SiOx) film is formed on the surface layer of the SiC layer. This SiOx film can be quickly removed using a chemical solution containing hydrofluoric acid. In particular, if etching is performed with a mixed solution (fluoric nitric acid) of high-purity hydrofluoric acid (HF) and high-purity nitric acid (HNO 3 ) that is generally used in the semiconductor manufacturing process, SiOx having an x value of less than 2 in the oxide film. there exist also can be SiO 2 by oxidation with nitric acid, the SiO 2 is preferable because it is more quickly removed by hydrofluoric acid. Thus, the etching rate for SiO 2 by hydrofluoric acid is high, and impurities remain segregated at a high concentration on the surface layer of the SiC layer. The surface layer of the SiC layer having a high impurity concentration can be removed while preventing the above.
In addition to nitric acid as described above, the chemical solution containing hydrofluoric acid is preferable as long as it is an acid that can oxidize SiOx having x less than 2 to SiO2, and for example, sulfuric acid may be mixed.

このとき、SiC層の表層の除去は、少なくとも1μm以上、より好ましくは3μm以上行うと良い。不純物濃度は表面からバルクに向かって減少しており、1μm、特には3μmよりも深い領域では一定となっているから、表層の除去は少なくとも1μm以上、より好ましくは3μm以上行うことにより、SiC層の高濃度不純物領域のみを除去することができる。   At this time, the surface layer of the SiC layer is removed at least 1 μm or more, more preferably 3 μm or more. Since the impurity concentration decreases from the surface toward the bulk and is constant in a region deeper than 1 μm, particularly 3 μm, the surface layer is removed by at least 1 μm or more, more preferably 3 μm or more. Only the high-concentration impurity region can be removed.

そして、このような表面保護膜形成方法により形成されたSiC膜を有する熱処理用治具は、熱処理工程において、半導体ウェーハ等と接するSiC膜中のFe等の不純物の濃度、特にSiC膜最表層の不純物の濃度が少ないため、熱処理工程でウェーハ等を不純物でほとんど汚染することがなく、ウェーハ等の熱処理に好適に使用することができる。   And the jig for heat treatment which has the SiC film formed by such a surface protection film formation method, in the heat treatment process, the concentration of impurities such as Fe in the SiC film in contact with the semiconductor wafer etc., particularly the outermost layer of the SiC film. Since the impurity concentration is low, the wafer or the like is hardly contaminated with impurities in the heat treatment step, and can be suitably used for heat treatment of the wafer or the like.

特に、複数層のSiC膜において、各層の表層の金属汚染量が1×1015atoms/cm以下になるようにSiC膜の成長を行えば、炉内雰囲気に暴露されるSiC層の表層に存在するFeをはじめとする金属汚染量が低く抑えられているため、その表面にさらに形成されるSiC層へ外方拡散する金属汚染量も、炉内雰囲気へ揮発拡散する金属汚染量もともに少なくできる。したがって、SiC膜の最表層となるSiC層の不純物の汚染をさらに少なくすることができる。 In particular, when a SiC film is grown so that the amount of metal contamination on the surface layer of each layer is 1 × 10 15 atoms / cm 3 or less in a multi-layered SiC film, the surface of the SiC layer exposed to the furnace atmosphere is reduced. Since the amount of metal contamination including Fe existing is kept low, both the amount of metal contamination that diffuses outward to the SiC layer further formed on the surface and the amount of metal contamination that diffuses and diffuses into the furnace atmosphere are small. it can. Therefore, the contamination of impurities in the SiC layer that is the outermost layer of the SiC film can be further reduced.

