JP2011136863A - Superhigh strength grout composition - Google Patents

Superhigh strength grout composition Download PDF

Info

Publication number
JP2011136863A
JP2011136863A JP2009297912A JP2009297912A JP2011136863A JP 2011136863 A JP2011136863 A JP 2011136863A JP 2009297912 A JP2009297912 A JP 2009297912A JP 2009297912 A JP2009297912 A JP 2009297912A JP 2011136863 A JP2011136863 A JP 2011136863A
Authority
JP
Japan
Prior art keywords
strength
ultra
water
mass
grout composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009297912A
Other languages
Japanese (ja)
Inventor
Masanori Shibagaki
昌範 柴垣
Wataru Yasui
渉 保井
Koji Fukushima
浩司 副島
Original Assignee
Taiheiyo Materials Corp
太平洋マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp, 太平洋マテリアル株式会社 filed Critical Taiheiyo Materials Corp
Priority to JP2009297912A priority Critical patent/JP2011136863A/en
Publication of JP2011136863A publication Critical patent/JP2011136863A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superhigh strength grout having an excellent fluidity, a superhigh strength even in no steam curing, and a small self-shrinkage. <P>SOLUTION: The superhigh strength grout composition includes a cement used in a water-binder ratio of 26 to 35%, 2 to 20 mass% of an amorphous aluminosilicate mineral powder, and 3 to 18 mass% of gypsum. The composition suitably contains further one or two or more selected from a thickener, a water reducing agent, an aggregate and a foaming agent. The composition suitably contains these and the cement in specified contents. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超高強度グラウト組成物に関する。詳しくは、流動性に優れ、材齢28日における圧縮強度が120N/mmを超えるにも拘らず自己収縮が小さい超高強度グラウト組成物に関する。 The present invention relates to an ultra high strength grout composition. Specifically, the present invention relates to an ultra-high strength grout composition having excellent fluidity and small self-shrinkage even though the compressive strength at the age of 28 days exceeds 120 N / mm 2 .

近年、建築技術の向上や土地の有効活用の観点より、建築構造物の超高層化あるいは大規模化の傾向が高まっている。このような建築構造物の超高層化あるいは大規模化に対応するために、構造物自体の高強度化が求められている。そのため、主構造および各種部材の接合部に使用されるコンクリートやグラウトモルタルの強度を超高強度とすることが必須となっている。   In recent years, from the viewpoint of improvement of building technology and effective use of land, there is an increasing tendency for building structures to become super high-rise or large-scale. In order to cope with such a super-high-rise or large-scale building structure, the structure itself is required to have high strength. Therefore, it is indispensable that the strength of the concrete and grout mortar used for the joint portion of the main structure and various members is made to be extremely high.

一般的にモルタルやコンクリートを超高強度化するために、シリカフューム等の活性シリカを添加する方法が知られている。シリカフューム等の活性シリカを添加すると、そのボールベアリング効果による水結合材比の低減、マイクロフィラー効果による充填性の向上、並びにポゾラン反応による硬化体組織の緻密化等により、添加したモルタルやコンクリートの硬化体が高強度化する。なお、本発明における結合材とは、水硬性セメントや高炉スラグ粉末等の水硬性物質、並びに活性シリカ等のポゾランをいい、水結合材比とは、単位水量を単位結合材量で除した値(水の質量を結合材の質量の総和で除した値)をいう。この種の技術として、高性能減水剤とアルカリ金属の炭酸塩等を併用し、石膏類及び/または炭酸カルシウム、活性シリカを配合した高強度を発現できるセメント混和材が知られている(例えば特許文献1参照。)。しかしながら、この種のコンクリートやモルタルは、セメント量が多く、水セメント比が小さいので、硬化後の自己収縮が大きくなるという課題があった。また、これらの材齢28日における圧縮強度は、70〜100N/mmであり、本発明でいう超高強度(圧縮強度120N/mm超)には至らない。 Generally, a method of adding active silica such as silica fume is known in order to increase the strength of mortar and concrete. Addition of active silica such as silica fume hardens the added mortar and concrete by reducing the water binder ratio due to the ball bearing effect, improving the filling property due to the micro filler effect, and densifying the hardened body structure due to the pozzolanic reaction. The body becomes stronger. The binder in the present invention refers to hydraulic substances such as hydraulic cement and blast furnace slag powder, and pozzolanes such as activated silica, and the water binder ratio is a value obtained by dividing the unit water amount by the unit binder amount. (Value obtained by dividing the mass of water by the total mass of the binder). As this type of technology, a cement admixture that is capable of expressing high strength by combining gypsum and / or calcium carbonate and active silica using a high-performance water reducing agent and an alkali metal carbonate is known (for example, patents). Reference 1). However, since this type of concrete and mortar have a large amount of cement and a small water-cement ratio, there is a problem that self-shrinkage after curing increases. The compressive strength of these wood age 28 days is 70~100N / mm 2, it does not lead to ultra-high strength (compressive strength 120 N / mm 2 greater) in the present invention.

また、無水石膏及びポゾラン性微粉末を含有する高強度モルタル・コンクリート用混和材が知られている(例えば、特許文献2参照。)。しかしながら、この高強度モルタル・コンクリート用混和材は、混和したモルタルやコンクリートが超高強度となるために、当該モルタル等の水結合材比を25%以下と小さくするとともに、蒸気養生を必要としていた。   Further, a high-strength mortar / concrete admixture containing anhydrous gypsum and pozzolanic fine powder is known (for example, see Patent Document 2). However, this high-strength mortar / concrete admixture required a steam curing while reducing the water binder ratio of the mortar and the like to 25% or less because the mixed mortar and concrete have ultrahigh strength. .

また、か焼温度、シリカ/アルミナの組成比及び粒度等を特定することで、モルタルやコンクリートを超高強度にできるセメント混和材が知られている(例えば、特許文献3参照。)。しかし、このセメント混和材は、混和するモルタルやコンクリート等の水結合材比が25%以下であるために、硬化後の当該モルタル等の自己収縮が大きいことが懸念される。   Further, a cement admixture that can make mortar and concrete ultra-high strength by specifying the calcination temperature, the composition ratio of silica / alumina, the particle size, and the like is known (for example, see Patent Document 3). However, since this cement admixture has a water binder ratio of 25% or less such as mortar or concrete to be mixed, there is a concern that self-shrinkage of the mortar after curing is large.

