JP2009196855A - Ultrahigh-strength non-shrinkage grout material and ultrahigh-strength non-shrinkage grout material hardened article - Google Patents

Ultrahigh-strength non-shrinkage grout material and ultrahigh-strength non-shrinkage grout material hardened article Download PDF

Info

Publication number
JP2009196855A
JP2009196855A JP2008041177A JP2008041177A JP2009196855A JP 2009196855 A JP2009196855 A JP 2009196855A JP 2008041177 A JP2008041177 A JP 2008041177A JP 2008041177 A JP2008041177 A JP 2008041177A JP 2009196855 A JP2009196855 A JP 2009196855A
Authority
JP
Japan
Prior art keywords
grout material
less
cement
strength
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008041177A
Other languages
Japanese (ja)
Other versions
JP4747181B2 (en
Inventor
Takao Koide
貴夫 小出
Yasunori Suzuki
康範 鈴木
Seiichi Nagaoka
誠一 長岡
Koji Kawakami
浩司 河上
Hiroshi Matsuda
拓 松田
Yoshikatsu Nishimoto
好克 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2008041177A priority Critical patent/JP4747181B2/en
Publication of JP2009196855A publication Critical patent/JP2009196855A/en
Application granted granted Critical
Publication of JP4747181B2 publication Critical patent/JP4747181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrahigh-strength non-shrinkage grout material having a high strength development property capable of achieving a compressive strength of >160 N/mm<SP>2</SP>even in an ultrahigh-strength region at a water-binder ratio of ≤18.0% and an ultrahigh-strength non-shrinkage grout material hardened body. <P>SOLUTION: The ultrahigh-strength non-shrinkage grout material contains a hydraulic binder consisting of cement A having an alite content of 60-70 wt.% and a Blaine specific surface area of 4,000-6,500 cm<SP>2</SP>/g, cement B having a belite content of 35-60 wt.% and a Blaine specific surface area of 3,000-4,000 cm<SP>2</SP>/g, an expansive admixture and a siliceous fine powder having a BET specific surface area of 1-20 m<SP>2</SP>/g, an artificial high-density fine aggregate having a maximum particle diameter of ≤1.2 mm, an absolute dry density of ≥2.90 g/cm<SP>3</SP>and a water absorption of ≤0.90%, and a chemical admixture. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超高強度無収縮グラウト材及び超高強度無収縮グラウト材硬化体に関し、更に詳しくは、従来のグラウト材と比べて高い強度発現性、特に、水結合材比が18.0%以下の超高強度領域においては160N/mmを超える圧縮強度を得ることが可能な超高強度無収縮グラウト材、及び、この超高強度無収縮グラウト材を水と混練し養生した超高強度無収縮グラウト材硬化体に関するものである。 The present invention relates to an ultra-high-strength non-shrink grout material and a cured body of an ultra-high-strength non-shrink grout material. More specifically, the present invention has a higher strength than conventional grout materials, in particular, a water binder ratio of 18.0%. In the following ultra-high strength region, an ultra-high-strength non-shrink grout material capable of obtaining a compressive strength exceeding 160 N / mm 2 , and an ultra-high strength obtained by kneading and curing this ultra-high-strength non-shrink grout material with water The present invention relates to a non-shrink grout material cured body.

無収縮グラウト(充填)材とは、機械設備、土木・建築構造物等の接合部分、例えば、機械・橋梁等のアンカープレートの固定、プレキャスト部材の接合、支承部分等の複雑な間隙を充填し、複雑な上部構造物からの荷重を基礎部に均一に伝達させるために用いられるモルタル材料であり、近年、構造物の大型化および高強度化に伴って、無収縮グラウト材に対しても、従来の優れた流動性や無収縮性を確保しつつ、160N/mmを超える圧縮強度が求められている。
ところで、一般に、モルタル製品やコンクリート構造体等の圧縮強度は、それに含まれる骨材の品質、特に細骨材の品質に大きく左右される。通常、細骨材としては、天然産の川砂、山砂(陸砂)、海砂、砕砂等が使用されているが、産地、母岩種、ロット等により品質が大きくばらつくという問題が避けられない。特に、圧縮強度が160N/mmを超えるような極めて強度の高い領域では、供試体や構造物等に品質の悪い細骨材が混入すると、外部から応力が加わった場合に品質の悪い細骨材を含む部分に応力が集中し、本来発揮(期待)されるはずの強度より低い強度で破壊してしまう、つまり、品質の悪い細骨材が構造上の欠陥となってしまうこととなる。
Non-shrink grout (filling) material is used to fill in complex gaps such as machine parts, joint parts of civil engineering / building structures, for example, anchor plates of machines / bridges, joints of precast members, support parts, etc. , A mortar material that is used to uniformly transmit the load from the complex superstructure to the foundation.In recent years, with the increase in size and strength of the structure, even for non-shrink grout materials, The compressive strength exceeding 160 N / mm < 2 > is calculated | required, ensuring the conventional outstanding fluidity | liquidity and non-shrinkage property.
By the way, in general, the compressive strength of mortar products, concrete structures and the like greatly depends on the quality of aggregates contained therein, particularly the quality of fine aggregates. Normally, natural river sand, mountain sand (land sand), sea sand, crushed sand, etc. are used as fine aggregates, but the problem of large variations in quality depending on the production area, host rock type, lot, etc. can be avoided. Absent. Especially in extremely high strength areas where the compressive strength exceeds 160 N / mm 2 , if poor quality fine aggregates are mixed into the specimen or structure, etc., fine bones with poor quality when external stress is applied. Stress concentrates on the part including the material and breaks at a strength lower than the strength that should be exhibited (expected), that is, a fine aggregate with poor quality becomes a structural defect.

また同様に、細骨材の密度、粒子の形状、最大粒径、粒度分布、吸水率等の物性により、無収縮グラウト材の流動性も大きく左右され、特に、天然産の細骨材を使用した場合、無収縮グラウト材の流動性は用いられた細骨材の品質に大きく左右される。
そこで、圧壊強度(硬度)や耐摩耗性が高くかつ品質の安定している細骨材として、高炉スラグ細骨材、フェロクロムスラグ細骨材、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ等のスラグ細骨材を用いた様々な技術が提案されている。
Similarly, the fluidity of the non-shrink grout material is greatly influenced by the properties of fine aggregate density, particle shape, maximum particle size, particle size distribution, water absorption, etc., especially using natural fine aggregate In this case, the fluidity of the non-shrink grout material depends greatly on the quality of the fine aggregate used.
Therefore, blast furnace slag fine aggregate, ferrochrome slag fine aggregate, ferronickel slag fine aggregate, copper slag fine aggregate, as fine aggregate with high crushing strength (hardness) and wear resistance and stable quality, Various techniques using slag fine aggregate such as electric furnace oxidation slag have been proposed.

例えば、水硬性物質(セメント)、シリカダスト(シリカヒューム)やシリカ質ダスト等の超微粉、高性能減水剤、粒径5mm程度以下に粉砕したフェロクロムスラグ粉砕品及び水を主成分とした超高強度セメント組成物(特許文献1)、セメント及び水等と混練することによりコンクリートあるいはモルタルの構成材料として用いられる細骨材の一部または全部をスラグ球あるいはスラグ亜球により構成した細骨材(特許文献2)、直径5mm以下に風砕して球状化したフェロクロムスラグ、フェロニッケルスラグ、シリコンマンガンスラグ、フェロマンガンスラグ等のフェロアロイスラグを、砂と混合してコンクリート用骨材とするフェロアロイスラグの利用方法(特許文献3)、風砕製法によるフェロニッケルスラグを粒径2.5mm以下、かつ、その細骨材中の混入率を30%以上に調合した高流動コンクリート用細骨材(特許文献4)、天然鉱物質微粉末または人工鉱物質微粉末からなる鉱物質微粉末、及び、粒径0.3〜5mmのフェロニッケルスラグ細骨材等の微粒分の欠如した細骨材を用いた流動性と強度発現に優れたモルタル及びコンクリート組成物(特許文献5)、セメント、粒状セメントクリンカー、減水剤、比重が2.7以上の骨材、超微粉等から構成される高強度モルタル組成物(特許文献6)等が提案されている。   For example, ultra-fine powder such as hydraulic substance (cement), silica dust (silica fume) and siliceous dust, high-performance water reducing agent, ferrochrome slag pulverized product pulverized to a particle size of about 5 mm or less, and ultra-high Strong aggregate composition (Patent Document 1), fine aggregate composed of slag spheres or slag subspheres, part or all of fine aggregates used as a constituent material of concrete or mortar by kneading with cement and water ( Patent Document 2), a ferroalloy slag made of ferroalloy slag such as ferrochrome slag, ferronickel slag, silicon manganese slag, ferromanganese slag, etc., which is crushed into a diameter of 5 mm or less and mixed with sand to form a concrete aggregate. Method of use (Patent Document 3), Ferronickel slag produced by air-crushing method, particle size 2.5mm And a fine aggregate for high fluidity concrete (patent document 4) prepared by mixing the mixture ratio in the fine aggregate to 30% or more, a fine mineral powder consisting of a fine natural powder or a fine artificial mineral powder, And a mortar and concrete composition excellent in fluidity and strength expression using a fine aggregate lacking fine particles such as ferronickel slag fine aggregate having a particle size of 0.3 to 5 mm (Patent Document 5), cement, A high-strength mortar composition (Patent Document 6) composed of granular cement clinker, water reducing agent, aggregate having a specific gravity of 2.7 or more, ultrafine powder, and the like has been proposed.