この場合、基材にごく近いSiC層を、Feをはじめとする金属の汚染量が1×1015atoms/cm以下になるように形成することが重要である。そのためには、上述のように、各SiC層の表層を除去することの他、SiC層の成長を減圧成長にすること等の手段を講じれば良い。減圧成長の際は、炉内にプロセスガスを流しながら炉内雰囲気を炉外へ排出するので、雰囲気内に存在する金属等の不純物も排気され、成長中のSiC層へ取り込まれるFeをはじめとする金属を炉内雰囲気から少なくできる。このようにすれば、基材にごく近いSiC層の表層の金属汚染量を1×1015atoms/cm以下に抑えることができる。そして、その上にCVD炉を変えて新たな層を積層すれば、一層不純物濃度の低いCVD−SiC層を形成できる。 In this case, it is important to form an SiC layer very close to the base material so that the amount of contamination of metals including Fe is 1 × 10 15 atoms / cm 3 or less. For that purpose, as described above, in addition to removing the surface layer of each SiC layer, means such as reducing the growth of the SiC layer to a reduced pressure growth may be taken. During the reduced pressure growth, the atmosphere inside the furnace is discharged outside the furnace while flowing the process gas into the furnace, so that impurities such as metals existing in the atmosphere are also exhausted, including Fe taken into the growing SiC layer. The amount of metal to be used can be reduced from the furnace atmosphere. In this way, the amount of metal contamination on the surface layer of the SiC layer very close to the substrate can be suppressed to 1 × 10 15 atoms / cm 3 or less. Then, if a new layer is stacked by changing the CVD furnace, a CVD-SiC layer having a lower impurity concentration can be formed.

以下、本発明を実施例および比較例を挙げて具体的に説明する。
(実施例1)
直径200mmのSiC基材を準備するとともに、該基材を、第1層目のCVD−SiC層を成長させるCVD炉へ投入した。そして、四塩化珪素(SiCl)ガスを1SLM、メタン(CH)ガスを0.5SLM、水素(H)ガスを2SLM炉内へ流し、炉内圧力が30Torr(4×10Pa)になるよう真空ポンプで炉内雰囲気を排気しながら1400℃で40分間熱処理し、基材の表面に、30μmの第1層目のSiC層を成長させた。CVD炉内を復圧し、第1層目のCVD−SiC層が形成された基材を取り出した後、該基材を酸化炉に投入した。炉内でPyro酸化処理(O−10%HO雰囲気下1200℃、100時間熱処理)し、第1層目のCVD−SiC層の表層に0.1μmのシリコン酸化膜を形成した。その後、該基材を、炉から取り出し、HF5%、HNO5%のフッ硝酸溶液中に浸漬して第1層目のCVD−SiC層の表層のシリコン酸化膜を除去した。この酸化処理とシリコン酸化膜の除去を10回繰り返し、合計1μmのCVD−SiC層を除去した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Example 1)
A SiC substrate having a diameter of 200 mm was prepared, and the substrate was put into a CVD furnace for growing a first CVD-SiC layer. Then, silicon tetrachloride (SiCl 4 ) gas is flowed into 1 SLM, methane (CH 4 ) gas is 0.5 SLM, hydrogen (H 2 ) gas is flowed into the 2 SLM furnace, and the furnace pressure is 30 Torr (4 × 10 3 Pa). A first SiC layer of 30 μm was grown on the surface of the substrate by heat treatment at 1400 ° C. for 40 minutes while evacuating the furnace atmosphere with a vacuum pump. After the pressure inside the CVD furnace was restored and the base material on which the first CVD-SiC layer was formed was taken out, the base material was put into an oxidation furnace. Pyro oxidation treatment was performed in a furnace (heat treatment at 1200 ° C. for 100 hours in an O 2 -10% H 2 O atmosphere) to form a 0.1 μm silicon oxide film on the surface of the first CVD-SiC layer. Thereafter, the base material was taken out of the furnace and immersed in a hydrofluoric acid solution of 5% HF and 5% HNO 3 to remove the silicon oxide film on the surface of the first CVD-SiC layer. This oxidation treatment and removal of the silicon oxide film were repeated 10 times to remove a total of 1 μm of the CVD-SiC layer.

