TW201214742A - Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer - Google Patents

Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer Download PDF

Info

Publication number
TW201214742A
TW201214742A TW100122389A TW100122389A TW201214742A TW 201214742 A TW201214742 A TW 201214742A TW 100122389 A TW100122389 A TW 100122389A TW 100122389 A TW100122389 A TW 100122389A TW 201214742 A TW201214742 A TW 201214742A
Authority
TW
Taiwan
Prior art keywords
diffusion layer
type diffusion
forming
composition
glass
Prior art date
Application number
TW100122389A
Other languages
Chinese (zh)
Other versions
TWI485875B (en
Inventor
Tetsuya Satou
Masato Yoshida
Takeshi Nojiri
Kaoru Okaniwa
Youichi Machii
Mitsunori Iwamuro
Keiko Kizawa
Shuuichirou Adachi
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010144204A external-priority patent/JP5625538B2/en
Priority claimed from JP2010144203A external-priority patent/JP5625537B2/en
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201214742A publication Critical patent/TW201214742A/en
Application granted granted Critical
Publication of TWI485875B publication Critical patent/TWI485875B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A composition for forming an impurity diffusion layer contains a glass powder containing a donor element or an acceptor element, and a dispersion medium, in which the content ratio of the glass powder is from 1% by mass to 90% by mass. When the impurity diffusion layer is an n-type diffusion layer, the glass powder contains a donor element. When the impurity diffusion layer is a p-type diffusion layer, the glass powder contains an acceptor element. An n-type diffusion layer or a p-type diffusion layer, and a photovoltaic cell having an n-type diffusion layer or a p-type diffusion layer are prepared by a coating of the composition for forming an impurity diffusion layer, followed by a thermal diffusion treatment.

Description

201214742 3892〇pif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池的形成η塑擴散層的 組成物、η型擴散層的製造方法、形成ρ型擴散層的組成 物、Ρ型擴散層的製造方法及太陽能電池的製造方法。更 詳細而言’本發明是有關於一種能夠在作為半導體基板的 石夕基板的特定部位形成擴散層的技術,及關於一種形 成P型擴散層的技術’其能夠降低作為半導體基板的矽基 板的内部應力、抑制對結晶粒界(crystal grain b〇undary ) 的損害、抑制晶體缺陷(cryStal defects )的增加,以及抑 制赵曲。 【先前技術】 以下描述矽太陽能電池元件的習知製程。 ^先,透過促進光學侷限效應(confinement effect) 謀求高財,調製受光面上形成有紋理(texture)結構 P型石夕基板,並且隨後將此p卿基板在含有施體元素 ,口物的_氣氧化礙p〇cl3)、氮氣和氧氣的混合氣體 氛下在800 C至9〇〇°c進行幾十分鐘的處理,從而於; 板上均勻軸擴散層。根據此習知技術的方法,如 使用混合氣體來進行翻擴散,故不僅於表面上形成W 擴散層,,而巧側面、背面亦形成η型擴散層。由於這; ’二Γίΐ側蝕(SideetChing)來移除側面的η型·j 散:。卜’需要將背面的n型擴散層轉換 於背面的11型擴散層上賦予銘膏並將其燒結,以藉由銘白201214742 3892〇pif VI. Technical Field of the Invention The present invention relates to a composition for forming a η plastic diffusion layer of a solar cell, a method for producing an n-type diffusion layer, and a composition for forming a p-type diffusion layer. A method for producing a ruthenium diffusion layer and a method for producing a solar cell. More specifically, the present invention relates to a technique capable of forming a diffusion layer at a specific portion of a substrate of a semiconductor substrate, and a technique for forming a P-type diffusion layer, which can reduce a germanium substrate as a semiconductor substrate. Internal stress, suppression of damage to crystal grain b〇undary, inhibition of increase in crystal defects (cryStal defects), and inhibition of Zhao Qu. [Prior Art] A conventional process of solar cell elements is described below. ^ First, by promoting the optical confinement effect to seek high-yield, the P-type slab substrate with a texture structure formed on the light-receiving surface is modulated, and then the p-qing substrate is contained in the donor element, the mouth material _ Gas oxidation is inhibited by p〇cl3), a mixed gas of nitrogen and oxygen is subjected to treatment at 800 C to 9 ° C for several tens of minutes, thereby uniformly spreading the layer on the plate. According to the method of the prior art, if a mixed gas is used for the diffusion, the W diffusion layer is formed not only on the surface but also on the side surface and the back surface. Because of this; 'SideetChing' to remove the side of the n-type · j scattered:. It is necessary to convert the n-type diffusion layer on the back side to the 11-type diffusion layer on the back side to impart a paste and sinter it for whitening.

4 201214742 38920pif 擴散而使n型擴散層轉換成p+型擴散層。 另一方面,在半導體的製造領域中,例如像曰本專利 特開2002-75894唬公報般’提出有作為含有施體元素的化 合物,藉由塗佈含有如五氧化二磷(p2〇5)或磷酸二氫銨 (NH4H2;P〇4)等的鱗酸鹽溶液來形成^型擴散層的方法。然 而,由於此方法中施體元素或含有施體元素的化合物自擴 散源的溶液中飛散’故與上述使用混合氣體的氣相反應法 相同,在形成擴散層時,磷的擴散亦到達侧面及背面,而 於塗佈以外的部分亦形成η型擴散層。 另外’在賦予上述之料㈣η型擴散層轉換成ρ+ 型擴散層的方法中,由鋁膏所形成的鋁層具有低的電導 率’為了降低片f阻(sheetresistance),通常形成於整個 背,的鋁層於煅燒(燒結)後必需具有1〇 μιη〜2〇 左右 的厚度。再者’若形成如上述般厚的!S層,|抽於石夕的熱 膨脹係數與紹的熱膨脹係數相差較大,在燒結和冷卻過程 中使夕基板中產生大的内部應力,而有晶粒界的損害、晶 體缺陷的增加,以及翹曲的情況。 、 為了解決此問題,而有減少鋁膏的塗布量,使背面電 極層變薄的方法。然而,若減少铭膏的塗布量,則自Ρ型 石夕半導體基板的表面擴散至内部的銘的量變得不充分。其 結果為無法達成所期望的背面電場(Back Surface Fiel/,、4 201214742 38920pif Diffusion converts the n-type diffusion layer into a p+ type diffusion layer. On the other hand, in the field of the manufacture of semiconductors, for example, as a compound containing a donor element, a coating containing, for example, phosphorus pentoxide (p2〇5) is proposed as disclosed in Japanese Laid-Open Patent Publication No. 2002-75894. Or a scallate solution such as ammonium dihydrogen phosphate (NH4H2; P〇4) to form a diffusion layer. However, since the donor element or the compound containing the donor element is scattered from the solution of the diffusion source in this method, the diffusion of phosphorus also reaches the side when the diffusion layer is formed, as in the gas phase reaction method using the mixed gas described above. On the back side, an n-type diffusion layer is also formed in a portion other than the coating. Further, in the method of imparting the above-mentioned material (four) n-type diffusion layer into a p + type diffusion layer, the aluminum layer formed of the aluminum paste has a low electrical conductivity 'in order to reduce the sheet resistance, usually formed on the entire back The aluminum layer must have a thickness of about 1 μm to about 2 Å after calcination (sintering). Furthermore, if the thickness of the S layer is formed as described above, the coefficient of thermal expansion of the pumped stone is greatly different from that of the heat expansion coefficient, and a large internal stress is generated in the substrate during the sintering and cooling process. Damage to grain boundaries, increase in crystal defects, and warpage. In order to solve this problem, there is a method of reducing the amount of coating of the aluminum paste and thinning the back electrode layer. However, when the coating amount of the paste is reduced, the amount of the surface of the self-defective Si-Xi semiconductor substrate that has spread to the inside becomes insufficient. As a result, the desired back surface electric field cannot be achieved (Back Surface Fiel/,

Bf=F)效,(生成載子(caiTier)的收集效率(collection e似⑶^因〆型擴散層的存在而有提高的效果),因此 產生太陽能電池的特性下降的問題。 201214742 38920pif --π w不寻利特開2003-223813號公報中, 提出有-種膏狀組·,其包括崎末、有機 中 vehide) ’从熱_絲切虹錄溫度、軟化= =ίΓ任一者高於_點的無機化合“: "如上所述,於形成η型擴散層時,使用三氯氧化磷的 耽相反應中’ η型擴散層不僅形成在必要的η型擴散層的 一面(通f是受_,絲面)±,而且甚至軸在其^面 (非文光側,或後表面)或側面上。另外,於塗佈含有磷酸 鹽的溶液並進行熱擴散的方法中也與氣相反應法相同甚 至在表面以外亦形成有η型擴散層。因此,為了獲得具有 ρη接合構造以作為元件,故必需於側面進行蝕刻,且必需 於背面將η型擴散層轉換成卩型擴散層。一般而言,於背 面塗佈作為第13族元素(第ΠΙΑ族)的Is的膏狀物,並 進行煅燒(燒結)’從而將η型擴散層轉換成p型擴散層。 本發明是鑒於以上的先前的問題點而完成的發明,其 課題在於提供能夠在使用矽基板的太陽能電池元件的製造 方法中’短時間於特定部位上形成η型擴散層,而不形成 不必要的η型擴散層的一種形成η型擴散層的組成物、η 型擴散層的製造方法、以及太陽能電池的製造方法。 此外,即使使用了記载於先前的曰本專利特開 2003-223813號公報中的自η型擴散層轉換成ρ+型擴散層 的膏狀組成物,亦有無法充分地抑制翹曲的情況。因此, 本發明的課題在於提出能夠在使用矽基板一邊抑制矽基板Bf=F) effect, (collective carrier (caiTier) collection efficiency (collection e like (3) ^ due to the presence of the 〆 type diffusion layer has an effect of improvement), thus causing a problem of deterioration of the characteristics of the solar cell. 201214742 38920pif -- Πw does not find the special publication 2003-223813, it is proposed that there is a kind of paste group, which includes saki, organic vehide) 'from hot _ silk cut rainbow temperature, soft == ί Γ high Inorganic compound at _ point ": " As described above, in the formation of an n-type diffusion layer, the η-type diffusion layer in the 耽 phase reaction using phosphorus oxychloride is formed not only on one side of the necessary n-type diffusion layer (through f is subjected to _, silk surface) ±, and even the axis is on the surface (non-text side, or rear surface) or side. In addition, in the method of coating a solution containing phosphate and performing thermal diffusion, The gas phase reaction method has the same n-type diffusion layer even outside the surface. Therefore, in order to obtain a pn-bonded structure as an element, it is necessary to perform etching on the side, and it is necessary to convert the n-type diffusion layer into a 卩-type diffusion on the back side. Layer. Generally, it is coated on the back side. The paste of Is of the group 13 element (the third group) is calcined (sintered) to convert the n-type diffusion layer into a p-type diffusion layer. The present invention is an invention completed in view of the above problems. The object of the invention is to provide a composition for forming an n-type diffusion layer in which a n-type diffusion layer is formed on a specific portion for a short period of time without forming an unnecessary n-type diffusion layer in a method of manufacturing a solar cell element using a tantalum substrate. The method for producing an n-type diffusion layer and the method for producing a solar cell. Further, the conversion from the n-type diffusion layer to the ρ+ diffusion is described in the above-mentioned Japanese Patent Laid-Open Publication No. 2003-223813. The paste composition of the layer may not sufficiently suppress the warpage. Therefore, an object of the present invention is to provide a method of suppressing the ruthenium substrate while using the ruthenium substrate.

6 201214742 38920pif 中的内部應力,以及抑制基板的翹曲的發生,且短時間形 成P型擴散層的一種形成p型擴散層的組成物、p型擴散 層的製造方法、以及太陽能電池元件的製造方法。 上述問題通過下列手段解決。 &lt; 1 &gt; 一種形成不純物擴散層的組成物,其包括:含有 施體元素(donor element)或受體元素(acceptorelement) 的玻璃粉末以及分散介質,其中上述玻璃粉末的含有比率 為1質量%以上至90質量%以下的範圍。 &lt;2&gt;—種形成η型擴散層的組成物,其包括:含有施 體元素(donor element)的玻璃粉末以及分散介質,其中 上述玻璃粉末的含有比率為1質量%以上至9〇質量%以下的 範圍。 &lt;3&gt;如上述&lt;2&gt;所述之形成η型擴散層的組成物, 其中上述施體元素是選自Ρ (碟)以及Sb (錄)中的至少 一種。 &lt;4&gt;如上述&lt;2&gt;或&lt;3&gt;中所述之形成η型擴散層 的組成物,其中上述含有施體元素的玻璃粉末包括含有施 體元素的物質以及玻璃成分物質,上述含有施體元素的物 質選自Ρ2〇3、Ρ2〇5及St&gt;2〇3中的至少一種,上述玻璃成分 物質選自 Si02、K20、Na20、Li2〇、Bao、SrO、CaO、 MgO、BeO、ZnO、PbO、CdO、SnO、Zr02 及 Mo03 中的 至少一種。 &lt;5&gt;如上述&lt;2&gt;〜&lt;4&gt;中任一項所述之形成n型 擴散層的組成物,更包括選自Ag、Si、Cu、Fe、Ζη及Μη 201214742 -)〇^zupif 中的至少一種金屬。 &lt;6&gt;如上述&lt;5&gt;所述之形成η型擴散層的組成物, 其中上述金屬為Ag (銀)。 &lt;7&gt;—種n型擴散層的製造方法,其包括:在半導體 基板上塗佈如上述&lt;2&gt;〜&lt;6&gt;中任一項所述之形成η型 擴散層的組成物的步驟;以及實施熱擴散處理的步驟。 &lt;8&gt;—種太陽能電池元件的製造方法’其包括:在半 導體基板上塗佈如上述&lt;2&gt;〜&lt;6&gt;中任一項所述之形成 η型擴散層的組成物的步驟;實施熱擴散處理而形成η型 擴散層的步驟;以及於所形成的η型擴散層上形成電極的 步驟。 &lt;9&gt; 一種形成ρ型擴散層的組成物,其包括:含有受 體元素的玻璃粉末以及分散介質,其中上述玻璃粉末的含 有比率為1質量%以上至90質量%以下的範圍。 &lt;10&gt;如上述&lt;9&gt;所述之形成ρ型擴散層的組成 物,其中上述受體元素是選自Β (硼)、Α1 (鋁)以及Ga (鎵)中的至少一種。 &lt;11&gt;如上述&lt;9&gt;或&lt;1〇&gt;中所述之形成p型擴散 層的組成物,其中上述含有受體元素的玻璃粉末包括含有 受體元素的物質以及玻璃成分物質,上述含有受體元素的 物質選自B2〇3、a1203及Ga203中的至少一種,上述玻璃 成分物質選自 Si02、K20、Na20、Li20、BaO、SrO、CaO、 MgO、BeO、ZnO、PbO、CdO、T120、SnO、Zr02 及 M〇03 中的至少一種。6 201214742 38920pif internal stress, formation of a p-type diffusion layer forming a P-type diffusion layer, formation of a p-type diffusion layer, and fabrication of a solar cell element method. The above problems are solved by the following means. &lt; 1 &gt; A composition for forming an impurity diffusion layer, comprising: a glass powder containing a donor element or an acceptor element, and a dispersion medium, wherein the content ratio of the glass powder is 1% by mass The above range is 90% by mass or less. &lt;2&gt; - A composition for forming an n-type diffusion layer, comprising: a glass powder containing a donor element, and a dispersion medium, wherein a content ratio of the glass powder is from 1% by mass to 9% by mass The following range. &lt;3&gt; The composition for forming an n-type diffusion layer as described in the above &lt;2&gt;, wherein the above-mentioned donor element is at least one selected from the group consisting of Ρ (disc) and Sb (recorded). &lt;4&gt; The composition for forming an n-type diffusion layer as described in the above &lt;2&gt; or &lt;3&gt;, wherein the glass powder containing the donor element includes a substance containing a donor element and a glass component substance, The substance containing the donor element is at least one selected from the group consisting of Ρ2〇3, Ρ2〇5, and St&gt;2〇3, and the glass component is selected from the group consisting of SiO 2 , K 20 , Na 20 , Li 2 〇, Bao, SrO, CaO, MgO, BeO. At least one of ZnO, PbO, CdO, SnO, ZrO2, and Mo03. The composition for forming an n-type diffusion layer according to any one of the above-mentioned <2> to <4>, further comprising an element selected from the group consisting of Ag, Si, Cu, Fe, Ζn, and 2012 201214742 -) 〇 At least one metal in ^zupif. &lt;6&gt; The composition for forming an n-type diffusion layer according to the above &lt;5&gt;, wherein the metal is Ag (silver). &lt;7&gt; - A method of producing an n-type diffusion layer, comprising: forming a composition for forming an n-type diffusion layer according to any one of the above-mentioned items <2> to <6> on a semiconductor substrate a step; and a step of performing a thermal diffusion treatment. &lt;8&gt; A method of producing a solar cell element, comprising the step of forming a composition for forming an n-type diffusion layer as described in any one of the above &lt;2&gt; to &lt;6&gt; a step of performing a thermal diffusion process to form an n-type diffusion layer; and a step of forming an electrode on the formed n-type diffusion layer. &lt;9&gt; A composition for forming a p-type diffusion layer, comprising: a glass powder containing a receptor element, and a dispersion medium, wherein the content of the glass powder is in a range of from 1% by mass to 90% by mass. &lt;10&gt; The composition for forming a p-type diffusion layer according to the above <9>, wherein the acceptor element is at least one selected from the group consisting of ytterbium (boron), yttrium (aluminum), and Ga (gallium). &lt;11&gt; The composition for forming a p-type diffusion layer as described in the above &lt;9&gt; or &lt;1〇&gt;, wherein the glass element containing the acceptor element includes a substance containing an acceptor element and a glass component substance The substance containing the acceptor element is at least one selected from the group consisting of B2〇3, a1203, and Ga203, and the glass component is selected from the group consisting of SiO2, K20, Na20, Li20, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, At least one of CdO, T120, SnO, Zr02, and M〇03.