特開平11−209152号公報JP-A-11-209152 特開2006−248828号公報JP 2006-248828 A 特公平07−033271号公報Japanese Patent Publication No. 07-033271

本発明は前記問題の解決、即ち、本発明は、流動性に優れ、蒸気養生を行わなくとも超高強度であり且つ自己収縮が小さい超高強度グラウト組成物を提供することを目的とする。また、本発明は、流動性に優れ、蒸気養生を行わなくとも超高強度であり且つ自己収縮が小さい超高強度グラウトを提供することを目的とする。   An object of the present invention is to solve the above-mentioned problem, that is, to provide an ultra-high strength grout composition which is excellent in fluidity, has an ultra-high strength without performing steam curing, and has a small self-shrinkage. Another object of the present invention is to provide an ultra-high-strength grout that is excellent in fluidity, has an ultra-high strength without performing steam curing, and has a small self-shrinkage.

本発明者は、前記課題解決のため鋭意検討した結果、特定の水結合材比で使用するセメント、非晶質アルミノ珪酸鉱物粉末及び石膏類を特定の割合で含有することにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)〜(4)で表す超高強度グラウト組成物、及び(5)で表す超高強度グラウトである。
(1)セメント、非晶質アルミノ珪酸鉱物粉末2〜20質量%、石膏類3〜18質量%を含有し、水結合材比26〜35%で使用することを特徴とする超高強度グラウト組成物。
(2)更に、増粘剤、減水剤、骨材、発泡剤から選ばれる1種又は2種以上を含有してなる上記(1)の超高強度グラウト組成物。
(3)セメントを25〜60質量%、増粘剤を0.01〜0.10質量%、減水剤を0.1〜0.8質量%及び骨材を35〜60質量%含有する、上記(1)又は(2)の超高強度グラウト組成物。
(4)発泡剤を0.0002〜0.003質量%含有する上記(1)〜(3)の超高強度グラウト組成物。
(5)上記(1)〜(4)の超高強度グラウト組成物と、水結合材比26〜35%となる量の水とを練りまぜ製造した超高強度グラウト。
As a result of diligent study to solve the above problems, the present inventor has solved the above problems by containing cement, amorphous aluminosilicate mineral powder and gypsum used at a specific water binder ratio in a specific ratio. The present invention has been completed by finding out what can be done. That is, the present invention is an ultrahigh strength grout composition represented by the following (1) to (4) and an ultrahigh strength grout represented by (5).
(1) Ultra-high strength grout composition characterized by containing cement, amorphous aluminosilicate mineral powder 2-20% by mass, gypsum 3-18% by mass, and water binder ratio 26-35% object.
(2) The ultra-high-strength grout composition according to (1), further comprising one or more selected from a thickener, a water reducing agent, an aggregate, and a foaming agent.
(3) 25-60 mass% of cement, 0.01-0.10 mass% of thickener, 0.1-0.8 mass% of water reducing agent and 35-60 mass% of aggregate, (1) or (2) ultra high strength grout composition.
(4) The ultra-high-strength grout composition according to the above (1) to (3), containing 0.0002 to 0.003% by mass of a foaming agent.
(5) An ultra-high-strength grout produced by kneading the ultra-high-strength grout composition according to the above (1) to (4) and water in an amount of 26 to 35%.

本発明によれば、流動性に優れ、蒸気養生を行わなくとも超高強度であり且つ自己収縮が小さい超高強度グラウト及びそのための超高強度グラウト組成物、即ち自己収縮が小さい超高強度グラウト及びそのための超高強度グラウト組成物が得られる。また、本発明の超高強度グラウト及びそのための超高強度グラウト組成物は、硬化時の自己収縮が起こり難く且つ超高強度が得られるので、超高層建築物の各部材の接合部分や超高強度の部材内部の充填等に、好適に用いることができる。   According to the present invention, an ultra-high-strength grout having excellent fluidity, ultra-high strength and low self-shrinkage without performing steam curing, and an ultra-high-strength grout composition therefor, that is, an ultra-high-strength grout with low self-shrinkage. And an ultra-high strength grout composition therefor. In addition, the ultra-high strength grout of the present invention and the ultra-high strength grout composition for the same are unlikely to undergo self-shrinkage at the time of curing and an ultra-high strength can be obtained. It can be suitably used for filling the inside of a strong member.

本発明の超高強度グラウト組成物に用いるセメントは、水硬性セメントであればよく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「ジェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。ワービリティを損ない難く可使時間が長く確保し易いことから、各種ポルトランドセメント、エコセメント及び各種混合セメントから選ばれる一種又は二種以上を使用することが好ましい。本発明の超高強度グラウト組成物においてセメントの含有率は、25〜60質量%とする。25質量%未満では材料分離を抑えながらグラウトとしての流動性を確保し難い。60質量%を超えると、自己収縮を抑えながらグラウトとしての流動性を確保し難い。材料分離し難く、自己収縮が小さく且つグラウトとしての良好な流動性が得られることから、セメントの含有率を30〜55質量%とすることが好ましく、40〜50質量%とすることが更に好ましい。   The cement used in the ultra-high-strength grout composition of the present invention may be a hydraulic cement. For example, ordinary, early strength, ultra-early strength, low heat and moderate heat various Portland cements, eco cements, and these Portland cements or Eco-cement mixed with fly ash, blast furnace slag, silica fume or limestone fine powder, etc. And ultra-high speed cement, alumina cement, and the like, and one or more of these can be used. It is preferable to use one or two or more selected from various Portland cements, eco-cements, and various mixed cements because it is difficult to impair the workability and it is easy to ensure a long pot life. In the ultrahigh strength grout composition of the present invention, the cement content is set to 25 to 60% by mass. If it is less than 25% by mass, it is difficult to ensure fluidity as a grout while suppressing material separation. If it exceeds 60% by mass, it is difficult to ensure fluidity as a grout while suppressing self-shrinkage. It is difficult to separate the materials, the self-shrinkage is small, and good fluidity as a grout is obtained. Therefore, the cement content is preferably 30 to 55% by mass, more preferably 40 to 50% by mass. .