シリコン酸化膜を除去後、基材を、別途用意した第2層目のCVD−SiC層を成長させるCVD炉へ投入した。そして、第1層目のCVD−SiC層と同条件で、第2層目のCVD−SiC層を第1層目のCVD−SiC層の直上に30μm成長させた。それから、第1層目と同様の条件でPyro酸化処理した後、第2層目のCVD−SiC層の表層を第1層目と同様の方法で除去し、第2層目のCVD−SiC層を形成した。さらに、同様の方法により、CVD炉の変更、表層の除去を繰り返して、基材上に、第3層から第5層までCVD−SiC層を成長させた。5層のSiC膜の形成が終了した基材の最表層、すなわち第5層目のCVD−SiC層のFe濃度をSIMSで5点調査したところ、1×1012〜5×1012atoms/cmであった。 After removing the silicon oxide film, the base material was put into a CVD furnace in which a separately prepared second CVD-SiC layer was grown. Then, under the same conditions as the first CVD-SiC layer, a second CVD-SiC layer was grown 30 μm directly above the first CVD-SiC layer. Then, after Pyro oxidation treatment under the same conditions as the first layer, the surface layer of the second CVD-SiC layer is removed by the same method as the first layer, and the second CVD-SiC layer is removed. Formed. Furthermore, the CVD-SiC layer was grown from the third layer to the fifth layer on the substrate by repeating the change of the CVD furnace and the removal of the surface layer by the same method. When the Fe concentration of the outermost surface layer of the substrate after the formation of the five-layer SiC film, that is, the fifth CVD-SiC layer was investigated by SIMS at 5 points, 1 × 10 12 to 5 × 10 12 atoms / cm 3 .

(比較例1)
実施例1と同様に、直径200mmのSiC基材を準備するとともに、該基材をCVD炉へ投入した。そして、四塩化珪素(SiCl)ガスを1SLM、メタン(CH)ガスを0.5SLM、水素(H)ガス2SLMを炉内へ流し、炉内圧力が30Torr(4×10Pa)になるよう真空ポンプで炉内雰囲気を排気しながら1400℃で40分間熱処理し、基材の表面に、30μmの第1層目のSiC層を成長させた。CVD炉内を復圧し、炉内温度を常温に戻した後、同じ成長条件で第2層目のCVD−SiC層を第1層目のCVD−SiC層の直上に成長させた。この作業を繰り返し、同じ炉内で、基材表面に第2層から第5層までのCVD−SiC層を成長させた。5層のSiC膜形成が終了した基材の最表層、すなわち第5層目のCVD−SiC層のFe濃度をSIMSで5点調査したところ、1×1015〜1×1016atoms/cmであり、実施例に比べFe濃度は200倍以上になっていた。
(Comparative Example 1)
As in Example 1, a SiC substrate having a diameter of 200 mm was prepared and the substrate was put into a CVD furnace. Then, silicon tetrachloride (SiCl 4 ) gas is supplied at 1 SLM, methane (CH 4 ) gas is supplied at 0.5 SLM, and hydrogen (H 2 ) gas 2 SLM is supplied into the furnace, so that the furnace pressure is 30 Torr (4 × 10 3 Pa). A first SiC layer of 30 μm was grown on the surface of the substrate by heat treatment at 1400 ° C. for 40 minutes while evacuating the furnace atmosphere with a vacuum pump. After the pressure in the CVD furnace was restored and the furnace temperature was returned to room temperature, a second CVD-SiC layer was grown immediately above the first CVD-SiC layer under the same growth conditions. This operation was repeated, and CVD-SiC layers from the second layer to the fifth layer were grown on the substrate surface in the same furnace. When the Fe concentration of the outermost surface of the base material after the formation of the five-layer SiC film, that is, the fifth CVD-SiC layer was investigated by SIMS at 5 points, 1 × 10 15 to 1 × 10 16 atoms / cm 3 The Fe concentration was 200 times or more compared to the example.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、上記実施例1では、5層のCVD−SiC膜を形成する場合を例示して説明したが、本発明はこれに限定されず、2層以上形成させるものであれば、当初の基材からの不純物を抑制できるので、効果を発揮できるものである。
また、本発明はSiC製基材だけでなく、基材が炭素製のサセプタなど、熱処理用治具に用いられるその他の基材の表面コーティングにも使用できる。
さらに、本発明が適用できる熱処理用治具の具体例としては、前記ウェーハボート、熱処理チューブ、サセプタ等に限定されるものではない。熱処理炉内で、ウェーハ等の汚染を防止する必要がある治具、例えば、熱電対用保護管、ライナー管などであれば、その名称や形状にかかわりなく適用できるものである。
For example, in Example 1 described above, the case where a five-layer CVD-SiC film is formed has been described as an example. However, the present invention is not limited to this, and the original base material may be used as long as two or more layers are formed. Since the impurities from can be suppressed, the effect can be exhibited.
Further, the present invention can be used not only for SiC base materials but also for surface coating of other base materials used in heat treatment jigs such as carbon susceptors.
Furthermore, specific examples of the heat treatment jig to which the present invention can be applied are not limited to the wafer boat, the heat treatment tube, the susceptor and the like. Any jig that needs to prevent contamination of the wafer or the like in the heat treatment furnace, such as a thermocouple protection tube or liner tube, can be applied regardless of its name or shape.