8 201214742 38920pif &lt;12&gt;—種p型擴散層的製造方法,其包括:在半導 體基板上塗佈如上述&lt;9&gt;〜&lt;11:&gt;中任一項所述之形成 P型擴散層的組成物的步驟;以及實施熱擴散處理的步驟。 &lt;13&gt;—種太陽能電池元件的製造方法,其包括:在 半導體基板上塗佈如上述&lt;9&gt;〜&lt;n&gt;中任一項所述之 形成P型擴散層的組成物的步驟;實施熱擴散處理而形成 P型擴散層的步驟;以及於所形成的上述p型擴散層上形 成電極的步驟。 、根據本發明,能財使时基板的太陽能電池的製造 方法中’短a寺間在特定區域上形成㈣擴散層,而不 不必要的η型擴散層。 另外’根縣發明,㈣在使时基板的太陽能電池 且製造方法中’-邊抑制石夕基板中的内部應力,以及抑制 基板的趣曲的發S,且短時間形成Ρ型擴散層。 【實施方式】 ' 本發明為一種形成不純物擴散 其中 下的 體元素或受體元素的玻璃粉末以及分散介γ括· ^玻璃粉末的含有比率為1#量%以上 3物ΓΓ純物擴散層的組成物為形成nt散層的 散^的^^ί朗粉末包括㈣元素,當職不純物擴 末包括受ft形成。型擴散層的組成物時,上述玻· 物中=二3散層的組成物及形成ρ型擴散層的組成 有的破璃粉末的含有率為丨質量%以上至9G質量% 201214742 j»y^upif 以下的範圍時,可以在短時間將形成於n型擴散層或?型 擴散層上的玻璃層絲。此外,藉由施體元素或受體元素 的擴散’充分地進行η型擴散層的形成或p型擴散層的形 成。因此’依據本發明的形成n型擴散層的組成物及形成 P型擴散層,可短時間於特定的部份形成n型擴散層或p 型擴散層。 ' 首先,對本發明的形成n型擴散層的組成物及形成p 型擴散層的組成物輯朗’其讀使㈣成η型擴散層 的組成物的η型擴散層的製造方法、制形^型擴散層 的組成物的Ρ贿制的製造方法,以及太陽能電池元件 的製造方法進行說明。 ,者,於本說明書中,「步驟(ΡΠ)_)」這-用語 不僅疋指獨立的步驟,亦包括在無法與其他步_確地加 以區为的情況下’若該步魏達成所翻的仙,則亦包 括财用語中。另外,於本說明書中,使用「〜」表示數 :的)„,「〜」表示以其前後所記載的數值分別作為 最小值及最大值所包括的範圍。 &lt;形成η型擴散層的組成物&gt; 發明的形成η型擴散層的組成物包括至少含有施體 璃粉末(以下,有時僅稱為「玻璃粉末」)以及 進步考慮到塗布性等,必要時亦可視需要含 有其他添加齊4。 右處I所謂形成η型擴散相組成物,其為包括了含 有施體4的玻璃粉末’且可藉由塗佈於石夕基板上後,能 201214742 38920pif :=:型擴散層,而於背面或側㈣成不需= 因此,若應用本發明的形成11型擴散 先前廣泛採用的氣相反應法中 物,則 必要,從而使步驟簡單化。另外,:驟就變得不 散層轉換成 ^型擴散層的形成方法,或者背面二 另=展了可應轉造方法或材質、形 矽基板内的内部應力的產生,石夕 4 2的 詳細情況將後述。 哪対什到抑制, 再者’藉由烺燒而使本發明之形成n型擴散 物中所含有的玻璃粉末祕,從而&amp;型擴散層上_ I :先前的氣相反應法或塗佈含“酸鹽的溶 ,中,亦於11型擴散層上形成玻璃層。因此,本私 :二生Λ的=:與先前的方法同樣地藉由伽心 ν的u卩便的方法相比,本發_形成η型擴 政層,組成物亦不產生不f要的生成物,亦不增加步驟。、 東的it當形成n型擴散層的組成物中所含有的玻璃粉 ^^率為1質量%以上至9〇質量%以下的範圍時,可以 形成於n型擴散層上的玻璃層去除。此外,藉由 施體几素的擴散,n型擴散層的職充分地被進行。 11 201214742 38920pif 再者,在本發明中所謂用於「形成n型擴散層」所需 的^夺間是指:用於形成n型擴散層加上用於將形成於 擴散層之上的玻璃層去除所需要的總時間。據此,藉由短 於11型擴散層的玻璃層,縮短用於形成η型 另外,玻璃粉末中的施體成分於煅燒中亦難以揮發 二氣體的產生= °或者被導入至玻璃中’因此難以揮發。 的部位形成二型,散層的組成物可於所期望 摻雜物濃度高的選擇性面二匕可形成n型 -般而言難以形成高濃鹽的溶液 之Γ施體元素的麵粉“說明 型擴散層\^。作為卿絲巾柯形成η 素,例如可列舉Ρ (磷)、Sb =吏用週期表第15族的元 等。就安全性、玻璃化的容易声^ (紐)及As (石申) 是P或Sb。 又4的觀點而言,較合適的 作為用於將施體元素導入 素的物質,可列舉P2〇3、p2〇 柘末令的含有施體元 較佳為使_执、执Wb===A:2〇3, 201214742 38920pif 另外’含有施體元素的玻璃粉末可視需要調整成分比 率,藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化學 耐久性等。較佳為進而包括以下所述的玻璃成分物質。 作為玻璃成分物質,可列舉:Si〇2、K20、Na20、Li20、8 201214742 38920pif &lt;12&gt; - A method of producing a p-type diffusion layer, comprising: coating a semiconductor substrate with a P-type diffusion as described in any one of the above &lt;9&gt;~&lt;11:&gt; a step of the composition of the layer; and a step of performing a thermal diffusion treatment. &lt;13&gt; The method for producing a solar cell element, comprising the step of applying a composition for forming a P-type diffusion layer according to any one of the above &lt;9&gt; to &lt;n&gt; a step of performing a thermal diffusion treatment to form a P-type diffusion layer; and a step of forming an electrode on the formed p-type diffusion layer. According to the present invention, in the method of manufacturing a solar cell capable of using a substrate, a (four) diffusion layer is formed on a specific region between the short a temples, and an unnecessary n-type diffusion layer is not formed. In addition, in the solar cell manufacturing method of the substrate, (4) the internal stress in the substrate is suppressed, and the S of the substrate is suppressed, and the 扩散-type diffusion layer is formed in a short time. [Embodiment] The present invention relates to a glass powder in which a bulk element or an acceptor element in which an impurity is diffused is diffused, and a content ratio of the dispersed γ γ 玻璃 glass powder is 1% by volume or more and 3 ΓΓ pure diffused layer. The composition is a (4) element comprising a (iv) element, and the in-situ impurity is expanded to include formation by ft. In the composition of the type of the diffusion layer, the content of the glass frit powder of the composition of the two or three layers and the composition of the p-type diffusion layer is 丨% by mass or more to 9% by mass. 201214742 j»y ^upif The following range can be formed in the n-type diffusion layer or in a short time? A layer of glass on the diffusion layer. Further, the formation of the n-type diffusion layer or the formation of the p-type diffusion layer is sufficiently performed by the diffusion of the donor element or the acceptor element. Therefore, according to the composition for forming an n-type diffusion layer and the formation of the P-type diffusion layer of the present invention, an n-type diffusion layer or a p-type diffusion layer can be formed in a specific portion for a short time. First, a method for forming an n-type diffusion layer of a composition for forming an n-type diffusion layer and a composition for forming a p-type diffusion layer of the present invention, and a method for forming an n-type diffusion layer of a composition of an n-type diffusion layer A method for producing a bribe system of a composition of a type of diffusion layer, and a method for producing a solar cell element will be described. In this manual, the phrase "step (ΡΠ)_)" means not only the independent steps, but also the case where it cannot be combined with other steps. The fairy is also included in the financial terms. In addition, in the present specification, "~" is used to indicate the number ":", and "~" indicates the range including the numerical values described before and after the minimum value and the maximum value. &lt;Constituent for forming an n-type diffusion layer&gt; The composition for forming an n-type diffusion layer of the invention includes at least a green glass powder (hereinafter sometimes referred to simply as "glass powder"), and progress is considered in terms of coating properties. If necessary, other additions may be included as needed. In the right part I, the n-type diffusion phase composition is formed, which is a glass powder comprising the donor body 4, and can be coated on the Shishi substrate, and can be used as a 201214742 38920pif:=: type diffusion layer on the back side. Or side (four) formation is not required = Therefore, if the gas phase reaction method previously formed widely used in the formation of the type 11 diffusion of the present invention is applied, it is necessary to simplify the steps. In addition, the method of forming the diffusion layer into a ^-type diffusion layer, or the formation of the internal stress in the substrate or the substrate, the formation of the internal stress, The details will be described later. Further, even if it is suppressed, the glass powder contained in the n-type diffusion material of the present invention is made secret by the smoldering, and the &amp; type diffusion layer is on the _I: the previous gas phase reaction method or coating In the case of the "acid salt", the glass layer is formed on the diffusion layer of the type 11. Therefore, the private: the second Λ =: compared with the previous method, by the method of gamma ν The present invention forms an n-type diffusion layer, and the composition does not produce a product which is not required, and does not increase the step. The glass powder contained in the composition of the n-type diffusion layer is When the content is from 1% by mass to 9% by mass or less, the glass layer formed on the n-type diffusion layer can be removed. Further, the role of the n-type diffusion layer is sufficiently performed by the diffusion of the donor element. 201214742 38920pif Further, in the present invention, the term "intern formation for forming an n-type diffusion layer" means: forming an n-type diffusion layer plus removing a glass layer formed on the diffusion layer. The total time required. According to this, the glass layer shorter than the 11-type diffusion layer is shortened for forming the n-type. Further, the donor component in the glass powder is hard to volatilize the generation of the two gases in the calcination = ° or is introduced into the glass. Hard to volatilize. The part is formed into a two-type, and the composition of the dispersed layer can be formed on the selective surface of the desired dopant concentration, which can form an n-type, which is generally difficult to form a solution of a high-concentration salt. The type of diffusion layer is a type of yttrium, and examples thereof include bismuth (phosphorus), Sb = 第, and the like of the group 15 of the periodic table. The safety and vitrification are easy to sound ^ (New) and As (Shishen) is P or Sb. From the viewpoint of 4, it is preferable that the substance for introducing the donor element into the substance is preferably a P2〇3 or a p2〇柘 containing donor body element. _Executive, Executive Wb===A:2〇3, 201214742 38920pif In addition, the glass powder containing the donor element can be adjusted according to the need to adjust the composition ratio, thereby controlling the melting temperature, softening temperature, glass transition temperature, chemical durability, etc. Further, it is preferable to include the glass component material described below. Examples of the glass component material include Si〇2, K20, Na20, and Li20.

BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、 Zr02、Mo03、La203、Nb205、Ta205、Y2〇3、Ti02、Zr02、 Ge02、Te02及 Lu2〇3 等,較佳為使用選自 Si02、K20、Na20、 Li20、BaO、SrO、CaO、Mg〇、BeO、ZnO、PbO、CdO、 SnO、Zr02及Mo〇3中的至少一種。 作為含有施體元素的玻璃粉末的具體例,可列舉包括 上述含有施體元素的物質與上述玻璃成分物質兩者的體 系’可列舉:P2〇5_Si〇2體系(以含有施體元素的物質-玻 璃成分物質的順序記載,以下相同)、ρ2〇5_Κ2〇體系、 P205-Na20 體系、p2〇5-Li2〇 體系、P2〇5_Ba〇 體系、p2〇5_Sr0 體系、P205-Ca0 體系、p2〇5-Mg0 體系、p2〇5_Be〇 體系、 Ρ205-Ζη0 體系、p2〇5_cd〇 體系、p2〇5_Pb0 體系、P2〇5_v2〇5 體系、p2〇5-SnO 體系、p2〇5_Ge〇2 體系、p2〇5_Te〇2 體系等 包括P2〇5作為含有施體元素的物質的體系,以及包括以 Sb2〇s來代替上述包括p2〇5的體系的p2〇5作為含有施體元 素的物質的體系的玻璃粉末。 再者’亦可為如P2〇5-Sb2〇3體系、P2〇5-As203體系等 般’包括兩種以上的含有施體元素的物質的玻璃粉末。 儘管於上述中例示了包括兩種成分的複合玻璃,然而 亦可為P2〇5-Si〇2-V2〇5、P205-Si〇2-CaO等包括三種成分以 13 201214742 38920pif 上的物質的玻璃粉末。 玻璃粉末中的玻璃成分物質的 慮溶融溫度、軟化溫度、玻_移、、^比率較理想的是考 宜地設n而言,較佳為Q丨化學耐久性而適 以下,更佳為0.5請以上至9Qf^^至95質量% 玻璃粉末的軟化溫度就織處理時的 (dripping)的觀點而j,較佳為2()『、佳 300°C〜900¾。 υυϋ〇更佳為 作為玻璃粉末的形狀,可列舉:大致球 塊狀、板狀及鱗片狀等,就製成 I成形成n型擴散層的組成物 ,基板的塗佈性或均句擴散性的觀點而言,較理相的 球狀、扁平狀、或板狀。麵粉末的粒徑較理想的 =00二以下。當使用具有刚μιη以下的粒徑的玻璃粉 2 得平滑的塗膜。進而,玻璃粉末的粒徑更理 厂、疋μιη以下。再者,下限並無特別限制,但較佳為 01 μηι 以上。 =處,玻璃陳縣种均粒徑,可藉由雷射散射繞 射法(iaser scattering diffracti〇n meth〇d )粒度分布(_ide size chstnbutum )測定襞置等來測定。 含有施體元素的玻璃粉末是藉由以下的步驟來製作。 首先稱量原料(例如,上述含有施體元素的物質與玻 璃成分物質)並將其填充至卿巾。職哺質可列舉麵、 鉑一铑、銥、氧化鋁、石英、碳等,可考慮熔融溫度、環境、 與熔融物質的反應性等而適宜選擇。 201214742 38920pif ,、其次,藉由電爐以對應於玻璃組成的溫度進行加熱而 製成熔液。此時’較理想的是以使騎變得均 行攪拌。 八 繼而’使所獲得的溶液流出至氧.化錯基板或碳基板等 上而將熔液玻璃化。 最後,粉碎玻璃作成粉末狀。粉碎可應用喷射 珠磨機、球磨機等公知的方法。 磨機 性等=元素的擴散性、不要的玻璃的餘刻 專觀‘的考1,形成η型擴散層的組成物中的含有施’ 几素的玻璃粉末的含有比率為丨f量似上至9 下’理想的是5質量%以上至7〇質量%以下;進而基於°八 地表不出低表面阻抗的觀點以及在烟處理中不對二 成損傷的浸潰_的觀點而言,含有施體元素的玻^ ^ 的含有比率更理想的是1() f量%以上至% f量%以下^ 玻璃粉末的含有比率超過9〇質量% ’不要的玻璃成= 刻處理變得目難。若朗粉末的含有比率小於丨質 一 體對基板的擴散性及塗佈性降低。 〇方也 另外,考慮到施體元素對基板的擴散性,形成 散層的組·㈣含有施體元素的物質的含 擴 質量%以上,更佳為2質量%以上。並且,即使在形成:j 擴散層的組成物中添加一定量以上的施體元素,具 歪 成η型擴散層的表面&gt;}電阻為-定值以上而不會^已形 以下,將描述分散介質。 《 - ° 分散介質是將上述玻璃粉末分散在組成物中的介 15 201214742 38920pif 質。具體而言,採用粘合劑或溶劑等作為分散介質。 作為粘合劑,例如可以適當地選擇:聚乙烯醇、聚丙 稀醯胺類、聚乙烯基醯胺類、聚乙烯基吡咯烧酮、聚環氧 乙烧類、聚磺酸、丙烯醯胺烷基磺酸、纖維素醚類、.纖維 素衍生物、羧甲基纖維素、羥乙基纖維素、乙基纖維素、 明膠、澱粉和澱粉衍生物、海藻酸鈉類(sodium alginate)、 二仙膠(xanthan)、瓜爾膠和瓜爾膠衍生物、硬葡聚糖和 硬葡聚糖衍生物、黃蓍膠和黃蓍膠衍生物、糊精和糊精衍 生物(曱基)丙烯酸類樹脂、(甲基)丙婦酸g旨類樹脂(例 如烷基(甲基)丙烯酸樹脂、二甲基胺基乙基(甲基)丙 婦1¼爿曰專)、丁二稀類樹脂、苯乙烯類樹脂及它們的共聚 ,。以及亦可以適當地選擇矽氧烷樹脂。這些化合物可以 單獨使用或以它們的兩種以上的組合使用。 枯合劑的分子量沒有特別的限制,並且優選為有鑑於 作為組成物的所需粘度而適當地調整。 作為溶劑’可列舉例如丙嗣、甲基乙基綱、甲基正丙 2、曱基一異丙細、甲基-正丁基酮、曱基_異丁基酉同、 一土-正戊基西同、曱基-正己基綱、二乙基酉同、三丙基酉同、 厂異丁基酮、二曱基壬_、環己酮、環戊_、甲基環己嗣、 4-戊二酮、丙丙_、丫_丁内醋、戊内g旨等嗣系溶 劑;例如二乙基_、曱基乙基_、甲基_正丙基驗 (methyl-n-propyl)、二—異丙基喊、四氫七南、甲基四氮。夫 喃:二噁烷(di〇xane)、二曱基二噁烷、乙二醇二曱基醚、 乙一醇一乙基ϋ、乙—醇二正丙基趟、乙二醇二丁基驗、BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, Zr02, Mo03, La203, Nb205, Ta205, Y2〇3, Ti02, Zr02, Ge02, Te02 and Lu2〇3, etc., preferably used At least one of SiO 2 , K 20 , Na 20 , Li 20 , BaO, SrO, CaO, Mg 〇, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and Mo 〇 3 . Specific examples of the glass powder containing the donor element include a system including both the above-described donor element-containing substance and the above-mentioned glass component substance. Examples thereof include a P2〇5_Si〇2 system (a substance containing a donor element). The order of the glass component substances is the same as the following), ρ2〇5_Κ2〇 system, P205-Na20 system, p2〇5-Li2〇 system, P2〇5_Ba〇 system, p2〇5_Sr0 system, P205-Ca0 system, p2〇5- Mg0 system, p2〇5_Be〇 system, Ρ205-Ζη0 system, p2〇5_cd〇 system, p2〇5_Pb0 system, P2〇5_v2〇5 system, p2〇5-SnO system, p2〇5_Ge〇2 system, p2〇5_Te〇 2 The system or the like includes a system in which P2〇5 is a substance containing a donor element, and a glass powder including a system in which Sb2〇s is substituted for the above-described system including p2〇5 as a substance containing a donor element. Further, it may be a glass powder including two or more substances containing a donor element, such as a P2〇5-Sb2〇3 system or a P2〇5-As203 system. Although the composite glass including the two components is exemplified in the above, it may be a glass containing three components such as P2〇5-Si〇2-V2〇5, P205-Si〇2-CaO, etc., on 13 201214742 38920pif. powder. The ratio of the melting temperature, the softening temperature, the glass transition, and the ratio of the glass component in the glass powder is preferably n, preferably Q 丨 chemical durability, and more preferably 0.5. The softening temperature of the glass powder is from the above to 9Qf^^ to 95% by mass. From the viewpoint of the dripping treatment, it is preferably 2 (), preferably 300 ° C to 9003⁄4. More preferably, the shape of the glass powder is a composition of an n-type diffusion layer formed by forming a substantially spherical shape, a plate shape, or a scale shape, and the coating property or the uniform diffusion property of the substrate. From the point of view, it is spherical, flat, or plate-like. The particle size of the flour is ideally below 00. When a glass frit 2 having a particle diameter of just below μηη is used, a smooth coating film is obtained. Further, the particle size of the glass powder is more than that of the factory. Further, the lower limit is not particularly limited, but is preferably 01 μηι or more. At the =, the average particle size of the glass Chenxian can be determined by measuring the size of the iaser scattering diffracti〇n meth〇d particle size distribution (_ide size chstnbutum). The glass powder containing the donor element was produced by the following procedure. First, the raw material (for example, the above-mentioned substance containing the donor element and the glass component) is weighed and filled into a towel. The occupational feeding material may be, for example, a platinum, a ruthenium, an alumina, a quartz, or a carbon, and may be appropriately selected in consideration of a melting temperature, an environment, and reactivity with a molten material. 201214742 38920pif, and secondly, a molten metal is prepared by heating at a temperature corresponding to the glass composition by an electric furnace. At this time, it is desirable to make the rides evenly stirred. Then, the obtained solution is allowed to flow out onto an oxygen, a wrong substrate or a carbon substrate, and the melt is vitrified. Finally, the glass is pulverized to form a powder. The pulverization can be applied to a known method such as a jet bead mill or a ball mill. Grindability, etc. = diffusibility of the element, and the residual of the unnecessary glass. The content ratio of the glass powder containing the genus of the composition forming the n-type diffusion layer is 丨f.至9下' is ideally 5% by mass or more to 7% by mass or less; and further, based on the viewpoint that the low surface resistance is not shown in the eight-surface, and that the immersion is not caused by the damage in the smoke treatment, The content ratio of the glass element of the body element is more preferably 1% of the amount of the material, and the content ratio of the glass powder is more than 9% by mass. The content ratio of the ruthenium powder is smaller than that of the ruthenium to the substrate and the coating property is lowered. In addition, in consideration of the diffusibility of the donor element to the substrate, the group in which the dispersion layer is formed, and (4) the mass of the substance containing the donor element is more than or equal to 2% by mass, more preferably 2% by mass or more. Further, even if a certain amount or more of the donor element is added to the composition of the j-diffusion layer, the surface of the n-type diffusion layer has a resistance of -1 or more and does not have a shape below, and will be described. Dispersing medium. "- ° Dispersion medium is a substance that disperses the above glass powder in the composition. 201214742 38920pif. Specifically, a binder, a solvent or the like is used as a dispersion medium. As the binder, for example, polyvinyl alcohol, polyacrylamide, polyvinyl decylamine, polyvinylpyrrolidone, polyepoxyethane, polysulfonic acid, acrylamide can be appropriately selected. Sulfonic acid, cellulose ethers, cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate, two Xanthan, guar gum and guar derivatives, scleroglucans and scleroglucan derivatives, tragacanth and xanthan gum derivatives, dextrin and dextrin derivatives (mercapto) acrylic acid Resin, (meth) propyl benzoate g resin (for example, alkyl (meth) acrylate resin, dimethyl amino ethyl (methyl) propyl phthalocyanine), butyl diene resin, Styrene resins and their copolymerization. And the decane resin can also be appropriately selected. These compounds may be used singly or in combination of two or more kinds thereof. The molecular weight of the dry agent is not particularly limited, and is preferably appropriately adjusted in view of the desired viscosity as a composition. Examples of the solvent include, for example, propylene, methyl ethyl, methyl n-propane 2, decyl-isopropyl fine, methyl-n-butyl ketone, decyl-isobutyl fluorene, and a soil-n-pentyl sulphate. Same, fluorenyl-n-hexyl, diethyl hydrazine, tripropyl hydrazine, isobutyl ketone, dimercaptopurine _, cyclohexanone, cyclopentane _, methylcyclohexane, 4-pentyl Diketone, propylene-propylene, hydrazine-butane vinegar, valerol, etc.; for example, diethyl-, thioethyl-, methyl-n-propyl, two - Isopropyl, tetrahydro-seven, methyltetrazo. Fudan: dioxane (di〇xane), dimercaptodioxane, ethylene glycol didecyl ether, ethyl alcohol monoethyl hydrazine, ethyl alcohol di-n-propyl fluorene, ethylene glycol dibutyl test ,

