JP2019123650A - High strength cement and high strength concrete - Google Patents

High strength cement and high strength concrete Download PDF

Info

Publication number
JP2019123650A
JP2019123650A JP2018006048A JP2018006048A JP2019123650A JP 2019123650 A JP2019123650 A JP 2019123650A JP 2018006048 A JP2018006048 A JP 2018006048A JP 2018006048 A JP2018006048 A JP 2018006048A JP 2019123650 A JP2019123650 A JP 2019123650A
Authority
JP
Japan
Prior art keywords
cement
high strength
mass
performance water
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018006048A
Other languages
Japanese (ja)
Inventor
一也 本間
Kazuya Honma
一也 本間
貴史 寺内
Takashi Terauchi
貴史 寺内
拓海 前田
Takumi Maeda
拓海 前田
宮口 克一
Katsuichi Miyaguchi
克一 宮口
盛岡 実
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2018006048A priority Critical patent/JP2019123650A/en
Publication of JP2019123650A publication Critical patent/JP2019123650A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide high strength cement that has less chloride content and alkali content, can reduce an amount of use of a high performance water-reducing admixture and shorten the setting time, and can manufacture high strength concrete excellent in a strength development property and a shrinkage reduction effect.SOLUTION: A high strength concrete comprises: high strength cement in which a content of the particle less than or equal to 5 μm is 2 mass% or less and its median size is 15 μm or more; one or two or more selected from the group consisting of blast furnace slag fine powder, fly ash, and silica fume; and a high performance water-reducing admixture. The high strength cement includes 5 to 20 pts.mass of the one or two or more selected from the group consisting of blast furnace slag fine powder, fly ash, and silica fume and 0.5 to 5.0 pts.mass of the high performance water-reducing admixture, with respect to 100 pts.mass of the high strength cement. There is also provided a manufacturing method for the high strength concrete including pre-adsorption of the high performance water-reducing admixture.SELECTED DRAWING: None

Description

本発明は、主に、土木・建築分野で使用される高強コンクリートに関する。   The present invention relates mainly to high strength concrete used in the field of civil engineering and construction.

セメントコンクリートの高性能化が望まれている。特に、高層建築や、コンクリート構造物の高耐久化・長寿命化と関連して、高強度コンクリートのニーズが増している。高強度コンクリートは、単位セメント量が多く、低い水/セメント比で配合設計されるため、セメント由来の塩化物やアルカリ金属(NaOやKO)の単位量(kg/m)が多くなる傾向にあり、配合条件によっては規定量を超えてしまう場合があった。具体的には、塩化物は鉄筋腐食の観点から、0.3kg/m以下と規定されており、アルカリ金属はNaOとKOの総量をNaO等価量(RO)として定め、3kg/m以下と規定されている。 It is desired to improve the performance of cement concrete. In particular, the need for high strength concrete is increasing in connection with high-rise buildings and high durability and long life of concrete structures. High strength concrete has a large unit cement content and is designed with a low water / cement ratio, so the unit quantity (kg / m 3 ) of cement derived chloride and alkali metal (Na 2 O and K 2 O) is It tends to be large, and depending on the compounding conditions, the specified amount may be exceeded. Specifically, from the viewpoint of chloride Corrosion, it is defined as 0.3 kg / m 3 or less, an alkali metal total amount Na 2 O equivalent amount of Na 2 O and K 2 O (R 2 O) As 3 kg / m 3 or less.

高強度コンクリートには、シリカフュームやフライアッシュなどのポゾラン物質の超微粒子が多用される(特許文献1〜4)。しかしながら、ポゾラン物質の超微粒子はセメントの水和に影響するため、水和反応を促進する目的で蒸気養生等の二次養生を行うが、強度を安定的に発現させることは容易ではなかった。   Ultrafine particles of pozzolanic substances such as silica fume and fly ash are frequently used for high strength concrete (Patent Documents 1 to 4). However, since ultrafine particles of pozzolanic substances affect the hydration of cement, secondary curing such as steam curing is performed for the purpose of promoting hydration reaction, but it has not been easy to develop strength stably.

さらに、高強度コンクリートの課題として、単位セメント量が多いため、硬化に伴う硬化収縮が大きく、特に凝結開始から材齢24時間までの若材齢に著しく収縮する。そのため蒸気養生等の二次養生を施した場合においても、高強度コンクリートを用いて薄部材を作製することが難しい。又、著しく低い水/セメント比でコンクリートを調製するため、多量の高性能減水剤を使用する。高性能減水剤の多量添加は、経済的負担を大きくするばかりか、コンクリートの凝結硬化を遅延するという課題が生じる。又、蒸気養生後の強度発現性に乏しいという課題もあった。   Furthermore, as a problem of high strength concrete, since the unit cement amount is large, the curing shrinkage with curing is large, and in particular, it shrinks remarkably to the young age from the start of setting to 24 hours of age. Therefore, even when secondary curing such as steam curing is performed, it is difficult to produce a thin member using high strength concrete. Also, a large amount of high performance water reducing agent is used to prepare concrete at a significantly lower water / cement ratio. The addition of a large amount of a high performance water reducing agent not only increases the economic burden but also causes the problem of delaying the setting and hardening of concrete. In addition, there is also a problem that the strength development after steam curing is poor.

高強度コンクリートのひび割れを低減する目的で、ブレーン比表面積で1000〜2400cm/gの粗粒セメントを使用する提案がなされている(特許文献5)。しかしながら、単にブレーン比表面積が小さくなるように粉砕処理したセメントは、塩化物含有量やアルカリ含有量が少ないわけではなく、又、微粒子をカットしているわけではないため、高強度コンクリートを調製する際に高性能減水剤の使用量を減じることができず、蒸気養生後の強度発現性に優れるものではなかった。 In order to reduce cracks in high-strength concrete, proposals have been made to use coarse-grained cement having a brane specific surface area of 1000 to 2400 cm 2 / g (Patent Document 5). However, cement that has been ground so as to simply reduce the specific surface area of branes does not necessarily have low chloride content or alkali content, and does not cut particulates, so it prepares high-strength concrete. At that time, the amount of use of the high-performance water-reducing agent could not be reduced, and the strength development after steam curing was not excellent.

又、高強度コンクリートの調製を目的として、粗粒セメントを含む結合材、β−1,3グルカン、及び高性能減水剤を含有することを特徴とする水硬性組成物が提案されている(特許文献6)。この技術では、40μm〜100μmの範囲の粗粒セメントを適用する。しかしながら、このセメントは粒度構成が歪なため、粒子の最密充填がなされず、100N/mmを超えるような高強度コンクリートの調製が難しい課題がった。又、材料分離が生じやすく、耐久性が阻害されるという課題もあった。 In addition, a hydraulic composition characterized by containing a binder containing coarse-grained cement, β-1,3 glucan, and a high-performance water reducing agent has been proposed for the purpose of preparing high-strength concrete (patented) Literature 6). In this technique, coarse cement in the range of 40 [mu] m to 100 [mu] m is applied. However, since this cement has a distorted particle size configuration, close-packing of particles is not performed, and it has been difficult to prepare high-strength concrete exceeding 100 N / mm 2 . In addition, there is also a problem that material separation easily occurs and the durability is impaired.

従って、高性能減水剤の使用量を減じることができ、凝結時間が短縮し、蒸気養生後の強度発現性に優れ、収縮低減効果を有する高強度コンクリートの開発が待たれていた。   Therefore, the amount of use of the high-performance water reducing agent can be reduced, the setting time can be shortened, the strength development after steam curing is excellent, and development of high strength concrete having a shrinkage reducing effect has been awaited.

特開2005−067945号公報Patent Document 1: Japanese Patent Application Laid-Open No. 2005-067945 特許04620554号公報Patent No. 04620554 特開平05−330866号公報Japanese Patent Application Laid-Open No. 05-330866 特許04558569号公報Patent No. 04558569 特開2006−117439号公報JP, 2006-117439, A 特開平06−263506号公報Japanese Patent Application Publication No. 06-263506

本発明者は、前記課題を解決すべく種々検討を行った結果、セメントを分級して微粉を取り除き、5μm以下の粒子の含有量を2質量%以下にしたセメントと、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上と、高性能減水剤とを用いることにより、塩化物含有量とアルカリ含有量が少なく、高性能減水剤の使用量を低減でき、凝結時間が短縮され、蒸気養生後の強度発現性と収縮低減効果に優れる高強度コンクリートが得られるとの知見を得て、本発明を完成するに至った。   As a result of various investigations to solve the above problems, the inventor classified cement, removed fine powder, and made the content of particles of 5 μm or less 2% by mass or less, blast furnace slag fine powder, fly By using one or more selected from ash and silica fume and a high-performance water reducing agent, the chloride content and the alkali content are small, the amount of use of the high-performance water reducing agent can be reduced, and the setting time is shortened. As a result, it has been found that high strength concrete excellent in strength expression and shrinkage reducing effect after steam curing can be obtained, and the present invention has been completed.

即ち、本発明は、
(1)5μm以下の粒子の含有量が2質量%以下で、メジアン径が15μm以上である高強度セメントと、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上と、高性能減水剤とを含有する高強度コンクリートであり、
(2)高強度セメントが、5μm〜40μmの粒子を75質量%以上含有することを特徴とする高強度コンクリートであり、
(3)高強度セメント100質量部に対して、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上を5〜20質量部、高性能減水剤を0.5〜5.0質量部含有することを特徴とする高強度コンクリートであり、
(4)高性能減水剤を高強度セメントにプレ吸着させることを特徴とする高強度コンクリートの製造方法である。
That is, the present invention
(1) A high strength cement having a content of particles of 5 μm or less of 2% by mass or less and a median diameter of 15 μm or more, and at least one selected from blast furnace slag fine powder, fly ash, and silica fume High-strength concrete containing a performance reducing agent,
(2) The high-strength cement is a high-strength concrete characterized by containing 75% by mass or more of particles of 5 μm to 40 μm,
(3) 5 to 20 parts by mass of one or more selected from blast furnace slag fine powder, fly ash, silica fume and 0.5 to 5.0 parts of a high performance water reducing agent with respect to 100 parts by mass of high strength cement High-strength concrete characterized by containing parts by mass,
(4) A method for producing high strength concrete, which comprises preadsorbing a high-performance water reducing agent on high strength cement.

本発明の高強度コンクリートは、塩化物含有量とアルカリ含有量が少なく、高性能減水剤の使用量を低減でき、凝結時間が短縮され、蒸気養生後の強度発現性と収縮低減効果に優れる。又、高性能減水剤を高強度セメントにプレ吸着させることにより、練り混ぜ時間を短縮できるという効果を奏する。   The high strength concrete of the present invention has a small content of chloride and alkali, can reduce the amount of use of a high-performance water reducing agent, shortens the setting time, and is excellent in strength development and shrinkage reduction effect after steam curing. Further, by pre-adsorbing the high-performance water reducing agent on the high-strength cement, it is possible to reduce the mixing time.

以下、本発明を詳細に説明する。
本発明で使用する部や%は特に規定のない限り質量基準である。
Hereinafter, the present invention will be described in detail.
Parts and% used in the present invention are by mass unless otherwise specified.

本発明のセメントとして、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらセメントに、高炉スラグ、フライアッシュ又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)を使用できる。   As cements of the present invention, various Portland cements such as normal, early strong, ultra early strong, low heat and moderate heat, and various mixed cements obtained by mixing blast furnace slag, fly ash or silica with these cements, limestone powder or blast furnace slag It is possible to use filler cement in which cold slag fine powder and the like are mixed, and environment-friendly cement (eco cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash as raw materials.

本発明の高強度セメントは、5μmの粒子の含有量が2質量%以下であり、メジアン径が15μm以上である。5μm以下の粒子の含有量が2質量%を超えると、塩化物含有量やアルカリ含有量が少なくならず、又、高性能減水剤の使用量も少なくならないほか、所定のコンシステンシーが発現するまでの練り混ぜ時間も短くならない。さらに、5μm〜40μmの粒子の含有量が、75質量%以上であることが好ましい。5μm〜40μmの粒子の含有量が75質量%未満では、強度発現性が悪くなり、ブリーディングが発生しやすくなる。   The high-strength cement of the present invention has a content of 5 μm particles of 2% by mass or less, and a median diameter of 15 μm or more. If the content of particles of 5 μm or less exceeds 2% by mass, the content of chloride and alkali does not decrease, and the amount of use of the high-performance water reducing agent does not decrease, and a predetermined consistency is developed The mixing time of the ingredients will not be short. Furthermore, it is preferable that content of the particle | grains of 5 micrometers-40 micrometers is 75 mass% or more. When the content of particles of 5 μm to 40 μm is less than 75% by mass, the strength developing property is deteriorated, and bleeding easily occurs.

5μmの粒子の含有量が2質量%以下であり、メジアン径が15μm以上である高強度セメントは、通常、CS固溶体が50〜70質量部、CS固溶体が10〜30質量部、CAが5〜20質量部、CAFが2〜20質量部、セッコウが0.1〜5質量部の範囲にある。 The high-strength cement having a content of 5 μm particles of 2% by mass or less and a median diameter of 15 μm or more is usually 50 to 70 parts by mass of C 3 S solid solution, 10 to 30 parts by mass of C 2 S solid solution, 5 to 20 parts by mass of C 3 A, 2 to 20 parts by mass of C 4 AF, and 0.1 to 5 parts by mass of gypsum.

5μmの粒子の含有量が2質量%以下であり、メジアン径が15μm以上である高強度セメントのブレーン比表面積は、1,500cm/g〜3,500cm/gの範囲にある。 5μm is not less than 2 wt% content of particles, Blaine specific surface area of the high strength cement median diameter is 15μm or more is in the range of 1,500cm 2 / g~3,500cm 2 / g.

本発明の高強度セメントは、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上を含有するが、高炉スラグについては、セメントクリンカやセッコウと同時に粉砕処理しても良いし、別々に粉砕した後、混合しても差し支えないが、後者が好ましい。セメントクリンカやセッコウと同時に粉砕処理した場合には、分級により微粉を取り除くため、高炉スラグの微粉も取り除かれる。このため、強度発現性を向上させる効果が損なわれる場合がある。   The high-strength cement of the present invention contains one or more selected from ground granulated blast furnace slag, fly ash, and silica fume, but blast furnace slag may be ground simultaneously with cement clinker and gypsum. It may be mixed after being separately ground, but the latter is preferred. In the case of grinding simultaneously with cement clinker and gypsum, fine powder of blast furnace slag is also removed in order to remove fine powder by classification. For this reason, the effect of improving the strength expression may be impaired.

本発明の高炉スラグ微粉末は、JISA6206「コンクリート用高炉スラグ微粉末」に規定された品質を満足することが好ましく、密度2.91g/cm以上,比表面積10000cm/g以上であることがより好ましい。 The ground granulated blast furnace slag of the present invention preferably satisfies the quality defined in JIS A 6206 "Ground granulated blast furnace slag for concrete" and has a density of 2.91 g / cm 3 or more and a specific surface area of 10000 cm 2 / g or more. More preferable.

本発明のフライアッシュは、JISA6201「コンクリート用フライアッシュ」に規定された品質を満足することが好ましく、I種がより好ましい。   The fly ash of the present invention preferably satisfies the quality defined in JIS A6201 "Fly ash for concrete", and class I is more preferred.

本発明のシリカフュームは、JISA6207「コンクリート用シリカフューム」に規定された品質を満足するものが好ましい。   The silica fume of the present invention preferably satisfies the quality defined in JIS A6207 "Silica fume for concrete".

本発明で用いる高性能減水剤は、界面活性効果を有し、静電気力や分子鎖の立体障害効果などによってセメント粒子を分散させる効果を有するものである。JISA6204「コンクリート用化学混和剤」の高性能減水剤、減水剤、AE減水剤、高性能AE減水剤、流動化剤に規定されるものが使用可能であり、なかでも高性能減水剤及び高性能AE減水剤の使用がより好ましい。   The high performance water reducing agent used in the present invention has a surfactant effect, and has an effect of dispersing cement particles by electrostatic force or a steric hindrance effect of molecular chains. Any of those specified in JISA 6204 “Chemical admixtures for concrete” specified for high performance water reducing agent, water reducing agent, AE water reducing agent, high performance AE water reducing agent, fluidizing agent can be used, among them high performance water reducing agent and high performance The use of an AE water reducing agent is more preferred.

本発明では、高性能減水剤を高強度セメントにプレ吸着させることが好ましい。プレ吸着とは、コンクリートを混和する前に、あらかじめ高強度セメントに対して高性能減水剤水溶液を添加して混合し、セメント表面に均一に吸着させることである。高性能減水剤水溶液の濃度は、本発明の目的を阻害しない範囲で特に限定されないが、通常、10%以上60%以下とすることが好ましい。   In the present invention, it is preferable to pre-adsorb the high performance water reducing agent on the high strength cement. Pre-adsorption is to add a high-performance water reducing agent aqueous solution to high strength cement in advance and mix it before mixing concrete, and make it uniformly adsorbed on the cement surface. The concentration of the high-performance water-reducing agent aqueous solution is not particularly limited as long as the object of the present invention is not impaired, but in general, 10% or more and 60% or less is preferable.

以下、実施例により本発明を詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.

(実験例1)
ポルトランドセメントを分級し、セメントA〜Hを調製した。このセメントを用いて、単位セメント量550kg/m、単位水量125kg/m、s/a=48%、空気量2%、スランプフロー650±50cmの高強度コンクリートを調製した。
プレ吸着の有無、高性能減水剤の使用量、練り混ぜ時間、凝結時間、塩化物総量及びアルカリ総量(RO)、蒸気養生後の圧縮強度を、表1−1〜表1−3に示す。
高炉スラグ微粉末、フライアッシュ、シリカフュームなどの混合材は、セメント100部に対して10部添加した。高性能減水剤は、セメント100部に対する添加量(部)である。
蒸気養生条件は、前置き4時間、昇温15℃/hr、最高温度75℃、最高温度保持時間5時間、降温は自然冷却とした。
プレ吸着は、セメントに対して高性能減水剤を所定量添加し、スパイラルピンミキサ(太平洋機工株式会社製)を用いて混練した。
(Experimental example 1)
Portland cement was classified to prepare cements A to H. Using this cement, high-strength concrete with a unit cement amount of 550 kg / m 3 , a unit water amount of 125 kg / m 3 , s / a = 48%, an air amount of 2% and a slump flow of 650 ± 50 cm was prepared.
The presence or absence of pre-adsorption, usage of high-performance water-reducing agent, mixing time, setting time, total amount of chloride and total amount of alkali (R 2 O), compressive strength after steam curing are shown in Tables 1-1 to 1-3. Show.
A mixture of blast furnace slag fine powder, fly ash, silica fume and the like was added in 10 parts to 100 parts of cement. The high-performance water reducing agent is an addition amount (part) to 100 parts of cement.
As steam curing conditions, the temperature was raised 15 ° C./hr, the maximum temperature was 75 ° C., the maximum temperature holding time was 5 hours, and the temperature was naturally cooled for 4 hours in advance.
In pre-adsorption, a predetermined amount of a high-performance water reducing agent was added to cement, and kneading was performed using a spiral pin mixer (manufactured by Pacific Kiko Co., Ltd.).

(使用材料)
セメントA:普通ポルトランドセメント(デンカ株式会社製)、ブレーン比表面積3,200cm2/g。5μm以下の粒子含有量6%、メジアン径11μm、5〜40μmの粒子含有量72%。
セメントB:セメントAを分級処理したもの。ブレーン比表面積2,400cm2/g。5μm以下の粒子含有量2%、メジアン径15μm、5〜40μmの粒子含有量75%。混合材として高炉スラグ微粉末を使用。
セメントC:セメントAを分級処理したもの。ブレーン比表面積1,700cm2/g。5μm以下の粒子含有量0.3%、メジアン径19μm、5〜40μmの粒子含有量82%。混合材としてシリカフュームを使用。
セメントD:セメントAと同じセメントクリンカを用い、同じセッコウ添加量で調製した普通ポルトランドセメント。分級処理なし。ブレーン比表面積1,700cm2/g。5μm以下の粒子含有量3%、メジアン径14μm、5〜40μmの粒子含有量70%。
セメントE:早強ポルトランドセメント(デンカ株式会社製)、ブレーン比表面積4,500cm2/g。5μm以下の粒子含有量8%、メジアン径12μm、5〜40μmの粒子含有量76%
セメントF:セメントEを分級処理したもの。ブレーン比表面積2,300cm2/g。5μm以下の粒子含有量0.5%、メジアン径20μm、5〜40μmの粒子含有量85%。混合材として高炉スラグ微粉末を使用。
セメントG:高炉セメントB種(デンカ株式会社製)、ブレーン比表面積3,800cm2/g。5μm以下の粒子含有量7%、メジアン径13μm、5〜40μmの粒子含有量78%
セメントH:セメントGを分級処理したもの。ブレーン比表面積2,300cm2/g。5μm以下の粒子含有量0.5%、メジアン径22μm、5〜40μmの粒子含有量84%。混合材として高炉スラグ微粉末を使用。
(Material used)
Cement A: Ordinary Portland cement (made by Denka Co., Ltd.), Blaine specific surface area 3,200 cm 2 / g. 5 μm or less particle content 6%, median diameter 11 μm, 5 to 40 μm particle content 72%.
Cement B: cement A classified. Brain specific surface area 2,400 cm 2 / g. Particle content 2% or less of 5 μm or less, median diameter 15 μm, particle content of 5 to 40 μm 75%. We use ground granulated blast furnace slag as a mixed material.
Cement C: A classification treatment of Cement A. Brain specific surface area 1,700 cm 2 / g. Particle content 0.3% or less of 5 μm or less, median diameter 19 μm, particle content 82% of 5 to 40 μm. Use silica fume as a mixing material.
Cement D: A normal portland cement prepared using the same cement clinker as cement A, with the same gypsum additive amount. There is no classification process. Brain specific surface area 1,700 cm 2 / g. Particle content 3% or less of 5 μm or less, median diameter 14 μm, particle content 70% of 5 to 40 μm.
Cement E: early-strength Portland cement (made by Denka Co., Ltd.), Blaine specific surface area of 4,500 cm 2 / g. 5% or less particle content 8%, median diameter 12 μm, 5 to 40 μm particle content 76%
Cement F: cement E classified. Brain specific surface area 2,300 cm 2 / g. Particle content 0.5% or less of 5 μm or less, median diameter 20 μm, particle content of 5 to 40 μm 85%. We use ground granulated blast furnace slag as a mixed material.
Cement G: Blast furnace cement type B (manufactured by Denka Co., Ltd.), Blaine specific surface area: 3,800 cm 2 / g. 5% or less particle content 7%, median diameter 13 μm, 5 to 40 μm particle content 78%
Cement H: cement G classified. Brain specific surface area 2,300 cm 2 / g. Particle content 0.5% or less of 5 μm or less, median diameter 22 μm, particle content 84% of 5 to 40 μm. We use ground granulated blast furnace slag as a mixed material.

高炉スラグ微粉末:市販品、ブレーン比表面積10,600cm2/g
シリカフューム:市販品、ブレーン比表面積15,500cm2/g
高性能減水剤:市販のポリカルボン酸塩系高性能減水剤。GCPケミカルズ社製、商品名「スーパー100pHX」。
粗骨材:砕石、密度2.64。
細骨材:海砂を洗浄したもの。塩化物含有量0.02%。密度2.62。
水:水道水
Blast furnace slag fine powder: Commercial product, Blaine specific surface area 10,600 cm 2 / g
Silica fume: Commercial product, Blaine specific surface area 15, 500 cm 2 / g
High-performance water reducing agent: Commercially available polycarboxylate-based high-performance water reducing agent. GCP Chemicals, Inc., trade name "Super 100 pHX".
Coarse aggregate: crushed stone, density 2.64.
Fine aggregate: washed sea sand. Chloride content 0.02%. Density 2.62.
Water: tap water

(試験方法)
粒度分布測定:レーザー回折装置(Sympatec社製HELOS&RODOS)を用い、試料を乾式分散して粒度分布を測定した。メジアン径は、頻度の累積が50%になる粒子径である。
練り混ぜ時間:練り混ぜを1分ごとに停止し,フロー値が一定になった最短時間を計測した。
凝結時間:JISA1147「コンクリートの凝結時間試験方法」に準拠。
圧縮強度:JISA1108「コンクリートの圧縮強度試験方法」に準拠。
塩化物、アルカリ含有量:JISA5308「レディーミクストコンクリート」に準拠。
(Test method)
Particle size distribution measurement: Using a laser diffractometer (HELOS & RODOS manufactured by Sympatec), the sample was dry-dispersed to measure the particle size distribution. The median diameter is the particle diameter at which the frequency of cumulative frequency reaches 50%.
Mixing time: The mixing was stopped every one minute, and the shortest time when the flow value became constant was measured.
Setting time: According to JIS A1147 "Testing method for setting time of concrete".
Compressive strength: In accordance with JIS A1108 “Test method for compressive strength of concrete”.
Chloride, alkali content: According to JISA5308 "Ready Mixed Concrete".

Figure 2019123650
Figure 2019123650

Figure 2019123650
Figure 2019123650

Figure 2019123650
Figure 2019123650

表1−1〜表1−3より、微粉の少ない高強度セメント(5μm以下の粒子の含有量が2質量%以下、メジアン径が15μm以上)と、高炉スラグ微粉末、フライアッシュ、シリカフュームなどの混合材、及び高性能減水剤を用いた高強度コンクリートは、高性能減水剤の使用量を低減でき、凝結時間も短く、蒸気養生後の強度発現性にも優れることがわかる。加えて、塩化物総量やアルカリ総量を規定値以内に制御することができることがわかる。   From Tables 1-1 to 1-3, high-strength cement with less fine powder (the content of particles of 5 μm or less is 2% by mass or less, median diameter is 15 μm or more), blast furnace slag fine powder, fly ash, silica fume, etc. It can be seen that the high strength concrete using the mixed material and the high performance water reducing agent can reduce the usage amount of the high performance water reducing agent, the setting time is short, and the strength development after steam curing is also excellent. In addition, it can be seen that the total amount of chloride and the total amount of alkali can be controlled within specified values.

(実験例2)
実施例1に記載のコンクリートを、10×10×40cmの型枠に充填した。型枠内部にはテフロン(登録商標)製のシートを敷き、凝結始発の段階で型枠の拘束具を緩め、型枠からの拘束を受けないようにした。結果を表2に示す。
(Experimental example 2)
The concrete described in Example 1 was filled into a 10 × 10 × 40 cm formwork. A sheet made of Teflon (registered trademark) was placed inside the mold, and the restraint of the mold was loosened at the initial setting stage so as not to be restrained from the mold. The results are shown in Table 2.

(試験方法)
収縮ひずみ:コンクリート用埋め込み型ひずみ計を型枠中央に設置し、コンクリートの収縮ひずみを測定した。
(Test method)
Shrinkage strain: An embedded strain gauge for concrete was placed at the center of the formwork, and the shrinkage strain of concrete was measured.

Figure 2019123650
Figure 2019123650

表2より、微粉の少ない高強度セメントと、高炉スラグ微粉末、フライアッシュ、シリカフュームなどの混合材、及び高性能減水剤を用いた高強度コンクリートは、材齢7日及び材齢28日において収縮ひずみが低減しており、収縮低減効果を有することがわかる。   From Table 2, high-strength concrete containing a small amount of high-strength cement and a mixture of ground granulated blast-furnace slag, fly ash, silica fume, etc. and a high-performance water-reducing agent shrinks at 7 days and 28 days The strain is reduced, and it can be seen that it has a contraction reducing effect.

(実験例3)
単位セメント量275kg/m、単位水量165kg/m、s/a46.2%、空気量4.5±1.5%、スランプ8±2.5cmのコンクリートを調製した。調製したコンクリートを用いて、高さ2m×長さ10m×厚さ80cmの模擬壁を造成し、ひび割れの発生状況を観察した。結果を表3に示す。
(Experimental example 3)
A concrete with a unit cement amount of 275 kg / m 3 , a unit water amount of 165 kg / m 3 , a s / a 46.2%, an air amount of 4.5 ± 1.5%, and a slump of 8 ± 2.5 cm was prepared. Using the prepared concrete, a 2 m high × 10 m long × 80 cm thick simulated wall was created, and the occurrence of cracks was observed. The results are shown in Table 3.

(試験方法)
温度ひび割れ抵抗性:打設から2週間後にひび割れの発生状況を観察した。ひび割れ幅0.2mm以上のひび割れが4本以上発生した場合は×、ひび割れ幅0.2mm未満のひび割れが4本未満2本以上発生した場合は△、ひび割れが認められない場合は○とした。
(Test method)
Thermal crack resistance: Two weeks after placing, the occurrence of cracking was observed. When four or more cracks with a crack width of 0.2 mm or more occurred, it was x, when two or more cracks with a crack width of less than 0.2 mm occurred, Δ, and when no cracks were observed, it was ○.

Figure 2019123650
Figure 2019123650

表3より、微粉の少ない高強度セメントと、高炉スラグ微粉末、フライアッシュ、シリカフュームなどの混合材、及び高性能減水剤を用いた高強度コンクリートは、ひび割れ抑制効果のあることがわかる。   From Table 3, it can be seen that high-strength concrete using a high-strength cement with little fine powder, a mixture of ground granulated blast-furnace slag, fly ash, silica fume and the like, and a high-performance water reducing agent has a crack suppressing effect.

本発明の高強度セメントを使用することにより、塩化物含有量やアルカリ含有量が少なく、高性能減水剤の使用量を減じることができ、強度発現性、収縮低減効果に優れた高強度コンクリートが得られる。
By using the high strength cement of the present invention, it is possible to reduce the amount of chloride content and alkali content, reduce the amount of use of the high-performance water reducing agent, and obtain high strength concrete excellent in strength development and shrinkage reduction effect. can get.

Claims (4)

5μm以下の粒子の含有量が2質量%以下で、メジアン径が15μm以上である高強度セメントと、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上と、高性能減水剤とを含有する高強度コンクリート。   High-performance cement with high-strength cement with a content of particles of 5 μm or less and a median diameter of 15 μm or more at a content of particles of 2 μm or less and at least one selected from blast furnace slag fine powder, fly ash, and silica fume High strength concrete containing and. 高強度セメントが、5μm〜40μmの粒子を75質量%以上含有することを特徴とする請求項1に記載の高強度コンクリート。   The high strength concrete according to claim 1, wherein the high strength cement contains particles of 5 μm to 40 μm at 75% by mass or more. 高強度セメント100質量部に対して、高炉スラグ微粉末、フライアッシュ、シリカフュームから選ばれる1種又は2種以上を5〜20質量部、高性能減水剤を0.5〜5.0質量部含有することを特徴とする請求項1又は2に記載の高強度コンクリート。   5 to 20 parts by mass of one or more selected from blast furnace slag fine powder, fly ash, silica fume and 0.5 to 5.0 parts by mass of a high performance water reducing agent with respect to 100 parts by mass of high strength cement The high strength concrete according to claim 1 or 2, characterized in that: 高性能減水剤を高強度セメントにプレ吸着させることを特徴とする請求項1〜3のいずれか一項に記載の高強度コンクリートの製造方法。   The method for producing high strength concrete according to any one of claims 1 to 3, wherein the high performance water reducing agent is preadsorbed to the high strength cement.
JP2018006048A 2018-01-18 2018-01-18 High strength cement and high strength concrete Pending JP2019123650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006048A JP2019123650A (en) 2018-01-18 2018-01-18 High strength cement and high strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006048A JP2019123650A (en) 2018-01-18 2018-01-18 High strength cement and high strength concrete

Publications (1)

Publication Number Publication Date
JP2019123650A true JP2019123650A (en) 2019-07-25

Family

ID=67397991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006048A Pending JP2019123650A (en) 2018-01-18 2018-01-18 High strength cement and high strength concrete

Country Status (1)

Country Link
JP (1) JP2019123650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041011A (en) * 2022-12-29 2023-05-02 河北高速集团工程咨询有限公司 Anti-freezing concrete containing micro-nano SAP holes and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428254A (en) * 1987-07-22 1989-01-30 Sumitomo Cement Co Portland cement having adjusted particle size
JPH035347A (en) * 1989-05-31 1991-01-11 Sumitomo Cement Co Ltd Cement composition having regulated grain size
JPH05330866A (en) * 1992-05-26 1993-12-14 Nippon Concrete Ind Co Ltd Silica-fume concrete
JPH0732351A (en) * 1993-07-16 1995-02-03 Mitsubishi Materials Corp Preparation of concrete of high strength
JP2005067945A (en) * 2003-08-22 2005-03-17 Ps Mitsubishi Construction Co Ltd Super-high strength high toughness mortar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428254A (en) * 1987-07-22 1989-01-30 Sumitomo Cement Co Portland cement having adjusted particle size
JPH035347A (en) * 1989-05-31 1991-01-11 Sumitomo Cement Co Ltd Cement composition having regulated grain size
JPH05330866A (en) * 1992-05-26 1993-12-14 Nippon Concrete Ind Co Ltd Silica-fume concrete
JPH0732351A (en) * 1993-07-16 1995-02-03 Mitsubishi Materials Corp Preparation of concrete of high strength
JP2005067945A (en) * 2003-08-22 2005-03-17 Ps Mitsubishi Construction Co Ltd Super-high strength high toughness mortar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041011A (en) * 2022-12-29 2023-05-02 河北高速集团工程咨询有限公司 Anti-freezing concrete containing micro-nano SAP holes and preparation method thereof
CN116041011B (en) * 2022-12-29 2024-03-29 河北高速集团工程咨询有限公司 Anti-freezing concrete containing micro-nano SAP holes and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP5732690B2 (en) Hydraulic composition and concrete using the hydraulic composition
JP4384902B2 (en) Manufacturing method of mortar and concrete
TW201904910A (en) Concrete composition and method of manufacturing same
JP2018100204A (en) Method of producing cement composition
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
JP2010150073A (en) Cement mortar
JP2011136863A (en) Superhigh strength grout composition
JP4462854B2 (en) Method for reducing self-shrinkage of ultra high strength concrete
JP2011157242A (en) Method for producing cement hardened body
JP6568291B1 (en) Cement admixture, expansion material, and cement composition
Tripathi et al. Optimum dose of binary admixtures in self compacting concrete
JP2019123650A (en) High strength cement and high strength concrete
JP5160762B2 (en) Cement mortar composition for grout
JP2011068546A (en) High strength cement composition and high strength cementitious hardened body
JP5165436B2 (en) Concrete composition and hardened concrete
JP2019131416A (en) Cement composition and method for producing the same
JP2014019588A (en) Paste composition and mortar composition
JP5473811B2 (en) Cement additive and cement composition
JP2006193393A (en) High-flow concrete
JP2005272222A (en) Concrete
JP5160763B2 (en) Cement mortar composition
JP6163317B2 (en) Concrete containing blast furnace slag
KR20190046456A (en) Method for constructing mass concrete of architecture having improved chracteristics using two types of concrete composition mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130