熱処理用治具表面に形成する表面保護膜の一例を示した概略断面図である。It is the schematic sectional drawing which showed an example of the surface protective film formed in the jig | tool surface for heat processing. バッチ式の熱処理炉の一例を示す概略図である。It is the schematic which shows an example of a batch type heat processing furnace. 枚葉式の熱処理炉の一例を示す概略図である。It is the schematic which shows an example of a single wafer type heat treatment furnace.

符号の説明Explanation of symbols

11…基材、 12…SiC膜、 12a〜12e…SiC層、
20,30…熱処理炉、 21…熱処理チューブ、 22…ライナー管、
23…ヒーター、 24…直胴部、 25…ガス導入部、 26…開口部、
27…ウェーハボート、 28…ジョイント、 29…ガス供給管、
31…サセプタ、 32…反応室、 33…ランプ、 34…ガス導入管、
35…ガス排気管、
W…ウェーハ。
11 ... substrate, 12 ... SiC film, 12a-12e ... SiC layer,
20, 30 ... Heat treatment furnace, 21 ... Heat treatment tube, 22 ... Liner tube,
23 ... heater, 24 ... straight body part, 25 ... gas introduction part, 26 ... opening part,
27 ... Wafer boat, 28 ... Joint, 29 ... Gas supply pipe,
31 ... Susceptor, 32 ... Reaction chamber, 33 ... Lamp, 34 ... Gas introduction pipe,
35 ... gas exhaust pipe,
W: Wafer.

Claims (9)