16 201214742 38920pif 細、二甘醇二乙基鱗、二甘醇甲基乙基喊、 -甘醇曱基正丙基ϋ、二甘醇曱基正丁基_、二甘醇二正 丙基鍵、二甘醇二正丁基_、二甘醇曱基正己基鱗、三甘 醇二曱基醚、三甘醇二乙基醚、三甘醇曱基乙基醚、三甘 醇曱基-正丁基醚、三甘醇二正丁基_、三甘醇甲基正己其 醚、四甘醇二甲基醚、四甘醇二乙基醚、四(二ς 醇)(tetradiethylene glycol)曱基乙基醚、四甘醇曱基正丁美 醚、二甘醇二正丁基醚、四甘醇曱基正己基醚、四甘醇二 正丁基醚、丙二醇二曱基醚、丙二醇二乙基醚、丙二醇: 正丙基醚、丙二醇二丁基醚、一縮二丙二醇二甲基醚^二 縮一丙一醇二乙基醚、一縮二丙二醇甲发 , T备乙基鱗 (dipropylene glycol methyl ethyl ether)、一输-工一上 &quot;·^ I人j &gt;^11* 两甲 基正丁基醚、一縮二丙二醇二正丙基醚、一縮二丙-醇一 正丁基趟、一縮二丙二醇曱基正己基謎、三丙二醇_甲美 醚、三丙二醇二乙基醚、三丙二醇曱基乙基醚、三丙二二 曱基正丁基醚、三丙二醇二正丁基醚、三丙二醇曱美正己 基醚、四丙二醇二甲基醚、四丙二醇二乙基喊、四(亡丙一 醇)(tetradipropylene glycol)曱基乙基謎、四丙二醇甲芙正 丁基喊、一縮二丙二醇二正丁基醚、四丙二醇曱美正己其 醚、四丙二醇二正丁基醚等的醚系溶劑;例如 土 Ο Θ夂f酷、 乙酸乙酯、乙酸正丙酯、乙酸異丙酯、乙釀正^ J知、乙酸 異丁酯、乙酸第二丁酯、乙酸正戊酯、乙峻第_ Λ、&amp; 〜布一戍酯、乙 酸3-曱氧基丁酯、乙酸曱基戊酯、乙酸2~乙某. 您厂酯、乙酸 2-乙基己酯、乙酸2-(2-丁氧基乙氧基)乙s旨、,缺 G酸卡酯、 t 17 201214742 38920pif 乙酸環己酯、乙酸曱基環己酯、乙酸壬酯、乙醯乙酸曱酯、 乙醯乙酸乙酯、二甘醇單曱基醚乙酸酯、二甘醇單乙基醚 乙酸酯、二甘醇單正丁基醚乙酸酯、一縮二丙二醇單曱基 醚乙酸酯、一縮二丙二醇單乙基醚乙酸酯、乙二醇二乙酸 酯、曱氧基三甘醇乙酸酯、丙酸乙酯、丙酸正丁酯、丙酸 異戊酯、草酸二乙酯、草酸二-正丁酯、乳酸曱酯、乳酸乙 酯、乳酸正丁酯、乳酸正戊酯等的酯系溶劑;例如,乙二 醇曱基醚丙酸酯、乙二醇乙基醚丙酸酯、乙二醇甲基醚乙 酸酯、乙二醇乙基醚乙酸酯、二甘醇甲基醚乙酸酯、二甘 醇乙基醚乙酸酯、二甘醇-正丁基醚乙酸酯、丙二醇曱基醚 乙酸酯、丙二醇乙基醚乙酸酯、丙二醇丙基醚乙酸酯、一 縮二丙二醇曱基醚乙酸酯、一縮二丙二醇乙基醚乙酸酯等 的醚乙酸酯系溶劑;例如乙腈、N-曱基吡咯烷酮、N-乙基 吡咯烷酮、N-丙基吡咯烷酮、N-丁基吡咯烷酮、N-己基吡 咯烷酮、N-環己基吡咯烷酮、N,N-二曱基曱醯胺、N,N-二 曱基乙醯胺、二曱亞礙等的非質子(proton )極性溶劑; 例如曱醇、乙醇、正丙醇、異丙醇、正丁醇、異丁醇、第 二丁醇、第三丁醇、正戊醇、異戊醇、2-曱基丁醇、第二 戊醇、第三戊醇、3-曱氧基丁醇、正己醇、2-曱基戊醇、 第二己醇、2-乙基丁醇、第二庚醇、正辛醇、2-乙基己醇、 第二辛醇、正壬醇、正癸醇、第二十一烷醇、三曱基壬醇、 第二十四烷醇、第二十七烷醇、苯酚、環己醇、曱基環己 醇、苄醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二甘醇、 一縮二丙二醇、三甘醇、三丙二醇等的醇系溶劑;例如乙16 201214742 38920pif fine, diethylene glycol diethyl sulphate, diethylene glycol methyl ethyl sulphate, - glycol decyl n-propyl fluorene, diethylene glycol decyl n-butyl _, diethylene glycol di-n-propyl bond , diethylene glycol di-n-butyl _, diethylene glycol decyl hexyl sulphate, triethylene glycol dimethyl decyl ether, triethylene glycol diethyl ether, triethylene glycol decyl ethyl ether, triethylene glycol decyl group - n-Butyl ether, triethylene glycol di-n-butyl _, triethylene glycol methyl hexyl hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetradiethylene glycol 曱Ethyl ethyl ether, tetraethylene glycol decyl n-butyl methoxide, diethylene glycol di-n-butyl ether, tetraethylene glycol decyl n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol didecyl ether, propylene glycol Ethyl ether, propylene glycol: n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, propylene diacetate diethyl ether, dipropylene glycol methyl hair, T-ethyl scale Dipropylene glycol methyl ethyl ether), one lose-work one on &quot;·^ I person j &gt;^11* dimethyl n-butyl ether, dipropylene glycol di-n-propyl ether, di-di-propyl alcohol N-butyl hydrazine Propylene glycol fluorenyl hexamethylene, tripropylene glycol methacrylate, tripropylene glycol diethyl ether, tripropylene glycol decyl ethyl ether, tripropylene di-n-decyl n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol Indomethacin, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl sulphonate, tetradipropylene glycol thiol ethyl mystery, tetrapropylene glycol methyl butyl butyl ketone, dipropylene glycol An ether solvent such as di-n-butyl ether, tetrapropylene glycol, anthracene ether or tetrapropylene glycol di-n-butyl ether; for example, Ο 酷 酷 cool, ethyl acetate, n-propyl acetate, isopropyl acetate, B Brewed, known as Isobutyl acetate, isobutyl acetate, n-butyl acetate, n-amyl acetate, sulphur _ &, &amp; 布 戍 戍 ester, 3-methoxy butyl acetate, decyl amyl acetate , acetic acid 2 ~ B. Your ester, 2-ethylhexyl acetate, 2-(2-butoxyethoxy)acetate, the lack of G acid ester, t 17 201214742 38920pif acetic acid cyclohexane Ester, nonylcyclohexyl acetate, decyl acetate, decyl acetate, ethyl acetate, diethylene glycol monodecyl ether acetate, Glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, dipropylene glycol monodecyl ether acetate, dipropylene glycol monoethyl ether acetate, ethylene glycol Acetate, decyloxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, decyl lactate, ethyl lactate An ester solvent such as n-butyl lactate or n-amyl lactate; for example, ethylene glycol decyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene Alcohol ethyl ether acetate, diethylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol-n-butyl ether acetate, propylene glycol decyl ether acetate, propylene glycol B Ether acetate solvent such as hydroxyacetate, propylene glycol propyl ether acetate, dipropylene glycol decyl ether acetate, dipropylene glycol ethyl ether acetate; for example, acetonitrile, N-oxime Pyrrolidone, N-ethylpyrrolidone, N-propylpyrrolidone, N-butylpyrrolidone, N-hexylpyrrolidone, N-cyclohexylpyrrolidone, N,N-didecylguanamine, N,N - a proton polar solvent such as dimercaptoacetamide or diterpenoid; for example, decyl alcohol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, second butanol, Tributanol, n-pentanol, isoamyl alcohol, 2-mercaptobutanol, second pentanol, third pentanol, 3-decyloxybutanol, n-hexanol, 2-decylpentanol, second Alcohol, 2-ethylbutanol, second heptanol, n-octanol, 2-ethylhexanol, second octanol, n-nonanol, n-nonanol, eicosyl alcohol, tridecyl sterol , the second tetradecyl alcohol, the second heptadecyl alcohol, phenol, cyclohexanol, nonylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-butanediol, digan An alcohol solvent such as an alcohol, dipropylene glycol, triethylene glycol or tripropylene glycol; for example, B