本発明の超高強度グラウト組成物に用いる非晶質アルミノ珪酸鉱物粉末は、SiO及びAlを主要化学成分として含有する鉱物のうち非晶質のものである。ここでいう非晶質とは、粉末X線回折装置による測定で、ピークが見られなくなることをいい、本発明に用いる非晶質アルミノ珪酸鉱物粉末は非晶質の割合が70質量%以上であればよく、好ましくは90質量%以上、より好ましくは100%即ち粉末X線回折装置による測定でピークが全く見られないものが最も好ましい。非晶質の割合が低いアルミノ珪酸鉱物粉末、即ち結晶質の割合が高いアルミノ珪酸鉱物粉末は、非晶質の割合が高いアルミノ珪酸鉱物粉末に比べて、同じ混和量における強度発現性が悪く、同じ強度を得るためにはより多くのアルミノ珪酸鉱物粉末を必要とする。本発明に用いる非晶質アルミノ珪酸鉱物粉末には、SiO及びAl以外に、TiO、Fe、CaO、MgO、KO、NaO等の微量成分が含まれていても良い。微量成分の合計が10質量%以下とすることが、グラウトの圧縮強度を高めることから好ましく、SiO及びAl以外の各微量成分が2.5%以下とすることがより好ましい。本発明に用いる非晶質アルミノ珪酸鉱物粉末は、SiO及びAlを主要化学成分として含有する結晶質のアルミノ珪酸鉱物を加熱し非晶質化した非晶質アルミノ珪酸鉱物を粉末にすることによって得られる。加熱による非晶質化の前に粉末にしても良い。ここで用いる結晶質のアルミノ珪酸鉱物は、鉱物中に結晶水や水酸基が含まれていても良い。本発明に用いる非晶質アルミノ珪酸鉱物粉末としては、カオリナイト、ハロサイト、ディッカイト等のカオリン鉱物を加熱し非晶質化した非晶質アルミノ珪酸鉱物の粉末が、化学成分が比較的安定したものを入手し易く、混和したグラウトの物性が比較的安定することから好ましい。アルミノ珪酸鉱物の非晶質化のための加熱としては、外熱キルン、内熱キルン、電気炉等による焼成、及び溶融炉を用いた溶融等が挙げられる。 The amorphous aluminosilicate mineral powder used for the ultra-high strength grout composition of the present invention is an amorphous one among the minerals containing SiO 2 and Al 2 O 3 as main chemical components. The term “amorphous” as used herein means that no peak is observed in the measurement by a powder X-ray diffractometer. The amorphous aluminosilicate mineral powder used in the present invention has an amorphous ratio of 70% by mass or more. What is necessary is just 90 mass% or more, More preferably, it is 100%, More preferably, the thing by which a peak is not seen at all by the measurement by a powder X-ray diffractometer is most preferable. Aluminosilicate mineral powder with a low proportion of amorphous, that is, aluminosilicate mineral powder with a high proportion of crystalline, has poor strength development at the same mixing amount compared to aluminosilicate mineral powder with a high proportion of amorphous, More aluminosilicate mineral powder is required to obtain the same strength. In addition to SiO 2 and Al 2 O 3 , the amorphous aluminosilicate mineral powder used in the present invention contains trace components such as TiO 2 , Fe 2 O 3 , CaO, MgO, K 2 O, and Na 2 O. May be. The total amount of the minor components is preferably 10% by mass or less from the viewpoint of increasing the compressive strength of the grout, and each minor component other than SiO 2 and Al 2 O 3 is more preferably 2.5% or less. The amorphous aluminosilicate mineral powder used in the present invention is obtained by heating a crystalline aluminosilicate mineral containing SiO 2 and Al 2 O 3 as main chemical components into an amorphous state. It is obtained by doing. It may be made into a powder before amorphization by heating. The crystalline aluminosilicate mineral used here may contain crystal water or a hydroxyl group in the mineral. As the amorphous aluminosilicate mineral powder used in the present invention, the amorphous aluminosilicate mineral powder obtained by heating kaolin mineral such as kaolinite, halosite, dickite and the like to be amorphous has a relatively stable chemical component. It is preferable because it is easy to obtain and the physical properties of the mixed grout are relatively stable. Examples of the heating for making the aluminosilicate mineral amorphous include firing with an external heat kiln, internal heat kiln, electric furnace, etc., melting with a melting furnace, and the like.

本発明の超高強度グラウト組成物に用いる非晶質アルミノ珪酸鉱物粉末の粉末度は、JIS R 5201−1997に規定される比表面積試験による測定したブレーン比表面積の値が、15000〜45000cm/gの範囲のものが好ましい。15000cm/g未満では、超高強度とするためにより多くの非晶質アルミノ珪酸鉱物粉末を混和する必要があり、45000cm/g以上では混和したグラウトの流動性を得るためにより多くの減水剤が必要となる。より好ましい非晶質アルミノ珪酸鉱物粉末の粉末度は、ブレーン比表面積で20000〜40000cm/gの範囲である。 The fineness of the amorphous aluminosilicate mineral powder used for the ultra-high strength grout composition of the present invention is such that the value of the Blaine specific surface area measured by the specific surface area test specified in JIS R 5201-1997 is 15000-45000 cm 2 / Those in the g range are preferred. If it is less than 15000 cm 2 / g, it is necessary to mix more amorphous aluminosilicate mineral powder for ultra-high strength, and if it is 45000 cm 2 / g or more, more water reducing agent is required to obtain the fluidity of the mixed grout. Is required. The fineness of the more preferable amorphous aluminosilicate mineral powder is in the range of 20000 to 40,000 cm 2 / g in terms of Blaine specific surface area.

本発明の超高強度グラウト組成物において非晶質アルミノ珪酸鉱物粉末の含有率は、2〜20質量%とする。2質量%より少ないと強度が不足するか、強度を得るために水量を水結合材比26%よりも少なくせざるを得ないために自己収縮が大きくなる。非晶質アルミノ珪酸鉱物粉末の含有率が20質量%を超えると、流動性が得られ難くなり、グラウトとしての流動性を確保するために水量又は減水剤量を増加させると強度が不足する。非晶質アルミノ珪酸鉱物粉末の含有率を4〜10質量%とすることが、硬化時の自己収縮をより抑制し、減水剤及び増粘剤の含有率の調整によりグラウトとしての良好な流動性を確保し易い点でより好ましい。   In the ultrahigh strength grout composition of the present invention, the content of the amorphous aluminosilicate mineral powder is 2 to 20% by mass. If it is less than 2% by mass, the strength is insufficient, or the amount of water has to be less than 26% of the water binder ratio in order to obtain the strength, so that the self-contraction increases. When the content of the amorphous aluminosilicate mineral powder exceeds 20% by mass, it becomes difficult to obtain fluidity, and when the amount of water or water reducing agent is increased in order to ensure fluidity as a grout, the strength is insufficient. When the content of the amorphous aluminosilicate mineral powder is 4 to 10% by mass, self-shrinkage during curing is further suppressed, and good fluidity as a grout is obtained by adjusting the content of the water reducing agent and the thickener. It is more preferable in that it is easy to ensure.