熱処理用治具の表面に、該表面を保護するための複数層のSiC膜を形成する方法であって、該複数層のSiC膜を、CVD法により熱処理用治具の基材上に1層毎に異なるCVD炉を用いて形成するとともに、少なくとも、基材上に第1層目のSiC層を形成した後、第2層目のSiC層を形成する前に、前記第1層目のSiC層の表層を除去することを特徴とする熱処理用治具の表面保護膜形成方法。   A method of forming a plurality of SiC films for protecting a surface of a heat treatment jig on the surface of the heat treatment jig, wherein the plurality of SiC films are formed on the base material of the heat treatment jig by a CVD method. The first SiC layer is formed using a different CVD furnace, and at least after the first SiC layer is formed on the substrate and before the second SiC layer is formed. A method for forming a surface protective film of a jig for heat treatment, comprising removing a surface layer of the layer. 前記複数層のSiC膜を、1層毎に異なるCVD炉を用いて形成する場合に、炉の順番を固定して決めて、各層毎の専用炉として用いることを特徴とする請求項1に記載の熱処理用治具の表面保護膜形成方法。   The multi-layered SiC film is formed using a different CVD furnace for each layer, and the order of the furnaces is determined and used as a dedicated furnace for each layer. A method for forming a surface protective film of a jig for heat treatment. 前記複数層のSiC膜の第2層目以降の各SiC層の表層を、各SiC層が形成される毎に除去することを特徴とする請求項1又は請求項2に記載の熱処理用治具の表面保護膜形成方法。   The jig for heat treatment according to claim 1 or 2, wherein a surface layer of each SiC layer after the second layer of the plurality of SiC films is removed each time each SiC layer is formed. Surface protective film forming method. 前記SiC層の表層の除去は、前記SiC層の表層に酸化膜を形成した後に行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱処理用治具の表面保護膜形成方法。   The surface protective film of the jig for heat treatment according to any one of claims 1 to 3, wherein the surface layer of the SiC layer is removed after an oxide film is formed on the surface layer of the SiC layer. Forming method. 前記SiC層の表層の除去は、フッ酸を含む薬液を用いて行うことを特徴とする請求項1乃至請求項4のいずれか1項に記載の熱処理用治具の表面保護膜形成方法。   5. The surface protection film forming method for a heat treatment jig according to claim 1, wherein the removal of the surface layer of the SiC layer is performed using a chemical solution containing hydrofluoric acid. 前記フッ酸を含む薬液が、フッ硝酸であることを特徴とする請求項5に記載の熱処理用治具の表面保護膜形成方法。   6. The surface protective film forming method for a heat treatment jig according to claim 5, wherein the chemical solution containing hydrofluoric acid is hydrofluoric acid. 前記SiC層の表層の除去は、少なくとも厚さ1μm以上行うことを特徴とする請求項1乃至請求項6のいずれか1項に記載の熱処理用治具の表面保護膜形成方法。   The method for forming a surface protective film of a jig for heat treatment according to any one of claims 1 to 6, wherein the surface layer of the SiC layer is removed by at least a thickness of 1 µm or more. 請求項1乃至請求項7のいずれか1項に記載の熱処理用治具の表面保護膜形成方法により複数層のSiC膜が形成されたものであることを特徴とする熱処理用治具。   A heat treatment jig comprising a plurality of SiC films formed by the method for forming a surface protective film of a heat treatment jig according to any one of claims 1 to 7. 前記複数層のSiC膜において、各層の表層の金属汚染量が1×1015atoms/cm以下であることを特徴とする請求項8に記載の熱処理用治具。 9. The jig for heat treatment according to claim 8, wherein in the plurality of SiC films, a metal contamination amount of a surface layer of each layer is 1 × 10 15 atoms / cm 3 or less.
JP2004003461A 2004-01-08 2004-01-08 Method for forming surface protective film of jig for heat treatment Expired - Fee Related JP4608884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003461A JP4608884B2 (en) 2004-01-08 2004-01-08 Method for forming surface protective film of jig for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003461A JP4608884B2 (en) 2004-01-08 2004-01-08 Method for forming surface protective film of jig for heat treatment

Publications (2)

Publication Number Publication Date
JP2005197534A true JP2005197534A (en) 2005-07-21
JP4608884B2 JP4608884B2 (en) 2011-01-12

Family

ID=34818362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003461A Expired - Fee Related JP4608884B2 (en) 2004-01-08 2004-01-08 Method for forming surface protective film of jig for heat treatment

Country Status (1)