18 201214742 38920pif 醇曱基峻、乙一醇乙基醚、乙二醇單苯基_、二甘醇單 曱基醚、二甘醇單乙基醚、二甘醇單正丁基醚、二甘醇單 正己基醚、乙氧基三甘醇、四甘醇單正丁基醚、丙二醇單 曱基喊、f縮二丙二醇單曱基趟、—縮二丙二醇單乙基趟、 三丙二醇單f基鱗等的乙二醇單贿劑;例如α—箱品 烯、a-祐品醇、月桂油烯、別羅勒烯(aU〇_〇cimene)、檸 ,稀、雙戊烤、α—蔽烯♦蔽烯、松脂醇(terpine〇i)、香 旱芽酮、蘿勒萜(ocimene)、水芽埽等萜(terpene)系溶 劑;水等。這些材料可以單獨使用或以它們的兩種以上的 組合使用。 分散介質在形成n型擴散層的組成物中的含有比率是 考慮塗布性和施體濃度來決定的。 考慮到塗佈性,形成η型擴散層的組成物的黏度較佳 為lOmPa.S以上至麵〇〇〇mPa.s以下,更佳為5〇mpa S 以上至500000 mPa.S以下。 此外,形成η型擴散層的組成物亦可含有其他添加 劑。作為其他添加物,例如可列舉容易與上述玻璃粉末進 4亍反應的金屬。 將形成η型擴散層的組成物塗佈於半導體基板上,並 於高溫下進行祕理,藉歸成η型概層,但此時於表 面形成玻璃。將上述玻璃浸潰於氫氟酸等酸中而去除,但 根據玻璃的_ ’存在難以去__。於此情況下,藉 由預先添加Ag ’ Mn,Cu,Fe,Ζη及Si等金屬,可以於 酸清洗後可容易地去除玻璃^在它們中,較料使用選自 201214742 38920pif g Sl Cu,Fe’Zn及Μη中的至少一種,更佳為使用選 自Ag,Si及ζη中的至少一種,特佳為Ag。 、、上述金屬的含有比率,較理想的是依據玻璃的種類或 ^述金屬的種類而適宜調整,一般而言,相對於上述玻璃 粉末。,上述金屬的含有比率較佳為0.01質量%以上至1〇 質量1 以下。而且,上述金屬可在金屬單體及金屬氧化物等 的形態下來使用。 &lt;形成p型擴散層的組成物&gt; _本發明的形成p型擴散層的組成物包括至少含有受體 2的破縣末(町,有時僅稱為「玻_末」)以及分 質’進而考慮塗佈性等,亦可視需要含有其他添加劑。 „此處,所謂形成P型擴散層的組成物,是指含有受體 破璃粉末,例如,可藉由㈣树基板上後進行熱 ⑽锻燒/燒結),使上述受體元素熱擴散來形成ρ 3放層的材料。藉由使用本發_形成Ρ型擴散層的組 驟〜可77離形成ρ㉟擴散層#步驟與形成歐姆接觸的步 =,從而拓展了對用於形成歐姆接觸的電極材料的選擇, 材了對電極構造的選擇。例如,若將銀等低電阻 於電極時,能夠以㈣的膜厚達成低電阻。另外, 开需形成於整個面上’亦可如梳型等雜般部分地 开^/1㈣極。藉由如以上般形成薄膜或梳型形狀等部分 =狀’可-面抑制梦基板中的内部應力、基板的鍾曲的產 生,—面形成p型擴散層。 因此,右應用本發明的形成卩型擴散層的組成物,則 201214742 38920pif 先刖廣泛採用的方法中所產生於基板中的内部應力及 二^的^曲的產生’前述之先前廣泛採用的方法為:印刷 ?然後對其進行煅燒,與使n型擴散層變成+塑擴散 層的同時獲得歐姆接觸的方法。 進而,由於玻璃粉末中的受體成分於煅燒中亦難以揮 而抑制了 P型擴散層因揮發氣體的產生而形成至所 揮發 姑據ϋΐ域以外的情況。其原因被認為是由於受體成分與 ,末$的元素結合、或者被導人至玻射,因此難以 古外’當形成?型擴散層的組成物中所含有的玻璃粉 在r I有率為1質量%以上至90質量%以下的範圍時,可以 間將形成於p型擴散層上的玻璃層核。此外,藉 又_疋素的擴散,充分地進行p型擴散層的形成。 的在本發明中所謂用於「形成ρ型擴散層」所需 擴日驗喊ρ型擴散層加上用於卿成於0 日上的玻璃層去除所需要的總時間。據此,藉由短 擴==於。型擴散層的玻璃層,縮短用於術型 體,的玻璃粉末進行詳細說明。 型擴散作摻雜树基板中而可形成p 麵-^例如可列舉:B⑷、A1(紹)及⑶(錄)第等。 辛驗將㈣%素導人至麵粉末中的含有受體元 素的物質,可列舉喻、Al2〇3*Ga2〇3,較佳 21 201214742 38920pif 自B2O3、Al2〇3及Ga2〇3中的至少一種。 另外,含有受體元素的玻璃粉末,可視需要調整成分 比率,藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化 學耐久性等。較佳為進而包括以下所述的成分。 作為玻璃成分物質,可列舉:Si02、K20、Na20、Li20、 BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、T120、 SnO、Zr02、Mo03、La203、Nb205、Ta205、Y203、Ti02、 Ge02、Te02 及 Lu203 等,較佳為使用選自 Si02、K20、Na20、 Li20、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、 TI2O、SnO、Zr〇2 及 M0O3 中的至少一種。 作為含有受體元素的玻璃粉末的具體例,可列舉包括 上述含有受體元素的物質與上述玻璃成分物質兩者的體 系’可列舉:B203-Si02體系(以含有受體元素的物質-玻 璃成分物質的順序記載’以下相同)、B2OrZnO體系、 B2〇3-Pb〇體系、B2〇3單獨體系等包括B2〇3作為含有受體 元素的物質的體系,Al203-Si〇2體系等包括Al2〇3作為含 有受體元素的物質的體系,Ga20rSi02體系等包括Ga203 作為含有受體元素的物質的體系等的玻璃粉末。 另外,亦可為如A1203-B203體系、Ga203-B203體系等 般,玻螭粉末也玎以包括兩種以上的含有受體元素的物質 的玻璃粉末。 於上述中例示了包括一種成分的玻璃或包括兩種成 分的複合玻璃,但視需要亦可為如B203-Si02-Na20體系等 般,三種成分以上的複合玻璃。 22 201214742 38920pif 考巾的朗成分物f料有比率較理相的是 適宜設定,一妒而丄二土,轉移溫度、化學对久性而 以下,:佳為::;量=質^^ 破璃财的軟化溫度就擴散處理γ·;散 作為朗粉末的形狀’可列舉 塊狀、板狀及鱗#狀#,制心Λ、料狀扁千狀、 時的胁其你祕处 製成成15型擴散層的組成物 的是大致球狀、爲平狀、ί的觀點而吕’較理想 的是50叫以下。當使用且有破璃粉末的粒徑較理想 末時,易於獲得平帅以下的粒徑的玻璃粉 想的是膜;:^2璃粉末的粒徑更理 請卿以上。再者下限並無特別限制,但較佳為 =處’玻璃的粒徑表示平均粒徑,可藉由雷射散射繞 射法㈤㈣術ing撕acti〇nme_^18 201214742 38920pif Alcohol base, ethyl alcohol ethyl ether, ethylene glycol monophenyl _, diethylene glycol monodecyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol Mono-n-hexyl ether, ethoxy triethylene glycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monodecyl sulfonate, f-dipropylene glycol monodecyl hydrazine, dipropylene glycol monoethyl hydrazine, tripropylene glycol mono-f-group Ethylene glycol single bribes such as scales; for example, α-boxene, a-co-alcohol, laurelene, albendene (aU〇_〇cimene), lemon, dilute, double-baked, α-blockene ♦ olefin, terpine oxime (terpine 〇 i), oxalofenone, ocimene, chlorophyll (terpene) solvent; water and the like. These materials may be used singly or in combination of two or more kinds thereof. The content ratio of the dispersion medium in the composition forming the n-type diffusion layer is determined in consideration of coatability and donor concentration. The viscosity of the composition forming the n-type diffusion layer is preferably from 10 mPa·s or more to 〇〇〇mPa.s or less, more preferably from 5 〇 mpa S or more to 500,000 mPa·s or less in view of coatability. Further, the composition forming the n-type diffusion layer may contain other additives. As another additive, the metal which reacts easily with the said glass powder is mentioned, for example. The composition in which the n-type diffusion layer is formed is applied onto a semiconductor substrate, and subjected to a high temperature, and is classified into an n-type layer, but at this time, glass is formed on the surface. The glass is immersed in an acid such as hydrofluoric acid and removed, but it is difficult to remove __ depending on the _' of the glass. In this case, by adding metals such as Ag 'Mn, Cu, Fe, Ζη, and Si in advance, the glass can be easily removed after acid cleaning, and it is selected from the use of 201214742 38920pif g Sl Cu, Fe. At least one of 'Zn and Μη, more preferably at least one selected from the group consisting of Ag, Si and ζη, particularly preferably Ag. The content ratio of the above metal is preferably adjusted depending on the type of the glass or the type of the metal, and is generally relative to the glass powder. The content ratio of the above metal is preferably 0.01% by mass or more to 1% by mass or less. Further, the above metal can be used in the form of a metal monomer or a metal oxide. &lt;Composition for forming a p-type diffusion layer&gt; The composition for forming a p-type diffusion layer of the present invention includes a broken end (machi, sometimes referred to simply as "glass_end") and a fraction containing at least the acceptor 2 The quality 'in turn, considering the coating property, etc., may also contain other additives as needed. Here, the composition for forming the P-type diffusion layer means that the receptor-containing glass frit powder is contained, and for example, the (four) tree substrate is subjected to thermal (10) calcination/sintering to thermally diffuse the above-mentioned acceptor element. Forming a material of the ρ 3 release layer. By using the present invention to form a Ρ-type diffusion layer, the step λ is formed to form a ρ35 diffusion layer # step and forming an ohmic contact step =, thereby expanding the pair for forming an ohmic contact. The selection of the electrode material is based on the selection of the electrode structure. For example, when silver or the like is low-resistance to the electrode, the film thickness can be reduced to a thickness of (4). Further, it is required to be formed on the entire surface. The ^/1 (four) pole is partially opened in the same manner. By forming a film or a comb shape or the like as described above, the internal stress in the dream substrate and the occurrence of the clock curvature of the substrate are suppressed, and the surface is formed into a p-type. Therefore, the composition of the present invention for forming a ruthenium-type diffusion layer is applied to the present invention, and the internal stress generated in the substrate and the generation of the ruthenium generated in the method widely used in the method of the first widely used method are as previously described. The method adopted is: Brushing and then calcining it to obtain an ohmic contact while making the n-type diffusion layer into a +plastic diffusion layer. Further, since the acceptor component in the glass powder is hardly suppressed in the calcination, the P-type diffusion layer is suppressed. It is formed by the generation of volatile gas to the outside of the volatilization domain. The reason is considered to be due to the combination of the acceptor component with the last $ element or the lead to the glass, so it is difficult to form When the glass powder contained in the composition of the type of diffusion layer has a r I content of 1% by mass or more and 90% by mass or less, the glass layer core formed on the p-type diffusion layer may be interposed. Further, the diffusion of 疋素, the formation of the p-type diffusion layer is sufficiently performed. In the present invention, the so-called expansion of the p-type diffusion layer for "forming a p-type diffusion layer" is added to the The total time required for the removal of the glass layer on the day. Accordingly, by short expansion ==. The glass layer of the type of diffusion layer is shortened by shortening the glass powder used for the surgical body. The type of diffusion can be formed into a doped tree substrate to form a p-plane - for example, B (4), A1 (Sho), and (3) (recorded). It is possible to enumerate (4)% of the substances in the powder to the receptor-containing substance, which can be cited as Al2〇3*Ga2〇3, preferably 21 201214742 38920pif from at least B2O3, Al2〇3 and Ga2〇3 One. Further, the glass powder containing the acceptor element can be adjusted in order to adjust the melting ratio, the softening temperature, the glass transition temperature, the chemical durability, and the like. It is preferred to further include the components described below. Examples of the glass component substance include SiO 2 , K 20 , Na 20 , Li 20 , BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, T120, SnO, Zr02, Mo03, La203, Nb205, Ta205, Y203, and Ti02. Ge02, Te02, Lu203, etc., preferably at least one selected from the group consisting of SiO2, K20, Na20, Li20, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, TI2O, SnO, Zr〇2, and M0O3 . Specific examples of the glass powder containing the acceptor element include a system including both the above-described acceptor element-containing substance and the above-described glass component substance. The B203-SiO 2 system (the substance containing the acceptor element - the glass component) The order of the substance is described as 'the same as the following', the B2OrZnO system, the B2〇3-Pb〇 system, the B2〇3 single system, and the like, including B2〇3 as a system containing a substance of an acceptor element, and the Al203-Si〇2 system including Al2〇. (3) As a system containing a substance of an acceptor element, a Ga20rSiO2 system or the like includes a glass powder such as Ga203 as a system containing a substance of an acceptor element. Further, the glass powder may be a glass powder containing two or more kinds of substances containing an acceptor element, such as the A1203-B203 system and the Ga203-B203 system. In the above, a glass comprising one component or a composite glass comprising two components is exemplified, but a composite glass of three or more components such as a B203-SiO 2 - Na 20 system may be used as needed. 22 201214742 38920pif The content of the material of the test towel is reasonable to set the ratio. The temperature is the same as the temperature and the chemical is the same as the longness. The best is::; The softening temperature of the glass is diffused and processed γ·; the shape of the powder as a lang powder can be exemplified by a block shape, a plate shape, and a scale ##, which is made into a heart-shaped sputum, a material-like flat shape, and a sac The composition of the 15 type diffusion layer is substantially spherical, flat, and ί. It is preferably 50 or less. When the particle size of the broken glass powder is used, it is easy to obtain a glass powder having a particle size of less than or equal to the size of the film; the particle size of the ^2 glass powder is more reasonable. Further, the lower limit is not particularly limited, but it is preferably = where the particle diameter of the glass indicates the average particle diameter, which can be etched by the laser scattering method (5) (four) ing acti〇nme_^

Size chstnbution)測定裝置等來測定。 含有文體兀素的破璃粉末是藉由以下的步驟來製作。 首先,稱量原料並將其填充至坩堝令。坩堝的材質可 ,舉氧倾、石英、碳等,可考慮熔融溫 又、環丨兄、與熔融物質的反應性等而適宜選擇。 ,其次’藉由電爐以對應於玻璃組成的溫度進行加熱而 製成熔液。此時’較理想的是以使熔液變得均自的方式進 23 201214742 38920pif 行攪拌。 繼而’使所獲得的溶液流出至氧化鍅基板或碳基板等 上而將熔液玻璃化。 最後,粉碎玻璃而形成粉末狀。粉碎可應用噴射磨機、 珠磨機、球磨機等公知的方法。 ^基於塗佈性、施體元素的擴散性、不要的玻璃的蝕刻 性等觀點的考量,形成P型擴散層的組成物中的含有受體 元素的玻璃粉末的含有比率為i質量%以上至90質量7以 下,理想的是5質量%以上至70質量%以下;進而基於充分 地表示出低表面阻抗的觀點以及在蝕刻處理中不對基板、止 的浸潰時間的觀點而言,含有受體元素的玻= =,比率更理想的是1Q質量%以上至3Q質量%以下。若 末的含有比率為9G質量%以上,不要 =處理變難4麵粉末的対比率小於的 又體對基板的擴散性及塗佈性降低。 、里0 另外,考慮狀體元素對基板的擴散性 ==含二rr物質的 :散層的組成物中添 成P型擴散層的表面片電阻為—定值以不降=已形 以下,將描述分散介質。 降低。Size chstnbution) Measurement device or the like to measure. The broken glass powder containing the morpheme is produced by the following steps. First, weigh the ingredients and fill them to the order. The material of the crucible can be selected from the group consisting of oxygen, quartz, carbon, etc., and can be appropriately selected in consideration of the melting temperature, the reactivity of the ring, and the reactivity with the molten material. Next, the molten metal is heated by a temperature corresponding to the glass composition by an electric furnace. At this time, it is preferable to carry out the stirring in such a manner that the melt becomes uniform. Then, the obtained solution is allowed to flow out onto a ruthenium oxide substrate or a carbon substrate or the like to vitrify the melt. Finally, the glass is pulverized to form a powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization. The content ratio of the glass powder containing the acceptor element in the composition of the P-type diffusion layer is i% by mass or more based on the viewpoints of the coating property, the diffusibility of the donor element, the etching property of the unnecessary glass, and the like. 90 mass 7 or less, preferably 5% by mass or more and 70% by mass or less; further, based on the viewpoint of sufficiently exhibiting a low surface resistance and the viewpoint of not immersing the substrate and the immersion time in the etching treatment, the receptor is contained The glass of the element ==, and the ratio is more preferably 1% by mass or more to 3% by mass or less. When the content ratio of the final product is 9 G% by mass or more, it is not necessary to treat the diffusing property and the coating property of the substrate which is less than the 対 ratio of the hardened four-sided powder. In addition, consider the diffusivity of the elemental element on the substrate == the material containing the rr material: the surface sheet resistance of the P-type diffusion layer added to the composition of the dispersed layer is - fixed value is not lowered = already below the shape, The dispersion medium will be described. reduce.