これらの技術によれば、強度や流動性に優れたモルタルあるいはコンクリートが得られ、また、これまで用途が限られていたフェロクロムスラグ、フェロニッケルスラグ、シリコンマンガンスラグ、フェロマンガンスラグ等のフェロアロイスラグを細骨材として有効利用することができるという効果がある。
特許第2653402号公報 特開平5−32439号公報 特開平5−262542号公報 特開平8−325047号公報 特開平9−52744号公報 特開2005−119885号公報
According to these technologies, mortar or concrete excellent in strength and fluidity can be obtained, and ferroalloy slag such as ferrochrome slag, ferronickel slag, silicon manganese slag, ferromanganese slag, etc., which has been limited in use until now, can be obtained. There is an effect that it can be effectively used as a fine aggregate.
Japanese Patent No. 2653402 Japanese Patent Laid-Open No. 5-32439 Japanese Patent Laid-Open No. 5-262542 JP-A-8-325047 Japanese Patent Laid-Open No. 9-52744 JP 2005-119885 A

ところで、従来の公知技術においては、いずれの細骨材も、その最大粒径が2.5〜5mmであったり、あるいは特殊な球状化処理を施しているために、これらの細骨材を用いた無収縮グラウト材を水結合材比18.0%以下の超高強度領域にて養生・硬化させた硬化体では、圧縮強度が頭打ちとなり、160N/mmを超える圧縮強度を得るには不十分であるという問題点があった。 By the way, in the conventional well-known technique, since all the fine aggregates have a maximum particle size of 2.5 to 5 mm or have been subjected to a special spheroidizing treatment, these fine aggregates are used. In a cured product obtained by curing and curing a non-shrink grout material in an ultra-high strength region with a water binder ratio of 18.0% or less, the compressive strength reaches a peak, and it is not possible to obtain a compressive strength exceeding 160 N / mm 2. There was a problem that it was enough.

本発明は、上記の課題を解決するためになされたものであって、従来の無収縮グラウト材と比べて高い強度発現性を有し、しかも、水結合材比が18.0%以下の超高強度領域においても160N/mmを超える圧縮強度を得ることが可能な超高強度無収縮グラウト材及び超高強度無収縮グラウト材硬化体を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and has a high strength expression as compared with a conventional non-shrink grout material, and the water binder ratio is more than 18.0%. It is an object of the present invention to provide an ultra-high-strength non-shrink grout material and an ultra-high-strength non-shrink grout material cured body capable of obtaining a compressive strength exceeding 160 N / mm 2 even in a high-strength region.

本発明者等は、上記課題を解決するために鋭意研究を重ねた結果、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末からなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有した超高強度無収縮グラウト材を、水結合材比18.0%以下にて水と混練し養生させれば、圧縮強度が160N/mm以上の超高強度無収縮グラウト材硬化体を容易に得ることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have an alite content of 60% by weight or more and 70% by weight or less, and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g and less cement a, and belite content 35 wt% or more and is 60 wt% or less and Blaine specific surface area of less than 3000 cm 2 / g or more and 4000 cm 2 / g cement B, a expandable material, BET method A hydraulic binder made of siliceous fine powder having a specific surface area of 1 m 2 / g or more and 20 m 2 / g or less, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and water absorption Ultra high-strength non-shrink grout material containing artificial high-density fine aggregate with a rate of 0.90% or less and a chemical admixture can be kneaded and cured with water at a water binder ratio of 18.0% or less. If The present inventors have found that an ultra-high-strength non-shrink grout material cured product having a compressive strength of 160 N / mm 2 or more can be easily obtained, thereby completing the present invention.

すなわち、本発明の超高強度無収縮グラウト材は、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有してなることを特徴とする。 That is, the ultra-high-strength non-shrink grout material of the present invention comprises cement A having an alite content of 60% by weight or more and 70% by weight or less and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less. and belite content of is and Blaine specific surface area is 35 wt% or more and 60 wt% or less 3000 cm 2 / g or more and 4000 cm 2 / g or less cement B, the expansion member and the BET specific surface area is 1 m 2 / G and 20 m 2 / g of siliceous fine powder, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90 % Artificial fine high-density fine aggregate and a chemical admixture.

前記水硬性結合材は、前記セメントAを5重量%以上かつ15重量%以下、前記セメントBを60重量%以上かつ70重量%以下、前記膨張材を3重量%以上かつ7重量%以下、前記シリカ質微粉末を10重量%以上かつ30重量%以下の割合で混合してなることが好ましい。
前記人造高密度細骨材は、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材の群から選択された1種または2種以上であることが好ましい。
前記人造高密度細骨材の単位容積及び前記水硬性結合材の単位容積の比率は、0.60以上かつ1.20以下であることが好ましい。
The hydraulic binder is 5% by weight to 15% by weight of the cement A, 60% by weight to 70% by weight of the cement B, 3% by weight to 7% by weight of the expansion material, It is preferable to mix the siliceous fine powder at a ratio of 10 wt% or more and 30 wt% or less.
The artificial high-density fine aggregate is preferably one or more selected from the group of ferronickel slag fine aggregate, copper slag fine aggregate, and electric furnace oxidized slag fine aggregate.
The ratio of the unit volume of the artificial high-density fine aggregate and the unit volume of the hydraulic binder is preferably 0.60 or more and 1.20 or less.

本発明の超高強度無収縮グラウト材硬化体は、本発明の超高強度無収縮グラウト材を水結合材比18.0%以下にて水と混練し養生してなる超高強度無収縮グラウト材硬化体であって、
この超高強度無収縮グラウト材硬化体の圧縮強度は、20℃にて28日間、あるいは、5℃以上にてグラウト材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合、160N/mm以上であることを特徴とする。
The ultra-high-strength non-shrink grout material cured product of the present invention is an ultra-high-strength non-shrink grout obtained by kneading and curing the ultra-high strength non-shrink grout material of the present invention with water at a water binder ratio of 18.0% or less. A hardened material,
The compressive strength of this ultra-high strength non-shrink grout material is 20 days at 20 ° C., or after curing of the grout material at 5 ° C. or more, after 60 ° C. or more and 80 ° C. or less. When cured under any condition of 24 hours, it is 160 N / mm 2 or more.

本発明の超高強度無収縮グラウト材によれば、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有したので、従来の無収縮グラウト材と比べて強度発現性が優れたものとなっている。
また、水結合材比が18.0%以下の超高強度領域においては、160N/mmを超える圧縮強度を得ることができ、従来の無収縮グラウト材と比べて圧縮強度に優れたものとなっている。
According to the ultra-high-strength non-shrink grout material of the present invention, cement A having an alite content of 60% by weight or more and 70% by weight or less and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less, and belite content of is and Blaine specific surface area is 35 wt% or more and 60 wt% or less 3000 cm 2 / g or more and 4000 cm 2 / g or less cement B, the expansion member and the BET specific surface area is 1 m 2 / G and 20 m 2 / g of siliceous fine powder, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90 % Artificial fine high-density fine aggregate and a chemical admixture are contained, and the strength development is superior to conventional non-shrink grout materials.
Further, in the ultra-high strength region where the water binder ratio is 18.0% or less, a compressive strength exceeding 160 N / mm 2 can be obtained, and the compressive strength is superior to that of a conventional non-shrink grout material. It has become.

本発明の超高強度無収縮グラウト材硬化体によれば、20℃にて28日間、あるいは、5℃以上にてグラウト材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合の硬化体の圧縮強度を160N/mm以上としたので、水結合材比が18.0%以下の超高強度領域においても160N/mmを超える圧縮強度を容易に得ることができる。しかも、この圧縮強度は、長期に亘って保持することが可能であるから、長期信頼性に優れたものとなる。
したがって、従来の無収縮グラウト材を用いた場合と比べて圧縮強度に優れ、かつ長期信頼性に優れた超高強度無収縮グラウト材硬化体を提供することができる。
According to the cured body of the ultra-high strength non-shrink grout material of the present invention, heat curing at 60 ° C. or more and 80 ° C. or less after 20 days at 20 ° C. or after the setting of the grout material at 5 ° C. or more is completed. Since the compressive strength of the cured product when cured under any of the conditions for 24 hours is 160 N / mm 2 or more, it is 160 N / mm even in an ultrahigh strength region where the water binder ratio is 18.0% or less. A compressive strength exceeding 2 can be easily obtained. In addition, the compressive strength can be maintained over a long period of time, so that the long-term reliability is excellent.
Therefore, it is possible to provide an ultra-high-strength non-shrink grout material cured body that has excellent compressive strength and long-term reliability as compared with the case of using a conventional non-shrink grout material.

本発明の超高強度無収縮グラウト材及び超高強度無収縮グラウト材硬化体の最良の形態について説明する。
なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best form of the ultra-high-strength non-shrink grout material and the ultra-high-strength non-shrink grout material of the present invention will be described.
The present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.

本実施形態の超高強度無収縮グラウト材は、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有してなる超高強度無収縮グラウト材である。 The ultra-high-strength non-shrink grout material of this embodiment is cement A having an alite content of 60% by weight or more and 70% by weight or less and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less, belite content 35 wt% or more and is 60 wt% or less and Blaine specific surface area of 3000 cm 2 / g or more and a 4000 cm 2 / g or less of cement B, the expansion member and the BET specific surface area is 1 m 2 / g and 20 m 2 / g or less of a siliceous fine powder, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and a water absorption of 0.90% It is an ultra-high strength non-shrink grout material containing the following artificial high-density fine aggregate and a chemical admixture.