本発明の超高強度グラウト組成物に用いる石膏類は、無水石膏、二水石膏又は半水石膏を主成分とする粉末であれば特に限定されないが、強度増進作用の観点からII型無水石膏を主成分とするものが好ましい。石膏類は、セメント中のアルミネート相等と反応しエトリンガイト(3CaO・Al・3CaSO・32HO)を生成させ、これによりグラウト硬化体の収縮を抑制することができるとともに、初期強度を高めることができる。使用する石膏類の粉末度はブレーン法による比表面積で3000cm/g以上のものが、反応活性が得られるので好ましい。より好ましくは粉末度が6000cm/g以上の石膏類が良い。粉末度の上限は特に制限されないが、粉末度を高めるコストが嵩む割にはその効果が鈍化することから概ね15000cm/g程度が適当である。 The gypsum used in the ultra-high-strength grout composition of the present invention is not particularly limited as long as it is a powder mainly composed of anhydrous gypsum, dihydrate gypsum, or hemihydrate gypsum. What has a main component is preferable. Gypsum reacts with aluminate equality in the cement to produce ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O), with this, it is possible to suppress the shrinkage of the grout cured product, initial strength Can be increased. The fineness of the gypsum used is preferably 3000 cm 2 / g or more in terms of the specific surface area according to the Blaine method because reaction activity is obtained. More preferably, gypsum having a fineness of 6000 cm 2 / g or more is preferable. The upper limit of the fineness is not particularly limited, but about 15000 cm 2 / g is appropriate for the cost of increasing the fineness because the effect is slowed down.

本発明の超高強度グラウト組成物において石膏類の含有率は、3〜18質量%とする。3質量%未満では自己収縮が大きくなるとともに強度が不足する。18質量%を超えると、流動性が得られ難くなり、グラウトとしての流動性を確保するために水量又は減水剤量を増加させると強度が不足する。強度が高く且つ良好な流動性が得られることから、石膏類の含有率を5〜15質量%とすることが好ましく、5〜10質量%とすることが更に好ましい。   In the ultrahigh strength grout composition of the present invention, the content of gypsum is 3 to 18% by mass. If it is less than 3% by mass, the self-shrinkage increases and the strength is insufficient. When it exceeds 18% by mass, it becomes difficult to obtain fluidity, and when the amount of water or water reducing agent is increased in order to ensure fluidity as a grout, the strength is insufficient. Since the strength is high and good fluidity is obtained, the content of gypsum is preferably 5 to 15% by mass, and more preferably 5 to 10% by mass.

本発明の超高強度グラウト組成物は、水結合材比26〜35%で使用する。26%よりも小さい水結合材比で使用すると、自己収縮ひずみが大きくなる。また、35%を超える水結合材比で使用すると、硬化後のグラウトの強度が不足する。より自己収縮ひずみが小さく且つ高い強度が得られることから、水結合材比28〜34%で使用する。尚、本発明において使用する水の量は、水溶液やエマルション等の液状の混和材料に含まれる水量も考慮したものとする。   The ultra high strength grout composition of the present invention is used at a water binder ratio of 26-35%. When used at a water binder ratio of less than 26%, the self-shrinkage strain increases. In addition, when used at a water binder ratio exceeding 35%, the strength of the grout after curing is insufficient. Since the self-shrinkage strain is smaller and a high strength is obtained, the water binder ratio is 28 to 34%. The amount of water used in the present invention also takes into account the amount of water contained in a liquid admixture such as an aqueous solution or emulsion.

本発明の超高強度グラウト組成物に、更に、増粘剤、減水剤、骨材、発泡剤から選ばれる1種又は2種以上を含有することが好ましい。増粘剤及び減水剤を含有することで、グラウトの材料分離を抑えながら高い流動性を得ることができる。用いる増粘剤としては、セルロース系増粘剤、アクリル系増粘剤、グアーガム系増粘剤などが使用でき、セルロース系増粘剤が好ましく、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースが好ましい例として挙げられる。本発明の超高強度グラウト組成物における増粘剤の含有率は、0.01〜0.10質量%とすることが好ましい。   The ultrahigh strength grout composition of the present invention preferably further contains one or more selected from a thickener, a water reducing agent, an aggregate, and a foaming agent. By containing a thickener and a water reducing agent, high fluidity can be obtained while suppressing material separation of the grout. As the thickener used, cellulose thickeners, acrylic thickeners, guar gum thickeners and the like can be used, and cellulose thickeners are preferable, for example, carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose. Hydroxypropyl cellulose is a preferred example. The content of the thickener in the ultrahigh strength grout composition of the present invention is preferably 0.01 to 0.10% by mass.

また、本発明で用いる減水剤としては、特に限定されず、例えば、ポリカルボン酸塩系減水剤、ナフタレンスルホン酸塩系減水剤、メラミンスルホン酸塩系減水剤及びリグニンスルホン酸塩系減水剤が挙げられ、これらの1種又は2種以上を用いることができる。用いる減水剤としては、高性能減水剤又は高性能AE減水剤を用いると、グラウトを超高強度とし易いことから好ましい。ポリカルボン酸塩系高性能減水剤又はポリカルボン酸塩系高性能AE減水剤が、少量の含有で流動性保持時間を長くできることから特に好ましい。本発明の超高強度グラウト組成物における減水剤の含有率は、0.1〜0.8質量%とすることが好ましい。   Further, the water reducing agent used in the present invention is not particularly limited, and examples thereof include polycarboxylate-based water reducing agents, naphthalene sulfonate-based water reducing agents, melamine sulfonate-based water reducing agents, and lignin sulfonate-based water reducing agents. 1 type or 2 types or more can be used. As the water reducing agent to be used, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent because it is easy to make the grout ultra high strength. A polycarboxylate-based high-performance water reducing agent or a polycarboxylate-based high-performance AE water reducing agent is particularly preferable because it can increase the fluidity retention time with a small amount. The content of the water reducing agent in the ultrahigh strength grout composition of the present invention is preferably 0.1 to 0.8% by mass.

また、本発明の超高強度グラウト組成物において、骨材を用いることで自己収縮を抑制し易くなる。本発明で用いる骨材としては、特に限定されず、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石、人工骨材、スラグ骨材などを用いることができる。本発明の超高強度グラウト組成物における骨材の含有率は、35〜60質量%とすることが好ましい。   Moreover, in the ultra-high-strength grout composition of this invention, it becomes easy to suppress self contraction by using an aggregate. The aggregate used in the present invention is not particularly limited, and for example, river sand, land sand, sea sand, crushed sand, quartz sand, river gravel, land gravel, crushed stone, artificial aggregate, slag aggregate, and the like can be used. The aggregate content in the ultrahigh strength grout composition of the present invention is preferably 35 to 60% by mass.