形成Ρ型擴散層的组成物中的分 :成η型擴散層的組成物中的分散介二::使用與 ㈣範圍亦相同。形成ρ型擴散層的組成物中=有U 24 201214742 38920pif 考慮塗布性和受體濃度來決定的。 而且’考慮塗佈性’形成p型擴散層的組成物的黏度 較佳為10 mPa.S以上至1000000 mPa.S以下,更佳為50 mPa,S 以上至 500000 mPa.S 以下。 &lt;η型擴散層及太陽能電池元件的製造方法&gt; 接著’參照圖1 ( 1)至圖1 ( 6)來對本發明的η型擴 散層及太陽能電池元件的製造方法進行說明。圖1 (1)至 圖Η6)是概念性地表示本發明的太陽能電池元件的製造 步驟的一例的模式剖面圖。於以下的圖式中,對相 構 成要素標註同樣符號。 圖1 (1)中,對作為Ρ型半導體基板1〇的矽基板賦 予鹼性溶液來去除損壞層,並藉由蝕刻而獲得紋理構造。 詳細而言,利用20質量%苛性鈉去除自鑄錠進行切片 時所產生的矽表面的損壞層。繼而,利用丨質量%苛性鈉與 質量%異丙醇的混合液進行㈣,形成紋理構造(圖中 省略紋理構造的記載)。太陽能電池元件藉由錢光面(表 面)側形成紋理構造’而可促進光學侷限效應, 率化。 圖1 (2)中,將上述形成η型擴散層的組成物塗佈於 Ρ型半導體基板10的表面即成為受光面的面上,以形成了 形成η型擴散層的組成物層⑴本發明中,塗佈方法並益 ,例如有印概、旋塗法、毛刷塗佈、噴霧法、刮刀 凌、輥塗機法、噴墨法等。 上述形成η型擴散層的組成物的塗佈量並無特別限 25 201214742 38920pif 制。例如,作為玻璃粉末量,可設定為001 g/m2〜1 g/m2, 較佳為 0. 015 g/m2〜〇. 15 g/m2。 再者’依據形成η型擴散層的組成物的組成,在有必 要的情況下,可於塗佈後,進行使組成物中所含有的溶劑 揮發的乾燥步驟。於此情況下,於8(TC〜300°C左右的溫 度下,當使用加熱板時乾燥1分鐘〜10分鐘,當使用乾燥 機等時乾燥10分鐘〜3〇分鐘左右。上述乾燥條件依存“ 形成η型擴散層的組成物的溶劑組成,於本發明 主 別限定於上述條件。 、 芦本發明的製造方法時,背面的〆型擴散 層)14的製造方法並不限定於藉由銘將η 任變成Ρ型擴㈣的方法,亦可_先前公知的 A 7大製造方法的選擇項。因此,例如可賦予 ^場層14删等第13族的元素的組成物13來形成高濃度 散層的組成物層n η型擔 知的連續爐、分批式=擴韻12。熱擴散處理可應用公 境亦可適宜調整成;氣、氧;外氮:散處理時的爐内環 -分鐘〜6G分鐘,更佳如,可設定 26 201214742 38920pif 由於所形成的n型擴散層12的表面形成有鱗酸玻璃等 玻璃層(未圖示)’故藉由蝕刻以去除上述磷酸玻璃。蝕刻 可應用浸潰於氫氟酸等酸中的方法、浸潰於苛性鈉等鹼中 的方法等公知的方法。 如圖1 (2)及圖1 (3)所示,使用本發明的形成η 型擴散層的組成物11而形成η型擴散層12的本發明的η 型擴散層的形成方法中,於所期望的部位形成!!型擴散層 12,不於背面或側面形成不需要的η型擴散層。 因此,藉由先前廣泛採用的氣相反應法來形成η型擴 散層的方法中,用於去除形成於側面的不需要的η型擴散 層的側蚀步驟是必須的’然而,依據本發明的製造方法, 不需要側蝕步驟,從而使步驟簡單化。 另外,於先前的製造方法中,必需將形成於背面的不 需要的η型擴散層轉換成ρ型擴散層,作為上述轉換方法, 採用如下的方法:於背面的η型擴散層上塗佈作為第13 族元素的鋁的膏狀物’並進行煅燒’使鋁擴散至η型擴散 層而將η型擴散層轉換成ρ型擴散層。於上述方法中,為 了充分地將η型擴散層轉換成ρ型擴散層,進而形成ρ+ 層的南 &gt;辰度電場層,而需要某種程度以上的叙量,因此必 需將鋁層形成得較厚。然而’鋁的熱膨脹係數與用作基板 的矽的熱膨脹係數相差較大,因此於煅燒及冷卻的過程 中’在石夕基板中產生較大的内部應力’而成為矽基板的翹 曲的原因。 上述内部應力對結晶的結晶粒界(crystal grain 27 201214742 38920pif b_dai:y)造成損傷,從而導致電力損錢大的問題。另 外,翹曲於模組製程中的太陽能電池元件的搬送、或者與 被稱為分支線路(tabwire)的銅線的連接過程中,容易使 兀件破知。近年來’由於切片加工技術的提高,因此石夕基 板的厚度正被薄型化,進而存在猶更加容易破裂的傾向。 據本發明的製造方法,秘背面形成不需要 ==而不必他層變厚。其結果,可_==^ 。的產生或翹曲。結果,可抑制電力損失的增大、 或元件的破損。 戶發明的製造方法時’背面的ρ+型擴散 的製造方法並不限定於藉由細 放層轉換成ρ型擴散層的方法,亦可採用先前公知 勺任何方法,拓展了製造方法的選擇項。例如,也可以利 用本發明的形成Ρ型擴散層的組成物,來形成Ρ+型擴散層。 述般’用於背面的表面電極2G的材料並不 的紹,例如可應用Ag(銀)或Cu(銅)等, ^面^極2〇的厚度亦可比先前的厚度更薄地形成。 !中’於η型擴散層12上形成抗反射膜16。 是應用公知的技術而形成。例如,當抗反射膜 為氮化销時,藉由將卿與呢的混合氣體作為原 2電Ϊ化學氣相沈積(Che&quot;1—卿沉Dep〇siti〇n,CVD ) 二^ ’氫於結晶中擴散’到不參細原子之鍵 、 即懸鍵(dangling bond)與氫鍵結,而使缺The component in the composition forming the Ρ-type diffusion layer: the dispersion in the composition of the η-type diffusion layer: the use is the same as the range of (4). In the composition forming the p-type diffusion layer = U 24 201214742 38920pif is determined in consideration of coating properties and receptor concentration. Further, the viscosity of the composition which forms the p-type diffusion layer in consideration of applicability is preferably 10 mPa·s or more and 1,000,000 mPa·s or less, more preferably 50 mPa or more, and S or more and 500,000 mPa·s or less. &lt;Method for Producing η-Type Diffusion Layer and Solar Cell Element&gt; Next, a method of manufacturing the n-type diffusion layer and the solar cell element of the present invention will be described with reference to Figs. 1(1) to 1(6). Fig. 1 (1) to Fig. 6) are schematic cross-sectional views conceptually showing an example of a manufacturing procedure of a solar cell element of the present invention. In the following figures, the same components are denoted by the same symbols. In Fig. 1 (1), an alkaline solution is applied to a tantalum substrate as a tantalum-type semiconductor substrate 1 to remove a damaged layer, and a texture structure is obtained by etching. Specifically, the damaged layer of the crucible surface generated by slicing from the ingot was removed using 20% by mass of caustic soda. Then, (4), a mixed structure of 丨 mass% caustic soda and mass% isopropyl alcohol is used to form a texture structure (the description of the texture structure is omitted in the figure). The solar cell element can be optically confined and accelerated by forming a texture structure on the side of the light side (surface). In the first embodiment, the composition for forming the n-type diffusion layer is applied to the surface of the Ρ-type semiconductor substrate 10, that is, the surface on which the light-receiving surface is formed, to form a composition layer (1) for forming an n-type diffusion layer. Among them, the coating method is advantageous, for example, a printing method, a spin coating method, a brush coating method, a spray method, a doctor blade method, a roll coater method, an inkjet method, and the like. The coating amount of the composition for forming the n-type diffusion layer is not particularly limited to 25 201214742 38920pif. For example, the amount of the glass powder may be set to 001 g/m 2 to 1 g/m 2 , preferably 0.15 g/m 2 to 〇 15 g/m 2 . Further, depending on the composition of the composition forming the n-type diffusion layer, if necessary, a drying step of volatilizing the solvent contained in the composition may be carried out after coating. In this case, it is dried at a temperature of about TC to 300 ° C for 1 minute to 10 minutes when using a hot plate, and dried for about 10 minutes to about 3 minutes when using a dryer or the like. The above drying conditions depend on " The solvent composition of the composition forming the n-type diffusion layer is mainly limited to the above conditions in the present invention. In the manufacturing method of the invention of the invention, the method for producing the back-type germanium-type diffusion layer 14 is not limited to The method of η is Ρ-type expansion (4), and may be an option of the previously known A 7 large manufacturing method. Therefore, for example, the composition 13 of the element of the 13th group may be imparted to the field layer 14 to form a high concentration dispersion. The layer of the layer n η type of continuous furnace, batch type = expansion rhyme 12. Thermal diffusion treatment can be applied to the public environment can also be adjusted to; gas, oxygen; external nitrogen: furnace ring when the treatment - Minutes to 6G minutes, more preferably, can be set 26 201214742 38920pif A glass layer (not shown) such as slaked glass is formed on the surface of the formed n-type diffusion layer 12, so the phosphoric acid glass is removed by etching. It can be applied to the side of acid such as hydrofluoric acid. A known method such as a method of immersing in a base such as caustic soda. As shown in Fig. 1 (2) and Fig. 1 (3), the n-type diffusion layer is formed by using the composition 11 for forming an n-type diffusion layer of the present invention. In the method for forming an n-type diffusion layer of the present invention, the formation of the !! type diffusion layer 12 does not form an unnecessary n-type diffusion layer on the back surface or the side surface. Therefore, the gas widely used previously In the method of phase reaction to form an n-type diffusion layer, a side etching step for removing an unnecessary n-type diffusion layer formed on the side surface is necessary. However, according to the manufacturing method of the present invention, a side etching step is not required. Further, in the prior manufacturing method, it is necessary to convert an unnecessary n-type diffusion layer formed on the back surface into a p-type diffusion layer, and as the above-described conversion method, the following method is employed: n-type on the back surface Coating a paste of aluminum as a Group 13 element on the diffusion layer and performing calcination to diffuse aluminum to the n-type diffusion layer and convert the n-type diffusion layer into a p-type diffusion layer. In the above method, in order to sufficiently N-type diffusion layer Switching to a p-type diffusion layer, and then forming a south &gt; initial electric field layer of the ρ+ layer, requires a certain degree of or more, so it is necessary to form the aluminum layer thicker. However, the thermal expansion coefficient of aluminum is used as The thermal expansion coefficient of the crucible of the substrate differs greatly, so that during the process of calcination and cooling, 'a large internal stress is generated in the stone substrate', which becomes the cause of the warpage of the crucible substrate. The above internal stress acts on the crystal grain boundary of the crystal. (crystal grain 27 201214742 38920pif b_dai:y) causes damage, resulting in a large power loss. In addition, the warpage of solar cell components in the module process, or copper called a tabwire In the process of connecting the wires, it is easy to break the pieces. In recent years, the thickness of the Shihki plate has been thinned due to the improvement of the slicing technology, and there is a tendency that it is more likely to be broken. According to the manufacturing method of the present invention, the formation of the secret back does not require == without having to thicken his layer. The result is _==^. Produced or warped. As a result, an increase in power loss or breakage of the element can be suppressed. In the manufacturing method of the invention, the manufacturing method of the ρ+ type diffusion on the back surface is not limited to the method of converting the fine gradation layer into the p-type diffusion layer, and any method of the prior art spoon can be used to expand the selection method of the manufacturing method. . For example, the yttrium-type diffusion layer can also be formed by using the composition for forming a ruthenium diffusion layer of the present invention. The material used for the back surface electrode 2G is not limited. For example, Ag (silver) or Cu (copper) or the like can be applied, and the thickness of the surface electrode 2 can be formed thinner than the previous thickness. The anti-reflection film 16 is formed on the n-type diffusion layer 12. It is formed by applying well-known techniques. For example, when the anti-reflection film is a nitriding pin, the mixed gas of the sulphur and the sulphur is used as the original 2-electrode chemical vapor deposition (Che&quot;1 - Dep〇siti〇n, CVD) Diffusion in crystals to bonds that do not refer to fine atoms, that is, dangling bonds and hydrogen bonds,

