JP2012231012A - P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element - Google Patents

P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element Download PDF

Info

Publication number
JP2012231012A
JP2012231012A JP2011098365A JP2011098365A JP2012231012A JP 2012231012 A JP2012231012 A JP 2012231012A JP 2011098365 A JP2011098365 A JP 2011098365A JP 2011098365 A JP2011098365 A JP 2011098365A JP 2012231012 A JP2012231012 A JP 2012231012A
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
forming composition
layer forming
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011098365A
Other languages
Japanese (ja)
Inventor
Mitsunori Iwamuro
光則 岩室
Masato Yoshida
誠人 吉田
Takeshi Nojiri
剛 野尻
Yoichi Machii
洋一 町井
Kaoru Okaniwa
香 岡庭
Shuichiro Adachi
修一郎 足立
Keiko Kizawa
桂子 木沢
Tetsuya Sato
鉄也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011098365A priority Critical patent/JP2012231012A/en
Publication of JP2012231012A publication Critical patent/JP2012231012A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a p-type diffusion layer forming composition capable of forming a p-type diffusion layer without causing an internal stress in a silicon substrate and a warpage of the substrate, in a manufacturing process of a solar cell element using the silicon substrate, a method for manufacturing the p-type diffusion layer, and a method for manufacturing the solar cell element.SOLUTION: The p-type diffusion layer forming composition contains glass powder including an acceptor element, and a dispersant containing a binder having a solubility parameter being equal to or less than 12(MJ/m). The p-type diffusion layer forming composition is applied to the substrate and is subjected to heat diffusion treatment, whereby a p-type diffusion layer and a solar cell element including the p-type diffusion layer are produced.

Description

本発明は、太陽電池素子のp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法に関するものであり、更に詳しくは、半導体基板であるシリコンの内部応力を低減し、結晶粒界のダメージ抑制、結晶欠陥増長抑制及び反り抑制可能なp型拡散層形成技術に関するものである。   The present invention relates to a p-type diffusion layer forming composition for a solar cell element, a method for producing a p-type diffusion layer, and a method for producing a solar cell element. More specifically, the present invention reduces internal stress of silicon as a semiconductor substrate. In addition, the present invention relates to a p-type diffusion layer forming technique capable of suppressing damage at crystal grain boundaries, suppressing crystal defect growth, and suppressing warpage.

従来のシリコン太陽電池素子の製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、テクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチングを行う。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面にアルミペーストを印刷し、これを焼成して、n型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。
The manufacturing process of the conventional silicon solar cell element is demonstrated.
First, a p-type silicon substrate having a textured structure is prepared so as to promote the light confinement effect and achieve high efficiency, and then 800 to 900 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen. The n-type diffusion layer is uniformly formed by performing several tens of minutes. In this conventional method, since phosphorus is diffused using a mixed gas, n-type diffusion layers are formed not only on the surface but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer on the side surface. Further, the back surface of the n-type diffusion layer must be converted into the p + -type diffusion layer, an aluminum paste is printed on the back, by firing this, the n-type diffusion layer at the same time as the p + -type diffusion layer , Got ohmic contact.

しかしながら、アルミペーストは導電率が低いため、シート抵抗を下げなければならず、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、シリコンとアルミニウムでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界のダメージ、結晶欠陥増長及び反りの原因となる。   However, since the aluminum paste has a low electrical conductivity, the sheet resistance must be lowered, and the aluminum layer formed on the entire back surface usually has a thickness of about 10 to 20 μm after firing. Furthermore, since the thermal expansion coefficients of silicon and aluminum differ greatly, a large internal stress is generated in the silicon substrate during the firing and cooling processes, causing damage to crystal boundaries, increasing crystal defects, and warping.

この問題を解決するために、ペースト組成物の塗布量を減らし、裏面電極層を薄くする方法がある。しかしながら、ペースト組成物の塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不十分となる。その結果、所望のBSF(Back Surface Field)効果(p型拡散層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。 In order to solve this problem, there is a method of reducing the coating amount of the paste composition and thinning the back electrode layer. However, when the application amount of the paste composition is reduced, the amount of aluminum diffusing from the surface of the p-type silicon semiconductor substrate becomes insufficient. As a result, the desired BSF (Back Surface Field) effect (the effect of improving the collection efficiency of the generated carriers due to the presence of the p + -type diffusion layer) cannot be achieved, resulting in a problem that the characteristics of the solar cell deteriorate. .

そこで、例えば、アルミニウム粉末と、有機質ビヒクルと、熱膨張率がアルミニウムよりも小さく、かつ、溶融温度、軟化温度および分解温度のいずれかがアルミニウムの融点よりも高い無機化合物粉末とを含むペースト組成物が提案されている(例えば、特許文献1参照)。   Therefore, for example, a paste composition comprising aluminum powder, an organic vehicle, and an inorganic compound powder having a thermal expansion coefficient smaller than that of aluminum and any one of a melting temperature, a softening temperature and a decomposition temperature higher than the melting point of aluminum. Has been proposed (see, for example, Patent Document 1).

特開2003−223813JP-A-2003-223813

しかしながら、特許文献1に記載のペースト組成物を用いた場合でも充分に反りを抑制することができない場合があった。
本発明は、以上の従来の問題点に鑑みなされたものであり、シリコン基板を用いた太陽電池素子の製造工程において、シリコン基板中の内部応力、基板の反りを発生させることなくp型拡散層を形成することが可能なp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法の提供を課題とする。
However, even when the paste composition described in Patent Document 1 is used, there is a case where warpage cannot be sufficiently suppressed.
The present invention has been made in view of the above-described conventional problems, and in the manufacturing process of a solar cell element using a silicon substrate, a p-type diffusion layer is produced without generating internal stress in the silicon substrate and warping of the substrate. It is an object of the present invention to provide a p-type diffusion layer forming composition capable of forming a p-type diffusion layer, a method for producing a p-type diffusion layer, and a method for producing a solar cell element.

前記課題を解決する手段は以下の通りである。
<1> アクセプタ元素を含むガラス粉末と、溶解度パラメーターが12(MJ/m1/2以下であるバインダーを含む分散媒と、を含有するp型拡散層形成組成物。
<2> 前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である前記<1>に記載のp型拡散層形成組成物。
<3> 前記アクセプタ元素を含むガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する前記<1>又は<2>に記載のp型拡散層形成組成物。
Means for solving the problems are as follows.
<1> A p-type diffusion layer forming composition containing glass powder containing an acceptor element and a dispersion medium containing a binder having a solubility parameter of 12 (MJ / m 3 ) 1/2 or less.
<2> The p-type diffusion layer forming composition according to <1>, wherein the acceptor element is at least one selected from B (boron), Al (aluminum), and Ga (gallium).
<3> The glass powder containing the acceptor element is at least one acceptor element-containing material selected from B 2 O 3 , Al 2 O 3, and Ga 2 O 3 , and SiO 2 , K 2 O, and Na 2 O. And at least one glass component material selected from Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3. The p-type diffusion layer forming composition according to <1> or <2>.