また、本発明の超高強度グラウト組成物において、発泡剤を用いることで自己収縮を抑制し易くなるとともに、グラウトを無収縮、即ちグラウトの初期膨張率を0%よりも大きくすることができる。本発明で用いる発泡剤としては、特に限定されず、具体的には水と混練後に気体を発生する物質であればよい。この膨張作用によりグラウトモルタルの沈下現象を防止し、構造物との一体化を図る。その具体例として、例えば、アルミニウムや亜鉛等の両性金属の粉末や過酸化物質等が挙げられる。なかでも、効果的に発泡し、膨張作用を発揮することができるので、アルミニウム粉末が好ましい。本発明の超高強度グラウト組成物における発泡剤の含有率は、0.0002〜0.003質量%とすることが好ましい。   Further, in the ultrahigh strength grout composition of the present invention, by using a foaming agent, self-shrinkage can be easily suppressed, and the grout can be made non-shrinkable, that is, the initial expansion rate of the grout can be made larger than 0%. The foaming agent used in the present invention is not particularly limited as long as it is a substance that generates gas after being kneaded with water. This expansion action prevents the grouting mortar from sinking and integrates with the structure. Specific examples thereof include amphoteric metal powders such as aluminum and zinc, and peroxides. Among these, aluminum powder is preferable because it can effectively foam and exert an expansion action. The content of the foaming agent in the ultra high strength grout composition of the present invention is preferably 0.0002 to 0.003 mass%.

本発明の超高強度グラウト組成物には、セメント、非晶質アルミノ珪酸鉱物粉末、石膏類、発泡剤、増粘剤、骨材及び減水剤以外に、他の混和材料から選ばれる一種又は二種以上を本発明の効果を実質損なわない範囲で併用することができる。この混和材料としては、例えば膨張材、セメント用ポリマー、防水材、防錆剤、収縮低減剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、消泡剤、高炉スラグ微粉末、石粉、シリカフューム、火山灰、空気連行剤、表面硬化剤等が挙げられる。また、本発明で使用される混和材料は、粉末状でも水溶液状でも使用可能であるが、施工現場で複雑な計量操作等を必要とせずに、所定量の水を計量し混練するだけですぐに使用できるように、本発明の超高強度グラウト組成物の配合成分のすべてが予め混合され粉末状である所謂「プレミックス製品」であるほうが施工現場での作業性が良い為、使用する混和材料自体も全て粉末状又は顆粒状であることが好ましい。 In addition to cement, amorphous aluminosilicate mineral powder, gypsum, foaming agent, thickener, aggregate and water reducing agent, the ultrahigh strength grout composition of the present invention may be one or two selected from other admixtures. More than one species can be used in combination as long as the effects of the present invention are not substantially impaired. Examples of this admixture include expansion materials, polymers for cement, waterproofing materials, rust preventives, shrinkage reducing agents, water retention agents, pigments, fibers, water repellents, anti-whitening agents, quick setting agents (materials), and rapid hardening. Agents (materials), setting retarders, antifoaming agents, blast furnace slag fine powder, stone powder, silica fume, volcanic ash, air entraining agents, surface hardeners and the like. In addition, the admixture used in the present invention can be used in the form of powder or aqueous solution, but it does not require a complicated measuring operation etc. at the construction site, and it is just necessary to measure and knead a predetermined amount of water. The so-called “premix product” in which all the components of the ultra-high-strength grout composition of the present invention are pre-mixed and in powder form is more workable at the construction site. It is preferable that all the materials themselves are in the form of powder or granules.

本発明の超高強度グラウト組成物は、V型混合機や可傾式コンクリートミキサ等の重力式ミキサ、ヘンシェル式ミキサ、リボンミキサ等のミキサにより、所定量の上記各材料を予め混合する方が、添加後の超高強度グラウト組成物において材料の偏在が抑えられることから好ましい。このとき用いるミキサは、連続式ミキサでもバッチ式ミキサでも良い。各材料のミキサ内への投入順序は特に限定されない。一種ずつ添加してもよく、一部又は全部を同時に添加してもよい。また、袋やポリエチレン製容器等の容器に各材料を計り取り投入する方法により、本発明の超高強度グラウト組成物を製造することもできる。   The ultra-high-strength grout composition of the present invention should be premixed with a predetermined amount of each of the above materials using a V-type mixer, a gravitational mixer such as a tiltable concrete mixer, a Henschel mixer, a ribbon mixer or the like. The ultra-high strength grout composition after the addition is preferable because uneven distribution of the material can be suppressed. The mixer used at this time may be a continuous mixer or a batch mixer. The order in which each material is charged into the mixer is not particularly limited. One by one may be added, or part or all may be added simultaneously. Moreover, the ultrahigh strength grout composition of this invention can also be manufactured by the method of measuring and throwing each material into containers, such as a bag and a polyethylene container.

本発明の超高強度グラウト組成物は、水結合材比26〜35%となる量の水と混練して用いる。このときの水量は、水性の液状混和材料(例えば減水剤やゴムラテックス。)を添加する場合は、超高強度グラウト組成物に添加する水性の液状混和材料に含まれる水の量も考慮する。水結合材比26%未満では自己収縮が大き過ぎ、35%を超えると超強度となる強度が得られない。自己収縮がより小さく且つより高強度が得られることから、28〜34%が好ましい。   The ultra-high-strength grout composition of the present invention is used by kneading with an amount of water that makes the water binder ratio 26-35%. The amount of water at this time also takes into account the amount of water contained in the aqueous liquid admixture added to the ultra-high strength grout composition when an aqueous liquid admixture (such as a water reducing agent or rubber latex) is added. If the water binder ratio is less than 26%, the self-shrinkage is too large, and if it exceeds 35%, the strength that is super strength cannot be obtained. Since the self-shrinkage is smaller and higher strength is obtained, 28 to 34% is preferable.

また、本発明の超高強度グラウトは、上記の超高強度グラウト組成物と、水結合材比26〜35%となる量の水とを混練したものである。本発明の超高強度グラウトに、本発明の効果を実質損なわない範囲で、上記の混和材料から選ばれる一種又は二種以上を混和し含有させることができる。このとき、水性の液状混和材料を混和するときは、この水性の液状混和材料に含まれる水量も考慮した上で、水結合材比26〜35%となるようにする必要がある。混練する方法は特に限定されず、例えば水に上記の超高強度グラウト組成物を全量加え混練する方法、水に上記の超高強度グラウト組成物を混練しながら加え更に混練する方法、上記の超高強度グラウト組成物に水を全量加え混練する方法、上記の超高強度グラウト組成物に水を混練しながら加え更に混練する方法、水及び上記の超高強度グラウト組成物のそれぞれ一部ずつを2以上に分けて混練したものを合わせて更に混練する方法、水と水性の混和材料を合わせたものに上記の超高強度グラウト組成物を全量加え混練する方法、水と水性の混和材料を合わせたものに上記の超高強度グラウト組成物を混練しながら加え更に混練する方法、上記の超高強度グラウト組成物に水と水性の混和材料を合わせたものを全量加え混練する方法、上記の超高強度グラウト組成物に水と水性の混和材料を合わせたものを混練しながら加え更に混練する方法、水と水性の混和材料を合わせたものに及び上記の超高強度グラウト組成物のそれぞれ一部ずつを2以上に分けて混練したものを合わせて更に混練する方法等がある。上記の超高強度グラウト組成物と水以外に混和材料を混和させる場合は、上記の超高強度グラウト組成物に添加しても、水に添加しても、両方に添加してもよく、上記の超高強度グラウト組成物と水を混練したものに添加してもよい。また、混練に用いる器具や混練装置も特に限定されないが、ミキサを用いることが量を多く混練できるので好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等が挙げられる。   The ultra high strength grout of the present invention is obtained by kneading the above ultra high strength grout composition and water in an amount of 26 to 35% of the water binder ratio. In the ultra high strength grout of the present invention, one or more selected from the above admixtures can be mixed and contained within a range that does not substantially impair the effects of the present invention. At this time, when the aqueous liquid admixture is mixed, it is necessary to make the water binder ratio 26 to 35% in consideration of the amount of water contained in the aqueous liquid admixture. The method of kneading is not particularly limited, for example, a method of adding and kneading the entire amount of the ultra-high strength grout composition to water, a method of adding and kneading the ultra-high strength grout composition to water while mixing, A method of kneading all the water in the high-strength grout composition, a method of adding water to the ultra-high-strength grout composition while kneading and further kneading, a part of each of the water and the ultra-high-strength grout composition. A method of kneading the kneaded ingredients into two or more, kneading them together, a method of adding the above ultrahigh strength grout composition to a mixture of water and an aqueous admixture, kneading, and combining water and an aqueous admixture A method of adding and kneading the above ultra-high strength grout composition to the mixture, and a method of adding and kneading the total amount of the ultra-high-strength grout composition combined with water and an aqueous admixture, A method of adding a mixture of water and an aqueous admixture to an ultrahigh strength grout composition while kneading and further kneading, a combination of water and an aqueous admixture, and each of the above ultrahigh strength grout compositions There is a method of further kneading the kneaded parts divided into two or more parts. When mixing an admixture other than the above ultra high strength grout composition and water, it may be added to the above ultra high strength grout composition, to water, or to both, You may add to the thing which knead | mixed the ultra high intensity | strength grout composition of this and water. Moreover, although the apparatus and kneading apparatus used for kneading are not particularly limited, it is preferable to use a mixer because a large amount can be kneaded. The mixer that can be used may be a continuous mixer or a batch mixer, and examples thereof include a pan type concrete mixer, a pug mill type concrete mixer, a gravity type concrete mixer, a grout mixer, a hand mixer, and a plastering mixer.

[実施例1]
表1に示す配合割合で各水準3kgのグラウト組成物を作製した。このときの使用材料を以下に示す。グラウト組成物の作製方法は、作製するグラウト組成物の質量が3kgとなる量の表1に示す割合の各材料を、ポリ袋(縦650mm×横350mm×厚さ0.1mm)に投入し、密閉した後に60秒間手で振り、各材料を混合することでグラウト組成物を作製した。作製したグラウト組成物を表1に示す水結合材比となる水量の水を加え、金属容器内でハンドミキサ(1100r.p.m.,羽根直径100mm)により120秒間混練することによりグラウトを作製した。グラウトの作製は、何れも20±3℃、湿度80%以上の恒温室内で行った。
<使用材料>
アルミノ珪酸鉱物粉末A:市販品(BASFジャパン社製焼成カオリン、商品名「メタマックス」、粉末X線回折装置による測定でピークが全く見られない(非晶質))
アルミノ珪酸鉱物粉末B:市販のカオリナイトを小型内熱キルンで750℃で焼成したものをブレーン比表面積2500g/cmに粉砕したもの。粉末X線回折装置による測定でピークが全く見られない。
アルミノ珪酸鉱物粉末C:市販のカオリナイトを小型内熱キルンで1300℃で焼成したものをブレーン比表面積2500g/cmに粉砕したもの。粉末X線回折装置による測定でピークが見られ、ムライトと同定した(結晶質)。
セメントN:普通ポルトランドセメント(太平洋セメント社製)
セメントH:早強ポルトランドセメント(太平洋セメント社製)
発泡剤:アルミニウム粉末(東洋アルミニウウム社製)
骨材:珪砂(市販品、商品名「嘉穂4号珪砂」)
減水剤:ポリカンルボン酸塩系高性能減水剤(花王社製)
増粘剤:水溶性セルロース系増粘剤(信越化学工業社製)
水:佐倉市上水
[Example 1]
Each level of 3 kg grout composition was prepared at the blending ratio shown in Table 1. The materials used at this time are shown below. The production method of the grout composition is to put each material in the ratio shown in Table 1 in an amount such that the mass of the grout composition to be produced is 3 kg into a plastic bag (length 650 mm × width 350 mm × thickness 0.1 mm), After sealing, the grout composition was produced by shaking by hand for 60 seconds and mixing each material. A grout was prepared by adding water having an amount of water binding ratio shown in Table 1 to the prepared grout composition and kneading for 120 seconds in a metal container with a hand mixer (1100 rpm, blade diameter 100 mm). did. Grouts were produced in a constant temperature room at 20 ± 3 ° C. and a humidity of 80% or more.
<Materials used>
Aluminosilicate mineral powder A: commercial product (baked kaolin manufactured by BASF Japan Ltd., trade name “Metamax”, no peak observed by powder X-ray diffractometer (amorphous))
Aluminosilicate mineral powder B: A commercially available kaolinite fired at 750 ° C. in a small internal heat kiln and pulverized to a specific surface area of 2500 g / cm 2 . No peak is observed by measurement with a powder X-ray diffractometer.
Aluminosilicate mineral powder C: a commercially available kaolinite fired at 1300 ° C. in a small internal heat kiln and pulverized to a brain specific surface area of 2500 g / cm 2 . A peak was observed by measurement with a powder X-ray diffractometer and identified as mullite (crystalline).
Cement N: Ordinary Portland cement (manufactured by Taiheiyo Cement)
Cement H: Early strong Portland cement (manufactured by Taiheiyo Cement)
Foaming agent: Aluminum powder (Toyo Aluminum Co., Ltd.)
Aggregate: Silica sand (commercial product, trade name “Kaho No. 4 Silica Sand”)
Water reducing agent: Polycanlubonate-based high-performance water reducing agent (manufactured by Kao Corporation)
Thickener: Water-soluble cellulose thickener (manufactured by Shin-Etsu Chemical Co., Ltd.)
Water: Sakura City water

作製したグラウトの品質試験として、以下に示す通り、練り混ぜ直後及び60分後のフロー値、材齢7日,28日及び56日の圧縮強度、並びに自己収縮ひずみを測定し、練り混ぜ直後の骨材沈降の有無、即ち材料分離の有無を手触りにより確認した。これらの結果を表2及び表3に分けて、作業性の評価とともに示した。作業性の評価は以下に示す通りである。表3の自己収縮ひずみ欄の「膨張」は、材齢12時間〜4日までの自己収縮ひずみが全て正の値、即ち膨張していたことを意味し、「収縮」は、材齢12時間〜4日までの自己収縮ひずみが全て負の値、即ち収縮していたことを意味する。尚、圧縮強度試験以外の品質試験は、何れも20±3℃、湿度80%以上の恒温室内で行った。
<品質試験方法>
・流動性試験
JIS R 5201−1997「セメントの物理試験方法」11.フロー試験に準じて、落下運動行わずに、フロー値を測定した。このとき、フローテーブルの上に載せたアクリル板(50cm×50cm×1cm)上で試験を行った。尚、60分後の測定は、上記ハンドミキサで30秒間撹拌した後に行った。
・骨材沈降の有無の確認(不分離性の確認)
作製したグラウトを2リットルポリビーカーに入れ、30分間静置後に、ポリビーカーの底部分に細骨材が溜まっているか否かを手触りにより確認することで不分離性を判断した。ポリビーカーの底部分に細骨材が沈降し溜まっているものを「材料分離」、骨材が溜まっていないものを「良好」とした。
・圧縮強度試験
土木学会基準JSCE−G 505−1999「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準じ、各材齢の圧縮強度を測定した。このとき供試体は、材齢1日で脱型し、その後20℃の水中で試験直前まで養生した。
・自己収縮ひずみ
JCI基準JCI−SAS3「コンクリートの自己収縮応力試験方法(案)」に準じて、自己収縮ひずみを測定した。このとき、自己収縮ひずみの起点は始発時間とした。尚、自己収縮ひずみが正の値のときは膨張を、負の値のときは収縮を意味している。
<作業性の評価>
良好:グラウトとして良好な流動性を60分間確保し、且つ骨材沈降が無く材料不分離性を有しているものを、作業性良好とした。
不良:グラウトとして良好な流動性を60分間確保できなかったもの、或いは骨材沈降が見られたものを、作業性不良とした。
As a quality test of the prepared grout, as shown below, the flow value immediately after mixing and after 60 minutes, the compressive strength at 7 days, 28 days and 56 days of age, and the self-shrinkage strain were measured. The presence or absence of aggregate sedimentation, that is, the presence or absence of material separation was confirmed by touch. These results were divided into Tables 2 and 3 and shown together with the evaluation of workability. The evaluation of workability is as follows. “Expansion” in the column of self-shrinkage strain in Table 3 means that all self-shrinkage strains from 12 hours to 4 days of age were positive values, that is, expanded, and “shrinkage” is 12 hours of age. It means that the self-shrinkage strains up to 4 days were all negative values, that is, they were contracted. In addition, all quality tests other than the compressive strength test were performed in a temperature-controlled room at 20 ± 3 ° C. and a humidity of 80% or more.
<Quality test method>
-Fluidity test JIS R 5201-1997 "Cement physical test method" 11. According to the flow test, the flow value was measured without performing the drop motion. At this time, the test was performed on an acrylic plate (50 cm × 50 cm × 1 cm) placed on a flow table. In addition, the measurement after 60 minutes was performed after stirring for 30 seconds with the said hand mixer.
・ Confirmation of the presence of aggregate sedimentation (confirmation of inseparability)
The prepared grout was put into a 2 liter poly beaker and allowed to stand for 30 minutes, and then it was judged by touching whether or not fine aggregates were accumulated at the bottom of the poly beaker. The material with fine aggregate settled and collected at the bottom of the poly beaker was designated as “material separation”, and the material with no aggregate accumulated was designated as “good”.
-Compressive strength test Compressive strength of each material age was measured according to JSCE-G 505-1999 "Method for testing compressive strength of mortar or cement paste using cylindrical specimen". At this time, the specimen was demolded at the age of 1 day, and then cured in water at 20 ° C. until just before the test.
-Self-shrinkage strain The self-shrinkage strain was measured according to JCI standard JCI-SAS3 "Concrete self-shrinkage stress test method (draft)". At this time, the starting point of the self-shrinkage strain was the initial time. When the self-shrinkage strain is positive, it means expansion, and when it is negative, it means contraction.
<Evaluation of workability>
Good: Good fluidity as a grout was secured for 60 minutes, and there was no aggregate settling and material inseparability was defined as good workability.
Poor: A grout in which good fluidity could not be secured for 60 minutes or an aggregate sedimentation was regarded as poor workability.

本発明の実施例に当たるグラウトは、何れもフロー値が練り混ぜ直後で290mm以上、60分後においても220mm以上ありグラウトとして充分な流動性が備わっているとともに、材料不分離性も備わっており、作業性に優れていることがわかる。また、これらの本発明の実施例に当たるグラウトは、材齢12時間〜4日まで全て何れも自己収縮ひずみが正の値、即ち膨張側にあり、自己収縮が起こっていないことがわかる。また、これらの本発明の実施例に当たるグラウトは、何れも材齢28日において圧縮強度が120N/mm以上と、超高強度であった。 The grouts according to the examples of the present invention have a flow value of 290 mm or more immediately after kneading, 220 mm or more even after 60 minutes and sufficient fluidity as a grout, and also have material inseparability, It can be seen that the workability is excellent. In addition, it is understood that all the grouts according to the examples of the present invention have a self-shrinkage strain having a positive value, that is, on the expansion side from the material age of 12 hours to 4 days, and no self-shrinkage occurs. In addition, all of the grouts according to the examples of the present invention had an ultrahigh strength with a compressive strength of 120 N / mm 2 or more at the age of 28 days.

[実施例2]
実施例1で作製した配合No.3,No.4,No.9及びNo.13のグラウトを用いて、土木学会基準JSCE−F 542−1999「充てんモルタルのブリーディング率および膨張率試験方法」に準じて、材齢1日及び7日の初期膨張率を測定した。その結果を表4に示した。
[Example 2]
Formulation No. 1 prepared in Example 1 was used. 3, No. 4, no. 9 and no. Using the 13 grouts, the initial expansion rate at the age of 1 day and 7 days was measured according to JSCE-F 542-1999 “Testing method for bleeding rate and expansion rate of filling mortar”. The results are shown in Table 4.

本発明の実施例に当たり且つ発泡剤を0.0002〜0.003質量%の範囲内で含有する配合No.3及びNo.4のグラウトは、材齢1日及び7日ともに正の値で、無収縮性を示した。   In the examples of the present invention, the formulation No. containing a foaming agent in the range of 0.0002 to 0.003% by mass. 3 and no. The grout of No. 4 was positive on both the 1st and 7th days of age and showed no contractility.

本発明によれば、圧縮強度120N/mmを超え且つ硬化時の自己収縮が起こり難くい超高強度グラウトが得られるので、超高層建築物の各部材の接合部分や超高強度の部材内部の充填等に、好適に用いることができる。本発明により得られる超高強度グラウトは、蒸気養生を行わぬとも圧縮強度120N/mmを超えるが、より早期に超高強度を得るために蒸気養生を行うこともできることから、超高強度パイル等の蒸気養生を行うコンクリート製品等のセメント製品に使用できる。 According to the present invention, an ultra-high strength grout exceeding the compressive strength of 120 N / mm 2 and hardly undergoing self-shrinkage at the time of curing is obtained. It can be suitably used for filling of the resin. The ultra-high strength grout obtained by the present invention exceeds the compressive strength of 120 N / mm 2 without steam curing, but can be steam-cured in order to obtain ultra-high strength at an earlier stage. It can be used for cement products such as concrete products that are steam-cured.

Claims (5)

セメント、非晶質アルミノ珪酸鉱物粉末2〜20質量%、石膏類3〜18質量%を含有し、水結合材比26〜35%で使用することを特徴とする超高強度グラウト組成物。 An ultra-high-strength grout composition containing cement, amorphous aluminosilicate mineral powder 2 to 20% by mass, gypsum 3 to 18% by mass, and used in a water binder ratio of 26 to 35%. 更に、増粘剤、減水剤、骨材、発泡剤から選ばれる1種又は2種以上を含有してなる請求項1に記載の超高強度グラウト組成物。 Furthermore, the ultra high intensity | strength grout composition of Claim 1 formed by containing the 1 type (s) or 2 or more types chosen from a thickener, a water reducing agent, an aggregate, and a foaming agent. セメントを25〜60質量%、増粘剤を0.01〜0.10質量%、減水剤を0.1〜0.8質量%及び骨材を35〜60質量%含有する、請求項1又は請求項2に記載の超高強度グラウト組成物。 The cement contains 25 to 60% by mass, the thickener 0.01 to 0.10% by mass, the water reducing agent 0.1 to 0.8% by mass and the aggregate 35 to 60% by mass. The ultra high strength grout composition according to claim 2. 発泡剤を0.0002〜0.003質量%含有する請求項1〜請求項3に記載の超高強度グラウト組成物。 The ultra-high-strength grout composition according to claims 1 to 3, containing 0.0002 to 0.003% by mass of a foaming agent. 請求項1〜請求項4に記載の超高強度グラウト組成物と、水結合材比26〜35%となる量の水とを練りまぜ製造した超高強度グラウト。 An ultra-high-strength grout produced by kneading the ultra-high-strength grout composition according to any one of claims 1 to 4 and water in an amount of 26-35%.
JP2009297912A 2009-12-28 2009-12-28 Superhigh strength grout composition Pending JP2011136863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297912A JP2011136863A (en) 2009-12-28 2009-12-28 Superhigh strength grout composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297912A JP2011136863A (en) 2009-12-28 2009-12-28 Superhigh strength grout composition

Publications (1)

Publication Number Publication Date
JP2011136863A true JP2011136863A (en) 2011-07-14

Family

ID=44348688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297912A Pending JP2011136863A (en) 2009-12-28 2009-12-28 Superhigh strength grout composition

Country Status (1)

Country Link
JP (1) JP2011136863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124744A (en) * 2014-12-27 2016-07-11 太平洋マテリアル株式会社 Self-leveling admixture composition with low efflorescence
JP2017154941A (en) * 2016-03-03 2017-09-07 太平洋マテリアル株式会社 High-strength grout composition and high-strength grout material
JP2018193280A (en) * 2017-05-18 2018-12-06 太平洋マテリアル株式会社 Quick-hardening ultrahigh-strength grout composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302296A (en) * 2000-04-26 2001-10-31 Taiheiyo Cement Corp Admixture for cement and cement composition containing the same
WO2008059605A1 (en) * 2006-11-17 2008-05-22 Denki Kagaku Kogyo Kabushiki Kaisha Cement mortar composition for grout and grout mortar obtained from the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302296A (en) * 2000-04-26 2001-10-31 Taiheiyo Cement Corp Admixture for cement and cement composition containing the same
WO2008059605A1 (en) * 2006-11-17 2008-05-22 Denki Kagaku Kogyo Kabushiki Kaisha Cement mortar composition for grout and grout mortar obtained from the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124744A (en) * 2014-12-27 2016-07-11 太平洋マテリアル株式会社 Self-leveling admixture composition with low efflorescence
JP2017154941A (en) * 2016-03-03 2017-09-07 太平洋マテリアル株式会社 High-strength grout composition and high-strength grout material
JP2018193280A (en) * 2017-05-18 2018-12-06 太平洋マテリアル株式会社 Quick-hardening ultrahigh-strength grout composition

Similar Documents

Publication Publication Date Title
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP5939776B2 (en) Repair mortar composition
JP2004284873A (en) Hydraulic complex material
JP4538438B2 (en) Grout composition and grout material using the same
TWI701228B (en) Concrete composition and method for producing the same
JP6296600B2 (en) Premix grout composition
JP2011136863A (en) Superhigh strength grout composition
JP5004294B2 (en) High flow mortar
JP2021119115A (en) Quick-hardening polymer cement composition and quick-hardening polymer cement mortar
JP5227161B2 (en) Cement admixture and cement composition
JP4976803B2 (en) Grout composition and grout material using the same
JP5035721B2 (en) High fluidity lightweight mortar
JP5721212B2 (en) Initial expansive cement composition
JP6891041B2 (en) Fast-strength ultra-high-strength grout composition
JP6133598B2 (en) Fast-hardening grout composition and fast-hardening grout material
JP2017031037A (en) Anti-washout underwater concrete composition and cured body thereof
JP6985177B2 (en) Hydraulic composition and concrete
JP5160763B2 (en) Cement mortar composition
JP6626341B2 (en) Inseparable mortar composition in water
JP6300365B2 (en) Underwater inseparable fast-hardening concrete and method for producing the same
JP6400426B2 (en) Underwater inseparable concrete composition and cured body thereof
JP2012240874A (en) Cement composition
JP5483354B2 (en) Hydraulic material and hydraulic composition
JP2020164334A (en) Grout composition, and grout
JP2020158332A (en) Mortar composition and mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217