28 S 201214742 38920pif 陷鈍化(氫鈍化)。 體而s ’於上述混合氣體流量比為〇 〇5 .反應至的壓力為13.3Pa(〇.lT〇rr)〜266 6 Pa(2 時的溫度為300。。〜55〇ΐ ’利用電漿放電的頻 率為100 kHz以上的條件下形成。 圖1 (5)中,於表面(受光面) =印r印刷塗佈表面電極用金屬膏二其乾燥, 子18。表面電極用金屬膏是將⑴金屬粒 ^朗粒子作為必需成分,且視需要包括⑻ 月曰拈合劑,以及(4)其他添加劑等。 極Γ上述背面的1^濃度電場層14上亦形成背面電 才20。如上所述,本發明中背面 法並無特別限定。例如,塗佈包括才質或形成方 而雪虹2 孟师包括鋁、銀或銅等金屬的背 為·:J ί使其乾燥’亦可形成背面電極20。此時, 呈Γ元件間的連接,亦可於背面的-部分上 ° 又置銀電極形成用銀膏。 · 側,作為二:燒幾秒〜幾分鐘,則於表面 W作為絕緣膜的抗反射膜16因電極 回 破螭粒子而熔融,進而石夕10表 3有的 ㈣H=t^]8蝴㈣被導通。將 對表面電極18的形狀進行說明。表面電極18是由匯 29 201214742 38920pif 流條電極30、以及與上述匯流條電極3〇交叉的指狀電極 32所構成。圖2 (A)是自表面觀察到的將表面電極18設 定為包括匯流條電極30、以及與上述匯流條電極3〇交叉 的才a狀電極32所構成的太陽能電池元件的平面圖,圖2 (B)是將圖2 (A)的一部分擴大表示的立體圖。 此種表面電極18,可藉由例如上述金屬膏的網版印 刷、或者電極材料的鍍敷、於高真空中利用電子束加熱的 電極材料的蒸鍍等方法而形成。眾所周知,包括匯流條電 極30與指狀電極32的表面電極18 一般是用作受光面側的 電極,可應用受光面側的匯流條電極及指狀電極的公知 形成方法。 &lt;P型擴散層及太陽能電池元件的製造方法〉 接著,對本發明的p型擴散層及太陽能電池 造方法進行說明。 们展 首先,作為P型半導體基㈣絲板賦予驗性溶液 來去除相壞層’並藉由_而獲得紋理構造。此步驟,盘 於η型擴散層的形成同樣—邊參照圖1(1)—邊說明步驟: 其次,於三氣氧㈣(P〇Cl3)、氮氣、氧氣的 ,環境下以〜謂。C進行幾十分鐘的處理 ^ η型擴散層。此時,於使用三氯氧化彻境的方法 :,麟的擴散亦職側面及f面,η型擴散層不 於 表面,而且亦形成於侧面n因此 成於 η型擴散層而實施側蝕刻。 ‘、、了去除側面的 然後’將上述形成Ρ型擴散層的組成物塗佈於ρ型半 201214742 38920pif 導體基板的背面即不是受光面的n型擴散層的面上。本發 明中’塗佈方法並無限制,例如有印刷法、旋塗法、毛刷 塗佈、喷霧法、到刀法、輥塗機法、噴墨法等。 上述形成p型擴散層的組成物的塗佈量並無特別限 制。例如,作為玻璃粉末的塗佈量,可設定為〇 〇5 g/m2 〜1. 05 g/m2 ’ 較佳為 〇. 〇65 g/m2〜〇. 〇2 g/m2。 再者,依據形成p型擴散層的組成物的組成,在有必 於塗佈後,進行使組成物中所含有的溶劑 揮㈣乾無步驟。於此情況下,於m:〜3〇(rc左右的严 1分鐘〜1G分鐘,當使用乾燥 機^杨H)分鐘〜3G分鐘左右。上述乾燥條件依存於 形成η型擴散層的組成物的溶齡成,於本發明中並 別限定於上述條件。 將^佈。有上述开》成Ρ型擴散層的組成物的半導體基 ,反遍於_C〜1200°C下進行熱處理。藉由此熱處理,使 素朝半導體基板+擴散,而形成〆型擴散層。熱處 ί =用公知的連續爐、分批式爐等。另外,熱擴散處理 時的爐内環境村適宜娜成空氣、氧氣、氮氣等。 ,擴散處_間可對應於形成ρ型擴散層的組成物中 =有的受體元素的含有率等而適宜選擇。例如,可設定 為1分鐘〜+6G分鐘,更佳為2分鐘〜30分鐘。 因於P+型擴散層的表面形成有玻璃層,故藉由餘刻而 =上述玻璃。軸可應用浸潰於氫氟酸等酸巾的方法、 改潰於苛_料中的方法#公知的方法。 31 201214742 38920pif 此處’若使用本發明之玻璃粉末的含有比率為1質量% 以上至90質量%以下的範圍的形成p型擴散層的組成物, 形成於P型擴散層上的玻璃層在短時間被去除。 另外,於先前的製造方法中,於背面印刷鋁膏,然後 對其進行锻燒’使η型擴散層轉變成p+型擴散層的同時獲 得歐姆接觸。但是,由鋁膏所形成的鋁層的導電率低,為 了降低片電阻,通常形成於整個背面的鋁層於煅燒後必需 具有10 μπι〜20 μιη左右的厚度。進而,若形成如上述般 厚的鋁層,則由於矽的熱膨脹係數與鋁的熱膨脹係數相差 較大,因此於锻燒及冷卻的過程中,在矽基板中產生較大 的内部應力,而成為翹曲的原因。 存在上述内部應力對結晶的結晶粒界造成損傷,電力 損失變大的課題。另外,躺於模組製程中的太陽能電池 元件的搬送、或者與被稱為分支祕(tab wke)的銅線的 連接過,中’容易使元件破損。近年來,由於切片加工技 術的提南’因切基板的厚度正被薄魏,而存在元件更 加容易破裂的傾向。 ,、 m像本發明的製造方法,於稭由上述本發马 幵=成P型舰層敝成物將n賴散層轉換成p+型擴肩 後,在上述〆型擴散層上另外設置電極。因此,用於, 的電極的材料並不限定於紹,例如可應用Ag (銀)或 (鋼)等,月面的電極的厚度亦可比先前的厚度更薄知 = 另外亦無需形成於整個面上。因此,可減少於㈣ 、卻的過程巾所產生的⑦基板巾的㈣應力及勉曲。 32 201214742 38920pif 刻去除玻璃後,於上述所形成的n型擴 邊It”膜。此步驟’與於11型擴散層的形成同 樣邊參妝圖1 (4) 一邊說明步驟。 ίί面(受光面)的抗反難上,藉由網版印刷法印 刷=佈表面f细金屬膏並使其錢,㈣絲面電極。 it ;«/驟,與於n型擴散層的形成同樣 邊說明步驟。 ‘、、、口 i… 、、接著’於上述背面的P+型擴散層上亦形成背面電極0 上述背面電極_成步驟,也與在n型擴散層的說明相同。 對上述電極進行煅燒,製成太陽能電池元件。此步驟, 與於η型擴散層的形成同樣—邊參照圖丨(6)—邊說明 驟。 再者,於上述的ρ型擴散層及太陽能電池元件的製造 方法中,為了於作為Ρ型半導體基板的矽基板上形❹型 ,散層,而使用三氣氧化磷(P()cl3)、氮氣及氧氣的混合 氣體,但亦可使用上述的形成n型擴散層的組成物來形成 型擴散層。 於將上述形成η型擴散層的組成物用於n型擴散層的 形成的方法中,首先,於作為p型半導體基板的表面的受 光面塗佈形成η型擴散層的組成物,於背面塗佈本發明的 形成Ρ型擴散層的組成物,然後於βΟΟΙκΚΟΟί下進行 熱擴散處理。藉由上述熱擴散處理,施體元素於表面向ρ 型半導體基板中擴散而形成η型擴散層,受體元素則於背 面擴散而形成ρ+型擴散層。除上述步驟以外,藉由與上述 33 201214742 38920pif 方法相同的步驟來製作太陽能電池元件。 於上述中,對在表面形成n型擴散層,在背面形成p +型擴散層,進而在各個層上設置有表面電極及背面電極 的太陽能電池元件進行了說明,但若使用本發明的形成η 型擴散層的組成物及形成ρ型擴散層的組成物,則亦可製 作背接觸型(back contact)的太陽能電池元件。 背接觸型的太陽能電池元件是將電極全部設置於背面 而增大受光面的面積的太陽能電池元件。即,於背接觸型 +的太陽能電池元件中,必需於背面形成n型擴散部位及p 型擴政部位兩者來形成ρη接合構造。本發明的形成n型 擴政層的組成物及形成ρ型擴散層的組成物,可僅於特定 的部位形成η型擴散部位及ρ型擴散部位,因此可較佳地 應用於背接觸型的太陽能電池元件的製造。 再者,藉由參照而將日本申請案20ΗΜ44203號及曰 本申。月案2010-144204號中所揭示的全部内容引用於本崎 明書中。 ' 本說明書帽記載輯有文獻、專财請案及技術規 疋以與具體地且個別地記載藉由參照而引用各個文獻、 專利申請案及技術規格時相同的程度,藉由參昭而引用於 本說明書中。 、 [實例] -此^下,更具體地說明本發明的實例,但本發明並不受 廷些實例限制。再者,只要事先無特別記述,則化 錢用試劑。另外,只要事先無說明,則「%」表示「質量 34 201214742 38920pif [實例ΙΑ] 使用自動乳绰Uomr)混練農置(kneadingmachine) 將ΡΛ-Ζηο體系玻璃⑽5 : 3〇%、Zn〇 : 7〇%)粉末2〇 g與乙基纖維素G.G8 g、乙酸2·(2·丁氧基乙氧基)乙醋2 14 g加以混合並膏化’以調製成玻璃含有率9_形成η型擴 散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到ρ型 石夕基板表©上,並且在15〇。(:的電熱板上錢5分鐘。隨 後,在設定為1〇〇〇〇C的電爐中進行熱擴散處理1〇分鐘。 然後,將基板浸入2· 5%的氫氟酸中90分鐘,以移除玻璃 層,進行流水洗務。之後,進行乾燥。 在塗佈了形成η型擴散層的組成物的那一侧的表面的 片電阻為11 Ω/口,Ρ(填)擴散而形成了 11型擴散層。背面 的片電阻為1000000 Ω/□以上的無法測定的片電阻,而被 判定實質上沒有形成η型擴散層。 並且’片電阻是使用三菱化學(公司)製的Loresta_Ep MCP-T360型的低電阻率計藉由四探針法所測定的。 [實例2A] 使用自動乳蛛混練裝置將P2〇5_Zn〇體系玻璃(p2〇5 : 30%、ZnO : 70%)粉末8 g與乙基纖維素〇. g、乙酸 2-(2-丁氧基乙氧基)乙酯4. 27 g加以混合並膏化,以調製 成玻璃含有率65%的形成η型擴散層的組成物。 接著,通過絲網印刷’將所調製的膏狀物塗佈到ρ型 35 201214742 38920pif 石夕基板表面上,並且在150。(:的電熱板上絲5分鐘。隨 後,在設定為i,c的電爐中進行熱擴散處理1()分鐘。 然後,將基板浸人2.5%的氫I酸中4()分鐘,以移除玻璃 層,進行流水洗務。之後,進行乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為12 Ω/_擴散而形成了 η型擴散層。背面 的片電阻為觸_0 Ω/□以上的無法測定的片電阻,而被 判定貫質上沒有形成η型擴散層。 [實例3Α] 使用自動乳缽混練裝置將Ρ2〇5_Ζη〇體系玻璃(ρ2〇5 : 30%、211〇:70%)粉末6莒與乙基纖維素〇91§、乙酸2_(2_ 丁氧基乙氧基)乙酯23. 1 g加以混合並膏化,以調製成玻 璃含有率20%的形成η型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到ρ型 石夕基板表面上,並且在150°C的電熱板上乾燥5分鐘。隨 後,在設定為l〇〇〇°C的電爐中進行熱擴散處理分鐘。 然後’將基板浸入2. 5%的氫氟酸中30分鐘,以移除玻璃 層’進行流水洗滌。之後,進行乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為11 Ω/口,Ρ(磷)擴散而形成了 η型擴散層。背面 的片電阻為1000000 Ω/口以上的無法測定的片電阻,而被 判定實質上沒有形成η型擴散層。 [實例4Α] 使用自動乳砵混練裝置將P2〇rZnO體系玻壤(ρ2〇5 ·28 S 201214742 38920pif Buffer passivation (hydrogen passivation). The volume of the mixed gas flow rate is 〇〇5. The pressure to be reacted is 13.3 Pa (〇.lT〇rr) to 266 6 Pa (the temperature at 2 hours is 300.. ~55〇ΐ 'utilization of plasma The discharge frequency is formed under the condition of 100 kHz or higher. In Fig. 1 (5), the surface electrode (light-receiving surface) is printed on the surface electrode with a metal paste, which is dried, sub-18. The metal paste for the surface electrode is (1) The metal particles are as an essential component, and if necessary, include (8) a ruthenium chelating agent, and (4) other additives, etc. The back surface electric power layer 14 is also formed on the first surface concentration electric field layer 14 of the above-mentioned back surface. The back surface method in the present invention is not particularly limited. For example, the coating includes a genus or a forming side, and the back of the sleek 2 smite including a metal such as aluminum, silver or copper is made of: In this case, the connection between the elements is performed, and the silver paste for silver electrode formation can also be placed on the back portion - the side, as the second: burning for a few seconds to several minutes, the surface W is insulated. The anti-reflection film 16 of the film is melted by the electrode breaking back the ruthenium particles, and further, the stone eve 10 has a (four) H= The shape of the surface electrode 18 will be described. The surface electrode 18 is composed of a sink 29 201214742 38920pif flow bar electrode 30 and a finger electrode 32 intersecting the bus bar electrode 3A. 2(A) is a plan view of the solar cell element formed by the surface electrode 18 and including the bus bar electrode 30 and the a-shaped electrode 32 intersecting the bus bar electrode 3A, as seen from the surface, FIG. 2 (FIG. 2 (FIG. 2) B) is a perspective view showing a part of Fig. 2(A) in an enlarged manner. Such a surface electrode 18 can be heated by electron beam in a high vacuum by, for example, screen printing of the above metal paste or plating of an electrode material. It is known that the electrode material is vapor-deposited or the like. It is known that the surface electrode 18 including the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light-receiving surface side, and the bus bar electrode and the finger electrode on the light-receiving surface side can be applied. A method for forming a P-type diffusion layer and a solar cell element will be described. Next, a p-type diffusion layer and a method for fabricating a solar cell of the present invention will be described. The conductor base (four) wire plate is given an inspective solution to remove the phase-defective layer' and the texture structure is obtained by _. In this step, the formation of the n-type diffusion layer is the same as that of FIG. 1 (1) - the following steps: In the environment of tris-oxygen (4) (P〇Cl3), nitrogen, and oxygen, the treatment is carried out for several tens of minutes in the environment of ~. C. The n-type diffusion layer. At this time, the method of using trichlorooxidation is: The diffusion of the lining is also on the side and the f-plane. The n-type diffusion layer is not on the surface, and is also formed on the side surface n so that it is formed on the n-type diffusion layer to perform side etching. ', the side surface is removed and then the above-mentioned formation type The composition of the diffusion layer is applied to the surface of the p-type half 201214742 38920pif conductor substrate, that is, the surface of the n-type diffusion layer which is not the light receiving surface. The coating method in the present invention is not limited, and examples thereof include a printing method, a spin coating method, a brush coating method, a spray method, a knife-to-blade method, a roll coater method, and an ink jet method. The coating amount of the composition for forming the p-type diffusion layer is not particularly limited. For example, the coating amount of the glass powder can be set to 〇 〇 5 g/m 2 〜1. 05 g/m 2 ′ is preferably 〇. 〇 65 g/m 2 〇 〇 2 g/m 2 . Further, depending on the composition of the composition forming the p-type diffusion layer, after the coating is necessary, the solvent contained in the composition is dried. In this case, in m: ~3 〇 (rh around the rig 1 minute ~ 1G minutes, when using the dryer ^ Yang H) minutes ~ 3G minutes or so. The above drying conditions depend on the age of the composition forming the n-type diffusion layer, and are not limited to the above conditions in the present invention. Will ^ cloth. The semiconductor group having the composition of the above-mentioned open type diffusion layer was heat-treated at _C to 1200 °C. By this heat treatment, the germanium is diffused toward the semiconductor substrate to form a germanium-type diffusion layer. Heat ί = Use known continuous furnaces, batch furnaces, etc. In addition, the furnace environment in the furnace during thermal diffusion treatment is suitable for air, oxygen, nitrogen, and the like. The diffusion portion _ can be appropriately selected in accordance with the content of the acceptor element in the composition forming the p-type diffusion layer. For example, it can be set to 1 minute to +6 G minutes, more preferably 2 minutes to 30 minutes. Since the glass layer is formed on the surface of the P + -type diffusion layer, the glass is replaced by the remainder. The shaft can be applied by a method of immersing in an acid towel such as hydrofluoric acid or a method of smashing it into a harsh material. 31 201214742 38920pif Here, if a composition for forming a p-type diffusion layer is used in a range in which the content ratio of the glass powder of the present invention is from 1% by mass or more to 90% by mass or less, the glass layer formed on the P-type diffusion layer is short. Time is removed. Further, in the prior manufacturing method, the aluminum paste was printed on the back side, and then subjected to calcination, and an ohmic contact was obtained while converting the n-type diffusion layer into a p + -type diffusion layer. However, the aluminum layer formed of the aluminum paste has a low electrical conductivity, and in order to lower the sheet resistance, the aluminum layer usually formed on the entire back surface must have a thickness of about 10 μm to 20 μm after calcination. Further, when an aluminum layer having a thickness as described above is formed, since the coefficient of thermal expansion of the crucible differs greatly from the coefficient of thermal expansion of aluminum, a large internal stress is generated in the crucible substrate during the calcination and cooling. The reason for warping. There is a problem in that the internal stress causes damage to the crystal grain boundary of the crystal and the power loss increases. Further, the solar cell element lying in the module process is transported or connected to a copper wire called a tab wke, and the element is easily broken. In recent years, due to the slicing technique, the thickness of the substrate has been thinned, and the element tends to be more susceptible to cracking. , m, according to the manufacturing method of the present invention, after the straw is converted into a p+ type shoulder by the above-mentioned hairpin=P-type ship layer composition, an electrode is additionally disposed on the above-mentioned 〆 type diffusion layer. . Therefore, the material of the electrode used is not limited to, for example, Ag (silver) or (steel) may be applied, and the thickness of the moon electrode may be thinner than the previous thickness. on. Therefore, it is possible to reduce (4) stress and distortion of the 7 substrate towels produced by the process wipes of (4). 32 201214742 38920pif After removing the glass, the n-type expanded-edge It" film formed as described above. This step is the same as the formation of the 11-type diffusion layer, and the steps are explained in Fig. 1 (4). On the anti-disease, the screen printing method prints the cloth surface f fine metal paste and makes it money, (4) the silk surface electrode. It; «/, the same steps as the formation of the n-type diffusion layer. ', , , port i..., and then 'the back surface electrode 0 is also formed on the P + -type diffusion layer on the back surface. The back surface electrode is formed in the same manner as described above for the n-type diffusion layer. In the solar cell element, this step is the same as the formation of the n-type diffusion layer, and is described with reference to FIG. 6(6). Further, in the above-described p-type diffusion layer and method for manufacturing a solar cell element, The ruthenium substrate which is a ruthenium-type semiconductor substrate is formed into a ruthenium type and a dispersed layer, and a gas mixture of phosphorus oxysulfide (P()Cl3), nitrogen gas and oxygen gas is used, but the above-described composition for forming an n-type diffusion layer may also be used. a substance to form a diffusion layer. In the method of forming the n-type diffusion layer, the method of forming the n-type diffusion layer is first applied to the light-receiving surface of the surface of the p-type semiconductor substrate, and the composition of the n-type diffusion layer is applied to the back surface. The composition of the Ρ-type diffusion layer is then subjected to thermal diffusion treatment under β ΟΟΙ κ ΚΟΟ. By the above thermal diffusion treatment, the donor element diffuses into the p-type semiconductor substrate to form an n-type diffusion layer, and the acceptor element is The back surface is diffused to form a p + -type diffusion layer. In addition to the above steps, a solar cell element is produced by the same steps as the above-mentioned 33 201214742 38920pif method. In the above, an n-type diffusion layer is formed on the surface, and p + is formed on the back surface. The type of the diffusion layer and the solar cell element in which the surface electrode and the back surface electrode are provided on each layer have been described. However, when the composition for forming the n-type diffusion layer of the present invention and the composition for forming the p-type diffusion layer are used, A back contact solar cell element can be fabricated. The back contact type solar cell element has all the electrodes disposed on the back side. In the solar cell element of the back contact type +, it is necessary to form both the n-type diffusion portion and the p-type diffusion portion on the back surface to form the ρη junction structure. The composition forming the n-type diffusion layer and the composition forming the p-type diffusion layer can form the n-type diffusion portion and the p-type diffusion portion only at specific portions, and thus can be preferably applied to the back contact type solar cell element. Further, the entire contents disclosed in Japanese Patent Application No. 20-44203 and Japanese Patent Application No. 2010-144204 are hereby incorporated by reference. The specific financial application and technical specifications are to be used in the present specification by the same extent as the specific reference to the respective documents, patent applications and technical specifications by reference. [Examples] - The examples of the present invention are more specifically described, but the present invention is not limited by the examples. Further, if there is no special description in advance, the reagent for the money is used. In addition, as long as there is no explanation in advance, "%" means "mass 34 201214742 38920pif [example ΙΑ] using automatic nipple Uomr) kneading machine (kneading machine) ΡΛ-Ζηο system glass (10) 5 : 3〇%, Zn〇: 7〇 %) powder 2〇g is mixed with ethyl cellulose G.G8 g, acetic acid 2·(2·butoxyethoxy)ethyl vinegar 2 14 g and pasteified to prepare a glass content rate of 9_ to form η The composition of the type of diffusion layer Next, the prepared paste was applied to the p-type slab substrate table by screen printing, and was charged for 5 minutes on a hot plate of 15:. Thermal diffusion treatment was carried out for 1 minute in an electric furnace set to 1 C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer and subjected to running water washing. The sheet resistance on the surface on the side where the composition for forming the n-type diffusion layer was applied was 11 Ω/□, and Ρ (filled) was diffused to form an 11-type diffusion layer. The sheet resistance of the back surface was 1,000,000 Ω. /□ Above the sheet resistance that cannot be measured, and it is determined that substantially no n-type diffusion layer is formed. The resistance was measured by a four-probe method using a low resistivity meter of the Loresta_Ep MCP-T360 type manufactured by Mitsubishi Chemical Corporation. [Example 2A] P2〇5_Zn〇 system glass (p2〇) using an automatic milk spider kneading device 5 : 30%, ZnO: 70%) powder 8 g and ethyl cellulose 〇 g, 2-(2-butoxyethoxy) ethyl acetate 4. 27 g were mixed and pasteified to prepare The composition of the n-type diffusion layer was formed to have a glass content of 65%. Next, the prepared paste was applied by screen printing onto the surface of the p-type 35 201214742 38920pif stone substrate, and at 150. Heat the wire on the hot plate for 5 minutes. Then, perform thermal diffusion treatment for 1 () minutes in an electric furnace set to i, c. Then, immerse the substrate in 2.5% hydrogen acid for 4 () minutes to remove the glass layer. After the flow washing, the drying was performed. The sheet resistance of the surface on the side on which the composition forming the n-type diffusion layer was applied was 12 Ω/_ diffused to form an n-type diffusion layer. In order to touch the unmeasurable sheet resistance of _0 Ω/□ or more, it is determined that the n-type diffusion layer is not formed on the via. 3Α] Using an automatic mortar mixing device, Ρ2〇5_Ζη〇 system glass (ρ2〇5: 30%, 211〇: 70%) powder 6莒 with ethyl cellulose 〇91§, acetic acid 2_(2_butoxy ethoxylate) 23. g of ethyl ester was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 20%. Next, the prepared paste was applied to ρ by screen printing. The surface of the stone substrate was dried on a hot plate at 150 ° C for 5 minutes. Thereafter, heat diffusion treatment was performed for several minutes in an electric furnace set to 10 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer&apos; for running water washing. After that, it is dried. The sheet resistance of the surface on the side on which the composition for forming the n-type diffusion layer was applied was 11 Ω/□, and yttrium (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was judged that the n-type diffusion layer was not substantially formed. [Example 4Α] P2〇rZnO system with glassy soil using an automatic mortar mixing device (ρ2〇5 ·