<4> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するp型拡散層の製造方法。
<5> 半導体基板上に、前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施して、p型拡散層を形成する工程と、形成された前記p型拡散層上に電極を形成する工程と、を有する太陽電池素子の製造方法。
<4> A p-type diffusion having a step of applying the p-type diffusion layer forming composition according to any one of <1> to <3> on a semiconductor substrate and a step of performing a thermal diffusion treatment. Layer manufacturing method.
<5> A step of applying the p-type diffusion layer forming composition according to any one of <1> to <3> on the semiconductor substrate and a thermal diffusion treatment to form a p-type diffusion layer And a step of forming an electrode on the formed p-type diffusion layer.

本発明によれば、シリコン基板を用いた太陽電池素子の製造工程において、シリコン基板中の内部応力、基板の反りを発生させることなくp型拡散層を形成することが可能となる。   According to the present invention, it is possible to form a p-type diffusion layer without generating internal stress in the silicon substrate and warping of the substrate in the manufacturing process of the solar cell element using the silicon substrate.

まず、本発明のp型拡散層形成組成物について説明し、次にp型拡散層形成組成物を用いるp型拡散層及び太陽電池素子の製造方法について説明する。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。さらに本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
First, the p-type diffusion layer forming composition of the present invention will be described, and then a p-type diffusion layer using the p-type diffusion layer forming composition and a method for producing a solar cell element will be described.
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. . In the present specification, numerical ranges indicated using “to” indicate ranges including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Further, when referring to the amount of each component in the composition in the present specification, when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. It means the total amount of substance.

本発明のp型拡散層形成組成物は、少なくともアクセプタ元素を含むガラス粉末(以下、単に「ガラス粉末」と称する場合がある)と、溶解度パラメーターが12(MJ/m1/2以下であるバインダーを含む分散媒と、を含有し、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。
ここで、p型拡散層形成組成物とはアクセプタ元素を含むガラス粉末を含有し、シリコン基板に塗布した後にこのアクセプタ元素を熱拡散することでp型拡散層を形成することが可能な材料をいう。アクセプタ元素をガラス粉末中に含むp型拡散層形成組成物を用いることで、p型拡散層形成工程とオーミックコンタクト形成工程とを分離でき、オーミックコンタクト形成のための電極材の選択肢が広がるとともに、電極の構造の選択肢も広がる。例えば銀等の低抵抗材を電極に用いれば薄い膜厚で低抵抗が達成できる。また、電極も全面に形成する必要はなく、櫛型等の形状のように部分的に形成してもよい。以上のように薄膜あるいは櫛型形状等の部分的形状にすることで、シリコン基板中の内部応力、基板の反りの発生を抑えながらp型拡散層を形成することが可能となる。
The p-type diffusion layer forming composition of the present invention comprises a glass powder containing at least an acceptor element (hereinafter sometimes simply referred to as “glass powder”) and a solubility parameter of 12 (MJ / m 3 ) 1/2 or less. A dispersion medium containing a certain binder, and may further contain other additives as required in consideration of coating properties and the like.
Here, the p-type diffusion layer forming composition includes a glass powder containing an acceptor element, and a material capable of forming a p-type diffusion layer by thermally diffusing the acceptor element after being applied to a silicon substrate. Say. By using the p-type diffusion layer forming composition containing the acceptor element in the glass powder, the p + -type diffusion layer forming step and the ohmic contact forming step can be separated, and the choice of electrode materials for forming the ohmic contact is expanded. The choice of electrode structure is also widened. For example, if a low resistance material such as silver is used for the electrode, a low resistance can be achieved with a thin film thickness. Further, the electrodes need not be formed on the entire surface, and may be partially formed like a comb shape. As described above, by forming a partial shape such as a thin film or a comb shape, it is possible to form a p-type diffusion layer while suppressing the occurrence of internal stress in the silicon substrate and warping of the substrate.

したがって、本発明のp型拡散層形成組成物を適用すれば、従来広く採用されている方法、つまりアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時にオーミックコンタクトを得る方法では発生してしまう基板中の内部応力及び基板の反りの発生が抑制される。
さらにガラス粉末中のアクセプタ成分は焼成中でも揮散しにくいため、揮散ガスの発生によって所望の領域以外にまでp型拡散層が形成されるということが抑制される。
Therefore, if the p-type diffusion layer forming composition of the present invention is applied, a conventionally widely employed method, that is, printing an aluminum paste and firing it to turn the n-type diffusion layer into a p + -type diffusion layer. At the same time, the internal stress in the substrate and the warpage of the substrate that are generated by the method of obtaining the ohmic contact are suppressed.
Furthermore, since the acceptor component in the glass powder is not easily volatilized even during firing, the formation of a p-type diffusion layer other than the desired region due to the generation of the volatilizing gas is suppressed.

本発明に係るアクセプタ元素を含むガラス粉末について、詳細に説明する。
アクセプタ元素とは、シリコン基板中にドーピングさせることによってp型拡散層を形成することが可能な元素である。アクセプタ元素としては第13族の元素が使用でき、例えばB(ほう素)、Al(アルミニウム)、Ga(ガリウム)等が挙げられる。
The glass powder containing the acceptor element according to the present invention will be described in detail.
An acceptor element is an element that can form a p-type diffusion layer by doping into a silicon substrate. As the acceptor element, a Group 13 element can be used, and examples thereof include B (boron), Al (aluminum), and Ga (gallium).

アクセプタ元素をガラス粉末に導入するために用いるアクセプタ元素含有物質としては、B、Al及びGaが挙げられ、B、Al及びGaから選択される少なくとも1種を用いることが好ましい。 Examples of the acceptor element-containing material used for introducing the acceptor element into the glass powder include B 2 O 3 , Al 2 O 3, and Ga 2 O 3 , and B 2 O 3 , Al 2 O 3, and Ga 2 O 3. It is preferable to use at least one selected from

また、アクセプタ元素を含むガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。更に以下に記す、ガラス成分物質を含むことが好ましい。
ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、WO、MoO、MnO、La、Nb、Ta、Y、TiO、GeO、TeO及びLu等が挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOから選択される少なくとも1種を用いることが、好ましい。
Moreover, the glass powder containing an acceptor element can control a melting temperature, a softening point, a glass transition point, chemical durability, etc. by adjusting a component ratio as needed. Furthermore, it is preferable to contain the glass component substance described below.
Examples of glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , Examples include MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , GeO 2 , TeO 2, and Lu 2 O 3. SiO 2 , K 2 O, It is preferable to use at least one selected from Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3 .

アクセプタ元素を含むガラス粉末の具体例としては、前記アクセプタ元素含有物質と前記ガラス成分物質の双方を含むが挙げられ、B−SiO系(アクセプタ元素含有物質−ガラス成分物質の順で記載、以下同様)、B−ZnO系、B−PbO系、B単独系等のアクセプタ元素含有物質としてBを含む系、Al−SiO系等のアクセプタ元素含有物質としてAlを含む系、Ga−SiO系、系等のアクセプタ元素含有物質としてGaを含む系などのガラス粉末が挙げられる。
また、Al−B系、Ga−B系等のように、2種類以上のアクセプタ元素含有物質を含むガラス粉末でもよい。
上記では1成分ガラスあるいは2成分を含む複合ガラスを例示したが、B−SiO−NaO等、3成分以上の物質を含むガラス粉末でもよい。
Specific examples of the glass powder containing the acceptor element include both the acceptor element-containing substance and the glass component substance, and B 2 O 3 —SiO 2 system (in the order of acceptor element-containing substance−glass component substance). Description, the same applies hereinafter), B 2 O 3 —ZnO system, B 2 O 3 —PbO system, B 2 O 3 single system, etc., a system containing B 2 O 3 as an acceptor element-containing substance, Al 2 O 3 —SiO 2 Examples thereof include glass powders such as a system containing Al 2 O 3 as an acceptor element-containing material such as a system, a Ga 2 O 3 —SiO 2 system, and a system containing Ga 2 O 3 as an acceptor element-containing material such as a system.
Further, Al 2 O 3 -B 2 O 3 system, Ga 2 O 3 -B as 2 O 3 system or the like, may be a glass powder containing two or more acceptor element-containing material.
In the above, a single component glass or a composite glass containing two components is exemplified, but a glass powder containing three or more components such as B 2 O 3 —SiO 2 —Na 2 O may be used.

ガラス粉末中のガラス成分物質の含有比率は、溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。   The content ratio of the glass component substance in the glass powder is preferably set as appropriate in consideration of the melting temperature, the softening point, the glass transition point, and the chemical durability, and is generally 0.1% by mass to 95% by mass. It is preferable that it is 0.5 mass% or more and 90 mass% or less.

ガラス粉末の軟化点は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。   The softening point of the glass powder is preferably 200 ° C. to 1000 ° C., more preferably 300 ° C. to 900 ° C., from the viewpoints of diffusibility during the diffusion treatment and dripping.

ガラス粉末の形状としては、略球状、扁平状、ブロック状、板状、および鱗片状等が挙げられ、n型拡散層形成組成物とした場合の基板への塗布性や均一拡散性の点から略球状、扁平状、または板状であることが望ましい。ガラス粉末の粒径は、50μm以下であることが望ましい。50μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は10μm以下であることがより望ましい。なお、下限は特に制限されないが、0.01μm以上であることが好ましい。
ここで、ガラスの粒径は、体積平均粒子径を表し、レーザー散乱回折法粒度分布測定装置等により測定することができる。
Examples of the shape of the glass powder include a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of application property to a substrate and uniform diffusibility when an n-type diffusion layer forming composition is used. It is desirable to have a substantially spherical shape, flat shape, or plate shape. The particle size of the glass powder is desirably 50 μm or less. When glass powder having a particle size of 50 μm or less is used, a smooth coating film is easily obtained. Further, the particle size of the glass powder is more preferably 10 μm or less. The lower limit is not particularly limited, but is preferably 0.01 μm or more.
Here, the particle diameter of glass represents a volume average particle diameter, and can be measured by a laser scattering diffraction method particle size distribution measuring apparatus or the like.

アクセプタ元素を含むガラス粉末は、以下の手順で作製される。
最初に原料を秤量し、るつぼに充填する。るつぼの材質としては白金、白金―ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱し融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて得られた融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
The glass powder containing an acceptor element is produced by the following procedure.
First, weigh the ingredients and fill the crucible. Examples of the material for the crucible include platinum, platinum-rhodium, iridium, alumina, quartz, carbon, and the like, and are appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
Next, it heats with the temperature according to a glass composition with an electric furnace, and is set as a melt. At this time, it is desirable to stir the melt uniformly.
Subsequently, the obtained melt is poured onto a zirconia substrate, a carbon substrate or the like to vitrify the melt.
Finally, the glass is crushed into powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.

p型拡散層形成組成物中のアクセプタ元素を含むガラス粉末の含有比率は、塗布性、アクセプタ元素の拡散性等を考慮し決定される。一般には、p型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましく、1.5質量%以上85質量%以下であることがさらに好ましく、2質量%以上80質量%以下であることが特に好ましい。   The content ratio of the glass powder containing the acceptor element in the p-type diffusion layer forming composition is determined in consideration of applicability, acceptor element diffusibility, and the like. In general, the content ratio of the glass powder in the p-type diffusion layer forming composition is preferably 0.1% by mass or more and 95% by mass or less, more preferably 1% by mass or more and 90% by mass or less, The content is more preferably 1.5% by mass or more and 85% by mass or less, and particularly preferably 2% by mass or more and 80% by mass or less.

次に、分散媒について説明する。
分散媒とは、組成物中において上記ガラス粉末を分散させる媒体である。分散媒は、溶解度パラメーター(SP値)が12(MJ/m1/2以下であるバインダー(以下、「特定バインダー」ともいう)の少なくとも1種を含み、必要に応じて溶剤の少なくとも1種をさらに含む。
分散媒が特定バインダーを含むことで、例えば、p型拡散層形成組成物を半導体基板に塗布、乾燥して塗布層を形成した後、エタノール等のアルコール系溶剤などを付与する後工程を設けた場合であっても、形成された塗布層は耐溶剤性に優れるため、その形状を維持することができ、所望の形状にp型拡散層を形成することができる。
Next, the dispersion medium will be described.
The dispersion medium is a medium in which the glass powder is dispersed in the composition. The dispersion medium contains at least one binder (hereinafter also referred to as “specific binder”) having a solubility parameter (SP value) of 12 (MJ / m 3 ) 1/2 or less, and at least one solvent as necessary. Further includes species.
Since the dispersion medium contains a specific binder, for example, a p-type diffusion layer forming composition is applied to a semiconductor substrate and dried to form a coating layer, followed by a post-process for applying an alcohol solvent such as ethanol. Even if it is a case, since the formed coating layer is excellent in solvent resistance, its shape can be maintained, and a p-type diffusion layer can be formed in a desired shape.

特定バインダーの溶解度パラメーターは、12(MJ/m1/2以下であるが、11.5(MJ/m1/2以下であることが好ましく、9.0(MJ/m1/2以上11.5(MJ/m1/2以下であることがより好ましい。
バインダーの溶解度パラメーターが12(MJ/m1/2を超えると、p型拡散層形成組成物からなる塗布層にアルコール系溶剤等を付与した場合に、塗布層の形状を十分に維持できない場合がある。
The solubility parameter of the specific binder is 12 (MJ / m 3 ) 1/2 or less, preferably 11.5 (MJ / m 3 ) 1/2 or less, 9.0 (MJ / m 3 ) More preferably, it is 1/2 or more and 11.5 (MJ / m 3 ) 1/2 or less.
When the solubility parameter of the binder exceeds 12 (MJ / m 3 ) 1/2 , the shape of the coating layer cannot be sufficiently maintained when an alcohol solvent or the like is applied to the coating layer made of the p-type diffusion layer forming composition. There is a case.

ここで溶解度パラメーター(以下、「SP値」ともいう)とは、分子凝集エネルギーの平方根で表される値である。各種バインダーのSP値については、講談社サイエンティフィク編「技術者のための実学高分子」(向井淳二著)等に記載があり、その値を本明細書におけるSP値とする。またSP値は25℃における値である。
またSP値は丸善編「溶液と溶解度」(篠田耕造著)に記載の方法によって算出することができ、「技術者のための実学高分子」に記載されていないバインダーのSP値は「溶液と溶解度」に記載の方法によって算出される。
Here, the solubility parameter (hereinafter also referred to as “SP value”) is a value represented by the square root of the molecular aggregation energy. The SP values of various binders are described in Kodansha Scientific edition “Practical Polymer for Engineers” (by Koji Mukai) and the like, and this value is the SP value in this specification. The SP value is a value at 25 ° C.
The SP value can be calculated by the method described in the Maruzen edited by “Solution and Solubility” (by Kozo Shinoda). The SP value of the binder not described in “Practical Polymer for Engineers” It is calculated by the method described in “Solubility”.

SP値が12(MJ/m1/2以下のバインダーとして具体的には例えば、ポリイソブチレン、エチレンプロピレン樹脂、ポリエチレン、天然ゴム、ブタジエン樹脂、ポリメタクリル酸メチル、ポリエチレンテレフタレート、エポキシ樹脂、フェノール樹脂、シロキサン樹脂等を挙げることができる。
これらは1種類を単独で又は2種類以上を組み合わせて使用される。
Specific examples of binders having an SP value of 12 (MJ / m 3 ) 1/2 or less include, for example, polyisobutylene, ethylene propylene resin, polyethylene, natural rubber, butadiene resin, polymethyl methacrylate, polyethylene terephthalate, epoxy resin, phenol Examples thereof include resins and siloxane resins.
These are used singly or in combination of two or more.

特定バインダーの分子量は特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが望ましい。5000〜500000が好ましく、10000〜200000がより好ましく、20000〜100000がもっとも好ましい。
重量平均分子量は、例えばGPC法を用いて定法によって測定することができる。
The molecular weight of the specific binder is not particularly limited, and it is desirable to adjust appropriately in view of the desired viscosity as the composition. 5000 to 500000 are preferable, 10000 to 200000 are more preferable, and 20000 to 100000 are most preferable.
The weight average molecular weight can be measured by a conventional method using, for example, the GPC method.

p型拡散層形成組成物中の特定バインダーの含有率は特に制限されない。例えば、p型拡散層形成組成物中に、0.02質量%〜40質量%であり、好ましくは0.1質量%〜20質量%であり、より好ましくは0.5質量%〜10質量%である。   The content of the specific binder in the p-type diffusion layer forming composition is not particularly limited. For example, in the p-type diffusion layer forming composition, it is 0.02% by mass to 40% by mass, preferably 0.1% by mass to 20% by mass, and more preferably 0.5% by mass to 10% by mass. It is.

本発明のp型拡散層形成組成物は、耐溶剤性の観点から、ポリ(メタ)アクリル酸アルキル、ポリエチレンテレフタレート、エポキシ樹脂及びフェノール樹脂から選ばれ、重量平均分子量が10000〜200000である特定バインダーを0.1質量%〜20質量%含むことが好ましく、ポリ(メタ)アクリル酸アルキル、ポリエチレンテレフタレート、エポキシ樹脂及びフェノール樹脂から選ばれ、重量平均分子量が20000〜100000である特定バインダーを0.5質量%〜10質量%含むことがより好ましい。   The p-type diffusion layer forming composition of the present invention is selected from poly (meth) acrylate alkyl, polyethylene terephthalate, epoxy resin and phenol resin from the viewpoint of solvent resistance, and a specific binder having a weight average molecular weight of 10,000 to 200,000. Is preferably 0.1 to 20% by mass, selected from poly (meth) acrylate alkyl, polyethylene terephthalate, epoxy resin and phenol resin, and 0.5 to 0.5 specific binder having a weight average molecular weight of 20,000 to 100,000. More preferably, the content is 10% by mass to 10% by mass.

p型拡散層形成組成物は、SP値が12(MJ/m1/2以下のバインダーに加えて、本発明の効果を損なわない範囲でSP値が12(MJ/m1/2を超えるバインダーをさらに含んでいてもよい。
SP値が12(MJ/m1/2を超えるバインダーとしては例えば、ポリビニルアルコール、セルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体などを挙げることができる。
p型拡散層形成組成物が、SP値が12(MJ/m1/2を越えるバインダーを含む場合、その含有率は5質量%以下とすることができ、2質量%以下であることが好ましい。
p-type diffusion layer-forming composition, SP value in addition to the 12 (MJ / m 3) 1/2 or less of the binder, SP value within a range not to impair the effects of the present invention 12 (MJ / m 3) 1 / It may further contain more than two binders.
Examples of binders having an SP value exceeding 12 (MJ / m 3 ) 1/2 include, for example, cellulose derivatives such as polyvinyl alcohol, cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose, gelatin, starch and starch derivatives, sodium alginates, xanthan, guar, and the like. Examples include guar derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives.
When the p-type diffusion layer forming composition contains a binder having an SP value exceeding 12 (MJ / m 3 ) 1/2 , the content can be 5% by mass or less, and 2% by mass or less. Is preferred.

p型拡散層形成組成物は、分散媒として少なくとも1種の溶剤を含むことが好ましい。
溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル系溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α−テルピネン、α−テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α−ピネン、β−ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
n型拡散層形成組成物とした場合、基板への塗布性の観点から、α−テルピネオール、ジエチレングリコールモノ−n−ブチルエーテル、酢酸2−(2−ブトキシエトキシ)エチルが好ましい。
The p-type diffusion layer forming composition preferably contains at least one solvent as a dispersion medium.
Examples of the solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, Ketone solvents such as diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl -N-propyl ether, di-iso-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether Ter, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether , Diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n- Butyl ether, G Ethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetradiethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, diethylene glycol di-n-butyl ether, tetraethylene glycol methyl n-hexyl Ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl Ether, zip Lopylene glycol methyl-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene Glycol methyl ethyl ether, tripropylene glycol methyl-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetradipropylene glycol methyl ethyl Ether, tetrapropylene glycol methyl-n-butyl ether Ether solvents such as dipropylene glycol di-n-butyl ether, tetrapropylene glycol methyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether; methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, acetic acid n-butyl, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2- Butoxyethoxy) ethyl, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol acetate Methyl ether, dipropylene glycol ethyl ether, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, lactic acid Methyl, ethyl lactate, n-butyl lactate, n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene Ester solvents such as glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ-butyrolactone, γ-valerolactone; N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, etc. Aprotic polar solvent: methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec -Pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, Alcohol solvents such as 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, Diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol Mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether Glycol monoether solvents such as α-terpinene, α-terpineol, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, terpineol, carvone, ocimene, and ferrandrene; water . These are used singly or in combination of two or more.
In the case of an n-type diffusion layer forming composition, α-terpineol, diethylene glycol mono-n-butyl ether, and 2- (2-butoxyethoxy) ethyl acetate are preferred from the viewpoint of applicability to the substrate.

p型拡散層形成組成物中の分散媒の構成及び含有比率は、塗布性、アクセプタ濃度を考慮し決定される。
p型拡散層形成組成物の粘度は、塗布性を考慮して、10mPa・s以上1000000mPa・s以下であることが好ましく、50mPa・s以上500000mPa・s以下であることがより好ましい。なお、p型拡散層形成組成物の粘度は、E型粘度計を用いて25℃、5rpmで測定される。
The constitution and content ratio of the dispersion medium in the p-type diffusion layer forming composition are determined in consideration of applicability and acceptor concentration.
The viscosity of the p-type diffusion layer forming composition is preferably 10 mPa · s or more and 1000000 mPa · s or less, and more preferably 50 mPa · s or more and 500000 mPa · s or less in consideration of applicability. The viscosity of the p-type diffusion layer forming composition is measured at 25 ° C. and 5 rpm using an E-type viscometer.

次に、本発明のp型拡散層及び太陽電池素子の製造方法について説明する。   Next, the manufacturing method of the p-type diffused layer and solar cell element of this invention is demonstrated.

まず、p型半導体基板であるシリコン基板にアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する。太陽電池素子は、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
First, an alkaline solution is applied to a silicon substrate which is a p-type semiconductor substrate to remove a damaged layer, and a texture structure is obtained by etching.
Specifically, the damaged layer on the silicon surface generated when slicing from the ingot is removed with 20% by mass caustic soda. Next, etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure. In the solar cell element, by forming a texture structure on the light receiving surface (surface) side, a light confinement effect is promoted, and high efficiency is achieved.

次に、オキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800℃〜900℃で数十分の処理を行って一様にn型拡散層を形成する。このとき、オキシ塩化リン雰囲気を用いた方法では、リンの拡散は側面及び裏面にも及び、n型拡散層は表面のみならず、側面、裏面にも形成される。そのために、側面のn型拡散層を除去するために、サイドエッチが施される。 Next, several tens of minutes are performed at 800 ° C. to 900 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen, and oxygen to uniformly form an n-type diffusion layer. At this time, in the method using the phosphorus oxychloride atmosphere, the diffusion of phosphorus extends to the side surface and the back surface, and the n-type diffusion layer is formed not only on the surface but also on the side surface and the back surface. Therefore, side etching is performed to remove the side n-type diffusion layer.

そして、p型半導体基板の裏面すなわち受光面ではない面のn型拡散層の上に、上記p型拡散層形成組成物を塗布する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などがある。
上記p型拡散層形成組成物の塗布量としては特に制限は無いが、例えば、ガラス粉末量として0.01g/m〜100g/mとすることができ、0.1g/m〜10g/mであることが好ましい。
Then, the p-type diffusion layer forming composition is applied onto the n-type diffusion layer on the back surface of the p-type semiconductor substrate, that is, the surface that is not the light receiving surface. In the present invention, the coating method is not limited, and examples thereof include a printing method, a spin method, a brush coating, a spray method, a doctor blade method, a roll coater method, and an ink jet method.
Is not particularly limited as coated amount of the p-type diffusion layer forming composition, for example, be a 0.01g / m 2 ~100g / m 2 as a glass powder content, 0.1 g / m 2 to 10 g / M 2 is preferable.

なお、p型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80℃〜300℃程度の温度で、ホットプレートを使用する場合は1分〜10分、乾燥機などを用いる場合は10分〜30分程度で乾燥させる。この乾燥条件は、p型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。   Depending on the composition of the p-type diffusion layer forming composition, a drying step for volatilizing the solvent contained in the composition may be necessary after coating. In this case, drying is performed at a temperature of about 80 ° C. to 300 ° C. for 1 minute to 10 minutes when a hot plate is used, and about 10 minutes to 30 minutes when a dryer or the like is used. The drying conditions depend on the solvent composition of the p-type diffusion layer forming composition and are not particularly limited to the above conditions in the present invention.

上記p型拡散層形成組成物を塗布した半導体基板を、600℃〜1200℃で熱処理する。この熱処理により、半導体基板中へアクセプタ元素が拡散し、p型拡散層が形成される。熱処理には公知の連続炉、バッチ炉等が適用できる。
型拡散層の表面には、ガラス層が形成されているため、このガラスをエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。
The semiconductor substrate coated with the p-type diffusion layer forming composition is heat-treated at 600 ° C. to 1200 ° C. By this heat treatment, the acceptor element diffuses into the semiconductor substrate, and a p + -type diffusion layer is formed. A known continuous furnace, batch furnace, or the like can be applied to the heat treatment.
Since a glass layer is formed on the surface of the p + type diffusion layer, the glass is removed by etching. As the etching, a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda can be applied.

また、従来の製造方法では、裏面にアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。しかしながら、アルミペーストの導電率が低いため、シート抵抗を下げなければならず、通常裏面全面に形成したアルミ層は焼成後において10μm〜20μmほどの厚みを有していなければならない。さらに、シリコンとアルミでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、反りの原因となる。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池素子の搬送や、タブ線と呼ばれる銅線との接続において、太陽電池素子を破損させ易くしていた。近年では、スライス加工技術の向上から、シリコン基板の厚みが薄型化されつつあり、更に太陽電池素子が割れ易い傾向にある。
Further, in the conventional manufacturing method, an aluminum paste is printed on the back surface, and this is baked to change the n-type diffusion layer into a p + -type diffusion layer, and at the same time, an ohmic contact is obtained. However, since the electrical conductivity of the aluminum paste is low, the sheet resistance must be lowered, and the aluminum layer usually formed on the entire back surface must have a thickness of about 10 μm to 20 μm after firing. Furthermore, since the thermal expansion coefficients of silicon and aluminum differ greatly, a large internal stress is generated in the silicon substrate during the firing and cooling process, causing warpage.
This internal stress has a problem that the crystal grain boundary is damaged and the power loss increases. Further, the warpage easily damages the solar cell element in the transportation of the solar cell element in the module process and the connection with a copper wire called a tab wire. In recent years, the thickness of the silicon substrate has been reduced due to the improvement of the slice processing technique, and the solar cell element tends to be easily broken.

しかし本発明の製造方法によれば、上記本発明のp型拡散層形成組成物によってn型拡散層をp型拡散層に変換した後、別途このp型拡散層の上に電極を設ける。そのため裏面の電極に用いる材料はアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の電極の厚さも従来のものよりも薄く形成することが可能となり、さらに全面に形成する必要もなくなる。そのため焼成および冷却の過程で発生するシリコン基板中の内部応力及び反りを低減できる。 However, according to the manufacturing method of the present invention, after the n-type diffusion layer is converted into the p + -type diffusion layer by the p-type diffusion layer forming composition of the present invention, an electrode is separately provided on the p + -type diffusion layer. . Therefore, the material used for the back electrode is not limited to aluminum. For example, Ag (silver) or Cu (copper) can be applied, and the thickness of the back electrode can be made thinner than the conventional one. Further, it is not necessary to form the entire surface. Therefore, it is possible to reduce internal stress and warpage in the silicon substrate that occur during the firing and cooling processes.

上記形成したn型拡散層の上に反射防止膜を形成する。反射防止膜は公知の技術を適用して形成される。例えば、反射防止膜がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が0.1Torr〜2Torr、成膜時の温度が300℃〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
An antireflection film is formed on the n-type diffusion layer formed as described above. The antireflection film is formed by applying a known technique. For example, when the antireflection film is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbits that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are combined to inactivate defects (hydrogen passivation).
More specifically, the mixed gas flow ratio NH 3 / SiH 4 is 0.05 to 1.0, the pressure in the reaction chamber is 0.1 Torr to 2 Torr, the temperature during film formation is 300 ° C. to 550 ° C., It is formed under the condition that the frequency for discharge is 100 kHz or more.

表面(受光面)の反射防止膜上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極を形成する。表面電極用金属ペーストは、金属粒子とガラス粒子とを必須成分とし、必要に応じて樹脂バインダー、その他の添加剤などを含む。   On the antireflection film on the surface (light receiving surface), the surface electrode metal paste is printed, applied and dried by a screen printing method to form a surface electrode. The metal paste for a surface electrode contains metal particles and glass particles as essential components, and includes a resin binder and other additives as necessary.

次いで、上記裏面のp型拡散層上にも裏面電極を形成する。前述のように、本発明では裏面電極の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅などの金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極を形成してもよい。このとき、裏面にも、モジュール工程における太陽電池素子間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。 Next, a back electrode is also formed on the p + -type diffusion layer on the back surface. As described above, in the present invention, the material and forming method of the back electrode are not particularly limited. For example, a back electrode paste containing a metal such as aluminum, silver, or copper may be applied and dried to form the back electrode. At this time, a silver paste for forming a silver electrode may be partially provided on the back surface for connection between solar cell elements in the module process.

上記電極を焼成して、太陽電池素子を完成させる。600℃〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜が溶融し、更にシリコン表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板と接触部を形成し凝固する。これにより、形成した表面電極とシリコン基板とが導通される。これはファイアースルーと称されている。   The electrode is fired to complete the solar cell element. When fired in the range of 600 ° C. to 900 ° C. for several seconds to several minutes, the antireflective film, which is an insulating film, is melted by the glass particles contained in the electrode metal paste on the surface side, and the silicon surface is also partially melted. The metal particles (for example, silver particles) inside form a contact portion with the silicon substrate and solidify. Thereby, the formed surface electrode and the silicon substrate are electrically connected. This is called fire-through.

表面電極の形状について説明する。表面電極は、バスバー電極、及び該バスバー電極と交差しているフィンガー電極で構成される。
このような表面電極は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着などの手段により形成することができる。バスバー電極とフィンガー電極とからなる表面電極は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。
The shape of the surface electrode will be described. The surface electrode includes a bus bar electrode and a finger electrode that intersects the bus bar electrode.
Such a surface electrode can be formed by means such as screen printing of the above-described metal paste, plating of the electrode material, or vapor deposition of the electrode material by electron beam heating in a high vacuum. A surface electrode composed of a bus bar electrode and a finger electrode is generally used as an electrode on the light receiving surface side and is well known, and known forming means for the bus bar electrode and the finger electrode on the light receiving surface side can be applied.

なお上述のp型拡散層及び太陽電池素子の製造方法では、p型半導体基板であるシリコン基板にn型拡散層を形成するのに、オキシ塩化リン(POCl)、窒素および酸素の混合ガスを用いているが、n型拡散層形成組成物を用いてn型拡散層を形成してもよい。n型拡散層形成組成物にはP(リン)やSb(アンチモン)などの第15族の元素がドナー元素として含有される。
n型拡散層の形成にn型拡散層形成組成物を用いる方法では、まず、p型半導体基板の表面である受光面にn型拡散層形成組成物を塗布し、裏面に本発明のp型拡散層形成組成物を塗布し、600℃〜1200℃で熱処理する。この熱処理により、表面ではp型半導体基板中へドナー元素が拡散してn型拡散層が形成され、裏面ではアクセプタ元素が拡散してp型拡散層が形成される。この工程以外は上記方法と同様の工程により、太陽電池素子が作製される。
In the above-described method for manufacturing a p-type diffusion layer and a solar cell element, a mixed gas of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen is used to form an n-type diffusion layer on a silicon substrate which is a p-type semiconductor substrate. Although used, the n-type diffusion layer may be formed using the n-type diffusion layer forming composition. The n-type diffusion layer forming composition contains a Group 15 element such as P (phosphorus) or Sb (antimony) as a donor element.
In the method using the n-type diffusion layer forming composition for forming the n-type diffusion layer, first, the n-type diffusion layer forming composition is applied to the light-receiving surface which is the surface of the p-type semiconductor substrate, and the p-type of the present invention is applied to the back surface. The diffusion layer forming composition is applied and heat-treated at 600 ° C to 1200 ° C. By this heat treatment, the donor element diffuses into the p-type semiconductor substrate on the front surface to form an n-type diffusion layer, and the acceptor element diffuses on the back surface to form a p + -type diffusion layer. Except for this step, a solar cell element is produced by the same steps as those described above.

以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。   Examples of the present invention will be described more specifically below, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents. “%” Means “% by mass” unless otherwise specified.

[実施例1]
粒子形状が略球状で、平均粒子径が4.9μm、軟化点561℃のB−SiO−RO(R:Na,K,Li)系ガラス粉末(商品名:TMX−404、東罐マテリアル・テクノロジー(株)社製)20gと、ポリメタクリル酸メチル(重量平均分子量50,000、SP値9.5)0.3g、酢酸2−(2−ブトキシエトキシ)エチル10gとを、自動乳鉢混練装置を用いて混合してペースト化し、p型拡散層形成組成物を調製した。
[Example 1]
B 2 O 3 —SiO 2 —R 2 O (R: Na, K, Li) glass powder (trade name: TMX-404) having a substantially spherical particle shape, an average particle diameter of 4.9 μm, and a softening point of 561 ° C. 20 g of Toago Material Technology Co., Ltd.), 0.3 g of polymethyl methacrylate (weight average molecular weight 50,000, SP value 9.5), and 10 g of 2- (2-butoxyethoxy) ethyl acetate. Then, using an automatic mortar kneader, the mixture was made into a paste to prepare a p-type diffusion layer forming composition.

なお、ガラス粒子形状は、(株)日立ハイテクノロジーズ製TM−1000型走査型電子顕微鏡を用いて観察して判定した。ガラスの平均粒子径はベックマン・コールター(株)製LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:632nm)を用いて算出した。ガラスの軟化点は(株)島津製作所製DTG−60H型示差熱・熱重量同時測定装置を用いて、示差熱(DTA)曲線により求めた。   The glass particle shape was determined by observing with a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Corporation. The average particle size of the glass was calculated using a LS 13 320 type laser scattering diffraction particle size distribution analyzer (measurement wavelength: 632 nm) manufactured by Beckman Coulter, Inc. The softening point of the glass was determined from a differential heat (DTA) curve using a DTG-60H type differential heat / thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation.

次に、調製したペーストをスクリーン印刷によって表面にn型拡散層が形成されたp型シリコン基板上に塗布し、150℃のホットプレート上で5分間乾燥させて、厚さ約18μmの塗布層を形成した。
塗布層が形成されたシリコン基板の表面にエタノールをかけて洗浄し、大気下で乾燥した。乾燥後のシリコン基板の表面を観察したところ、塗布層の形状は維持されており、塗布層の変形、拡大等の発生は認められなかった。
Next, the prepared paste is applied on a p-type silicon substrate having an n-type diffusion layer formed on the surface by screen printing and dried on a hot plate at 150 ° C. for 5 minutes to form an application layer having a thickness of about 18 μm. Formed.
The surface of the silicon substrate on which the coating layer was formed was washed with ethanol and dried in the air. When the surface of the dried silicon substrate was observed, the shape of the coating layer was maintained, and no deformation or expansion of the coating layer was observed.

続いて、1000℃に設定した電気炉で30分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄、乾燥を行った。   Subsequently, thermal diffusion treatment was performed for 30 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, washed with running water, and dried.

p型拡散層形成組成物を塗布した側の表面のシート抵抗は190Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また基板に反りは発生していなかった。   The sheet resistance of the surface on which the p-type diffusion layer forming composition was applied was 190Ω / □, and B (boron) diffused to form a p-type diffusion layer. Further, no warpage occurred on the substrate.

なお、シート抵抗は、三菱化学(株)製Loresta−EP MCP−T360型低抵抗率計を用いて四探針法により測定した。   The sheet resistance was measured by a four-probe method using a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation.

[実施例2]
実施例1において、ポリメタクリル酸メチル代わりにポリエチレンテレフタレート(重量平均分子量50,000、SP値10.7)を用いたこと以外は実施例1と同様にしてp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって表面にn型拡散層が形成されたp型シリコン基板上に塗布し、150℃のホットプレート上で5分間乾燥させて、厚さ約18μmの塗布層を形成した。
塗布層が形成されたシリコン基板の表面にエタノールをかけて洗浄し、大気下で乾燥した。乾燥後のシリコン基板の表面を観察したところ、塗布層の形状は維持されており、塗布層の変形、拡大等の発生は認められなかった。
[Example 2]
In Example 1, a p-type diffusion layer forming composition was prepared in the same manner as in Example 1 except that polyethylene terephthalate (weight average molecular weight 50,000, SP value 10.7) was used instead of polymethyl methacrylate. .
Next, the prepared paste is applied on a p-type silicon substrate having an n-type diffusion layer formed on the surface by screen printing and dried on a hot plate at 150 ° C. for 5 minutes to form an application layer having a thickness of about 18 μm. Formed.
The surface of the silicon substrate on which the coating layer was formed was washed with ethanol and dried in the air. When the surface of the dried silicon substrate was observed, the shape of the coating layer was maintained, and no deformation or expansion of the coating layer was observed.

続いて、1000℃に設定した電気炉で30分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄、乾燥を行った。   Subsequently, thermal diffusion treatment was performed for 30 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, washed with running water, and dried.

p型拡散層形成組成物を塗布した側の表面のシート抵抗は190Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また基板に反りは発生していなかった。   The sheet resistance of the surface on which the p-type diffusion layer forming composition was applied was 190Ω / □, and B (boron) diffused to form a p-type diffusion layer. Further, no warpage occurred on the substrate.

[実施例3]
実施例1において、ポリメタクリル酸メチル代わりにエポキシ樹脂(重量平均分子量50,000、SP値10.9)を用いたこと以外は実施例1と同様にしてp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって表面にn型拡散層が形成されたp型シリコン基板上に塗布し、150℃のホットプレート上で5分間乾燥させて、厚さ約18μmの塗布層を形成した。
塗布層が形成されたシリコン基板の表面にエタノールをかけて洗浄し、大気下で乾燥した。乾燥後のシリコン基板の表面を観察したところ、塗布層の形状は維持されており、塗布層の変形、拡大等の発生は認められなかった。
[Example 3]
In Example 1, a p-type diffusion layer forming composition was prepared in the same manner as in Example 1 except that an epoxy resin (weight average molecular weight 50,000, SP value 10.9) was used instead of polymethyl methacrylate. .
Next, the prepared paste is applied on a p-type silicon substrate having an n-type diffusion layer formed on the surface by screen printing and dried on a hot plate at 150 ° C. for 5 minutes to form an application layer having a thickness of about 18 μm. Formed.
The surface of the silicon substrate on which the coating layer was formed was washed with ethanol and dried in the air. When the surface of the dried silicon substrate was observed, the shape of the coating layer was maintained, and no deformation or expansion of the coating layer was observed.

続いて、1000℃に設定した電気炉で30分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄、乾燥を行った。   Subsequently, thermal diffusion treatment was performed for 30 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, washed with running water, and dried.

p型拡散層形成組成物を塗布した側の表面のシート抵抗は190Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また基板に反りは発生していなかった。   The sheet resistance of the surface on which the p-type diffusion layer forming composition was applied was 190Ω / □, and B (boron) diffused to form a p-type diffusion layer. Further, no warpage occurred on the substrate.

[実施例4]
実施例1において、ポリメタクリル酸メチル代わりにフェノール樹脂(重量平均分子量50,000、SP値11.3)を用いたこと以外は実施例1と同様にしてp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって表面にn型拡散層が形成されたp型シリコン基板上に塗布し、150℃のホットプレート上で5分間乾燥させて、厚さ約18μmの塗布層を形成した。
塗布層が形成されたシリコン基板の表面にエタノールをかけて洗浄し、大気下で乾燥した。乾燥後のシリコン基板の表面を観察したところ、塗布層の形状は維持されており、塗布層の変形、拡大等の発生は認められなかった。
[Example 4]
In Example 1, a p-type diffusion layer forming composition was prepared in the same manner as in Example 1 except that a phenol resin (weight average molecular weight 50,000, SP value 11.3) was used instead of polymethyl methacrylate. .
Next, the prepared paste is applied on a p-type silicon substrate having an n-type diffusion layer formed on the surface by screen printing and dried on a hot plate at 150 ° C. for 5 minutes to form an application layer having a thickness of about 18 μm. Formed.
The surface of the silicon substrate on which the coating layer was formed was washed with ethanol and dried in the air. When the surface of the dried silicon substrate was observed, the shape of the coating layer was maintained, and no deformation or expansion of the coating layer was observed.

続いて、1000℃に設定した電気炉で30分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄、乾燥を行った。   Subsequently, thermal diffusion treatment was performed for 30 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, washed with running water, and dried.

p型拡散層形成組成物を塗布した側の表面のシート抵抗は190Ω/□であり、B(ほう素)が拡散しp型拡散層が形成されていた。また基板に反りは発生していなかった。   The sheet resistance of the surface on which the p-type diffusion layer forming composition was applied was 190Ω / □, and B (boron) diffused to form a p-type diffusion layer. Further, no warpage occurred on the substrate.

[比較例1]
実施例1において、ポリメタクリル酸メチル代わりにセルロース(重量平均分子量50,000、SP値15.7)を用いたこと以外は実施例1と同様にしてp型拡散層形成組成物を調製した。
次に、調製したペーストをスクリーン印刷によって表面にn型拡散層が形成されたp型シリコン基板上に塗布し、150℃のホットプレート上で5分間乾燥させ、厚さ約18μmの塗布層を形成した。
塗布層が形成されたp型シリコン基板の表面にエタノールをかけて洗浄し、大気下で乾燥した。乾燥後のp型シリコン基板の表面を観察したところ、塗布層の表面が白く荒れており、また塗布層の形状が変形してシリコン基板上の未塗布領域にまで塗布層が拡大していた。
[Comparative Example 1]
A p-type diffusion layer forming composition was prepared in the same manner as in Example 1 except that cellulose (weight average molecular weight 50,000, SP value 15.7) was used instead of polymethyl methacrylate in Example 1.
Next, the prepared paste is applied on a p-type silicon substrate having an n-type diffusion layer formed on the surface by screen printing, and dried on a hot plate at 150 ° C. for 5 minutes to form a coating layer having a thickness of about 18 μm. did.
The surface of the p-type silicon substrate on which the coating layer was formed was washed with ethanol and dried in the air. When the surface of the p-type silicon substrate after drying was observed, the surface of the coating layer was white and rough, and the shape of the coating layer was deformed, and the coating layer expanded to the uncoated region on the silicon substrate.

続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄を行った。p型拡散層形成組成物を塗布した側の表面のシート抵抗を測定したところ、塗布層が拡大した領域にまでp型拡散層が形成されていた。   Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, and washed with running water. When the sheet resistance of the surface on which the p-type diffusion layer forming composition was applied was measured, the p-type diffusion layer was formed even in the region where the coating layer was enlarged.

[比較例2]
実施例1において、ポリメタクリル酸メチル代わりにポリビニルアルコール(重量平均分子量50,000、SP値12.6)を用いたこと以外は実施例1と同様にしてp型拡散層形成組成物を調製した。

次に、調製したペーストをスクリーン印刷によって表面にn型拡散層が形成されたp型シリコン基板上に塗布し、150℃のホットプレート上で5分間乾燥させ、厚さ約18μmの塗布層を形成した。
塗布層が形成されたp型シリコン基板の表面にエタノールをかけて洗浄し、大気下で乾燥した。乾燥後のp型シリコン基板の表面を観察したところ、塗布層の表面が白く荒れており、また塗布層の形状が変形してシリコン基板上の未塗布領域にまで塗布層が拡大していた。
[Comparative Example 2]
In Example 1, a p-type diffusion layer forming composition was prepared in the same manner as in Example 1 except that polyvinyl alcohol (weight average molecular weight 50,000, SP value 12.6) was used instead of polymethyl methacrylate. .

Next, the prepared paste is applied on a p-type silicon substrate having an n-type diffusion layer formed on the surface by screen printing, and dried on a hot plate at 150 ° C. for 5 minutes to form a coating layer having a thickness of about 18 μm. did.
The surface of the p-type silicon substrate on which the coating layer was formed was washed with ethanol and dried in the air. When the surface of the p-type silicon substrate after drying was observed, the surface of the coating layer was white and rough, and the shape of the coating layer was deformed, and the coating layer expanded to the uncoated region on the silicon substrate.

続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をふっ酸に5分間浸漬し、流水洗浄を行った。p型拡散層形成組成物を塗布した側の表面のシート抵抗を測定したところ、塗布層が拡大した領域にまでp型拡散層が形成されていた。   Subsequently, thermal diffusion treatment was performed for 10 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, and washed with running water. When the sheet resistance of the surface on which the p-type diffusion layer forming composition was applied was measured, the p-type diffusion layer was formed even in the region where the coating layer was enlarged.

Claims (5)

アクセプタ元素を含むガラス粉末と、
溶解度パラメーターが12(MJ/m1/2以下であるバインダーを含む分散媒と、
を含有するp型拡散層形成組成物。
Glass powder containing an acceptor element;
A dispersion medium containing a binder having a solubility parameter of 12 (MJ / m 3 ) 1/2 or less;
A p-type diffusion layer forming composition comprising:
前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である請求項1に記載のp型拡散層形成組成物。   The p-type diffusion layer forming composition according to claim 1, wherein the acceptor element is at least one selected from B (boron), Al (aluminum), and Ga (gallium). 前記アクセプタ元素を含むガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する請求項1又は請求項2に記載のp型拡散層形成組成物。 The glass powder containing the acceptor element is at least one acceptor element-containing substance selected from B 2 O 3 , Al 2 O 3 and Ga 2 O 3 , and SiO 2 , K 2 O, Na 2 O, Li 2. Or at least one glass component material selected from O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3. The p-type diffusion layer forming composition according to claim 2. 半導体基板上に、請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、熱拡散処理を施す工程と、を有するp型拡散層の製造方法。   A method for producing a p-type diffusion layer, comprising: applying a p-type diffusion layer forming composition according to any one of claims 1 to 3 on a semiconductor substrate; and applying a thermal diffusion treatment. . 半導体基板上に、請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物を塗布する工程と、
熱拡散処理を施して、p型拡散層を形成する工程と、
形成された前記p型拡散層上に電極を形成する工程と、
を有する太陽電池素子の製造方法。
Applying a p-type diffusion layer forming composition according to any one of claims 1 to 3 on a semiconductor substrate;
Applying a thermal diffusion treatment to form a p-type diffusion layer;
Forming an electrode on the formed p-type diffusion layer;
The manufacturing method of the solar cell element which has this.
JP2011098365A 2011-04-26 2011-04-26 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element Pending JP2012231012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098365A JP2012231012A (en) 2011-04-26 2011-04-26 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098365A JP2012231012A (en) 2011-04-26 2011-04-26 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015180695A Division JP2016021589A (en) 2015-09-14 2015-09-14 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Publications (1)

Publication Number Publication Date
JP2012231012A true JP2012231012A (en) 2012-11-22

Family

ID=47432338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098365A Pending JP2012231012A (en) 2011-04-26 2011-04-26 P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element

Country Status (1)

Country Link
JP (1) JP2012231012A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794846A (en) * 1955-06-28 1957-06-04 Bell Telephone Labor Inc Fabrication of semiconductor devices
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH02177569A (en) * 1988-12-28 1990-07-10 Sharp Corp Manufacture of solar cell
WO2009060761A1 (en) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. Dopant host and process for producing the dopant host
JP2009200276A (en) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd Conductive composition for forming electrode, and method of forming solar cell
WO2009116569A1 (en) * 2008-03-21 2009-09-24 信越化学工業株式会社 Phosphorus paste for diffusion and process for producing solar battery utilizing the phosphorus paste
JP2010056465A (en) * 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd Boron paste for diffusion, and method of manufacturing solar cell using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794846A (en) * 1955-06-28 1957-06-04 Bell Telephone Labor Inc Fabrication of semiconductor devices
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH02177569A (en) * 1988-12-28 1990-07-10 Sharp Corp Manufacture of solar cell
WO2009060761A1 (en) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. Dopant host and process for producing the dopant host
JP2009200276A (en) * 2008-02-22 2009-09-03 Tokyo Ohka Kogyo Co Ltd Conductive composition for forming electrode, and method of forming solar cell
WO2009116569A1 (en) * 2008-03-21 2009-09-24 信越化学工業株式会社 Phosphorus paste for diffusion and process for producing solar battery utilizing the phosphorus paste
JP2010056465A (en) * 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd Boron paste for diffusion, and method of manufacturing solar cell using the same

Similar Documents

Publication Publication Date Title
WO2011090216A1 (en) n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
JP5447397B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP2014146808A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP5958485B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
WO2011162394A1 (en) IMPURITIES DIFFUSION LAYER FORMING COMPOSITION, n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING p-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL ELEMENTS
JP2013026579A (en) Manufacturing method of p-type diffusion layer and manufacturing method of solar cell element
JP5803080B2 (en) P-type diffusion layer forming composition, p-type diffusion layer forming composition manufacturing method, p-type diffusion layer manufacturing method, and solar cell manufacturing method
JP2014099660A (en) Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
JP2014146811A (en) N-type diffusion layer formation composition, manufacturing method of n-type diffusion layer, and manufacturing method of solar cell element
JP5625538B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5703674B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5842431B2 (en) Method for producing n-type diffusion layer and method for producing solar cell element
JP5842432B2 (en) Method for manufacturing p-type diffusion layer and method for manufacturing solar cell element
JP5541359B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP5703673B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP2016027665A (en) Manufacturing method of p-type diffusion layer and manufacturing method of solar cell element
JP5626340B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP2016021589A (en) P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP5834579B2 (en) Method for manufacturing p-type diffusion layer and method for manufacturing solar cell element
JP2012231012A (en) P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2013026476A (en) P-type diffusion layer forming composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP5691268B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP2013026471A (en) P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP5333564B2 (en) Method for manufacturing solar battery cell
JP2016006893A (en) n-TYPE DIFFUSION LAYER FORMATION COMPOSITION, n-TYPE DIFFUSION LAYER MANUFACTURING METHOD AND SOLAR CELL ELEMENT MANUFACTURING METHOD

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322