ここで、本実施形態の超高強度無収縮グラウト材について、詳細に説明する。
セメントAとしては、エーライト(CS:3CaO・SiO/珪酸三カルシウム)含有量が60重量%以上かつ70重量%以下であり、かつブレーン比表面積が4000cm/g以上かつ6500cm/g以下の早強ポルトランドセメントまたは超早強ポルトランドセメントが挙げられる。
セメントBとしては、ビーライト(CS:2CaO・SiO/珪酸二カルシウム)含有量が35重量%以上かつ60重量%以下であり、かつブレーン比表面積が3000cm/g以上かつ4000cm/g以下の低熱ポルトランドセメントまたは中庸熱セメントが挙げられる。
Here, the ultrahigh strength non-shrink grout material of the present embodiment will be described in detail.
The cement A, alite (C 3 S: 3CaO · SiO 2 / silicate tricalcium) content is 60 wt% or more and 70 wt% or less, and Blaine specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less early-strength Portland cement or ultra-early-strength Portland cement.
As the cement B, the content of belite (C 2 S: 2CaO · SiO 2 / dicalcium silicate) is 35% by weight or more and 60% by weight or less, and the brain specific surface area is 3000 cm 2 / g or more and 4000 cm 2 / Examples include low-heat Portland cement or moderately-heated cement of g or less.

本実施形態の超高強度無収縮グラウト材を得るためには、セメントAには安価な早強ポルトランドセメントを、セメントBにはビーライトを多く含有する低熱ポルトランドセメントを、使用することが特に好ましい。
また、このセメントAの水硬性結合材中の混合率は、5重量%以上かつ15重量%以下が好ましく、10重量%がより好ましい。
一方、セメントBの水硬性結合材中の混合率は、60重量%以上かつ70重量%以下が好ましく、65重量%がより好ましい。
セメントA及びBの水硬性結合材中の混合率が上記の範囲を外れた場合、無収縮グラウト材硬化体とした場合に、その圧縮強度が低下して160N/mm以上に保持することが困難になるからであり、また、場合によっては流動性が大幅に低下し、実用性が大幅に低下してしまうからである。
In order to obtain the ultra-high strength non-shrink grout material of the present embodiment, it is particularly preferable to use an inexpensive early-strength Portland cement as the cement A and a low heat Portland cement containing a lot of belite as the cement B. .
Further, the mixing ratio of the cement A in the hydraulic binder is preferably 5% by weight or more and 15% by weight or less, and more preferably 10% by weight.
On the other hand, the mixing ratio of cement B in the hydraulic binder is preferably 60% by weight or more and 70% by weight or less, and more preferably 65% by weight.
When the mixing ratio of the cement A and B in the hydraulic binder is out of the above range, when the non-shrink grout material is hardened, the compressive strength is reduced and can be maintained at 160 N / mm 2 or more. This is because it becomes difficult, and in some cases, the fluidity is greatly lowered and the practicality is greatly lowered.

膨張材としては、日本工業規格JIS A 6202「コンクリート用膨張材」に適合するカルシウムサルフォアルミネート系(エトリンガイト系)、石灰−カルシウムサルフォアルミネート複合系の膨張材が好適に用いられる。
また、膨張材の水硬性結合材中の混合率は、3重量%以上かつ7重量%以下が好ましく、5重量%がより好ましい。
膨張材の水硬性結合材中の混合率が上記の範囲を外れた場合、この膨張材を含む無収縮グラウト材を養生・硬化して無収縮グラウト材硬化体とした場合に、その収縮量を保証できないか、あるいは異常膨張してしまうから好ましくない。
As the expansion material, a calcium sulfoaluminate-based (ettringite-based) or lime-calcium sulfoaluminate composite expansion material conforming to Japanese Industrial Standards JIS A 6202 “Expansion material for concrete” is preferably used.
The mixing ratio of the expansion material in the hydraulic binder is preferably 3% by weight or more and 7% by weight or less, and more preferably 5% by weight.
When the mixing ratio of the expansion material in the hydraulic binder is out of the above range, when the non-shrink grout material containing the expansion material is cured and cured to obtain a non-shrink grout material cured body, the amount of shrinkage is reduced. This is not preferable because it cannot be guaranteed, or abnormal expansion occurs.

シリカ質微粉末は、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末、例えば、電融ジルコニアを製造する際に副生成物として得られるジルコニア起源シリカ質微粉末、ケイ素またはフェロシリコンを製造する際に副生成物として得られるシリカフューム、シリカガラスを製造する際に副生成物として得られるシリカ質微粉末、ケイ素または二酸化ケイ素から合成される非晶質シリカ質微粉末、粒径10μm以下に分級または微粉砕されポゾラン活性を高めたフライアッシュ等が挙げられる。
実際には、超高強度無収縮グラウト材に要求される仕様や価格を考慮した上で、上記の様々なシリカ質微粉末から1種を選択し、または2種以上を選択・混合して使用する。
The siliceous fine powder is a siliceous fine powder having a specific surface area of 1 m 2 / g or more and 20 m 2 / g or less by the BET method, for example, a zirconia-derived siliceous fine powder obtained as a by-product when producing electrofused zirconia. Silica fume obtained as a by-product when producing powder, silicon or ferrosilicon, siliceous fine powder obtained as a by-product when producing silica glass, amorphous siliceous material synthesized from silicon or silicon dioxide Examples thereof include fine pulverized powder, fly ash classified or finely pulverized to a particle size of 10 μm or less and having enhanced pozzolanic activity.
In practice, considering the specifications and price required for ultra-high-strength non-shrink grout materials, select one of the above various siliceous fine powders, or select and mix two or more. To do.

特に、本実施形態の超高強度無収縮グラウト材に用いて好適なシリカ質微粉末としては、SiOの含有率が85%以上でありかつBET法による比表面積が1m/g以上かつ20m/g以下のジルコニア起源シリカ質微粉末、シリコン起源シリカフュームが挙げられる。 In particular, the siliceous fine powder suitable for use in the ultrahigh strength non-shrink grout material of the present embodiment has a SiO 2 content of 85% or more and a specific surface area by the BET method of 1 m 2 / g or more and 20 m. 2 / g or less zirconia origin siliceous fine powder, silicon origin silica fume are mentioned.

このシリカ質微粉末の水硬性結合材中の混合率は、10重量%以上かつ30重量%以下が好ましく、15重量%以上かつ20重量%以下がより好ましい。
このシリカ質微粉末の水硬性結合材中の混合率が上記の範囲を外れた場合、そのシリカ質微粉末を含む無収縮グラウト材を養生・硬化して無収縮グラウト材硬化体とした場合に、その圧縮強度が低下して160N/mm以上に保持することが困難になるからであり、また、場合によっては練混ぜが困難になり、実用性が大幅に低下してしまうからである。
このように、本実施形態の水硬性結合材は、上記のセメントA、セメントB、膨張材及びシリカ質微粉末を合わせたものである。
The mixing ratio of the siliceous fine powder in the hydraulic binder is preferably 10% by weight to 30% by weight, and more preferably 15% by weight to 20% by weight.
When the mixing ratio of the siliceous fine powder in the hydraulic binder is out of the above range, the non-shrink grout material containing the siliceous fine powder is cured and cured to obtain a non-shrink grout material cured body. This is because the compressive strength decreases and it becomes difficult to maintain the compressive strength at 160 N / mm 2 or more, and in some cases, kneading becomes difficult, and the practicality is greatly reduced.
Thus, the hydraulic binder of the present embodiment is a combination of the above cement A, cement B, expansion material, and siliceous fine powder.

人造高密度細骨材は、超高強度発現性および高流動性を付与するための細骨材であり、硬度が高く、耐摩耗性に優れ、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上、吸水率が0.90%以下、好ましくは0.70%以下である。
ここで、この人造高密度細骨材の最大粒径、絶乾密度及び吸水率のうちいずれか1つが上記の範囲を外れると、その人造高密度細骨材を含む無収縮グラウト材を硬化体とした場合に、圧縮強度または流動性が大きく低下してしまうので好ましくない。
Artificial high-density fine aggregate is a fine aggregate for imparting ultra-high strength and high fluidity, has high hardness, excellent wear resistance, maximum particle size of 1.2 mm or less, absolutely dry density Is 2.90 g / cm 3 or more and the water absorption is 0.90% or less, preferably 0.70% or less.
Here, if any one of the maximum particle size, the absolute dry density, and the water absorption rate of the artificial high-density fine aggregate is out of the above range, the non-shrink grout material including the artificial high-density fine aggregate is cured. In this case, the compressive strength or fluidity is greatly reduced, which is not preferable.

この人造高密度細骨材としては、例えば、フェロニッケルスラグ細骨材(日本工業規格JIS A 5011−2のFNS1.2適合品)、銅スラグ細骨材(日本工業規格JIS A 5011−3のCUS1.2適合品)、電気炉酸化スラグ細骨材(日本工業規格JIS A 5011−4のEFS1.2のNまたはH適合品)の群から選択される1種または2種以上を混合して使用することができる。
また、この人造高密度細骨材は、乾燥状態のものは、予め水硬性結合材や粉末状の化学混和剤等とプレミックスして使用することができるので好ましい。
As this artificial high-density fine aggregate, for example, ferronickel slag fine aggregate (Japanese Industrial Standard JIS A 501-2-2 FNS1.2 compliant product), copper slag fine aggregate (Japanese Industrial Standard JIS A 5011-3 CUS1.2 compliant product), electric furnace oxidation slag fine aggregate (Japan Industrial Standard JIS A 5011-4 EFS1.2 N or H compliant product) Can be used.
In addition, this artificial high-density fine aggregate is preferably in a dry state because it can be premixed with a hydraulic binder, a powdery chemical admixture or the like in advance.

本実施形態の超高強度無収縮グラウト材に占める人造高密度細骨材の単位容積及び水硬性結合材の単位容積の比率は、0.60以上かつ1.20以下が好ましく、より好ましくは0.80以上かつ1.00以下である。
この人造高密度細骨材の単位容積及び水硬性結合材の単位容積の比率が上記の範囲を外れると、無収縮グラウト材としての流動性が低下したり、あるいは、この無収縮グラウト材を養生・硬化して無収縮グラウト材硬化体とした場合に、その収縮が大きくなり、実用性が大幅に低下してしまうからである。
The ratio of the unit volume of the artificial high-density fine aggregate and the unit volume of the hydraulic binder in the ultrahigh strength non-shrink grout material of the present embodiment is preferably 0.60 or more and 1.20 or less, more preferably 0. .80 or more and 1.00 or less.
If the ratio between the unit volume of the artificial high-density fine aggregate and the unit volume of the hydraulic binder is out of the above range, the fluidity as a non-shrink grout material is reduced or the non-shrink grout material is cured. -When it hardens | cures and it is set as a non-shrinkable grout material hardening body, the shrinkage | contraction will become large and practicality will fall significantly.

化学混和剤としては、減水率の高い一般的なポリカルボン酸系高性能減水剤、メラミンスルホン酸系高性能減水剤等の減水剤が好適に用いられ、必要に応じてポリオキシアルキレンアルキルエーテル系等の消泡剤を併用することが好ましい。
この減水剤の添加量は、超高強度無収縮グラウト材の目標とする流動性に合わせて適宜調整するが、一般的な添加量としては、セメントA及びB、膨張材及びシリカ質微粉末からなる水硬性結合材の全体量に対して0.3重量%以上かつ3.0重量%以下の範囲で添加することが好ましい。
また、消泡剤の添加量は、超高強度無収縮グラウト材の目標とする空気量に合わせて適宜調整するが、一般的な添加量としては、セメントA及びB、膨張材及びシリカ質微粉末からなる水硬性結合材の全体量に対して0.01重量%以上かつ0.1重量%以下の範囲で添加することが好ましい。
As the chemical admixture, water-reducing agents such as general polycarboxylic acid-based high-performance water reducing agents and melamine sulfonic acid-based high-performance water reducing agents with a high water-reducing rate are preferably used, and if necessary, polyoxyalkylene alkyl ether-based It is preferable to use an antifoaming agent such as
The amount of the water reducing agent added is appropriately adjusted according to the target fluidity of the ultra-high-strength non-shrink grout material, but the general amount added is from cement A and B, the expanding material and the siliceous fine powder. It is preferable to add in the range of 0.3 wt% or more and 3.0 wt% or less with respect to the total amount of the hydraulic binder.
The addition amount of the antifoaming agent is appropriately adjusted according to the target air amount of the ultra-high-strength non-shrink grout material. As general addition amounts, cement A and B, expansion material and siliceous fine particles are added. It is preferable to add in the range of 0.01 wt% or more and 0.1 wt% or less with respect to the total amount of the hydraulic binder made of powder.

この化学混和剤(減水剤及び消泡剤)の形状としては、粉体状、液体状のいずれをも使用することができる。特に、粉体状のものは、予め水硬性結合材や乾燥させた人造高密度細骨材等とプレミックスして使用することができるので好ましい。
なお、本実施形態の超高強度無収縮グラウト材に種々の性能を付加するために、増粘剤、収縮低減剤、合成樹脂粉末、合成樹脂繊維、金属繊維、炭素繊維、ガラス繊維、ポリマー、モノマー、オリゴマー、石灰石微粉末、流動化剤、凝結促進剤、凝結遅延剤の群から選択される1種または2種以上を添加しても良い。
As the shape of this chemical admixture (water reducing agent and antifoaming agent), either powder or liquid can be used. In particular, a powdery material is preferable because it can be premixed with a hydraulic binder, an artificial high-density fine aggregate previously dried, or the like.
In addition, in order to add various performances to the ultra-high-strength non-shrink grout material of this embodiment, a thickener, shrinkage reducing agent, synthetic resin powder, synthetic resin fiber, metal fiber, carbon fiber, glass fiber, polymer, You may add 1 type, or 2 or more types selected from the group of a monomer, an oligomer, a limestone fine powder, a fluidizing agent, a setting accelerator, and a setting retarder.

次に、本実施形態の超高強度無収縮グラウト材硬化体について説明する。
本実施形態の超高強度無収縮グラウト材硬化体は、本実施形態の超高強度無収縮グラウト材を水結合材比18.0%以下にて水と混練し養生してなる超高強度無収縮グラウト材硬化体であり、この超高強度無収縮グラウト材硬化体の圧縮強度が、20℃にて28日間、あるいは、5℃以上にてグラウト材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合に160N/mm以上となる硬化体である。
Next, the ultra-high-strength non-shrink grout material cured body of this embodiment will be described.
The ultra-high strength non-shrink grout material cured body of this embodiment is an ultra-high-strength non-shrink grout material obtained by kneading and curing the ultra-high strength non-shrink grout material of this embodiment with water at a water binder ratio of 18.0% or less. This is a cured shrink grout material, and the compression strength of the ultra-high strength non-shrink grout material is 28 ° C. for 28 days, or 60 ° C. or more after the setting of the grout material is finished at 5 ° C. or more. It is a cured product that is 160 N / mm 2 or more when cured under any of the conditions of heat curing at 80 ° C. or lower for 24 hours.

上記の水結合材比、すなわち、上記のセメントA及びB、膨張材、シリカ質微粉末からなる水硬性結合材と練混ぜ水(化学混和剤は水とみなす)の重量比は、18.0%以下が好ましい。
ここで、この超高強度無収縮グラウト材の水結合材比を18.0%以下とした理由は、水結合材比が18.0%を超えると、この超高強度無収縮グラウト材を水と混練し養生することにより得られた超高強度無収縮グラウト材硬化体の圧縮強度が160N/mmを下回ってしまうからである。
The above-mentioned water binder ratio, that is, the weight ratio of the above-mentioned cement binders A and B, the expansion material, and the siliceous fine powder to the mixed water (the chemical admixture is regarded as water) is 18.0. % Or less is preferable.
Here, the reason why the water binder ratio of the ultra-high strength non-shrink grout material is 18.0% or less is that when the water binder ratio exceeds 18.0%, the ultra-high strength non-shrink grout material is treated with water. This is because the compressive strength of the ultra-high strength non-shrink grout material cured product obtained by kneading and curing is less than 160 N / mm 2 .

この超高強度無収縮グラウト材を水結合材比18.0%以下にて水と混練し、得られたモルタルを、20℃にて28日間、あるいは、5℃以上にてグラウト材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生し、超高強度無収縮グラウト材硬化体とする。
このようにして得られた超高強度無収縮グラウト材硬化体の圧縮強度は、常に160N/mm以上を保持している。
This ultra-high strength non-shrink grout material is kneaded with water at a water binder ratio of 18.0% or less, and the resulting mortar is allowed to condense the grout material at 20 ° C. for 28 days or at 5 ° C. or more. After termination, it is cured by heating at 60 ° C. or higher and 80 ° C. or lower for 24 hours to obtain a super-high strength non-shrink grout material cured body.
The compressive strength of the ultrahigh strength non-shrink grout material cured body thus obtained always maintains 160 N / mm 2 or more.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

ここでは、セメント、膨張材、シリカ質微粉末、人造高密度細骨材、天然細骨材、化学混和剤、消泡剤及び水として、下記のものを用いた。
「セメントA」
早強ポルトランドセメント(CS含有量64%、CS含有量7%、絶乾密度3.15g/cm、ブレーン比表面積4400cm/g、住友大阪セメント(株)製)(以下HCと略記)
「セメントB」
低熱ポルトランドセメント(CS含有量26%、CS含有量56%、絶乾密度3.24g/cm、ブレーン比表面積3400cm/g、住友大阪セメント(株)製)(以下LCと略記)
Here, the following were used as cement, expansion material, siliceous fine powder, artificial high-density fine aggregate, natural fine aggregate, chemical admixture, antifoaming agent and water.
"Cement A"
Hayashi Portland Cement (C 3 S content 64%, C 2 S content 7%, absolute dry density 3.15 g / cm 3 , brain specific surface area 4400 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) Abbreviated)
"Cement B"
Low heat Portland cement (C 3 S content 26%, C 2 S content 56%, absolute dry density 3.24 g / cm 3 , Blaine specific surface area 3400 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) (Abbreviation)

「膨張材」
カルシウムサルフォアルミネート系膨張材:SACS(絶乾密度2.93g/cm、ブレーン比表面積2900cm/g、住友大阪セメント(株)製)(以下、EXと略記)
「シリカ質微粉末」
ジルコニア起源シリカ質微粉末:SF−SILICAFUME(SiO含有量94.7%、絶乾密度2.26g/cm、BET比表面積9.1m/g、巴工業(株)社製)(以下、ZSFと略記)
"Expanding material"
Calcium sulfoaluminate-based expansion material: SACS (absolute dryness 2.93 g / cm 3 , Blaine specific surface area 2900 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) (hereinafter abbreviated as EX)
"Silica fine powder"
Zirconia-derived siliceous fine powder: SF-SILICAFUME (SiO 2 content 94.7%, absolute dry density 2.26 g / cm 3 , BET specific surface area 9.1 m 2 / g, manufactured by Sakai Kogyo Co., Ltd.) , Abbreviated as ZSF)

「人造高密度細骨材A」
1.2mmフェロニッケルスラグ細骨材(JIS A 5011−2のFNS1.2適合品、最大粒径1.2mm以下、絶乾密度3.01g/cm、吸水率0.7%、FM:2.21)(以下、FNS1.2と略記)
「人造高密度細骨材B」
5mmフェロニッケルスラグ細骨材(JIS A 5011−2のFNS5適合品、最大粒径5mm以下、絶乾密度2.97g/cm、吸水率0.9%、FM:2.47)(以下、FNS5と略記)
「人造高密度細骨材C」
1.2mm銅スラグ細骨材(JIS A 5011−3のCUS1.2適合品、最大粒径1.2mm以下、絶乾密度3.35g/cm、吸水率0.9%、FM:2.24)(以下、CUS1.2と略記)
"Artificial high-density fine aggregate A"
1.2 mm ferronickel slag fine aggregate (JIS A 5011-2 FNS 1.2 compliant product, maximum particle size 1.2 mm or less, absolute dry density 3.01 g / cm 3 , water absorption 0.7%, FM: 2 .21) (hereinafter abbreviated as FNS1.2)
"Artificial high-density fine aggregate B"
5 mm ferronickel slag fine aggregate (JIS A 501-2 FNS5 compliant product, maximum particle size 5 mm or less, absolute dry density 2.97 g / cm 3 , water absorption 0.9%, FM: 2.47) (hereinafter, (Abbreviated as FNS5)
"Artificial high density fine aggregate C"
1.2 mm copper slag fine aggregate (JIS A 5011-3 CUS1.2 compliant product, maximum particle size 1.2 mm or less, absolute dry density 3.35 g / cm 3 , water absorption 0.9%, FM: 2. 24) (hereinafter abbreviated as CUS1.2)

「人造高密度細骨材D」
5mm銅スラグ細骨材(JIS A 5011−3のCUS5適合品、最大粒径5mm以下、絶乾密度3.30g/cm、吸水率1.2%、FM:2.64)(以下、CUS5と略記)
「人造高密度細骨材E」
1.2mm電気炉酸化スラグ細骨材(JIS A 5011−4のEFS1.2N適合品、最大粒径1.2mm以下、絶乾密度3.52g/cm、吸水率1.0%、FM:2.89)(以下、EFS1.2と略記)
「人造高密度細骨材F」
5mm電気炉酸化スラグ細骨材(JIS A 5011−4のEFS5N適合品、最大粒径5mm以下、絶乾密度3.49g/cm、吸水率1.7%、FM:3.10)(以下、EFS5と略記)
"Artificial high-density fine aggregate D"
5 mm copper slag fine aggregate (JIS A 5011-3 CUS5 compliant product, maximum particle size 5 mm or less, absolute dry density 3.30 g / cm 3 , water absorption 1.2%, FM: 2.64) (hereinafter, CUS5 Abbreviated)
"Artificial high density fine aggregate E"
1.2mm electric furnace oxidized slag fine aggregate (JIS A 5011-4 EFS1.2N compliant product, maximum particle size 1.2mm or less, absolute dry density 3.52g / cm 3 , water absorption 1.0%, FM: 2.89) (hereinafter abbreviated as EFS1.2)
"Artificial high density fine aggregate F"
5mm electric furnace oxidation slag fine aggregate (JIS A 5011-4 EFS5N compatible product, maximum particle size 5mm or less, absolute dry density 3.49g / cm 3 , water absorption 1.7%, FM: 3.10) (below , Abbreviated as EFS5)

「天然細骨材G」
愛知県産乾燥珪砂4号及び7号の混合砂(最大粒径1.2mm以下、絶乾密度2.66g/cm、吸水率0.7%、FM:2.46)(以下、SS1.2と略記)
「天然細骨材H」
千葉県産山砂(最大粒径1.2mm以下、絶乾密度2.56g/cm、吸水率2.28%、FM:2.18)(以下、HS1.2と略記)
"Natural fine aggregate G"
Aichi Prefecture dry silica sand No. 4 and No. 7 mixed sand (maximum particle size 1.2 mm or less, absolute dry density 2.66 g / cm 3 , water absorption 0.7%, FM: 2.46) (hereinafter SS1. (Abbreviated as 2)
"Natural fine aggregate H"
Chiba Prefecture mountain sand (maximum particle size 1.2 mm or less, absolute dry density 2.56 g / cm 3 , water absorption 2.28%, FM: 2.18) (hereinafter abbreviated as HS 1.2)

「化学混和剤」
ポリカルボン酸系高性能減水剤:シーカメント1200N(日本シーカ(株)社製)(以下、SPと略記)
「消泡剤」
シーカアンチフォームW(日本シーカ(株)社製)
「水」
上水道水
`` Chemical admixture ''
Polycarboxylic acid-based high-performance water reducing agent: SECIMENT 1200N (manufactured by Nippon Seika Co., Ltd.) (hereinafter abbreviated as SP)
"Antifoaming agent"
Seeker Anti-Form W (Nihon Seeca Co., Ltd.)
"water"
Tap water

上記のセメント、膨張材、シリカ質微粉末、人造高密度細骨材あるいは天然細骨材、高性能減水剤、消泡剤及び水を用いて、実施例及び比較例の超高強度無収縮グラウト材を作製した。
表1に、実施例及び比較例各々の超高強度無収縮グラウト材の組成を示す。
これらの超高強度無収縮グラウト材においては、全ての組成において目標空気量を2%の一定値とし、細骨材の種類、水結合材比、水硬性結合材の混合比率、細骨材及び水硬性結合材の単位容積比、化学混和剤の添加量を下記のとおりとした。
Using the above cement, expanded material, siliceous fine powder, artificial high-density fine aggregate or natural fine aggregate, high-performance water reducing agent, antifoaming agent and water, ultra-high-strength non-shrink grout of Examples and Comparative Examples A material was prepared.
Table 1 shows the compositions of the ultrahigh-strength non-shrink grout materials of the examples and comparative examples.
In these ultra-high-strength non-shrink grout materials, the target air amount is a constant value of 2% in all compositions, the type of fine aggregate, water binder ratio, hydraulic binder mixing ratio, fine aggregate and The unit volume ratio of the hydraulic binder and the addition amount of the chemical admixture were as follows.

実施例1〜3及び比較例1〜5では、細骨材の種類が全て異なるが、水結合材比を18.0%、水硬性結合材中のセメントA(HC)の混合率を10重量%、セメントB(LC)の混合率を65重量%、膨張材(EX)の混合率を5重量%、シリカ質微粉末(ZSF)の混合率を20重量%、細骨材及び水硬性結合材の単位容積比を1.00、高性能減水剤(SP)の添加量を水硬性結合材に対して1.7重量%、消泡剤の添加量を水硬性結合材に対して0.06重量%とした。   In Examples 1 to 3 and Comparative Examples 1 to 5, the types of fine aggregates are all different, but the water binder ratio is 18.0%, and the mixing ratio of cement A (HC) in the hydraulic binder is 10 wt. %, Cement B (LC) mixing ratio of 65 wt%, expansion material (EX) mixing ratio of 5 wt%, siliceous fine powder (ZSF) mixing ratio of 20 wt%, fine aggregate and hydraulic bond The unit volume ratio of the material is 1.00, the addition amount of the high-performance water reducing agent (SP) is 1.7% by weight with respect to the hydraulic binder, and the addition amount of the antifoaming agent is 0.7% with respect to the hydraulic binder. It was set to 06% by weight.

実施例4では、水硬性結合材中のセメントA(HC)の混合率を5重量%、セメントB(LC)の混合率を70重量%とした以外は、実施例1と同じ条件とした。
実施例5では、水硬性結合材中のセメントA(HC)の混合率を15重量%、セメントB(LC)の混合率を60重量%とした以外は、実施例1と同じ条件とした。
In Example 4, the conditions were the same as in Example 1 except that the mixing ratio of cement A (HC) in the hydraulic binder was 5 wt% and the mixing ratio of cement B (LC) was 70 wt%.
In Example 5, the same conditions as in Example 1 were used except that the mixing ratio of cement A (HC) in the hydraulic binder was 15 wt% and the mixing ratio of cement B (LC) was 60 wt%.

比較例6では、水硬性結合材中のセメントA(HC)の混合率を0重量%、セメントB(LC)の混合率を75重量%とした以外は、実施例1と同じ条件とした。
比較例7では、水硬性結合材中のセメントA(HC)の混合率を20重量%、セメントB(LC)の混合率を55重量%とした以外は、実施例1と同じ条件とした。
比較例8では、水硬性結合材中のセメントA(HC)の混合率を12重量%、セメントB(LC)の混合率を78重量%、シリカ質微粉末(ZSF)の混合率を5重量%とした以外は、実施例1と同じ条件とした。
In Comparative Example 6, the same conditions as in Example 1 were used except that the mixing ratio of cement A (HC) in the hydraulic binder was 0 wt% and the mixing ratio of cement B (LC) was 75 wt%.
In Comparative Example 7, the conditions were the same as in Example 1 except that the mixing ratio of cement A (HC) in the hydraulic binder was 20 wt% and the mixing ratio of cement B (LC) was 55 wt%.
In Comparative Example 8, the mixing ratio of cement A (HC) in the hydraulic binder is 12 wt%, the mixing ratio of cement B (LC) is 78 wt%, and the mixing ratio of siliceous fine powder (ZSF) is 5 wt%. The conditions were the same as in Example 1 except that%.

比較例9では、水硬性結合材中のセメントA(HC)の混合率を8重量%、セメントB(LC)の混合率を52重量%、シリカ質微粉末(ZSF)の混合率を35重量%とした以外は、実施例1と同じ条件とした。
比較例10では、水硬性結合材中のセメントA(HC)の混合率を10.7重量%、セメントB(LC)の混合率を69.3重量%、膨張材(EX)の混合率を0重量%とした以外は、実施例1と同じ条件とした。
比較例11では、水硬性結合材中のセメントA(HC)の混合率を9.3重量%、セメントB(LC)の混合率を60.7重量%、膨張材(EX)の混合率を10重量%とした以外は、実施例1と同じ条件とした。
In Comparative Example 9, the mixing ratio of cement A (HC) in the hydraulic binder is 8 wt%, the mixing ratio of cement B (LC) is 52 wt%, and the mixing ratio of siliceous fine powder (ZSF) is 35 wt%. The conditions were the same as in Example 1 except that%.
In Comparative Example 10, the mixing ratio of cement A (HC) in the hydraulic binder is 10.7 wt%, the mixing ratio of cement B (LC) is 69.3% wt, and the mixing ratio of expansion material (EX) is The conditions were the same as in Example 1 except that the content was 0% by weight.
In Comparative Example 11, the mixing ratio of cement A (HC) in the hydraulic binder is 9.3 wt%, the mixing ratio of cement B (LC) is 60.7 wt%, and the mixing ratio of the expansion material (EX) is The conditions were the same as in Example 1 except that the amount was 10% by weight.

比較例12では、細骨材及び水硬性結合材の単位容積比を1.30とした以外は、実施例1と同じ条件とした。
比較例13では、細骨材及び水硬性結合材の単位容積比を0.50とした以外は、実施例1と同じ条件とした。
比較例14では、水結合材比を20.0%、高性能減水剤(SP)の添加量を水硬性結合材に対して1.3重量%、消泡剤の添加量を水硬性結合材に対して0.05重量%とした以外は、実施例1と同じ条件とした。
なお、高性能減水剤及び消泡剤については、練混ぜ水とみなして水量を補正した。
In Comparative Example 12, the same conditions as in Example 1 were used except that the unit volume ratio of the fine aggregate and the hydraulic binder was 1.30.
In Comparative Example 13, the same conditions as in Example 1 were used except that the unit volume ratio of the fine aggregate and the hydraulic binder was 0.50.
In Comparative Example 14, the water binder ratio was 20.0%, the amount of high-performance water reducing agent (SP) added was 1.3% by weight with respect to the hydraulic binder, and the amount of antifoaming agent added was the hydraulic binder. The same conditions as in Example 1 were used except that the content was 0.05% by weight.
In addition, about the high performance water reducing agent and the antifoamer, it considered that it was mixing water and correct | amended the water quantity.

Figure 2009196855
Figure 2009196855

次に、実施例1〜5及び比較例1〜14各々の超高強度無収縮グラウト材の練混ぜ試験を行った。
20℃の恒温室内にて、表1に示す組成となるようにセメントA及びB、膨張材、シリカ質微粉末、細骨材、練混ぜ水、高性能減水剤及び消泡剤を容量20Lの硬質ポリエチレン容器に投入し、電動式ハンドミキサーを用いて90秒間、高速攪拌(練混ぜ)を行った。なお、1バッチの練混ぜ量は5Lの一定値とした。
練上がり後、直ちに、土木学会規準JSCE−F 541−1999「充てんモルタルの流動性試験方法」に準拠し、J14漏斗の流下時間を測定し、超高強度無収縮グラウト材の流動性を評価した。
Next, a kneading test of each of the ultra-high strength non-shrink grout materials of Examples 1 to 5 and Comparative Examples 1 to 14 was performed.
Cement A and B, expansion material, siliceous fine powder, fine aggregate, mixing water, high-performance water reducing agent and antifoaming agent with a capacity of 20 L in a constant temperature room at 20 ° C. The mixture was put into a hard polyethylene container, and high-speed stirring (mixing) was performed for 90 seconds using an electric hand mixer. In addition, the mixing amount of 1 batch was made into the constant value of 5L.
After mixing up, immediately conform to the Japan Society of Civil Engineers standards JSCE-F 541-1999 "Test Method of Flowability for Filling Mortar", to measure the flow time of J 14 funnel evaluate the fluidity of ultra-high-strength non-shrink grout did.

また、実施例1〜5及び比較例1〜14各々の超高強度無収縮グラウト材を一定条件下で養生硬化させ、土木学会規準JSCE−F 542−1999「充てんモルタルのブリーディング率及び膨張率試験方法」に準拠し、超高強度無収縮グラウト材のブリーディング率及び膨張収縮率(材齢7日)、さらに各々の圧縮強度を測定した。
測定用の供試体として、直径50mm×高さ100mmの円柱供試体を18本ずつ作製した。これらの供試体は、水の蒸発を防ぐために、脱型する直前まで供試体の頭部をビニールフィルム及び輪ゴムで密封し、20℃の恒温室内にて注水24時間後まで封緘養生した。
Also, each of the ultra-high-strength non-shrink grout materials of Examples 1 to 5 and Comparative Examples 1 to 14 was cured and cured under a certain condition, and JSTE-F 542-1999 “Bleeding rate and expansion rate test of filling mortar” In accordance with “Method”, the bleeding rate and expansion / shrinkage rate of the ultra-high-strength non-shrink grout material (material age 7 days) and the compressive strength of each were measured.
As test specimens for measurement, 18 cylindrical specimens each having a diameter of 50 mm and a height of 100 mm were produced. In order to prevent evaporation of water, these specimens were sealed with vinyl film and rubber bands until just before demolding, and sealed and cured in a constant temperature room at 20 ° C. until 24 hours after water injection.

これらの供試体のうち12本は、注水24時間後で脱型し、所定の材齢まで20℃の水中にて標準養生した。また、残りの6本は、注水24時間後から供試体の頭部を密封したまま型枠ごと70℃の温水中に浸漬して24時間加熱養生し、注水48時間後に温水から取り出し、空気中にて室温になるまで放冷した後、脱型した。   Twelve of these specimens were demolded 24 hours after water injection, and were subjected to standard curing in water at 20 ° C. until a predetermined age. The remaining 6 bottles were immersed in warm water of 70 ° C. with the molds sealed after 24 hours of water injection, and heated and cured for 24 hours. After 48 hours of water injection, they were taken out from the warm water and in the air. The mixture was allowed to cool to room temperature and then demolded.

超高強度無収縮グラウト材硬化体の圧縮強度は、日本工業規格JIS A 1108「コンクリートの圧縮試験方法」に準じて測定した。ここでは、1材齢の供試体数を6本とし、測定した供試体数6本の圧縮強度データから変動係数を算出した。また、圧縮強度の測定材齢は、標準養生の場合は7日、28日の2種類とし、70℃にて加熱養生した場合は材齢2日とした。なお、全ての供試体について、圧縮試験を行う直前に両端面の研磨を行った。
実施例1〜5及び比較例1〜14各々のJ14漏斗の流下時間、ブリーディング率、圧縮強度及び膨張収縮率の測定結果を表2〜表4に示す。
The compressive strength of the ultra-high-strength non-shrink grout material was measured according to Japanese Industrial Standard JIS A 1108 “Concrete Compression Test Method”. Here, the number of specimens of one material age was six, and the coefficient of variation was calculated from the compression strength data of the six specimens measured. In addition, the age at which the compressive strength was measured was 7 days and 28 days in the case of standard curing, and 2 days in the case of heat curing at 70 ° C. In addition, about all the test bodies, both end surfaces were grind | polished just before performing a compression test.
Tables 2 to 4 show the measurement results of the flow time, bleeding rate, compressive strength, and expansion / contraction rate of each of the J 14 funnels of Examples 1 to 5 and Comparative Examples 1 to 14 .

Figure 2009196855
Figure 2009196855

Figure 2009196855
Figure 2009196855

Figure 2009196855
Figure 2009196855

これらの測定結果によれば、実施例1〜3では、得られた無収縮グラウト材のJ14漏斗の流下時間が12〜13秒であり、流動性は良好であった。また、圧縮強度も20℃標準養生の材齢28日では168〜171N/mm、70℃加熱養生の材齢2日では182N/mmと非常に良好であった。特にFNS1.2を使用した実施例1の圧縮強度が最も高かった。
一方、比較例1〜3では、無収縮グラウト材の流動性は同等であったが、圧縮強度は、実施例1〜3より低かった。また、比較例4は珪砂を、比較例5は山砂を、それぞれ使用したために、無収縮グラウト材の流動性及び圧縮強度のいずれもが実施例1〜3より著しく低く、特に、20℃標準養生の材齢28日では、160N/mmを下回るものであった。
According to these measurement results, in Examples 1-3, flow time J 14 funnel resulting non-shrink grout is is 12 to 13 seconds, was good flowability. Further, the compressive strength 20 ° C. standard curing at the age of 28 days in 168~171N / mm 2, 70 ℃ heat curing at the age of 2 days was very good and 182N / mm 2. In particular, the compressive strength of Example 1 using FNS 1.2 was the highest.
On the other hand, in Comparative Examples 1-3, the fluidity of the non-shrink grout material was equivalent, but the compressive strength was lower than in Examples 1-3. Moreover, since Comparative Example 4 used quartz sand and Comparative Example 5 used mountain sand, both the fluidity and compressive strength of the non-shrink grout material were significantly lower than those of Examples 1 to 3, and in particular, 20 ° C. standard. It was less than 160 N / mm 2 at the curing age of 28 days.

実施例4、5は、セメントA(HC)の混合率を5重量%または15重量%とした場合であるが、得られた無収縮グラウト材の流動性は良好であり、圧縮強度も20℃標準養生の材齢28日では167〜175N/mm、70℃加熱養生の材齢2日では175〜179N/mmと良好であった。
一方、比較例6では、セメントA(HC)の混合率を0重量%、セメントB(LC)の混合率を75重量%としたために、無収縮グラウト材の流動性は実施例1よりやや優れていたが、圧縮強度は実施例1より低く、特に70℃加熱養生の材齢2日で160N/mmを下回っていた。
比較例7では、セメントA(HC)の混合率を20重量%、セメントB(LC)の混合率を55重量%としたために、無収縮グラウト材の圧縮強度は実施例1よりやや優れていたが、流動性は実施例1より著しく低いものであった。
Examples 4 and 5 are cases where the mixing ratio of cement A (HC) was 5% by weight or 15% by weight, but the flowability of the obtained non-shrink grout material was good and the compressive strength was 20 ° C. the age of 28 days of standard curing in 167~175N / mm 2, 70 ℃ heat curing at the age of 2 days was as good as 175~179N / mm 2.
On the other hand, in Comparative Example 6, since the mixing ratio of cement A (HC) was 0 wt% and the mixing ratio of cement B (LC) was 75 wt%, the fluidity of the non-shrink grout material was slightly superior to that of Example 1. However, the compressive strength was lower than that of Example 1, and in particular, it was lower than 160 N / mm 2 at a material age of 70 ° C. heat curing.
In Comparative Example 7, since the mixing ratio of cement A (HC) was 20 wt% and the mixing ratio of cement B (LC) was 55 wt%, the compressive strength of the non-shrink grout material was slightly superior to that of Example 1. However, the fluidity was significantly lower than that of Example 1.

比較例8では、シリカ質微粉末(ZSF)の混合率を5重量%としたために、無収縮グラウト材の圧縮強度は実施例1より低く、20℃標準養生の材齢28日が160N/mmを下回っていた。さらに、流動性は劣悪で、J14漏斗を流下しなかった。
比較例9では、シリカ質微粉末(ZSF)の混合率を35重量%としたために、無収縮グラウト材の流動性は実施例1より良好であったが、圧縮強度は実施例1より低く、20℃標準養生の材齢28日が160N/mmを下回っていた。
比較例10では、膨張材(EX)の混合率を0重量%としたために、無収縮グラウト材の流動性及び圧縮強度は実施例1と同等であったが、材齢7日の膨張収縮率が−0.4%と大きく収縮しており、無収縮グラウト材の規格を外れたものであった。
In Comparative Example 8, since the mixing ratio of siliceous fine powder (ZSF) was 5% by weight, the compressive strength of the non-shrink grout material was lower than that of Example 1, and the material age of 20 days at 20 ° C. was 160 N / mm. It was below 2 . Further, fluidity poor, did not flow down the J 14 funnel.
In Comparative Example 9, since the mixing ratio of the siliceous fine powder (ZSF) was 35% by weight, the fluidity of the non-shrink grout material was better than that of Example 1, but the compressive strength was lower than that of Example 1. The material age of 20 ° C. standard curing was less than 160 N / mm 2 .
In Comparative Example 10, since the mixing ratio of the expansion material (EX) was 0% by weight, the fluidity and compressive strength of the non-shrink grout material were the same as those in Example 1, but the expansion / shrinkage ratio at the age of 7 days However, it shrank greatly to -0.4%, which was out of the standard of the non-shrink grout material.

比較例11では、膨張材(EX)の混合率を10重量%としたために、無収縮グラウト材の圧縮強度は実施例1と同等であったが、材齢7日の膨張収縮率が+0.9%と大きく膨張しており、無収縮グラウト材の品質として問題があるものであった。
比較例12では、無収縮グラウト材の圧縮強度は実施例1と同等であったが、細骨材及び水硬性結合材の単位容積比を1.30としたために、細骨材の量が多く、流動性は実施例1より著しく低いものであった。
In Comparative Example 11, since the mixing ratio of the expandable material (EX) was 10% by weight, the compressive strength of the non-shrink grout material was the same as that of Example 1, but the expansion / shrinkage ratio at the age of 7 days was +0. It was greatly expanded as 9%, and there was a problem as the quality of the non-shrink grout material.
In Comparative Example 12, the compressive strength of the non-shrink grout material was the same as in Example 1, but the unit volume ratio of the fine aggregate and hydraulic binder was 1.30, so the amount of fine aggregate was large. The fluidity was significantly lower than that of Example 1.

比較例13では、無収縮グラウト材の流動性及び圧縮強度は実施例1と同等であったが、細骨材及び水硬性結合材の単位容積比を0.50としたために、結合材ペースト量が多く、材齢7日の膨張収縮率が−0.2%と収縮しており、無収縮グラウト材の規格を外れたものであった。
比較例14は、水結合材比を20.0%としたものであるが、無収縮グラウト材の流動性は実施例1より良好であったものの、圧縮強度は実施例1より低く、20℃にて標準養生した場合、160N/mmを下回っていた。
In Comparative Example 13, the fluidity and compressive strength of the non-shrink grout material were the same as in Example 1, but the unit volume ratio of the fine aggregate and hydraulic binder was 0.50, so the amount of binder paste The expansion / shrinkage ratio at the age of 7 days was -0.2%, which was out of the standard of the non-shrink grout material.
In Comparative Example 14, the water binder ratio was 20.0%, but the flowability of the non-shrink grout material was better than that of Example 1, but the compressive strength was lower than that of Example 1 and 20 ° C. When standard curing was carried out, the pressure was lower than 160 N / mm 2 .

以上説明したように、最大粒径1.2mmの人造高密度細骨材(フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材)を使用したグラウト材は、最大粒径5mmの人造高密度細骨材または最大粒径1.2mmの天然細骨材(珪砂、山砂)を使用したグラウト材より優れた流動性と圧縮強度が得られ、さらに圧縮強度の変動係数が大幅に小さいことが分かった。
セメントA(HC)の水硬性結合材に対する混合率が5重量%未満の場合は、グラウト材硬化体の圧縮強度が低く、また、セメントA(HC)の水硬性結合材に対する混合率が15重量%を超える場合は、練り上った直後のグラウト材の流動性が大きく低下し、いずれも実用性に問題があることが分かった。
As explained above, the grout material using artificial high-density fine aggregate (ferronickel slag fine aggregate, copper slag fine aggregate, electric furnace oxidation slag fine aggregate) with a maximum particle size of 1.2 mm Fluidity and compressive strength superior to those of grouting materials using artificial high-density fine aggregates with a diameter of 5 mm or natural fine aggregates (silica sand, mountain sand) with a maximum particle size of 1.2 mm are obtained. Was found to be significantly smaller.
When the mixing ratio of cement A (HC) to the hydraulic binder is less than 5% by weight, the compressive strength of the grout material is low, and the mixing ratio of cement A (HC) to the hydraulic binder is 15 wt. In the case of exceeding%, the fluidity of the grout material immediately after kneading was greatly reduced, and it was found that all had problems in practical use.

膨張材(EX)の水硬性結合材に対する混合率が3重量%未満の場合では、グラウト材硬化体の収縮率が大きく、また、混合率が7重量%を超える場合では、反対にグラウト材硬化体の膨張率が大きくなり過ぎてしまい、実用性に問題があることが分かった。
シリカ質微粉末(ZSF)の水硬性結合材に対する混合率が10重量%未満の場合では、練混ぜが困難になって実用性が低下し、また、混合率が30重量%を超える場合では、グラウト材硬化体の圧縮強度の低下が大きいことが分かった。
When the mixing ratio of the expansion material (EX) to the hydraulic binder is less than 3% by weight, the shrinkage of the grout material is large, and when the mixing ratio exceeds 7% by weight, the grout material is hardened. It turned out that the expansion rate of the body became too large, and there was a problem in practicality.
When the mixing rate of the siliceous fine powder (ZSF) with respect to the hydraulic binder is less than 10% by weight, kneading becomes difficult and the practicality decreases, and when the mixing rate exceeds 30% by weight, It was found that the decrease in compressive strength of the cured grout material was large.

細骨材及び水硬性結合材の単位容積比が0.6未満の場合では、グラウト材硬化体の収縮率が大きくなり、また、単位容積比が1.2を超える場合では、練り上がった直後のグラウト材の流動性が低下するため、実用性が大幅に低下することが分かった。
さらに、20℃における標準養生の材齢28日及び70℃における加熱養生の材齢2日のいずれにおいても、圧縮強度が160N/mmを上回るためには、水結合材比が18.0%以下であることが必須要件であることが分かった。
なお、ブリーディング率は、実施例1〜5、比較例1〜14のいずれにおいても規準を満足していた。
When the unit volume ratio of the fine aggregate and the hydraulic binder is less than 0.6, the shrinkage rate of the grout material hardened body becomes large, and when the unit volume ratio exceeds 1.2, immediately after being kneaded. It has been found that the practicality of the grout material is greatly reduced because the fluidity of the grout material is reduced.
Furthermore, in order that the compressive strength exceeds 160 N / mm 2 in both the age of the standard curing at 20 ° C. and the age of 2 in the heating curing at 70 ° C., the water binder ratio is 18.0%. The following were found to be essential requirements.
In addition, the bleeding rate satisfied the standard in any of Examples 1 to 5 and Comparative Examples 1 to 14.

Claims (5)

エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、
最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、
化学混和剤とを含有してなることを特徴とする超高強度無収縮グラウト材。
Cement A having an alite content of 60 wt% or more and 70 wt% or less and a Blaine specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less, and a belite content of 35 wt% or more and 60 wt% less and and a Blaine cement specific surface area is less than 3000 cm 2 / g or more and 4000 cm 2 / g B, the expansion member and the BET specific surface area is 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder A hydraulic binder consisting of
An artificial high-density fine aggregate having a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and a water absorption of 0.90% or less;
An ultrahigh strength non-shrink grout material characterized by containing a chemical admixture.
前記水硬性結合材は、前記セメントAを5重量%以上かつ15重量%以下、前記セメントBを60重量%以上かつ70重量%以下、前記膨張材を3重量%以上かつ7重量%以下、前記シリカ質微粉末を10重量%以上かつ30重量%以下の割合で混合してなることを特徴とする請求項1記載の超高強度無収縮グラウト材。   The hydraulic binder is 5% by weight to 15% by weight of the cement A, 60% by weight to 70% by weight of the cement B, 3% by weight to 7% by weight of the expansion material, 2. The ultrahigh strength non-shrink grout material according to claim 1, wherein the fine siliceous powder is mixed at a ratio of 10% by weight to 30% by weight. 前記人造高密度細骨材は、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材の群から選択された1種または2種以上であることを特徴とする請求項1または2記載の超高強度無収縮グラウト材。   The artificial high-density fine aggregate is one or more selected from the group of ferronickel slag fine aggregate, copper slag fine aggregate, and electric furnace oxidized slag fine aggregate. The ultra-high strength non-shrink grout material according to 1 or 2. 前記人造高密度細骨材の単位容積及び前記水硬性結合材の単位容積の比率は、0.60以上かつ1.20以下であることを特徴とする請求項1、2または3記載の超高強度無収縮グラウト材。   4. The ultra-high height according to claim 1, wherein a ratio between a unit volume of the artificial high-density fine aggregate and a unit volume of the hydraulic binder is 0.60 or more and 1.20 or less. Strength non-shrink grout material. 請求項1ないし4のいずれか1項記載の超高強度無収縮グラウト材を水結合材比18.0%以下にて水と混練し養生してなる超高強度無収縮グラウト材硬化体であって、
この超高強度無収縮グラウト材硬化体の圧縮強度は、20℃にて28日間、あるいは、5℃以上にてグラウト材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合、160N/mm以上であることを特徴とする超高強度無収縮グラウト材硬化体。
An ultra-high-strength non-shrink grout material cured product obtained by kneading and curing the ultra-high-strength non-shrink grout material according to any one of claims 1 to 4 with water at a water binder ratio of 18.0% or less. And
The compressive strength of this ultra-high strength non-shrink grout material is 20 days at 20 ° C., or after curing of the grout material at 5 ° C. or more, after 60 ° C. or more and 80 ° C. or less. An ultra-high-strength non-shrink grout material cured product, which is 160 N / mm 2 or more when cured under any condition of 24 hours.
JP2008041177A 2008-02-22 2008-02-22 Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material Active JP4747181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041177A JP4747181B2 (en) 2008-02-22 2008-02-22 Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041177A JP4747181B2 (en) 2008-02-22 2008-02-22 Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material

Publications (2)

Publication Number Publication Date
JP2009196855A true JP2009196855A (en) 2009-09-03
JP4747181B2 JP4747181B2 (en) 2011-08-17

Family

ID=41140801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041177A Active JP4747181B2 (en) 2008-02-22 2008-02-22 Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material

Country Status (1)

Country Link
JP (1) JP4747181B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230256B1 (en) * 2010-12-02 2013-02-07 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
WO2013065940A1 (en) * 2011-10-31 2013-05-10 주식회사 에코마이스터 Quenched environmentally friendly nickel slag ball using high-speed gas, method for manufacturing same, and apparatus for manufacturing same
JP2014172762A (en) * 2013-03-06 2014-09-22 Taiheiyo Cement Corp Cement-containing powder composition and hydraulic composition
JP2015024948A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
KR20150055291A (en) 2013-11-13 2015-05-21 한국건설기술연구원 Non-shrinkage grout having function preventing tendon corrosion for prestressed concrete (psc) bridge
JP2016098141A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
TWI774525B (en) * 2021-08-20 2022-08-11 新舜營造有限公司 concrete composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512884A (en) * 2016-06-17 2017-12-26 浙江泰正建材有限公司 A kind of superpower fast purling slurry and preparation method thereof
CN107915449B (en) * 2017-12-14 2020-09-29 盐城工学院 Dry-mixed masonry mortar and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153724A (en) * 2005-03-30 2007-06-21 Ube Ind Ltd Hydraulic composition, and mortar and hardened body thereof
JP2007284308A (en) * 2006-04-19 2007-11-01 Ube Ind Ltd Hydraulic composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153724A (en) * 2005-03-30 2007-06-21 Ube Ind Ltd Hydraulic composition, and mortar and hardened body thereof
JP2007284308A (en) * 2006-04-19 2007-11-01 Ube Ind Ltd Hydraulic composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230256B1 (en) * 2010-12-02 2013-02-07 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
WO2013065940A1 (en) * 2011-10-31 2013-05-10 주식회사 에코마이스터 Quenched environmentally friendly nickel slag ball using high-speed gas, method for manufacturing same, and apparatus for manufacturing same
KR101275148B1 (en) * 2011-10-31 2013-06-17 주식회사 에코마이스터 Quenched eco-friendly nickel slag ball using high speed gas, manufacturing method and apparatus
JP2014172762A (en) * 2013-03-06 2014-09-22 Taiheiyo Cement Corp Cement-containing powder composition and hydraulic composition
JP2015024948A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2018162213A (en) * 2013-06-17 2018-10-18 宇部興産株式会社 High strength cement mortar composition and manufacturing method of high strength cement mortar cured body
KR20150055291A (en) 2013-11-13 2015-05-21 한국건설기술연구원 Non-shrinkage grout having function preventing tendon corrosion for prestressed concrete (psc) bridge
JP2016098141A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
TWI774525B (en) * 2021-08-20 2022-08-11 新舜營造有限公司 concrete composition

Also Published As

Publication number Publication date
JP4747181B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4747181B2 (en) Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material
JP4862001B2 (en) Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material
JP4861931B2 (en) Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete
JP4861930B2 (en) Ultra-high strength high-fluidity cement composition and ultra-high-strength high-fluidity cement hardened material
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
JP6086760B2 (en) Ultra-high-strength high-fluidity concrete, method for producing ultra-high-strength high-fluidity concrete, and cement composition
KR101740559B1 (en) Eco-friendly and highly durable non-shrink grout composition for pc charge and reinforcement
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
JP2005067945A (en) Super-high strength high toughness mortar
CN111620648A (en) Soil solidifying material and soil solidifying method thereof
JP2010275124A (en) Ultrahigh early strength cement composition and method for producing the same
CN106045557A (en) Self-compacting concrete for road engineering
JP6165447B2 (en) Method for producing concrete with reduced bleeding
KR101653564B1 (en) Ultra rapid hardening mortar composition and manufacturing method using the same
KR102017954B1 (en) Self-healing sulfur polymer composites using binary cement and superabsorbent polymer
KR101366062B1 (en) Concrete composition for bridge pavement and manufacturing method thereof
JP2018002545A (en) Premixed mortar and method for producing the same
JP2007076944A (en) Method for producing self-compactable concrete
KR101797350B1 (en) High strength conctete composition for psc girder
KR20190074575A (en) Eco-friendly ultra rapid hardening mortar composition and manufacturing method using the same
KR101727728B1 (en) Blended concrete composite using silica fume and manufacturing method thereof
CN106747005A (en) A kind of template self-compacting concretes of CRTS III with high fluidity, clearance through and education resistance
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
Kattoli et al. Effect of partial replacement of cement by ground granulated blast furnace slag and sand by iron ore tailings on properties of concrete
JP7195962B2 (en) Construction method of tunnel lining concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4747181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250