Country Link
JP (1) JP4608884B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601227B2 (en) 2005-08-05 2009-10-13 Sumco Corporation High purification method of jig for semiconductor heat treatment
JP2011505701A (en) * 2007-12-20 2011-02-24 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Semiconductor processing component processing method and component formed thereby
WO2013058610A1 (en) * 2011-10-19 2013-04-25 Lg Innotek Co., Ltd. Hot plate and method of manufacturing the same
WO2016093431A1 (en) * 2014-12-12 2016-06-16 주식회사 티씨케이 Susceptor regeneration method
US9956589B2 (en) 2014-12-12 2018-05-01 Tokai Carbon Korea Co., Ltd Method for repairing semiconductor processing components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884427A (en) * 1981-11-13 1983-05-20 Toshiba Corp Furnace tube for forming semiconductor-diffused layer
JPH056862A (en) * 1991-06-26 1993-01-14 Toshiba Ceramics Co Ltd Treatment member for semiconductor use
JPH07335728A (en) * 1994-06-07 1995-12-22 Toshiba Ceramics Co Ltd Heat treatment jig and its manufacture
JPH08188468A (en) * 1994-12-29 1996-07-23 Toyo Tanso Kk Formed silicon carbide produced by chemical vapor deposition and its production
JP2005159014A (en) * 2003-11-26 2005-06-16 Shin Etsu Handotai Co Ltd Jig for heat treatment and surface protection film forming method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884427A (en) * 1981-11-13 1983-05-20 Toshiba Corp Furnace tube for forming semiconductor-diffused layer
JPH056862A (en) * 1991-06-26 1993-01-14 Toshiba Ceramics Co Ltd Treatment member for semiconductor use
JPH07335728A (en) * 1994-06-07 1995-12-22 Toshiba Ceramics Co Ltd Heat treatment jig and its manufacture
JPH08188468A (en) * 1994-12-29 1996-07-23 Toyo Tanso Kk Formed silicon carbide produced by chemical vapor deposition and its production
JP2005159014A (en) * 2003-11-26 2005-06-16 Shin Etsu Handotai Co Ltd Jig for heat treatment and surface protection film forming method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601227B2 (en) 2005-08-05 2009-10-13 Sumco Corporation High purification method of jig for semiconductor heat treatment
JP2011505701A (en) * 2007-12-20 2011-02-24 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Semiconductor processing component processing method and component formed thereby
WO2013058610A1 (en) * 2011-10-19 2013-04-25 Lg Innotek Co., Ltd. Hot plate and method of manufacturing the same
KR101283184B1 (en) 2011-10-19 2013-07-05 엘지이노텍 주식회사 Hot plate amd method manufacturing the same
US9657394B2 (en) 2011-10-19 2017-05-23 Lg Innotek Co., Ltd. Hot plate and method of manufacturing the same
WO2016093431A1 (en) * 2014-12-12 2016-06-16 주식회사 티씨케이 Susceptor regeneration method
US9956589B2 (en) 2014-12-12 2018-05-01 Tokai Carbon Korea Co., Ltd Method for repairing semiconductor processing components

Also Published As

Publication number Publication date
JP4608884B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
TWI669996B (en) Method for integrated circuit fabrication
US8309440B2 (en) Method and apparatus for cleaning a substrate surface
TWI588887B (en) Method of epitaxial germanium tin alloy surface preparation
WO2006137192A1 (en) Method of surface reconstruction for silicon carbide substrate
US6235645B1 (en) Process for cleaning silicon semiconductor substrates
JP2005150364A (en) Method for manufacturing silicon epitaxial wafer
JP4998246B2 (en) Semiconductor substrate support jig and manufacturing method thereof.
JP4608884B2 (en) Method for forming surface protective film of jig for heat treatment
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
JP4290187B2 (en) Surface cleaning method for semiconductor wafer heat treatment boat
JP2010109335A (en) Removing method and processing device for silicon oxide film
JPH08236462A (en) Vapor growth method
TWI608133B (en) A method of forming oxide layer and epitaxy layer
JP4529424B2 (en) Method for forming surface protective film of jig for heat treatment and jig for heat treatment
JP2005223292A (en) High purification method of rapid thermal annealing jig for semiconductor
US20080081112A1 (en) Batch reaction chamber employing separate zones for radiant heating and resistive heating
JP2010177495A (en) Method for heat treatment of silicon wafer
JP2008227060A (en) Method of manufacturing annealed wafer
WO2024009705A1 (en) Method for manufacturing epitaxial wafer
JP7322371B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
KR100423754B1 (en) A method for high temperature heating of silicon wafer
JP2010177494A (en) Method for heat treatment of silicon wafer
TW202405899A (en) Manufacturing methods of epitaxial wafers
JP2011009597A (en) Method of cleaning jig for heat treatment
JP2004356361A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4608884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees