JP2005067945A - Super-high strength high toughness mortar - Google Patents

Super-high strength high toughness mortar Download PDF

Info

Publication number
JP2005067945A
JP2005067945A JP2003299232A JP2003299232A JP2005067945A JP 2005067945 A JP2005067945 A JP 2005067945A JP 2003299232 A JP2003299232 A JP 2003299232A JP 2003299232 A JP2003299232 A JP 2003299232A JP 2005067945 A JP2005067945 A JP 2005067945A
Authority
JP
Japan
Prior art keywords
strength
mortar
cement
ultra
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003299232A
Other languages
Japanese (ja)
Inventor
Takashi Oura
隆 大浦
Michihiro Sakurada
道博 桜田
Original Assignee
Ps Mitsubishi Construction Co Ltd
株式会社ピーエス三菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ps Mitsubishi Construction Co Ltd, 株式会社ピーエス三菱 filed Critical Ps Mitsubishi Construction Co Ltd
Priority to JP2003299232A priority Critical patent/JP2005067945A/en
Publication of JP2005067945A publication Critical patent/JP2005067945A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0088Compounds chosen for their latent hydraulic characteristics, e.g. pozzuolanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super-high strength high toughness composite material having compressive strength of ≥120 MPa without using the specific particles of a specific mineral such as wollastonite. <P>SOLUTION: The low cost super-high strength high toughness mortar comprising fine aggregate (maximum size is ≤5 mm) (S) for concrete which is generally in circulation, cement (C), silica fume and a short fiber reinforcing material (SF) and having low water cement ratio (≤25%) is produced through processes of, for example, the dry mixing 11 of C+S, the charge 12 of water (W), the kneading 13 of W+C+S, the charge 14 of the short fiber (SF) and the kneading 15 of W+C+S+SF. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超高強度高じん性モルタルに関する。   The present invention relates to an ultra-high strength and high toughness mortar.
近年、圧縮強度が100MPaを上回る超高強度コンクリートが開発されている。コンクリートの強度は粗骨材の最大寸法の影響を受け、粗骨材の最大粒径が大きいほど強度が低下する傾向がある。さらに、粗骨材が存在することによりコンクリートの施工性も低下し、施工不良が発生する可能性もある。また、コンクリートは高強度になるほど脆性的に破壊する傾向にある。   In recent years, ultra high strength concrete having a compressive strength exceeding 100 MPa has been developed. The strength of concrete is affected by the maximum size of the coarse aggregate, and the strength tends to decrease as the maximum particle size of the coarse aggregate increases. Furthermore, the presence of the coarse aggregate also reduces the workability of the concrete and may cause construction failures. Moreover, concrete tends to break brittlely as the strength increases.
このようなことから、近年、粗骨材を使用せず、代わりに短繊維補強材、特殊微粉末、及び又は特殊細骨材を使用することによって、強度、施工性およびじん性を改善する超高強度高じん性複合材料が開発されている(例えば、特許文献1、2参照。)。
特開平11−246255号公報 特開2001−181004号公報
For this reason, in recent years, the use of short fiber reinforcement, special fine powder, and / or special fine aggregate instead of using coarse aggregate has improved the strength, workability and toughness. High strength and high toughness composite materials have been developed (see, for example, Patent Documents 1 and 2).
JP-A-11-246255 JP 2001-181004 A
前述の超高強度高じん性複合材料は、特殊な微粒子(例えば、ウォラストナイト等の特殊鉱物)や特殊な細骨材(例えば最大寸法2mm以下の細骨材)を使用するため、材料のコストが高騰する傾向にある。   The ultra high strength and high toughness composite material described above uses special fine particles (for example, special minerals such as wollastonite) and special fine aggregates (for example, fine aggregates having a maximum dimension of 2 mm or less). Costs tend to rise.
そこで本発明は一般に流通しているコンクリート用細骨材等を用いた安価な超高強度高じん性複合材料(以降、超高強度高じん性モルタル)を提供することを目的とする。   Accordingly, an object of the present invention is to provide an inexpensive ultra-high-strength high-toughness composite material (hereinafter, ultra-high-strength high-toughness mortar) using a fine aggregate for concrete or the like that is generally distributed.
本発明は、上記問題点を解決するためになされたもので、次の技術手段を講じたことを特徴とする。すなわち、本発明は、少なくとも、セメント、ポゾラン質微粉末、粒径5mm以下の細骨材、短繊維補強材、減水剤及び水を含むことを特徴とする超高強度高じん性モルタルである。   The present invention has been made to solve the above problems, and is characterized by taking the following technical means. That is, the present invention is an ultrahigh strength and high toughness mortar characterized in that it contains at least cement, pozzolanic fine powder, fine aggregate having a particle diameter of 5 mm or less, a short fiber reinforcing material, a water reducing agent and water.
前記セメント及びポゾラン質微粉末が、シリカフュームをプレミックスした特殊ポルトランドセメントであるとより望ましい。   More preferably, the cement and pozzolanic fine powder are special Portland cements premixed with silica fume.
さらに、本発明の超高強度高じん性モルタルは充填材として石灰石微粉末、高炉スラグ微粉末又はフライアッシュからなる群から選ばれた1又は2以上を含むものであってもよい。   Furthermore, the ultra high strength and high toughness mortar of the present invention may include one or more selected from the group consisting of fine limestone powder, fine blast furnace slag powder or fly ash as a filler.
また、前記短繊維補強材は、金属繊維、無機繊維及び有機繊維から成る群から選ばれた1又は2以上とすれば好適である。   The short fiber reinforcing material is preferably 1 or 2 or more selected from the group consisting of metal fibers, inorganic fibers and organic fibers.
本発明の超高強度高じん性モルタルは硬化後120MPa以上の圧縮強度を発現する。また、本発明によれば、ひび割れ抵抗性が大きく、破壊時の高じん性を有するモルタルを製造することが可能となる。   The ultra-high strength and high toughness mortar of the present invention exhibits a compressive strength of 120 MPa or more after curing. Further, according to the present invention, it is possible to produce a mortar having high crack resistance and high toughness at the time of fracture.
以下、超高強度高じん性モルタルについて詳細に説明する。本発明の超高強度高じん性モルタルは、少なくとも、セメント、ポゾラン質微粉末、粒径5mm以下の細骨材、短繊維補強材、減水剤および水を含むものである。   Hereinafter, the ultra high strength and high toughness mortar will be described in detail. The ultra-high strength and high toughness mortar of the present invention contains at least cement, pozzolanic fine powder, fine aggregate having a particle size of 5 mm or less, a short fiber reinforcing material, a water reducing agent and water.
本発明で使用されるセメントの種類は限定されるものでなく、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、フライアッシュセメントを使用することが出来る。また、セメント質量部の40〜50%がビーライトである高ビーライトセメントも使用することが出来る。なお、モルタルの早期強度を向上しようとする場合は早強ポルトランドセメントが望ましく、モルタルの流動性を向上しようとする場合は、高ビーライトセメントや中庸熱セメント又は低熱ポルトランドセメントを使用することが望ましい。シリカフュームをプレミックスしたセメントはシリカフュームの分散性がよく、優れた流動性と超高強度とが得られるため、さらに望ましい。   The type of cement used in the present invention is not limited, and various portland cements such as ordinary portland cement, early-strength portland cement, medium heat portland cement, low heat portland cement, blast furnace cement and fly ash cement are used. I can do it. Moreover, the high belite cement which 40 to 50% of cement mass is belite can also be used. When trying to improve the early strength of mortar, early-strength Portland cement is desirable, and when trying to improve the fluidity of mortar, it is desirable to use high belite cement, medium heat cement or low heat Portland cement. . Cement premixed with silica fume is more desirable because it has good dispersibility of silica fume and provides excellent fluidity and ultra-high strength.
ポゾラン質微粉末としては、シリカフューム、シリカダスト、高炉スラグ、シリカゾル、沈降シリカ等が挙げられる。一般にシリカフュームやシリカダストではその平均粒径が1.0μm以下であり、粉砕等をする必要が無く、本発明のポゾラン質微粉末として好適である。ポゾラン質微粉末を配合することにより、そのマイクロフィラー効果およびボールベアリング効果によりモルタルが緻密化し、圧縮強度が向上する。シリカフュームの配合量は、効果とコストとを考慮して、セメント100質量部に対し5〜20質量部が望ましい。5質量部を下廻るとモルタルの緻密化が十分でなく圧縮強度向上効果も乏しい。一方20質量部を越えると効果が飽和すると共にコストアップを招来するので20質量部以下とするのがよい。   Examples of the pozzolanic fine powder include silica fume, silica dust, blast furnace slag, silica sol, and precipitated silica. In general, silica fume and silica dust have an average particle size of 1.0 μm or less and do not need to be pulverized, and are suitable as the pozzolanic fine powder of the present invention. By blending the pozzolanic fine powder, the mortar is densified by the micro filler effect and the ball bearing effect, and the compressive strength is improved. The amount of silica fume is preferably 5 to 20 parts by mass with respect to 100 parts by mass of cement in consideration of the effect and cost. If it is less than 5 parts by mass, the mortar is not sufficiently densified and the effect of improving the compressive strength is poor. On the other hand, if it exceeds 20 parts by mass, the effect is saturated and the cost is increased.
また、本発明においては、材料コストを考慮して、粒径5mm以下の一般コンクリート用の細骨材を用いる。粒径2mm以上の細骨材があることによりモルタルの粘性が低減し、充填性が向上するという効果もある。細骨材としては川砂、陸砂、海砂、砕砂、珪砂またはこれらの混合物を使用することができる。細骨材の混合量は、モルタルの作業性や材料分離抵抗性、硬化後の強度や収縮低減効果の観点から、セメント100質量部に対し、50〜150質量部が好ましい。   In the present invention, in consideration of material costs, fine aggregate for general concrete having a particle size of 5 mm or less is used. The presence of fine aggregate having a particle size of 2 mm or more has the effect of reducing the viscosity of the mortar and improving the filling property. As the fine aggregate, river sand, land sand, sea sand, crushed sand, silica sand or a mixture thereof can be used. The mixing amount of the fine aggregate is preferably 50 to 150 parts by mass with respect to 100 parts by mass of cement from the viewpoints of mortar workability, material separation resistance, strength after curing, and shrinkage reduction effect.
細骨材に含まれる微粉分(150μm以下)が少ない場合、モルタルの材料分離や強度低下を起こすことがあるので、微粉分が少ない場合には、細骨材の一部を不活性な微粉末例えば、粉末度がセメントと同程度の石灰石微粉末(例えば、平均粒径15μm程度のもの)で置換し、微粉分を補うと良好な材料分離抵抗性と高い圧縮強度が得られる。不活性な粉末を添加することによって、水和熱の抑制や温度ひび割れの防止にも効果がある。   If the fine aggregate contained in the fine aggregate (150 μm or less) is small, mortar material may be separated and the strength may be reduced. If the fine powder is small, a part of the fine aggregate is inactive fine powder. For example, by replacing with fine limestone powder (for example, having an average particle size of about 15 μm) with a fineness equal to that of cement and supplementing the fine powder content, good material separation resistance and high compressive strength can be obtained. By adding an inert powder, it is effective in suppressing heat of hydration and preventing temperature cracking.
短繊維補強材として、金属繊維、無機繊維及び有機繊維からなる群から選ばれた1又は2以上を用いる。これらを混入するとひび割れ抵抗性と靱性が向上する。添加量は、施工性、経済性を考慮して、モルタル全体に対して3vol%以下とするのが望ましい。   As the short fiber reinforcing material, one or two or more selected from the group consisting of metal fibers, inorganic fibers and organic fibers are used. When these are mixed, crack resistance and toughness are improved. The addition amount is desirably 3 vol% or less with respect to the entire mortar in consideration of workability and economy.
減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤または高性能AE減水剤を使用することができる。これらのうち、減水効果が大きい高性能減水剤又は高性能AE減水剤を使用することが好ましい。減水剤の配合量は、モルタルの流動性、材料分離抵抗性、凝結時間、硬化後の強度、さらにはコスト等に鑑み、セメント100質量部に対し、0.1〜5.0質量部が望ましい。なお、減水剤は液状又は粉末状どちらでも使用可能である。また、強度を発現させるためにはモルタル中に過剰な空気が入ることは望ましくなく、消泡剤を混入することが望ましい。   As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. The blending amount of the water reducing agent is preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of cement in view of mortar fluidity, material separation resistance, setting time, strength after curing, and cost. . The water reducing agent can be used in a liquid or powder form. Moreover, in order to express intensity | strength, it is not desirable for excess air to enter into mortar, and it is desirable to mix an antifoamer.
収縮低減を目的として、石灰系またはカルシウムスルホアルミネート系の膨張剤や、アルミ粉などの発泡剤を添加しても良い。膨張剤はセメント100質量部に対して3〜15質量部、発泡剤はセメント100質量部に対し、0.0005〜0.0025質量部とするのが好ましい。   For the purpose of reducing shrinkage, a lime-based or calcium sulfoaluminate-based expansion agent or a foaming agent such as aluminum powder may be added. The expansion agent is preferably 3 to 15 parts by mass with respect to 100 parts by mass of cement, and the foaming agent is preferably 0.0005 to 0.0025 parts by mass with respect to 100 parts by mass of cement.
本発明の超高強度高じん性モルタルの製造方法は、特に限定するものではなく、例えば次の(1)又は(2)の手段等を採用すればよい。
(1)全材料(水、混和剤、セメント、ポゾラン質微粉末、細骨材および短繊維補強材)を一度に練混ぜる。
(2)短繊維補強材以外の材料を練混ぜた後に、短繊維補強材を加え、再度練混ぜる。短繊維補強材はアジテータ車に添加しても良い。
The method for producing the ultra high strength and high toughness mortar of the present invention is not particularly limited, and for example, the following means (1) or (2) may be adopted.
(1) All materials (water, admixture, cement, pozzolanic fine powder, fine aggregate and short fiber reinforcing material) are mixed at once.
(2) After kneading materials other than the short fiber reinforcing material, add the short fiber reinforcing material and knead again. The short fiber reinforcement may be added to the agitator vehicle.
練混ぜに用いるミキサは、通常のモルタルやコンクリートの練混ぜに用いられるものであれば、いずれのタイプでもよく、例えば、ホバートミキサ、ハンドミキサ、強制練りパン型ミキサ、強制練り水平二軸ミキサ等が用いられる。短繊維補強材の練混ぜにはアジテータ車を使用することもできる。   The mixer used for kneading may be any type as long as it is used for kneading ordinary mortar or concrete. For example, Hobart mixer, hand mixer, forced kneading pan type mixer, forced kneading horizontal biaxial mixer, etc. Is used. An agitator wheel can be used to mix the short fiber reinforcement.
本発明において、モルタルの養生方法は特に限定するものではなく、常温養生、蒸気養生、加熱養生、断熱養生等を行えばよい。ただし、早期に強度を発現させ、初期ひび割れを防止又は低減させる目的で、蒸気養生、加熱養生、断熱養生などの促進養生を行うことが望ましい。   In the present invention, the mortar curing method is not particularly limited, and normal temperature curing, steam curing, heat curing, heat insulation curing, and the like may be performed. However, it is desirable to perform accelerated curing such as steam curing, heat curing, and heat insulation curing for the purpose of developing strength early and preventing or reducing initial cracking.
以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.
1)使用材料
実施例の使用材料及び配合は表1、2に示すとおりである。セメントは低熱ポルトランドセメントにシリカフュームがプレミックスされたシリカフュームセメントを用いた。細骨材は最大寸法5mmの天然細骨材を用い、短繊維補強材として、径0.16mm、長さ13mm、引張強度2340MPaの高張力スチールファイバーを用いた。また高性能AE減水剤としてポリカルボン酸系を用い、消泡剤としてマイクロエア404(NMB社製)を用いた。これらを表2を示す示方配合で配合した。
1) Materials Used The materials used and the formulations in the examples are as shown in Tables 1 and 2. As the cement, silica fume cement obtained by premixing silica fume with low heat Portland cement was used. As the fine aggregate, a natural fine aggregate having a maximum size of 5 mm was used, and a high-tensile steel fiber having a diameter of 0.16 mm, a length of 13 mm, and a tensile strength of 2340 MPa was used as a short fiber reinforcing material. Further, a polycarboxylic acid type was used as a high performance AE water reducing agent, and Micro Air 404 (manufactured by NMB) was used as an antifoaming agent. These were blended in the manner shown in Table 2.
2)練混ぜ方法
超高強度高じん性モルタルの練混ぜ方法を図1にフローチャートで示した。練混ぜには、通常のコンクリートミキサ(強制練り水平2軸ミキサ)を使用した。先ずセメント(C)と細骨材(S)を投入して60秒間空練り(11)し、水(W)投入(12)の後、(W+C+S)の練混ぜ(13)を90秒行い、次いで短繊維補強材(SF)投入(14)し、その後、(W+C+S+SF)の練混ぜ(15)を60秒行った。
2) Mixing method The mixing method of ultra-high strength and tough mortar is shown in the flowchart of FIG. A normal concrete mixer (forced kneading horizontal biaxial mixer) was used for kneading. First, cement (C) and fine aggregate (S) are added and kneaded (11) for 60 seconds, and after adding water (W) (12), (W + C + S) is mixed (13) for 90 seconds. Next, the short fiber reinforcing material (SF) was charged (14), and then (W + C + S + SF) kneading (15) was performed for 60 seconds.
3)フレッシュ性状
実施例の超高強度高じん性モルタルのフレッシュ性状および硬化体性状をそれぞれ、表3および表4に示した。表4中に*を付した養生方法は、最高温度(60℃)を保持した日数を示すもので、前置き1日、温度上昇及び温度下降時間は含まないものである。蒸気養生したもの及び標準養生後長期経過後の圧縮強度はいずれも150MPaを越えた強度を示し、曲げ強度も適正であった。また、蒸気養生後の長期乾燥収縮も150μmと小さかった。
3) Fresh properties The fresh properties and cured properties of the ultra-high strength and high toughness mortars of the examples are shown in Table 3 and Table 4, respectively. The curing method marked with * in Table 4 indicates the number of days for which the maximum temperature (60 ° C.) was maintained, and does not include the one day in advance, temperature rise and temperature fall time. The compressive strength after steam curing and after a long period after standard curing both showed strength exceeding 150 MPa, and the bending strength was also appropriate. Further, long-term drying shrinkage after steam curing was as small as 150 μm.
実施例の超高強度高じん性材料の練混ぜ工程を示すフローチャートである。It is a flowchart which shows the mixing process of the ultra high intensity | strength highly tough material of an Example.
符号の説明Explanation of symbols
11 空練り
12 水投入
13 練混ぜ
14 短繊維投入
15 練混ぜ
11 Empty kneading 12 Water charging 13 Kneading 14 Short fiber charging 15 Kneading

Claims (4)

  1. 少なくとも、セメント、ポゾラン質微粉末、粒径5mm以下の細骨材、短繊維補強材、減水剤及び水を含むことを特徴とする超高強度高じん性モルタル。   An ultra-high strength and high toughness mortar comprising at least cement, fine powder of pozzolanic, fine aggregate having a particle diameter of 5 mm or less, a short fiber reinforcing material, a water reducing agent and water.
  2. 前記セメント及びポゾラン質微粉末が、シリカフュームをプレミックスした特殊ポルトランドセメントであることを特徴とする請求項1記載の超高強度高じん性モルタル。   2. The ultra high strength and high toughness mortar according to claim 1, wherein the cement and pozzolanic fine powder are special Portland cement premixed with silica fume.
  3. さらに、充填材として石灰石微粉末、高炉スラグ微粉末及びフライアッシュからなる群から選ばれた1又は2以上を含むことを特徴とする請求項1又は2記載の超高強度高じん性モルタル。   Furthermore, 1 or 2 or more selected from the group which consists of limestone fine powder, blast furnace slag fine powder, and fly ash as a filler is contained, The ultra-high intensity | strength highly tough mortar of Claim 1 or 2 characterized by the above-mentioned.
  4. 前記短繊維補強材は金属繊維、無機繊維及び有機繊維から成る群から選ばれた1又は2以上であることを特徴とする請求項1〜3のいずれかに記載の超高強度高じん性モルタル。   The ultra high strength and high toughness mortar according to any one of claims 1 to 3, wherein the short fiber reinforcing material is one or more selected from the group consisting of metal fibers, inorganic fibers, and organic fibers. .
JP2003299232A 2003-08-22 2003-08-22 Super-high strength high toughness mortar Pending JP2005067945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299232A JP2005067945A (en) 2003-08-22 2003-08-22 Super-high strength high toughness mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299232A JP2005067945A (en) 2003-08-22 2003-08-22 Super-high strength high toughness mortar

Publications (1)

Publication Number Publication Date
JP2005067945A true JP2005067945A (en) 2005-03-17

Family

ID=34404510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299232A Pending JP2005067945A (en) 2003-08-22 2003-08-22 Super-high strength high toughness mortar

Country Status (1)

Country Link
JP (1) JP2005067945A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282442A (en) * 2005-03-31 2006-10-19 Taiheiyo Material Kk Quick-setting and high-fluidity mortar
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2007320833A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2007320834A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP2010516611A (en) * 2007-01-24 2010-05-20 ラファルジュ New concrete mixture
US7833923B2 (en) 2007-12-10 2010-11-16 Ngk Insulators, Ltd. Monolithic refractory material having low expansibility, high strength, and crack extension resistance
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
JP2012171804A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp High strength mortar composition
JP2014019588A (en) * 2012-07-12 2014-02-03 Ube Ind Ltd Paste composition and mortar composition
JP2014019586A (en) * 2012-07-12 2014-02-03 Ube Ind Ltd Paste composition and mortar composition
JP2014019587A (en) * 2012-07-12 2014-02-03 Ube Ind Ltd Paste composition and mortar composition
JP2015163589A (en) * 2015-06-16 2015-09-10 株式会社大林組 high-strength mortar composition
CN105236850A (en) * 2015-08-28 2016-01-13 大连理工大学 Electric-conductive reactive powder concrete, preparation method and application thereof
CN105236849A (en) * 2015-08-28 2016-01-13 大连理工大学 Short-cut ultrathin stainless steel micro wire-reinforced reactive powder concrete, preparation method and application thereof
JP2017007917A (en) * 2015-06-25 2017-01-12 太平洋セメント株式会社 Cementitious hardened body manufacturing process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282442A (en) * 2005-03-31 2006-10-19 Taiheiyo Material Kk Quick-setting and high-fluidity mortar
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2007320834A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP2007320833A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
KR101387291B1 (en) 2007-01-24 2014-04-25 라파르쥐 New concrete compositions
JP2010516611A (en) * 2007-01-24 2010-05-20 ラファルジュ New concrete mixture
US7833923B2 (en) 2007-12-10 2010-11-16 Ngk Insulators, Ltd. Monolithic refractory material having low expansibility, high strength, and crack extension resistance
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
JP2012171804A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp High strength mortar composition
JP2014019586A (en) * 2012-07-12 2014-02-03 Ube Ind Ltd Paste composition and mortar composition
JP2014019587A (en) * 2012-07-12 2014-02-03 Ube Ind Ltd Paste composition and mortar composition
JP2014019588A (en) * 2012-07-12 2014-02-03 Ube Ind Ltd Paste composition and mortar composition
JP2015163589A (en) * 2015-06-16 2015-09-10 株式会社大林組 high-strength mortar composition
JP2017007917A (en) * 2015-06-25 2017-01-12 太平洋セメント株式会社 Cementitious hardened body manufacturing process
CN105236850A (en) * 2015-08-28 2016-01-13 大连理工大学 Electric-conductive reactive powder concrete, preparation method and application thereof
CN105236849A (en) * 2015-08-28 2016-01-13 大连理工大学 Short-cut ultrathin stainless steel micro wire-reinforced reactive powder concrete, preparation method and application thereof
CN105236850B (en) * 2015-08-28 2017-06-27 大连理工大学 A kind of electrical conductive activities powder concrete and its preparation method and application

Similar Documents

Publication Publication Date Title
JP2005067945A (en) Super-high strength high toughness mortar
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
TWI409240B (en) Reinforcing Bar for Reinforcement and Construction Method for Reinforcing Bar with Reinforcement
KR101140561B1 (en) High flowing-low heating concrete composition for carbon dioxide reduction
JP2006298679A (en) Ultra-high strength fiber-reinforced cement composition, ultra-high strength fiber-reinforced mortar or concrete, and ultra-high strength cement admixture
JP2012144406A (en) High-strength mortar composition
JP5702608B2 (en) High strength mortar composition
JP2001064066A (en) High strength concrete
KR20040084533A (en) Cement admixture composite for high flowability concrete fabrication
JP3806420B2 (en) Low strength mortar filler using shirasu
JP2014169213A (en) Ultra-high-strength high-fluidity concrete and cement composition
JP2002068804A (en) Concrete composition
JP2012144407A (en) High-strength paste composition
JP4976803B2 (en) Grout composition and grout material using the same
JP2003335565A (en) High performance concrete
JP2004043234A (en) Ultrahigh strength mortar
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
JP6417891B2 (en) High-strength concrete composition and method for producing high-strength concrete hardened body
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP4372954B2 (en) Ultra high strength concrete
Metwally et al. Significance of blast furnace slag as coarse aggregate in concrete
JP6163317B2 (en) Concrete containing blast furnace slag
JPH10218648A (en) High performance water reducing agent and cement composition
JP2008239403A (en) Hydraulic composition
JP2013173625A (en) Heavyweight concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407