S 36 201214742 38920pif 30%、ZnO :70%)粉末3 g與乙基纖維素1.02 g、乙酸2-(2- 丁氧基乙氧基)乙醋26. 0 g加以混合並膏化,以調製成玻 璃含有率10%的形成η型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到Ρ型 矽基板表面上,並且在150°c的電熱板上乾燥5分鐘。隨 後,在設定為l〇〇〇°C的電爐中進行熱擴散處理1〇分鐘。 然後’將基板浸入2. 5%的氫IL酸中30分鐘,以移除玻璃 層,進行流水洗滌。之後,進行乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為17 Ω/口,Ρ(磷)擴散而形成了 η型擴散層。背面 的片電阻為1000000 Ω/□以上的無法測定的片電阻,而被 判定實質上沒有形成η型擴散層。 [實例5Α] 使用自動乳缽混練裝置將Ρ2〇5_Ζη〇體系玻璃(h〇5 : 30%、ZnO : 70%)粉末〇. 5 g與乙基纖維素〇. 36 g、乙 酸2-(2-丁氧基乙氧基)乙醋9. 14g加以混合並膏化,以調 製成破璃含有率5%的形成n型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到ρ型 石夕基板表面上,並且在15GX的電熱板上乾燥5分鐘 後,在設定為圆T的電爐中進行熱擴散處理1()分鐘。 J後,將基板浸入2. 5%的氫氟酸令3〇分鐘,以移除 層,進行流水洗滌。之後,進行乾燥。 、 在塗佈了形成η型擴散層的組成物 片電阻為20 Ω/□,:Ρ(磷)擴省㈤… 顺表面的 ⑷鳩政而形成了 η型擴散層。背面 37 201214742 38920pif 的片電阻為1000000 Ω/O以上的無法測定的片電阻,而被 判定實質上沒有形成η塑擴散層。 [實例6Α] 使用自動乳蛛混練裝置將Ρ2〇5_ΖηΟ體系玻璃(ρ2〇5 : 3 0 /ί&gt;、ΖηΟ . 70% )粉末0.3g與乙基纖維素〇.56g、乙酸 2_(2_丁氧基乙氧基)乙S曰14. 1 §加以混合並膏化,以調製 成玻璃含有率2%的形成η型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到ρ型 石夕基板表面上,並且在150°C的電熱板上乾燥5分鐘。隨 後’在設定為1000°C的電爐中進行熱擴散處理1〇分鐘。 然後,將基板浸入2. 5%的氫氟酸中3〇分鐘,以移除玻璃 層’進行流水洗滌。之後,進行乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為56 Ω/口,Ρ(麟)擴散而形成了 η型擴散層。背面 的片電阻為1000000 Ω/□以上的無法測定的片電阻,而被 判定實質上沒有形成η型擴散層。 [比較例1Α] 將雜二氫銨⑽4Η2Ρ〇4)粉末2〇 g、乙基纖維素 與乙酸2-(2-丁氧基乙氧基)乙酿7 g混合並製成膏狀物,以 調製成形成η型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到ρ型 石夕基板表面上,並且在15代的電熱板上乾燥5分鐘 後’在設定為ι_。(:的電爐中進行熱擴散處理1〇分鐘。 然後,將基板浸入氫氟酸中5分鐘,以移除玻璃層,進行 38 201214742 38920pif 流水洗梅、乾燥。 在塗佈了形成η型擴散層的組成物的那一侧的表面的 片電阻為14 Ω/Ε],Ρ⑷擴散而形成了 η型擴散層。狹而, 背面的片電阻為50 Ω/□,在背面也形成了 η型擴散層。 [比較例2Α] 將磷酸二氫敍(戰秘〇4)粉末i g、純水7 g、聚乙 烯醇0.7 g與異_ 1.5 “合並調製成溶液,以調製成 形成η型擴散層的組成物。 接著,通過旋塗機(2000 rpm,30秒)將所調製的溶液 塗佈到P财基板表面上,並且在電熱板上在15代乾燥 5分鐘。隨後,在設定為1000〇C的電爐中進行軌擴散處理 10分鐘。然後,將基板浸入氫氟酸中5分鐘,以移除玻璃 層’隨後用流水洗滌並乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為10 Ω/口 ’ Ρ(磷)擴散而形成了 η型擴散層。然而, 背面的片電阻為100 Ω/□,在背面也形成了 η型&amp;散層。 [比較例3Α] 將 Ρ205-Ζη0 體系玻璃(ρ2〇5 : 3〇%、Ζη〇 : 7〇%)粉末 30 g與乙基纖維素0.06 g、乙酸2-(2-丁氧基乙氧基)乙酯 1.52 g加以混合並膏化,以調製成玻璃含有率95%的形成 η型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到ρ型 矽基板表面上,並且在150〇C的電熱板上乾燥5分鐘。隨 後,在設定為1000°C的電爐中進行熱擴散處理1〇分鐘。 39 201214742 38920pif 然後,將基板浸入2.5%的氫氟酸中90分鐘,以移除玻璃 層。之後,進行流水洗滌、乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為10 Ω/口 ’ Ρ(磷)擴散而形成了 η型擴散層。背面 的片電阻為1000000 Ω/□以上的無法測定的片電阻,而被 判定實質上沒有形成η型擴散層。 [比較例4Α] 將 Ρ205-Ζη0 體系玻璃(Ρ2〇5 : 30%、ΖηΟ : 70%)粉 末〇. 05 g與乙基纖維素〇. 38 g、乙酸2-(2·丁氧基乙氧基) 乙酯9.57 g加以混合並膏化,以調製成玻璃含有率0.5% 的形成η型擴散層的組成物。 接著’通過絲網印刷,將所調製的膏狀物塗佈到ρ型 石夕基板表面上,並且在150°C的電熱板上乾燥5分鐘。隨 後,在設定為1000°C的電爐中進行熱擴散處理10分鐘。 然後,將基板浸入2. 5%的氫氟酸中30分鐘,以移除玻璃 層,進行流水洗條。之後,進行乾燥。 在塗佈了形成η型擴散層的組成物的那一側的表面的 片電阻為186 Ω/口,Ρ(磷)的擴散並不充分。背面的片電阻 為1000000 Ω/□以上的無法測定的片電阻,而被判定實質 上沒有形成η型擴散層。 [實例1Β] 使用自動乳缽混練裝置將B2OrSiOrR2〇 (R: Na、Κ、 Li)系玻璃粉末(商品名稱:TMX-603C,由TokanMaterial Technology Co.,Ltd.生產)20 g與乙基纖維素〇. 〇8 g、乙酸 201214742 38920pif 2:(2-丁氧基乙氧基)乙醋2.14 g加以、思合並膏化,以 成玻璃含有率90%的形成p型擴散層的組成物。 接著,,絲網印刷,以塗佈量成為〇.陶〆般, ^斤魏的膏狀物塗佈到表面形成有n型擴散層的p型石夕 ^板的表面上,並且在15〇。(:的賴板上辆5分鐘 後,在設定為麵。〇:的電爐中進行熱擴散處理ig分鐘。 然後,將基板浸入2. 5%的氫氟酸中90分鐘,以 層,進行流水洗滌、乾燥。 μ 在塗佈了形成Ρ型擴散層的組成物的那一側的表面的 月電阻為30 Ω/口,Β(硼)擴散而形成了 ρ型擴散層。另外, 沒有發生基板的麵曲。 [實例2Β] 使用自動乳缽混練裝置將B2〇rSi(VR2〇 (R . 、κ、 L〇系玻璃粉末(商品名稱:ΤΜχ·6〇3(:,由T〇kanM咖w Technology Co.,Ltd.生產)8 g與乙基纖維素〇 ρ g、乙酸 2-(2-丁氧基乙氧基)乙g旨4.27 g加以混合並膏化,以調製 成玻璃含有率防°/。的形成P型擴散層的組成物。 、 接著,通過絲網印刷,將所調製的膏狀物塗佈到表面 形成有η型擴散層的ρ型矽基板的表面上,並且在15〇义 的電熱板上乾燥5分鐘。隨後,在設定為1〇〇〇。〇的電燐 中進行熱擴散處理10分鐘。然後,將基板浸入2· 5%的&amp; 氟酸中40分鐘,以移除玻璃層,進行流水洗滌、乾^ 在塗佈了形成ρ型擴散層的組成物的那一側的表面的 片電阻為48 Ω/□,:Β(硼)擴散而形成了卩型擴散層。另外, 41 201214742 38920pif 沒有發生基板的麵曲。 [實例3B] 使用自動乳缽混練裝置將B2〇3_Si〇2_R2〇 (R : Na、κ、 Li)系玻璃粉末(商品名稱:TMX_6〇3c,由T〇kanMaterialS 36 201214742 38920pif 30%, ZnO: 70%) powder 3 g and ethyl cellulose 1.02 g, 2-(2-butoxyethoxy)acetic acid 26.0 g were mixed and pasteified to prepare A composition forming an n-type diffusion layer having a glass content of 10%. Next, the prepared paste was applied onto the surface of the ruthenium-type ruthenium substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Thereafter, thermal diffusion treatment was performed for 1 minute in an electric furnace set to 10 °C. Then, the substrate was immersed in 2.5% hydrogen IL acid for 30 minutes to remove the glass layer and subjected to running water washing. After that, it is dried. The sheet resistance of the surface on the side on which the composition for forming the n-type diffusion layer was applied was 17 Ω/□, and yttrium (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was judged that the n-type diffusion layer was not substantially formed. [Example 5Α] Using an automatic mortar mixing device, Ρ2〇5_Ζη〇 system glass (h〇5: 30%, ZnO: 70%) powder 〇. 5 g with ethyl cellulose 〇. 36 g, acetic acid 2-(2) 9 g of butoxyethoxy)acetic acid vinegar was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 5%. Next, the prepared paste was applied onto the surface of the p-type stone substrate by screen printing, and dried on a 15 GX hot plate for 5 minutes, and then subjected to thermal diffusion treatment in an electric furnace set to a circle T. ()minute. After J, the substrate was immersed in 2.5% hydrofluoric acid for 3 minutes to remove the layer and washed with running water. After that, it is dried. In the composition coated with the n-type diffusion layer, the sheet resistance is 20 Ω/□, Ρ(phosphorus) is expanded (5)... The surface is formed by the (4) η-type diffusion layer. The sheet resistance of the back surface 37 201214742 38920pif is an unmeasurable sheet resistance of 1,000,000 Ω/O or more, and it is judged that the η plastic diffusion layer is not substantially formed. [Example 6Α] Using an automatic milk spider mixing device, Ρ2〇5_ΖηΟ system glass (ρ2〇5: 3 0 /ί&gt;, ΖηΟ. 70%) powder 0.3g with ethyl cellulose 〇.56g, acetic acid 2_(2_丁Ethoxyethoxy)ethyl S曰14.1 was mixed and pasteified to prepare a composition forming an n-type diffusion layer having a glass content of 2%. Next, the prepared paste was applied onto the surface of the p-type substrate by screen printing, and dried on a hot plate at 150 ° C for 5 minutes. Then, thermal diffusion treatment was carried out for 1 minute in an electric furnace set at 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 3 minutes to remove the glass layer&apos; for running water washing. After that, it is dried. The sheet resistance of the surface on the side on which the composition for forming the n-type diffusion layer was applied was 56 Ω/□, and Ρ(麟) was diffused to form an n-type diffusion layer. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was judged that the n-type diffusion layer was not substantially formed. [Comparative Example 1] A mixture of 2 〇g of heteroammonium hydrogen (10) 4 Η 2 Ρ〇 4) powder, ethyl cellulose and 7 g of 2-(2-butoxyethoxy) acetate was prepared and made into a paste to prepare Forming a composition of the n-type diffusion layer. Next, the prepared paste was applied onto the surface of the p-type substrate by screen printing, and dried on a hot plate of 15 generations for 5 minutes, and was set to ι_. (: The electric furnace was subjected to thermal diffusion treatment for 1 minute. Then, the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, and 38 201214742 38920pif was washed and dried. The coating was formed to form an n-type diffusion layer. The sheet resistance of the surface on the side of the composition is 14 Ω/Ε], and Ρ(4) diffuses to form an n-type diffusion layer. The sheet resistance on the back side is 50 Ω/□, and the n-type diffusion is also formed on the back surface. [Comparative Example 2Α] Dihydrogen phosphate (Wai Mi 4) powder ig, pure water 7 g, polyvinyl alcohol 0.7 g and iso-1.5 "combined into a solution to prepare an n-type diffusion layer Next, the prepared solution was applied onto the surface of the P substrate by a spin coater (2000 rpm, 30 seconds), and dried on a hot plate for 15 minutes in the 15th generation. Subsequently, it was set at 1000 〇C. The rail diffusion treatment was carried out for 10 minutes in an electric furnace. Then, the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, which was then washed with running water and dried. The one in which the composition forming the n-type diffusion layer was coated was coated. The sheet resistance of the side surface is 10 Ω / port 'Ρ (phosphorus) diffuses It becomes an n-type diffusion layer. However, the sheet resistance on the back side is 100 Ω/□, and an n-type &amp;-scatter layer is formed on the back surface. [Comparative Example 3Α] Ρ205-Ζη0 system glass (ρ2〇5 : 3〇%) , Ζη〇: 7〇%) powder 30 g and ethyl cellulose 0.06 g, 2-(2-butoxyethoxy)ethyl acetate 1.52 g were mixed and pasteified to prepare a glass content of 95% The composition of the n-type diffusion layer is formed. Next, the prepared paste is applied onto the surface of the p-type ruthenium substrate by screen printing, and dried on a hot plate of 150 〇C for 5 minutes. The heat diffusion treatment was carried out in an electric furnace set at 1000 ° C for 1 minute. 39 201214742 38920pif Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer, and then washed with water and dried. The sheet resistance of the surface on the side where the composition of the n-type diffusion layer was formed was 10 Ω/□' Ρ(phosphorus) diffused to form an n-type diffusion layer, and the sheet resistance of the back surface was 1,000,000 Ω/□ or more. The sheet resistance was measured, and it was judged that the n-type diffusion layer was not substantially formed. [Comparative Example 4Α] Ρ205-Ζη0 system glass (Ρ2〇5: 30%, ΖηΟ: 70%) powder 〇. 05 g and ethyl cellulose 〇. 38 g, 2-(2·butoxyethoxy)ethyl acetate 9.57 g Mixing and pasting to prepare a composition forming an n-type diffusion layer having a glass content of 0.5%. Then 'coating the prepared paste onto the surface of the p-type substrate by screen printing, and Dry on a hot plate at 150 ° C for 5 minutes. Thereafter, thermal diffusion treatment was carried out for 10 minutes in an electric furnace set at 1000 °C. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer, and a running strip was washed. After that, it is dried. The sheet resistance of the surface on the side where the composition for forming the n-type diffusion layer was applied was 186 Ω/□, and the diffusion of bismuth (phosphorus) was not sufficient. The sheet resistance of the back surface was an unmeasurable sheet resistance of 1,000,000 Ω/□ or more, and it was judged that the n-type diffusion layer was not substantially formed. [Example 1] B2OrSiOrR2 〇 (R: Na, Κ, Li)-based glass powder (trade name: TMX-603C, manufactured by Tokan Material Technology Co., Ltd.) 20 g and ethyl cellulose using an automatic mortar mixing device 〇. 8 g, acetic acid 201214742 38920 pif 2: (2-butoxyethoxy) ethyl acetate 2.14 g was added and pasteed to form a composition of a p-type diffusion layer having a glass content of 90%. Next, screen printing is applied to the surface of the p-type stone plate on which the n-type diffusion layer is formed, and is applied at a coating amount of 〇. . After 5 minutes on the board, the heat diffusion treatment was performed for ig minutes in an electric furnace set to 面:. Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes, and the layer was flowed. Washing and drying. μ The surface resistance of the surface on the side where the composition for forming the Ρ-type diffusion layer was applied was 30 Ω/□, and Β (boron) was diffused to form a p-type diffusion layer. [Example 2Β] B2〇rSi (VR2〇(R., κ, L〇-based glass powder) using an automatic mortar mixing device (trade name: ΤΜχ·6〇3 (:, by T〇kanM coffee w (produced by Technology Co., Ltd.) 8 g and ethyl cellulose 〇ρ g, 2-(2-butoxyethoxy)ethyl acetate, 4.27 g, mixed and pasteified to prepare a glass content ratio Forming a composition of the P-type diffusion layer. Then, by applying screen printing, the prepared paste is applied onto the surface of the p-type germanium substrate having the n-type diffusion layer formed thereon, and at 15 Dry on a hot plate for 5 minutes. Then, heat-dissipate for 10 minutes in an electric enthalpy set to 1 Torr. The substrate was immersed in 2·5% of &amp; fluoric acid for 40 minutes to remove the glass layer, subjected to running water washing, and dried to apply a sheet resistance on the surface of the side on which the composition forming the p-type diffusion layer was applied. For the 48 Ω/□, : Β (boron) diffusion forms a 卩-type diffusion layer. In addition, 41 201214742 38920pif no surface curvature of the substrate occurs. [Example 3B] B2〇3_Si〇2_R2〇 is used using an automatic chyle kneading device ( R : Na, κ, Li) glass powder (trade name: TMX_6〇3c, by T〇kanMaterial

Technology Co.,Ltd.生產)6 g與乙基纖維素0.91 g、乙酸 2_(2_丁氧基乙氧基)乙醋23. 1 g加以混合並膏化,以調製 成玻璃含有率20%的形成p型擴散層的組成物。 ^接著,通過絲網印刷,將所調製的膏狀物塗佈到表面 幵少成有η型擴散層的p型石夕基板的表面上,並且在i5〇〇c 的電熱板上乾燥5分鐘。隨後,在設定為1〇〇〇C5C的電爐 中進行熱擴散處理1〇分鐘。然後,將基板浸人2· 5%的氮 氣酸中3G分鐘,以移除_層,進行流水祕、乾燥。 在塗佈了形成P型擴散層的組成物的那一側的表面的 片電阻為75Ω/[],Β(硼)擴散而形成了 p型擴散層。另外, 沒有發生基板的翹曲。 [實例4B] /吏用自動乳蛛混練裝置將B2〇3_Si〇2_R2〇 (R :犯、κ、 Li)系玻璃粉末(商品名稱:TMX 6〇3c,由T〇kan咖㈣ Technology 〇)·,Ltd.生產)3 g與乙基纖維素i Q2 g、乙酸 ^(2-丁氧基乙氧基)乙輯26. 〇层加以混合並膏化,以 成玻璃t有率⑽的形成Ρ型擴散層的組成物。 ,著’通過絲網印刷,將所調製的膏狀物塗佈到表面 形成有η型擴散層的p财基板的表面上,並且在l5〇〇c 的電熱板上乾燥5分鐘。隨後’在設定為議代的電爐(produced by Technology Co., Ltd.) 6 g and ethyl cellulose 0.91 g, acetic acid 2-(2-butoxyethoxy) ethyl acetate 23. 1 g were mixed and pasteified to prepare a glass content of 20%. The composition of the p-type diffusion layer is formed. ^ Next, the prepared paste was applied to the surface of the p-type slab substrate having the n-type diffusion layer reduced by screen printing, and dried on a hot plate of i5 〇〇c for 5 minutes. . Subsequently, thermal diffusion treatment was performed for 1 minute in an electric furnace set to 1 〇〇〇 C5C. Then, the substrate was immersed in 2 5% of nitrogen acid for 3 G minutes to remove the layer, and the water was secreted and dried. The sheet resistance of the surface on the side on which the composition for forming the P-type diffusion layer was applied was 75 Ω/[], and yttrium (boron) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur. [Example 4B] / B2〇3_Si〇2_R2〇(R: 犯, κ, Li)-based glass powder (trade name: TMX 〇3c, by T〇kan Coffee (4) Technology 〇) , Ltd. produced) 3 g with ethyl cellulose i Q2 g, acetic acid ^ (2-butoxy ethoxy) B series 26. The ruthenium layer is mixed and pasteified to form the glass t yield (10). The composition of the type of diffusion layer. Then, the prepared paste was applied onto the surface of the p-type substrate on which the n-type diffusion layer was formed by screen printing, and dried on a hot plate of 15 ° C for 5 minutes. Then 'in the electric furnace set up for the congress

42 201214742 38920pif 中進行熱擴散處理l〇分鐘。块 謝別分鐘,以移除坡•、後進,^^ 力絲W I增進仃流水洗務、乾燥。 片雷阻AM。/成^擴散層的組成物的那一侧的表面的 片J阻為83 Ω/□,咖)擴散而形成了 p型擴散層。另外, 沒有發生基板_曲。 ^ ^ [實例5B] 使用自動乳砵混練震置將B2〇rSi02-R2〇 (R : Na、κ、 Li)系玻璃粉末(商品名稱:TMX.C,由T〇kanMateriai42 201214742 38920pif Thermal diffusion treatment for l〇 minutes. Block Thank you for the minute to remove the slope •, backward, ^^ Lisi W I to improve the turbulent water washing and drying. Piece of lightning resistance AM. The sheet J of the surface on the side of the composition of the diffusion layer was 83 Ω/□, and the p-type diffusion layer was formed by diffusion. In addition, the substrate _ song did not occur. ^ ^ [Example 5B] B2〇rSi02-R2〇 (R: Na, κ, Li) based glass powder was used for automatic nipple mixing (trade name: TMX.C, by T〇kanMateriai

Technology Co.,Ltd•生產)〇. 5 g與乙基纖維素〇. 3 g、乙酸 2-(2-丁氧基乙氧基)乙g旨9. I〗以混合並膏化,以調製 成玻璃含有率5%的形成p型擴散層的組成物。 接著,通過絲網印刷’將所調製的膏狀物塗佈到表面 形成有η型擴散層的p型矽基板的表面上,並且在i5〇〇c 的電熱板上乾燥5分鐘。隨後,在設定為i〇〇〇°c的電爐 中進行熱擴散處理10分鐘。然後,將基板浸入2. 5%的氫 氟酸中30分鐘,以移除玻璃層,進行流水洗滌、乾燥。 在塗佈了形成p型擴散層的組成物的那一側的表面的 片電阻為110Ω/口,B(硼)擴散而形成了 p型擴散層。另外, 沒有發生基板的麵曲。 [實例6B ] 使用自動乳钵混練裝置將B20rSi02-R20 (R: Na、K、Technology Co., Ltd. production) 5. 5 g with ethyl cellulose 〇. 3 g, acetic acid 2-(2-butoxyethoxy) ethane g 9.1 I to mix and paste to prepare A composition having a glass content of 5% forming a p-type diffusion layer. Next, the prepared paste was applied onto the surface of the p-type germanium substrate having the n-type diffusion layer formed thereon by screen printing, and dried on a hot plate of i5〇〇c for 5 minutes. Subsequently, thermal diffusion treatment was carried out for 10 minutes in an electric furnace set to i 〇〇〇 °c. Then, the substrate was immersed in 2.5% hydrofluoric acid for 30 minutes to remove the glass layer, washed with running water, and dried. The sheet resistance of the surface on the side on which the composition for forming the p-type diffusion layer was applied was 110 Ω/□, and B (boron) was diffused to form a p-type diffusion layer. In addition, the surface curvature of the substrate did not occur. [Example 6B] B20rSi02-R20 (R: Na, K, using an automatic mortar mixing device)

Li)系玻璃粉末(商品名稱:TMX-603C ’由TokanMaterial Technol〇gyCo.,Ltd.生產)0. 3 g 與乙基纖維素 〇. 56g、乙 酸2-(2-丁氧基乙氧基)乙酯14. 1 g加以混合並膏化,以調 43 201214742 38920pif 製成玻=含有率2%的形成p賴散層的組成物。 接著’通過絲網印刷,將所調製的膏狀物塗佈到表面 形成有η型擴散層白勺p型石夕基板的表面上,並且在15〇〇c 的電熱板上乾燥5分鐘。隨後,在設定為酬%的電爐 中進灯熱擴散處理1G分鐘。織,縣板浸人2. 5%的氮 氟酸中30分鐘,以移除玻璃層,進行流水洗務、乾燥。 在塗佈了形成P型擴散層的組成物的那一側的表面的 片電阻為16〇 Ω/:],Β(侧)擴散而形成了 p型擴散層。另外, 沒有發生基板的翹曲。 [比較例1Β] /使用自動乳缽混練裝置將B2〇rSi〇2_R2〇 (R : Na、κ、 Li)系玻璃粉末(商品名稱:TMX_6〇3c,由掀⑽胸祝 Technology Co,,Ltd·生產)3〇 g與乙基纖維素〇. 〇6 g、乙酸 2-(2-丁氧基乙氧基)乙酯ι 52 g加以混合並膏化以調製 成玻璃含有率95%的形成p型擴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到表面 形成有η型擴散層的p型石夕基板的表面上,並且在15〇。匸 的電熱板上乾燥5分鐘。隨後,在設定為的電爐 中進行熱擴散處理10分鐘。然後,將基板浸入2. 5%的氫 氟酸中90分鐘,以移除玻璃層。之後,進行流水洗滌、乾 燥。 在塗佈了形成P型擴散層的組成物的那一側的表面的 片電阻為42 Ω/口,B(删)已擴散。 [比較例2B] 201214742 38920pif /使用自動乳缽混練裝置將B2(Vsi〇2_R2〇 (R : Na、κ、 LO系玻璃粉末(商品名稱:TMx_6〇3c,由孤姐胸祝 Techndogy Co.,Ltd·生產)〇 〇5 g與乙基纖維素〇兆g、乙 酸2-(2-丁氧基乙氧基)乙酯9. 57 g加以混合並膏化,以調 製成玻璃含有率0.5%的形成p賴散層的組成物。 接著,通過絲網印刷,將所調製的膏狀物塗佈到表面 形成有η 散層的p _基板的表面上,並且在15代 的電熱板上乾燥5分鐘。隨後’在設^為⑽代的電濟 中進行熱擴散處理H)分鐘。然後,將基板浸人2. 5%的^ 乱酸t 90分鐘,以移除玻璃層,進行流水洗蘇、乾燥。 接著’通過絲網印刷,將所調製的膏狀物塗佈到表面 形成有η型擴散層的p型梦基板的表面上並且在⑽。C 的電熱板上乾燥5分鐘。隨後,在設定為麵%的電爐 中進行熱擴散處理10分鐘。然、後,將基板浸人2. 5%的氫 氣酸中3G分鐘,以移除麵層,進行流水祕、乾燥。 在,布了形成p型擴散層的組成物的那一側的表面的 片電阻為320Ω/Π ’ B(棚)並沒有充分地擴散。 【圖式簡單說明】 ' ㈣圖至圖1⑻疋概紐地表示本發明的太陽能 電池το件的製造步驟的一個實例的剖面圖。 圖2(A)是自表面所觀察到的太陽 =二)是將圖2(Α)的局部放大表示的立體圖。 【主要兀件符號說明】 10: Ρ型半導體基板/半導體基板/石夕/石夕基板 45 201214742 38920pif 11 :形成n型擴散層的組成物層/形成n型擴散層的 組成物 12 η型擴散層 13 組成物 14 Ρ+型擴散層(高濃度電場層) 16 抗反射膜 18 表面電極 20 背面電極/背面的表面電極 30 匯流條電極 32 指狀電極Li) is a glass powder (trade name: TMX-603C 'produced by Tokan Material Technol 〇 Co., Ltd.) 0.3 g with ethyl cellulose 〇. 56 g, 2-(2-butoxyethoxy) acetate The ethyl ester 14.1 g was mixed and pasteified to prepare a composition of the p-dispersed layer having a glass content of 2% in a glass content of 23 201214742 38920pif. Next, the prepared paste was applied onto the surface of the p-type slab substrate on which the n-type diffusion layer was formed by screen printing, and dried on a hot plate of 15 〇〇c for 5 minutes. Subsequently, the lamp was subjected to thermal diffusion treatment for 1 G minutes in an electric furnace set to a % value. Weaving, the county plate dipped in 2.5% of the hydrofluoric acid for 30 minutes to remove the glass layer, water washing and drying. The sheet resistance of the surface on the side where the composition for forming the P-type diffusion layer was applied was 16 Ω Ω / :], and the Β (side) was diffused to form a p-type diffusion layer. In addition, warpage of the substrate did not occur. [Comparative Example 1Β] / B2〇rSi〇2_R2〇 (R: Na, κ, Li)-based glass powder (product name: TMX_6〇3c, by 掀(10) 胸科技 Technology Co,, Ltd.) using an automatic mortar mixing device Production) 3 〇g with ethyl cellulose 〇. 〇 6 g, 2-(2-butoxyethoxy) ethyl acetate ι 52 g was mixed and pasteified to prepare a glass content of 95%. The composition of the type of diffusion layer. Next, the prepared paste was applied onto the surface of the p-type slab substrate on which the n-type diffusion layer was formed by screen printing, and was 15 Å. Dry on a hot plate for 5 minutes. Subsequently, thermal diffusion treatment was carried out for 10 minutes in an electric furnace set to. Then, the substrate was immersed in 2.5% hydrofluoric acid for 90 minutes to remove the glass layer. After that, it was washed with water and dried. The sheet resistance of the surface on the side on which the composition for forming the P-type diffusion layer was applied was 42 Ω/□, and B (deleted) was diffused. [Comparative Example 2B] 201214742 38920pif / B2 (Vsi〇2_R2〇 (R: Na, κ, LO-based glass powder (trade name: TMx_6〇3c, by the sister-in-law, Techndogy Co., Ltd.) using an automatic mortar mixing device ·Production) 〇〇 5 g and ethyl cellulose 〇 g, 2-(2-butoxyethoxy) ethyl acetate 9. 57 g were mixed and pasteified to prepare a glass content of 0.5% Forming a composition of the p-scatter layer. Next, the prepared paste was applied by screen printing onto the surface of the p-substrate on which the η layer was formed, and dried on a 15th generation hot plate 5 Minutes. Then 'heat-diffusion treatment in the electricity of the (10) generation for H) minutes. Then, the substrate was immersed in 2.5% of the acid for 90 minutes to remove the glass layer and wash the water. Then, the prepared paste was applied onto the surface of the p-type dream substrate on which the n-type diffusion layer was formed by screen printing, and dried on a hot plate of (10) C for 5 minutes. The heat diffusion treatment was carried out for 10 minutes in an electric furnace set to a surface %. After that, the substrate was immersed in 2.5% hydrogen acid for 3 minutes. The surface layer of the surface on which the composition of the p-type diffusion layer was formed had a sheet resistance of 320 Ω/Π 'B (shed) and was not sufficiently diffused. BRIEF DESCRIPTION OF THE DRAWINGS A cross-sectional view showing an example of a manufacturing procedure of a solar cell τ of the present invention is shown in Fig. 2(A). Fig. 2(A) is a view of the sun from the surface = 2) A perspective view showing a part of Fig. 2 (Α) in an enlarged manner. [Description of main components] 10: Ρ-type semiconductor substrate/semiconductor substrate/Shixi/Shixi substrate 45 201214742 38920pif 11 : Composition layer forming n-type diffusion layer / composition forming n-type diffusion layer 12 η-type diffusion Layer 13 Composition 14 Ρ+-type diffusion layer (high-concentration electric field layer) 16 Anti-reflection film 18 Surface electrode 20 Back surface electrode/Back surface electrode 30 Bus bar electrode 32 Finger electrode

4646

Claims (1)

201214742 38920pif 七、申請專利範園: h —種形成不純物擴散層的組成物,包括: 含有施體元素或受體元素的玻璃粉末;以及 分散介質,其中 上述玻壤粉末的含有比率為1質量%以上至90質量% 以下的範圍。 2. 一種形成η型擴散層的組成物,包括: 含有施體元素的玻璃粉末;以及 分散介質,其中 上述破璃粉末的含有比率為1質量%以上至90質量% 以下的範圍。 3. 如申請專利範圍第2項所述之形成η型擴散層的 組成物’其中上述施體元素是選自Ρ (磷)以及Sb (銻) 中的至少一種。 4. 如申請專利範圍第2項所述之形成η型擴散層的 組成物’其中上述含有施體元素的玻璃粉末包括含有施體 元素的物質以及玻璃成分物質’上述含有施體元素的物質 選自Ρζ〇3、Ρζ〇5及Sb203中的至少一種,上述玻璃成分物 質選自 Si〇2、K20、Na20、Li20、BaO、SrO、CaO、MgO、 BeO、ZnO、PbO、CdO、SnO、Zr02 及 Mo03 中的至少一 種。 5. 如申請專利範圍第2項所述之形成n型擴散層的 組成物,更包括選自Ag、Si、Cu、Fe、Ζη及Μη中的至 少一種金屬。 47 201214742 38920pif έ #札如申請專利範圍第5項所述之形成n型擴散層的 組成物,其中上述金屬為Ag (銀)。 7· —種η型擴散層的製造方法,包括: 在半導體基板上塗佈如申請專利範圍第2項至第6項 中任二項所述之形成η型擴散層的組成物的步驟;以及 貫施熱擴散處理的步驟。 8. —種太陽能電池元件的製造方法,包括: 在半導體基板上塗佈如申請專利範圍第2項至第6項 中任-項所述之形成η型擴散層軌成物的步驟; 貫施熱擴散處理而形心型擴散層的步驟;以及 於所形成的η贿散層上形成電極的步驟。 9. 種形成Ρ型擴散層的組成物,包括: 含有受體元素的玻璃粉末;以及 . 分散介質,其中 質量%以上至90質量% 上述坡螭粉末的含有比率為1 以下的範圍。 P型擴散層的 ' A1 (鋁)以 10.如申請專利範圍第9項所述之形成 組成物,其+上述受體元妓it自Β (石朋) 及Ga (鎵)中的至少一種。 11 請專利範圍第9項所述之形成㈣擴散層 、” ’/、巾上述含有受體元素的麵粉末包括含有受 質以及玻璃成分物f ’上述含有受體元素的物 f H 203及Ga2°3中的至少一種,上述玻璃成 物 i 遥自 Si〇2、κ2〇、Na2〇、Li2〇、Ba〇、Sr〇、Ca〇 s 48 201214742 38920pif MgO、BeO、ZnO、PbO、CdO、Tl2〇、SnO、Zr02 及 Mo03 中的至少一種。 12. —種p型擴散層的製造方法,包括: 在半導體基板上塗佈如申請專利範圍第9項至第η 項中任一項所述之形成p型擴散層的組成物的步驟;以及 實施熱擴散處理的步驟。 13. —種太陽能電池元件的製造方法,包括: 在半導體基板上塗佈如申請專利範圍第9項至第^ 項中任一項所述之形成p型擴散層的組成物的步驟; 實施熱擴贼理而形成?_散層的步驟.以及 於所形成的P型擴散層上形成電極的步驟: 49201214742 38920pif VII. Patent application garden: h—a composition for forming an impurity diffusion layer, comprising: a glass powder containing a donor element or an acceptor element; and a dispersion medium, wherein the content ratio of the above-mentioned glassy soil powder is 1% by mass The above range is 90% by mass or less. 2. A composition for forming an n-type diffusion layer, comprising: a glass powder containing a donor element; and a dispersion medium, wherein a content ratio of the glass-breaking powder is in a range of from 1% by mass to 90% by mass. 3. The composition for forming an n-type diffusion layer as described in claim 2, wherein the above-mentioned donor element is at least one selected from the group consisting of ruthenium (phosphorus) and Sb (yttrium). 4. The composition for forming an n-type diffusion layer according to claim 2, wherein the glass powder containing the donor element includes a substance containing a donor element and a glass component substance. From at least one of Ρζ〇3, Ρζ〇5 and Sb203, the above glass component is selected from the group consisting of Si〇2, K20, Na20, Li20, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, Zr02 And at least one of Mo03. 5. The composition for forming an n-type diffusion layer according to claim 2, further comprising at least one metal selected from the group consisting of Ag, Si, Cu, Fe, Ζη, and Μη. 47 201214742 38920pif έ The composition of the n-type diffusion layer described in claim 5, wherein the metal is Ag (silver). A method of producing an n-type diffusion layer, comprising: a step of coating a semiconductor substrate with a composition for forming an n-type diffusion layer as described in any one of claims 2 to 6; The step of applying thermal diffusion treatment. 8. A method of manufacturing a solar cell element, comprising: coating a semiconductor substrate with a step of forming an n-type diffusion layer track as described in any one of claims 2 to 6; a step of thermally diffusing the core-shaped diffusion layer; and forming an electrode on the formed n-batter layer. 9. A composition for forming a ruthenium-type diffusion layer, comprising: a glass powder containing an acceptor element; and a dispersion medium in which a content ratio of the above-mentioned sorghum powder is 1 or less. 'A1 (aluminum) of the P-type diffusion layer is 10. The composition as described in claim 9 of the patent application, wherein + at least one of the above-mentioned receptors 妓it from 石 (Shi Peng) and Ga (gallium) . 11 The fourth aspect of the invention is to form a (four) diffusion layer, "'/, the surface powder containing the acceptor element in the towel, comprising the acceptor element containing the acceptor and the glass component f', the above-mentioned acceptor element f H 203 and Ga2 At least one of °3, the above glass composition i is distant from Si〇2, κ2〇, Na2〇, Li2〇, Ba〇, Sr〇, Ca〇s 48 201214742 38920pif MgO, BeO, ZnO, PbO, CdO, Tl2 At least one of 〇, SnO, Zr02, and Mo03. 12. A method of manufacturing a p-type diffusion layer, comprising: coating on a semiconductor substrate as described in any one of claims 9 to n a step of forming a composition of the p-type diffusion layer; and a step of performing a thermal diffusion treatment. 13. A method of manufacturing a solar cell element, comprising: coating on a semiconductor substrate as in claim 9 to item a step of forming a composition of a p-type diffusion layer according to any one of the steps; a step of forming a thermal diffusion thief to form a diffusion layer; and a step of forming an electrode on the formed P-type diffusion layer: 49
TW100122389A 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci TWI485875B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010144204A JP5625538B2 (en) 2010-06-24 2010-06-24 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP2010144203A JP5625537B2 (en) 2010-06-24 2010-06-24 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method

Publications (2)

Publication Number Publication Date
TW201214742A true TW201214742A (en) 2012-04-01
TWI485875B TWI485875B (en) 2015-05-21

Family

ID=45371560

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104112405A TW201532302A (en) 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition and method for forming n-type diffusion layer, composition and method for forming p-type diffusion layer, and method for producing photovoltaic cell
TW100122389A TWI485875B (en) 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104112405A TW201532302A (en) 2010-06-24 2011-06-24 Composition for forming impurity diffusion layer, composition and method for forming n-type diffusion layer, composition and method for forming p-type diffusion layer, and method for producing photovoltaic cell

Country Status (4)

Country Link
KR (1) KR20130098180A (en)
CN (2) CN102959684A (en)
TW (2) TW201532302A (en)
WO (1) WO2011162394A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201335278A (en) * 2012-02-23 2013-09-01 Hitachi Chemical Co Ltd Impurity diffusion layer forming composition, method for producing semiconductor substrate having impurity diffusion layer, and method for producing photovoltaic cell element
JP5610100B2 (en) * 2012-02-29 2014-10-22 日立化成株式会社 N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP6232993B2 (en) * 2013-12-12 2017-11-22 日立化成株式会社 Semiconductor substrate manufacturing method, semiconductor substrate, solar cell element manufacturing method, and solar cell element
CN105830200A (en) * 2013-12-20 2016-08-03 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element
KR102044381B1 (en) * 2018-04-18 2019-11-13 한국과학기술연구원 Method of manufacturing silicon wafer, silicon wafer manufactured therefrom and solar cell comprising the semiconductor wafer
CN113782423B (en) * 2021-08-25 2022-08-23 中国科学院宁波材料技术与工程研究所 Impurity diffusion method and solar cell manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105696B2 (en) * 1988-12-15 1994-12-21 シャープ株式会社 Method for manufacturing semiconductor device
JPH04158514A (en) * 1990-10-22 1992-06-01 Sumitomo Chem Co Ltd Impurity diffusion to semiconductor substrate
JPH04174517A (en) * 1990-11-07 1992-06-22 Canon Inc Manufacture of diamond semiconductor
KR100267839B1 (en) * 1995-11-06 2000-10-16 오가와 에이지 Nitride semiconductor device
DE19910816A1 (en) * 1999-03-11 2000-10-05 Merck Patent Gmbh Doping pastes for producing p, p + and n, n + regions in semiconductors
DE102005061820B4 (en) * 2005-12-23 2014-09-04 Infineon Technologies Austria Ag Process for producing a solar cell
WO2009029738A1 (en) * 2007-08-31 2009-03-05 Ferro Corporation Layered contact structure for solar cells
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell

Also Published As

Publication number Publication date
WO2011162394A1 (en) 2011-12-29
TW201532302A (en) 2015-08-16
CN104844268A (en) 2015-08-19
TWI485875B (en) 2015-05-21
CN102959684A (en) 2013-03-06
KR20130098180A (en) 2013-09-04

Similar Documents

Publication Publication Date Title
TWI480930B (en) Method for producing photovoltaic cell
TWI558676B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201214742A (en) Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer
TWI667695B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
TWI499070B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201212107A (en) Composition for forming impurity diffusion layer, method for producing impurity diffusion layer, and method for producing photovoltaic cell element
TWI462157B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI495118B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP2013026579A (en) Manufacturing method of p-type diffusion layer and manufacturing method of solar cell element
TW201125154A (en) Fabricating method of solar cell
TW201308402A (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TW201331991A (en) N-type diffusion layer forming composition, n-type diffusion layer forming composition set, method for producing semiconductor substrate having n-type diffusion layer, and method for producing photovoltaic cell element
TWI541869B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI498945B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP2017139419A (en) P-type diffusion layer forming composition, method for manufacturing semiconductor substrate with p-type diffusion layer, manufacturing method for solar cell element, and solar cell element
TW201603121A (en) Method of producing semiconductor substrate having n-type diffusion layer and method of producing photovoltaic cell element
TW201251036A (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer and method for producing photovoltaic cell
WO2016068315A1 (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for manufacturing solar cell element
JP2017028122A (en) N-type diffusion layer forming composition, method for manufacturing semiconductor substrate with n-type diffusion layer, method for manufacturing solar cell element, and solar cell element
JP2017028121A (en) N-type diffusion layer forming composition, method for manufacturing semiconductor substrate with n-type diffusion layer, method for manufacturing solar cell element, and solar cell element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees