JP2009179688A - 熱可塑性エラストマー組成物の製造方法 - Google Patents

熱可塑性エラストマー組成物の製造方法 Download PDF

Info

Publication number
JP2009179688A
JP2009179688A JP2008019007A JP2008019007A JP2009179688A JP 2009179688 A JP2009179688 A JP 2009179688A JP 2008019007 A JP2008019007 A JP 2008019007A JP 2008019007 A JP2008019007 A JP 2008019007A JP 2009179688 A JP2009179688 A JP 2009179688A
Authority
JP
Japan
Prior art keywords
elastomer composition
isobutylene
thermoplastic elastomer
component
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008019007A
Other languages
English (en)
Other versions
JP5331346B2 (ja
Inventor
Hiroharu Nakabayashi
裕晴 中林
Taizo Aoyama
泰三 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008019007A priority Critical patent/JP5331346B2/ja
Publication of JP2009179688A publication Critical patent/JP2009179688A/ja
Application granted granted Critical
Publication of JP5331346B2 publication Critical patent/JP5331346B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 本発明の目的は、上述の従来技術の課題に鑑み、柔軟性に富み、ゴム的特性、圧縮永久歪み特性、ガスバリア性及び制振性、衛生性に優れ、特に成形体表面性に優れた熱可塑性エラストマー組成物の製造法を提供する。
【解決手段】 末端にアルケニル基を有するイソブチレン系重合体(A)、ポリプロピレン系樹脂(B1)及び/又はポリエチレン系樹脂(B2)及び/又はスチレン−イソブチレン−スチレンブロック共重合体(B3)からなる樹脂成分(B)を溶融混練しながらイソブチレン系重合体(A)をヒドロシリル基含有ポリシロキサン(C)により動的に架橋することで得られる熱可塑性エラストマー組成物の製造法であり、イソブチレン系重合体(A)の溶融混練系中への添加を少なくとも2回以上分割して添加し、かつ各回の添加量はイソブチレン系重合体(A)最終仕込量の10〜80%の範囲にあるとする。
【選択図】なし

Description

本発明は、柔軟性に富み、成形加工性、圧縮永久歪み特性に優れ、特に成型体の表面性に優れた新規な熱可塑性エラストマー組成物の製造法に関するものである。
従来、弾性を有する高分子材料としては、天然ゴムまたは合成ゴムなどのゴム類に架橋剤や補強剤などを配合して高温高圧下で架橋したものが汎用されている。しかしながらこの様なゴム類では、高温高圧下で長時間にわたって架橋及び成形を行う工程が必要であり、加工性に劣る。また架橋したゴムは熱可塑性を示さないため、熱可塑性樹脂のようにリサイクル成形を行なうことができない。そこで、近年、一般的な熱可塑性樹脂と同じように熱プレス成形、射出成形、及び押出し成形などの汎用の溶融成形技術を利用して成型品を簡単に製造することができ、しかもリサイクル成形の可能な熱可塑性エラストマーが種々開発されている。このような熱可塑性エラストマーとしては、オレフィン系、ウレタン系、エステル系、スチレン系、塩化ビニル系などの種々の形式のポリマーがあり、市販もされている。
これらのうち、オレフィン系熱可塑性エラストマーは、耐熱性、耐寒性、耐候性等に優れる。オレフィン系熱可塑性エラストマーには、架橋型と非架橋型がある。非架橋型熱可塑性エラストマーは、架橋反応を伴わないため、品質のバラツキが少なくまた製造コストも安価であるが、引張強度、破断伸度、ゴム的性質(永久伸び、圧縮永久歪みなど)、耐熱性、低温特性などが必ずしも十分とはいえない。一方、架橋型熱可塑性エラストマーは、引張強度や破断伸度、あるいはゴム的性質(たとえば永久伸び、圧縮永久歪み)や耐熱性の点で優れる(非特許文献1、特許文献1〜13等参照)。しかし硫黄、過酸化物、フェノール樹脂といった従来の架橋剤を用いた架橋型熱可塑性エラストマーは、架橋度を高めて圧縮永久歪みを改良する一方、組成物表面への架橋剤や架橋反応の副生成物のブリード等が起こる。そのために食品・医療用包装材など衛生性を要求される用途への展開は限定されたものであった。
さらに、架橋型熱可塑性エラストマーは熱可塑性樹脂中に架橋されたゴムが分散した相構造をとるが、架橋されたゴムの粒子径が大きいと成形体表面の均一性が著しく損なわれるという欠点があった。
このように、物性バランスに優れた熱可塑性組成物を得ることは困難であって、従来の熱可塑性樹脂と同様、熱プレス、射出成形等により容易に成形が可能であり、しかも、衛生性、物性バランス、成形体表面性に優れた熱可塑性エラストマー組成物の開発が望まれている。
特公昭53−21021号公報 特公昭55−18448号公報 特公昭56−15741号公報 特公昭56−15742号公報 特公昭58−46138号公報 特公昭58−56575号公報 特公昭59−30376号公報 特公昭62−938号公報 特公昭62−59139号公報 特開平6−63850号公報 特開平10−195241号公報 特開2000−351877号公報 特開2006−265319号公報 Rubber Chemistry and Technology、A.Y.Coranら、53巻(1980年)、141ページ
本発明の目的は、上述の従来技術の課題に鑑み、柔軟性に富み、圧縮永久歪み特性、ガスバリア性及び制振性、衛生性に優れ、特に成形体表面性に優れた熱可塑性エラストマー組成物の製造法を提供することにある。
本発明者らは、鋭意検討した結果、本発明を完成するに至った。すなわち本発明は、末端にアルケニル基を有するイソブチレン系重合体(A)、ポリプロピレン系樹脂(B1)及び/又はポリエチレン系樹脂(B2)及び/又はスチレン−イソブチレン−スチレンブロック共重合体(B3)からなる樹脂成分(B)を溶融混練しながらイソブチレン系重合体(A)をヒドロシリル基含有ポリシロキサン(C)により動的に架橋することで得られる熱可塑性エラストマー組成物の製造法であり、イソブチレン系重合体(A)の溶融混練系中への添加を少なくとも2回以上分割して添加し、かつ各回の添加量はイソブチレン系重合体(A)最終仕込量の20〜80%の範囲にあることを特徴とする熱可塑性エラストマー組成物の製造法に関する。
好ましい態様としては、イソブチレン系重合体(A)100重量部に対して、ポリプロピレン系樹脂(B1)及び/又はポリエチレン系樹脂(B2)及び/又はスチレン−イソブチレン−スチレンブロック共重合体(B3)からなる樹脂成分(B)を5〜100重量部含有する熱可塑性エラストマー組成物の製造法に関する。
好ましい態様としては、さらにイソブチレン系重合体(A)100重量部に対して軟化剤(D)を1〜300重量部含有する熱可塑性エラストマー組成物の製造法に関する。
好ましい態様としては、軟化剤(D)が、パラフィン系オイルまたはポリブテンである熱可塑性エラストマー組成物の製造法に関する。
好ましい態様としては、ポリプロピレン系樹脂(B1)が、ランダムポリプロピレンである熱可塑性エラストマー組成物の製造法に関する。
好ましい態様としては、ポリエチレン系樹脂(B2)が、高密度ポリエチレンである熱可塑性エラストマー組成物の製造法に関する。
本発明に係る組成物は、従来の熱可塑性樹脂と同様、熱プレス、射出成形等の一般的な手法により、容易に成形を行うことが可能である。また、本発明に係る組成物は柔軟性、ゴム弾性に富むばかりでなく、良好なガスバリア性、衛生性、圧縮永久歪み特性、制振性及び特に良好な表面性を示している。このため、医療用薬栓、飲料用キャップライナーなどの密封用封止材や、プリンタ用インクチューブ、ホース、クッション材等、様々な用途に好適に使用することができる。
本発明の熱可塑性エラストマー組成物の組成物は、末端にアルケニル基を有するイソブチレン系重合体(A)、ポリプロピレン系樹脂(B1)及び/又はポリエチレン系樹脂(B2)及び/又はスチレン−イソブチレン−スチレンブロック共重合体(B3)からなる樹脂成分(B)を溶融混練しながらイソブチレン系重合体(A)をヒドロシリル基含有ポリシロキサン(C)により動的に架橋し、かつイソブチレン系重合体(A)の溶融混練系中への添加を少なくとも2回以上分割して添加し、かつ各回の添加量はイソブチレン系重合体(A)最終仕込量の20〜80%の範囲にある。
本発明のイソブチレン系重合体(A)は、イソブチレンを主成分とし、末端にアルケニル基を有する重合体である。ガスバリア性の点から、イソブチレン系重合体(A)はイソブチレンが50重量%以上であるのが好ましく、より好ましくは70重量%以上、さらに好ましくは90重量%以上である。イソブチレン系重合体(A)のイソブチレン以外の単量体は、カチオン重合可能な単量体成分であれば特に限定されないが、芳香族ビニル類、脂肪族オレフィン類、イソプレン、ブタジエン、ジビニルベンゼン等のジエン類、ビニルエーテル類、β−ピネン等の単量体が例示できる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
イソブチレン系重合体(A)の数平均分子量に特に制限はないが、1,000から500,000が好ましく、5,000から200,000が特に好ましい。数平均分子量が1,000未満の場合、機械的な特性等が十分に発現されず、また、500,000を超える場合、成形性等の低下が大きい。
イソブチレン系重合体(A)のアルケニル基は、成分(A)の架橋反応に対して活性のある炭素−炭素二重結合を含む基であればよく、特に制限されるものではない。具体例としては、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等の脂肪族不飽和炭化水素基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の環式不飽和炭化水素基を挙げることができる。
本発明のイソブチレン系重合体の末端へのアルケニル基の導入方法(重合体(A)の製造方法)としては、特開平3−152164号公報や特開平7−304909号公報に開示されているような、水酸基などの官能基を有する重合体に不飽和基を有する化合物を反応させて、重合体に不飽和基を導入する方法が挙げられる。また、ハロゲン原子を有する重合体に不飽和基を導入するためには、アルケニルフェニルエーテルとのフリーデルクラフツ反応を行う方法、ルイス酸存在下アリルトリメチルシラン等との置換反応を行う方法、種々のフェノール類とのフリーデルクラフツ反応を行い水酸基を導入した上で、さらに前記のアルケニル基導入反応を行う方法などが挙げられる。さらに米国特許第4316973号、特開昭63−105005号公報、特開平4−288309号公報に開示されているように、単量体の重合時に不飽和基を導入することも可能である。この中でもアリルトリメチルシランと塩素の置換反応により末端にアリル基を導入したものが、確実性の点から好ましい。
イソブチレン系重合体(A)の末端のアルケニル基の量は、必要とする特性によって任意に選ぶことができるが、架橋後の特性の観点から、1分子あたり少なくとも0.2個のアルケニル基を末端に有する重合体であることが好ましい。0.2個未満であると、架橋による改善効果が十分に得られない場合がある。
ポリプロピレン系樹脂(B1)とは、プロピレンを主成分とする単独重合体または共重合体を意味する。共重合するモノマーとしてはエチレンおよび炭素数3〜20のα−オレフィンから選ばれる単量体が挙げられる。(A)成分との相溶性の観点からランダムタイプのポリプロピレンが好ましい。ポリプロピレン系樹脂(B1)のメルトフローレイトは特に制限されないが、230℃2.16kg荷重でのメルトフローレイトが50g/10分以下であるのが好ましく、3g〜20g/10分であるのがさらに好ましい。ポリプロピレン系樹脂(B1)のメルトフローレイトが50g/10分より大きいと、耐熱性、機械強度に劣る傾向がある。
ポリエチレン系樹脂(B2)とはエチレンを主成分とする単独重合体または共重合体である。共重合するモノマーとしてはエチレンおよび炭素数3〜20のα−オレフィンから選ばれる単量体である。耐熱性の観点から高密度ポリエチレンが好ましい。ポリエチレン系樹脂(B2)のメルトフローレイトは特に制限されないが、230℃2.16kg荷重でのメルトフローレイトが50g/10分以下であるのが好ましく、3g〜20g/10分であるのがさらに好ましい。ポリエチレン系樹脂(B2)のメルトフローレイトが50g/10分より大きいと、耐熱性、機械強度に劣る傾向がある。
スチレン−イソブチレン−スチレンブロック共重合体(B3)とはスチレンを主体とする重合体ブロックとイソブチレン系重合体ブロックからなる。
スチレンを主体とする重合体ブロックは、加工温度と硬度、物理強度のバランスから、スチレンに由来するユニットが60重量%以上であるのが好ましく、より好ましくは80重量%以上から構成される重合体ブロックである。
スチレン以外の好ましい化合物としては、o−、m−又はp−メチルスチレン、α−メチルスチレン、β−メチルスチレン、2,6−ジメチルスチレン、2,4−ジメチルスチレン、α−メチル−o−メチルスチレン、α−メチル−m−メチルスチレン、α−メチル−p−メチルスチレン、β−メチル−o−メチルスチレン、β−メチル−m−メチルスチレン、β−メチル−p−メチルスチレン、2,4,6−トリメチルスチレン、α−メチル−2,6−ジメチルスチレン、α−メチル−2,4−ジメチルスチレン、β−メチル−2,6−ジメチルスチレン、β−メチル−2,4−ジメチルスチレン、o−、m−又はp−クロロスチレン、2,6−ジクロロスチレン、2,4−ジクロロスチレン、α−クロロ−o−クロロスチレン、α−クロロ−m−クロロスチレン、α−クロロ−p−クロロスチレン、β−クロロ−o−クロロスチレン、β−クロロ−m−クロロスチレン、β−クロロ−p−クロロスチレン、2,4,6−トリクロロスチレン、α−クロロ−2,6−ジクロロスチレン、α−クロロ−2,4−ジクロロスチレン、β−クロロ−2,6−ジクロロスチレン、β−クロロ−2,4−ジクロロスチレン、o−、m−又はp−t−ブチルスチレン、o−、m−又はp−メトキシスチレン、o−、m−又はp−クロロメチルスチレン、o−、m−又はp−ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン等が挙げられる。これらの中でも、工業的な入手性やガラス転移温度の点から、α−メチルスチレン、β−ピネンおよび、これらの混合物が好ましい。
イソブチレンを主体とする重合体ブロックは、ガスバリア性や硬度と物理強度のバランスの点から、イソブチレンに由来するユニットが60重量%以上であるのが好ましく、より好ましくは80重量%以上から構成される重合体ブロックである。
いずれの重合体ブロックも、共重合成分として、相互の単量体を使用することができるほか、その他のカチオン重合可能な単量体成分を使用することができる。このような単量体成分としては、脂肪族オレフィン類、ジエン類、ビニルエーテル類、シラン類、ビニルカルバゾール、β−ピネン、アセナフチレン等の単量体が例示できる。これらはそれぞれ単独で又は2種以上を組み合わせて使用することができる。
脂肪族オレフィン系単量体としては、エチレン、プロピレン、1−ブテン、2−メチル−1−ブテン、3−メチル−1−ブテン、ペンテン、ヘキセン、シクロヘキセン、4−メチル−1−ペンテン、ビニルシクロヘキサン、オクテン、ノルボルネン等が挙げられる。
ジエン系単量体としては、ブタジエン、イソプレン、ヘキサジエン、シクロペンタジエン、シクロヘキサジエン、ジシクロペンタジエン、ジビニルベンゼン、エチリデンノルボルネン等が挙げられる。
ビニルエーテル系単量体としては、メチルビニルエーテル、エチルビニルエーテル、(n−、イソ)プロピルビニルエーテル、(n−、sec−、tert−、イソ)ブチルビニルエーテル、メチルプロペニルエーテル、エチルプロペニルエーテル等が挙げられる。
シラン化合物としては、ビニルトリクロロシラン、ビニルメチルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジメチルシラン、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、トリビニルメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン等が挙げられる。
本発明の成分(B3)は、スチレンを主体とするブロックとイソブチレンを主体とするブロックから構成されている限り、その構造には特に制限はなく、例えば、直鎖状、分岐状、星状等の構造を有するブロック共重合体、ジブロック共重合体、トリブロック共重合体、マルチブロック共重合体等のいずれも選択可能である。好ましい構造としては、物性バランス及び成形加工性の点から、スチレン−イソブチレン−スチレンで構成されるトリブロック共重合体が挙げられる。これらは所望の物性・成形加工性を得る為に、それぞれ単独で又は2種以上を組み合わせて使用することができる。
スチレンを主体とするブロックとイソブチレンを主体とするブロックの割合に関しては、特に制限はないが、柔軟性およびゴム弾性の点から、成分(C)におけるスチレンを主体とするブロックの含有量が5〜50重量%であることが好ましく、10〜40重量%であることがさらに好ましい。
また成分(B3)の分子量にも特に制限はないが、流動性、成形加工性、ゴム弾性等の面から、GPC測定による重量平均分子量で30,000〜500,000であることが好ましく、50,000〜300,000であることが特に好ましい。重量平均分子量が30,000よりも低い場合には機械的な物性が十分に発現されない傾向があり、一方500,000を超える場合には流動性、加工性が悪化する傾向がある。
成分(B3)の製造方法については特に制限はないが、例えば、下記一般式(1)で表される化合物の存在下に、単量体成分を重合させることにより得られる。
(CRX)n (1)
[式中Xはハロゲン原子、炭素数1〜6のアルコキシ基またはアシロキシ基から選ばれる置換基、R、Rはそれぞれ水素原子または炭素数1〜6の1価炭化水素基でR、Rは同一であっても異なっていても良く、Rは一価若しくは多価芳香族炭化水素基または一価若しくは多価脂肪族炭化水素基であり、nは1〜6の自然数を示す。]
上記一般式(1)で表わされる化合物は開始剤となるもので、ルイス酸等の存在下炭素陽イオンを生成し、カチオン重合の開始点になると考えられる。本発明で用いられる一般式(1)の化合物の例としては、次のような化合物等が挙げられる。
(1−クロル−1−メチルエチル)ベンゼン[CC(CHCl]、1,4−ビス(1−クロル−1−メチルエチル)ベンゼン[1,4−Cl(CHCCC(CHCl]、1,3−ビス(1−クロル−1−メチルエチル)ベンゼン[1,3−Cl(CHCCC(CHCl]、1,3,5−トリス(1−クロル−1−メチルエチル)ベンゼン[1,3,5−(ClC(CH]、1,3−ビス(1−クロル−1−メチルエチル)−5−(tert−ブチル)ベンゼン[1,3−(C(CHCl)-5−(C(CH)C
これらの中でも特に好ましいのはビス(1−クロル−1−メチルエチル)ベンゼン[C(C(CHCl)]、トリス(1−クロル−1−メチルエチル)ベンゼン[(ClC(CH]である。[なおビス(1−クロル−1−メチルエチル)ベンゼンは、ビス(α−クロロイソプロピル)ベンゼン、ビス(2−クロロ−2−プロピル)ベンゼンあるいはジクミルクロライドとも呼ばれ、トリス(1−クロル−1−メチルエチル)ベンゼンは、トリス(α−クロロイソプロピル)ベンゼン、トリス(2−クロロ−2−プロピル)ベンゼンあるいはトリクミルクロライドとも呼ばれる]。
成分(B3)を製造する際には、さらにルイス酸触媒を共存させることもできる。このようなルイス酸としてはカチオン重合に使用できるものであれば良く、TiCl、TiBr、BCl、BF、BF・OEt、SnCl、SbCl、SbF、WCl、TaCl、VCl、FeCl、ZnBr、AlCl、AlBr等の金属ハロゲン化物;EtAlCl、EtAlCl等の有機金属ハロゲン化物を好適に使用することができる。中でも触媒としての能力、工業的な入手の容易さを考えた場合、TiCl、BCl、SnClが好ましい。ルイス酸の使用量は、特に限定されないが、使用する単量体の重合特性あるいは重合濃度等を鑑みて設定することができる。通常は一般式(1)で表される化合物に対して0.1〜100モル当量使用することができ、好ましくは1〜50モル当量の範囲である。
成分(B3)の製造に際しては、さらに必要に応じて電子供与体成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成長炭素カチオンを安定化させる効果があるものと考えられており、電子供与体の添加によって、分子量分布の狭い、構造が制御された重合体を生成することができる。使用可能な電子供与体成分としては特に限定されないが、例えば、ピリジン類、アミン類、アミド類、スルホキシド類、エステル類、または金属原子に結合した酸素原子を有する金属化合物等を挙げることができる。
成分(B3)の重合は必要に応じて有機溶媒中で行うことができ、有機溶媒としてはカチオン重合を本質的に阻害しなければ、特に制約なく使用することができる。具体的には、塩化メチル、ジクロロメタン、クロロホルム、塩化エチル、ジクロロエタン、n−プロピルクロライド、n−ブチルクロライド、クロロベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン等のアルキルベンゼン類;エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂肪族炭化水素類;2−メチルプロパン、2−メチルブタン、2,3,3−トリメチルペンタン、2,2,5−トリメチルヘキサン等の分岐式脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の環式脂肪族炭化水素類;石油留分を水添精製したパラフィン油等を挙げることができる。
これらの溶媒は、成分(B3)を構成する単量体の重合特性及び生成する重合体の溶解性等のバランスを考慮して、それぞれ単独で又は2種以上を組み合わせて使用することができる。
上記溶媒の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して、重合体の濃度が1〜50wt%、好ましくは5〜35wt%となるように決定される。
実際の重合を行うに当たっては、各成分を冷却下例えば−100℃以上0℃未満の温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好ましい温度範囲は−30℃〜−80℃である。
樹脂成分(B)の添加量としてはイソブチレン系ブロック共重合体(A)100重量部に対して5〜300重量部が好ましく、5〜100重量部がさらに好ましい。樹脂成分(B)の添加量が300重量部を超えると圧縮永久歪み特性の悪化が著しくなる傾向にあり、5重量部より少なくなると物理強度、成形性の低下が著しい傾向にある。
ヒドロシリル基含有ポリシロキサン(C)は、末端にアルケニル基が導入されたイソブチレン系重合体(A)を架橋するために用いられる。使用できるヒドロシリル基含有ポリシロキサンに特に制限はないが、ヒドロシリル基を3個以上持ち、シロキサンユニットを3個以上500個以下持つ、ヒドロシリル基含有ポリシロキサンが好ましく、ヒドロシリル基を3個以上持ち、シロキサンユニットを10個以上200個以下持つポリシロキサンがさらに好ましく、ヒドロシリル基を3個以上持ち、シロキサンユニットを20個以上100個以下持つポリシロキサンが特に好ましい。ヒドロシリル基が3個より少ないと、架橋によるネットワークの十分な成長が達成されず最適なゴム弾性が得られない傾向があり、シロキサンユニットが500個より多くなると、ポリシロキサンの粘度が高く成分(A)中への分散性が低下し、架橋反応の進行が不十分となる傾向がある。ここで言うポリシロキサンユニットとは以下の一般式(I)、(II)、(III)を指す。
[Si(RO] (I)
[Si(H)(R)O] (II)
[Si(R)(R)O] (III)
ヒドロシリル基含有ポリシロキサンとして、一般式(IV)または(V)で表される鎖状ポリシロキサン;
SiO−[Si(RO]−[Si(H)(R)O]−[Si(R)(R)O]−SiR (IV)
HR SiO−[Si(RO]−[Si(H)(R)O]−[Si(R)(R)O]−SiR H (V)
(式中、RおよびRは炭素数1〜6のアルキル基、または、フェニル基、Rは炭素数1〜10のアルキル基またはアラルキル基を示す。bは3≦b、a,b,cは3≦a+b+c≦500を満たす整数を表す。)
一般式(VI)で表される環状シロキサン;
Figure 2009179688
(式中、RおよびRは炭素数1〜6のアルキル基、または、フェニル基、Rは炭素数1〜10のアルキル基またはアラルキル基を示す。eは3≦e、d,e,fはd+e+f≦500を満たす整数を表す。)等の化合物を用いることができる。
末端にアルケニル基を有するイソブチレン系重合体(A)とヒドロシリル基含有ポリシロキサン(C)は任意の割合で混合することができるが、反応性の面から、アルケニル基のヒドロシリル基に対するモル比(アルケニル基/ヒドロシリル基)が5〜0.2の範囲にあることが好ましく、さらに、2.5〜0.4であることが特に好ましい。モル比が5以上になると架橋が不十分でべたつきがあり、圧縮永久歪み特性が悪化する傾向が見られ、また、0.2より小さいと、架橋後も活性なヒドロシリル基が大量に残るので、加水分解により水素ガスが発生し、クラックやボイドを生じやすい傾向がある。
イソブチレン系重合体(A)とヒドロシリル基含有ポリシロキサン(C)との架橋反応は、2成分を混合して加熱することにより進行するが、反応をより迅速に進めるために、ヒドロシリル化触媒を添加することができる。このようなヒドロシリル化触媒としては特に限定されず、例えば、有機過酸化物やアゾ化合物等のラジカル開始剤、および遷移金属触媒が挙げられる。
ラジカル開始剤としては特に限定されず、例えば、ジ−t−ブチルペルオキシド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)−3−ヘキシン、ジクミルペルオキシド、t−ブチルクミルペルオキシド、α,α’−ビス(t−ブチルペルオキシ)イソプロピルベンゼンのようなジアルキルペルオキシド、ベンゾイルペルオキシド、p−クロロベンゾイルペルオキシド、m−クロロベンゾイルペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシドのようなアシルペルオキシド、過安息香酸−t−ブチルのような過酸エステル、過ジ炭酸ジイソプロピル、過ジ炭酸ジ−2−エチルヘキシルのようなペルオキシジカーボネート、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、1,1−ジ(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサンのようなペルオキシケタール、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2−メチルブチロニトリル、1,1’−アゾビス−1−シクロヘキサンカルボニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾイソブチロバレロニトリルのようなアゾ化合物等を挙げることができる。
また、遷移金属触媒としても特に限定されず、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金(0)−ジアルケニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl(PPh,RhCl,RuCl,IrCl,FeCl,AlCl,PdCl・HO,NiCl,TiCl等が挙げられる。これらの触媒は単独で用いてもよく、2種類以上を併用してもかまわない。触媒量としては特に制限はないが、成分(A)のアルケニル基1molに対し、10−1〜10−8molの範囲で用いるのが良く、好ましくは10−3〜10−6molの範囲で用いるのがよい。10−8molより少ないと架橋が十分に進行しない傾向がある。 また、10−1mol以上用いても明確な効果は見られないため、経済性の面から、10−1molよりも少ないことが好ましい。これらのうち、相溶性、架橋効率、スコーチ安定性の点で、白金ビニルシロキサンが最も好ましい。
本発明では、(D)成分として、柔軟性と成形流動性を付与する目的で、軟化剤も必要に応じて使用することができる。軟化剤としては、特に限定されないが、一般的に、室温で液体又は液状の材料が好適に用いられる。このような軟化剤としては、鉱物油系、植物油系、合成系等の各種ゴム用又は樹脂用軟化剤が挙げられる。鉱物油系としては、ナフテン系、パラフィン系等のプロセスオイル等が、植物油系としては、ひまし油、綿実油、あまみ油、なたね油、大豆油、パーム油、やし油、落花生油、木ろう、パインオイル、オリーブ油等が、合成系としては液状ポリブテン、低分子量ポリブタジエン等が例示できる。これらの中でも成分(A)との相溶性およびガスバリア性の点から、パラフィンオイル、もしくはポリブテンが好ましく用いられる。液状ポリブテンとしては、1−ブテン、2−ブテン、イソブテン等の単独重合体、及びそれらを主成分とする共重合体等が挙げられるが、このうち、イソブテンの単独重合体、或いは、イソブテンを主成分とする1−ブテン又は/及び2−ブテンとの共重合体が好ましい。液状ポリブテンは、数平均分子量が500〜6,000であることが好ましい。数平均分子量が500未満では、熱可塑性エラストマー組成物として耐熱性が劣ると共に、ブリードして成形体表面にべたつきが生じ易いこととなり、一方、6,000を超える場合、熱可塑性エラストマー組成物に均一に分散することが困難となる。
これら軟化剤は、所望の硬度および溶融粘度を得るために2種以上を適宜組み合わせて使用してもよい。
(D)成分の配合量は、成分(A)100重量部に対して1〜500重量部とするのが好ましく、1〜200重量部とするのがより好ましく、1〜100重量部とするのが更に好ましい。500重量部を超えると、成形体表面から軟化剤がブリードアウトしやすくなる傾向があり、好ましくない。
(D)成分を添加するタイミングとしては、特に制限されず、成分(A)の動的架橋時に添加しても良いし、動的架橋後に添加しても良い。
(A)成分の添加は2回以上に分割して添加することが(A)成分の分散性の向上に好ましい。各々の分割する割合は(A)成分の最終仕込み量に対して10〜80%の範囲に有ることが好ましい。10%を下回る、もしくは80%を超えると分割添加する効果が失われるおそれがある。(A)成分の分割添加にともない(C)成分と触媒も(A)成分の分割比率に準じて分割添加されることが架橋反応を均一にするという点で好ましい。2回目以降の分割した(A)成分の添加するタイミングはその前に添加された(A)成分の70%以上がヘキサンに対して不溶分となっていることが好ましい。70%を下回ると架橋反応が不十分であり、分割添加する効果が得られない恐れがある。なお一回に添加する成分については、必ずしも全量まとめて一度に仕込む必要はなく、必要に応じて、一回に添加する成分を連続的に時間をかけて仕込んでも良い。また、たとえ形式的に二回以上に分けて添加した場合でも、例えば時間の間隔が極端に短い等、当業者からみて実質的に一回で添加したと思える場合は、本発明においては一回で添加したとみなす。
溶融混練するには、公知の方法を採用すればよく、前述のバッチ式混練装置や連続式混練装置を使用することができる。例えば、押出機や、バンバリーミキサー、ロール等で溶融混練する方法が挙げられる。このときの混練温度は、特に限定はないが、100〜250℃の範囲が好ましく、150〜220℃の範囲がより好ましい。混練温度が100℃よりも低くなると、溶融が不十分となる傾向があり、250℃よりも高くなると、加熱による劣化が起こり始めるおそれがある。
また本発明の組成物には、さらには、各用途に合わせた要求特性に応じて、物性を損なわない範囲で、例えばエチレン−プロピレン共重合ゴム(EPM)、エチレン−プロピレン−ジエン三元共重合ゴム(EPDM)、エチレン−ブテン共重合ゴム(EBM)、アモルファスポリα−オレフィン(APAO)、エチレン−オクテン共重合体などの柔軟なオレフィン系ポリマー、そのほかにも、ヒンダードフェノール系やリン系、イオウ系の酸化防止剤や、ヒンダードアミン系の紫外線吸収剤、光安定剤、顔料、界面活性剤、難燃剤、ブロッキング防止剤、帯電防止剤、滑剤、シリコーンオイル、充填剤、補強剤等を適宜配合することができる。無機充填剤としては軽質炭酸カルシウム、重質ないし炭酸カルシウム、その他のカルシウム系充填材、ハードクレー、ソフトクレー、カオリンクレー、タルク、湿式シリカ、乾式シリカ、無定形シリカ、ウォラスナイト、合成ないし天然ゼオライト、ケイソウ土、ケイ砂、軽石粉、スレート粉、アルミナ、硫酸アルミニウム、硫酸バリウム、硫酸カルシウム、二硫化モリブデン、水酸化マグネシウム、水酸化アルミニウムや、これらをシラン処理したもの等が挙げられる。これらの添加剤は、2種類以上を組み合わせて使用することも可能である。たとえば、無機充填剤を含有させることにより、硬度や引張強度を向上することが可能である。また、無機充填剤として水酸化マグネシウムや水酸化アルミニウムなどの金属水酸化物を使用した場合には、優れた難燃性を付与できる場合がある。また前記ブロッキング防止剤としては、例えばシリカ、ゼオライト等が好適であり、これらは天然、合成の何れでもよくまた架橋アクリル真球粒子などの真球架橋粒子も好適である。また前記帯電防止剤としては、炭素数12〜18のアルキル基を有するN,N−ビス−(2−ヒドロキシエチル)−アルキルアミン類やグリセリン脂肪酸エステルが好ましい。さらに、前記滑剤としては、脂肪酸アミドが好ましく、具体的にはエルカ酸アミド、ベヘニン酸アミド、ステアリン酸アミド、オレイン酸アミド等が挙げられる。
本発明の熱可塑性エラストマー組成物は、熱可塑性樹脂組成物に対して一般に採用される成形方法及び成形装置を用いて成形でき、例えば、押出成形、射出成形、プレス成形、ブロー成形などによって溶融成形できる。また、本発明の熱可塑性エラストマー組成物は、成形性、衛生性、制振性、ガスバリア特性、圧縮永久歪み特性に優れているため、パッキング材、シール材、ガスケット、栓体などの密封用材、具体的には医療用薬栓や飲料用キャップライナー、そしてCDダンパー、建築用ダンパー、自動車、車両、家電製品向け制振材等の制振材、防振材、自動車内装材、クッション材、日用品、電気部品、電子部品、スポーツ部材、グリップまたは緩衝材、電線被覆材、包装材、各種容器、文具部品として有効に使用することができる。
以下に、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらにより何ら制限を受けるものではない。
尚、実施例に先立ち各種測定法、評価法、実施例について説明する。
(硬度)
JIS K6253に準拠し、スプリング式のタイプAデュロメータで硬度(以下、JIS−A硬度と略す)を測定した。硬度は測定直後の数値を採用した。なお、試験片は12.0mm厚プレスシートを用いた。
(引張強度)
JIS K 6251に準拠し、試験片として2mm厚プレスシートをダンベルで3号型に打抜いたものを用意し、これを測定に使用した。引張速度は500mm/分とした。
(引張伸び)
JIS K 6251に準拠し、試験片として2mm厚プレスシートを、ダンベルで3号型に打抜いたものを用意し、これを測定に使用した。引張速度は500mm/分とした。
(圧縮永久歪み)
JIS K 6262に準拠し、試験片は直径30mm、12.5mm厚のプレス成形体を使用した。100℃×22時間、25%変形の条件にて測定した。
(成型体表面性)
得られた熱可塑性エラストマー組成物を射出成型機にて成形した2mm厚の120mm角シートの表面の凹凸を評価した。目視で凹凸が確認できる場合は×、確認できない場合は○とした。
(分散性)
得られた熱可塑性エラストマー組成物20gとカーボンブラック(三菱化学社製、商品名「三菱カーボンブラック♯45L」0.1gを170℃に設定したラボプラストミル(東洋精機社製)を用いて5分間溶融混練し、次いで180℃でプレスすることで200μmの厚みのフィルムを得たのちフィルムをキャビン社製ライトパネルCL−5000Pで透かして分散性を観察した。可視大の粒子が見えたら×、見えなければ○とした。
成分(A):APIB:末端にアリル基が導入されたポリイソブチレン(製造例1)
成分(B1):RPP:ポリプロピレン、プライムポリマー株式会社製(商品名「プライムポリプロJ215W」)
成分(B2):HDPE:高密度ポリエチレン、プライムポリマー社製(商品名「ハイゼックス2200J」)
成分(B3):SIBS:スチレン−イソブチレン−スチレンブロック共重合体(製造例2)
成分(C):メチルハイドロジェンポリシロキサン、東芝シリコーン社製(商品名「TSF484」)
架橋触媒:
0価白金の1,1,3,3−テトラメチル−1,3−ジアルケニルジシロキサン錯体、3重量%キシレン溶液
成分(D):ポリブテン:出光興産社製(商品名「出光ポリブテン100R」)
(製造例1)[末端にアルケニル基が導入されたイソブチレン系共重合体(APIB)の製造]
2Lセパラブルフラスコに三方コック、および熱電対、攪拌シールを取りつけ、窒素置換を行った。窒素置換後、三方コックを用いて窒素をフローした。これにシリンジを用いてトルエン785ml、エチルシクロヘキサン265mlを加えた。溶剤添加後、カールフィッシャー水分計にて水分量を測定した。測定後、−70℃程度まで冷却した。イソブチレンモノマー277ml(2933mmol)を加えた。再度−70℃程度まで冷却後、p−ジクミルクロライド0.85g(3.7mmol)およびピコリン0.68g(7.4mmol)をトルエン10mlに溶解して加えた。反応系の内温が−74℃となり安定した時点で四塩化チタン19.3ml(175.6mmol)を加え、重合を開始した。重合反応が終了した時点(反応開始から90分)で、75%アリルシラン/トルエン溶液1.68g(11.0mmol)を添加し、さらに2時間反応させた。その後、50℃程度に加熱した純水で失活し、さらに有機層を純水(70℃〜80℃)で3回洗浄し、有機溶剤を減圧下80℃にて除去してAPIBを得た。Mnが45500、Mw/Mnは1.10、含有アリル基が2.0/molである重合体が得られた。
(製造例2)[スチレン−イソブチレン−スチレンブロック共重合体(SIBS)の製造]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、n−ヘキサン(モレキュラーシーブスで乾燥したもの)456.1mL及び塩化ブチル(モレキュラーシーブスで乾燥したもの)656.5mLを加え、重合容器を−70℃のドライアイス/メタノールバス中につけて冷却した後、イソブチレンモノマー232mL(2871mmol)が入っている三方コック付耐圧ガラス製液化採取管にポリテトラフルオロエチレン製の送液チューブを接続し、重合容器内にイソブチレンモノマーを窒素圧により送液した。p−ジクミルクロライド0.647g(2.8mmol)及びN,N−ジメチルアセトアミド1.22g(14mmol)を加えた。次にさらに四塩化チタン8.67mL(79.1mmol)を加えて重合を開始した。重合開始から1.5時間同じ温度で撹拌を行った後、重合溶液からサンプリング用として重合溶液約1mLを抜き取った。続いて、あらかじめ−70℃に冷却しておいたスチレンモノマー77.9g(748mmol)、n−ヘキサン23.9mLおよび塩化ブチル34.3mLの混合溶液を重合容器内に添加した。この混合溶液を添加してから45分後に、約40mLのメタノールを加えて反応を終了させた。
反応溶液から溶剤を留去した後、析出した固形物をトルエンに溶解し、2回水洗を行った。さらにトルエン溶液を多量のメタノールに加えて重合体を沈殿させ、得られた重合体を60℃で24時間真空乾燥することにより目的のブロック共重合体を得た。ゲルパーミエーションクロマトグラフィー(GPC)法により得られた重合体の分子量を測定した。スチレン添加前のイソブチレン重合体のMnが50,000、Mw/Mnは1.40であり、スチレン重合後のブロック共重合体のMnが67,000、Mw/Mnが1.50であるブロック共重合体が得られた。
(実施例1)
製造例1で得られた成分(A)、成分(B1)、成分(C)、成分(D)、触媒を表1の配合系1に示した割合で合計40gになるように計量し、表2に示した割合に従い、33%と67%に成分(A)、成分(C)、触媒を分割した。次に、成分(A)の33%に分割したもの、成分(B1)全量を170℃に設定したラボプラストミルにて3分間混練し、次いで成分(C)の33%に分割したもの、触媒の33%に分割したものを投入しトルクの最高値を示した3分後に、成分(A)の67%に分割したものを投入し、3分後に成分(C)の67%に分割したもの、触媒の67%に分割したものを投入しトルクの最高値を示した3分後に取り出した。得られた熱可塑性エラストマー組成物は190℃で加熱プレス(神藤金属工業株式会社製)にて容易にシート状に成形することができた。得られたシートの、硬度、引張特性、分散性を上記方法に従って測定した。それぞれのシートの物性を表2に示す。
(実施例2)
分割回数を3回にし、分割比率を33%、33%、34%と変更した以外は実施例1と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B1)全量は、最初に(A)の33%に分割したものと混合した。それぞれの物性を表2に示す。
(実施例3)
配合を表1の配合系2に変更し、分割比率を67%と33%に変更した以外は実施例1と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B2)全量は、最初に(A)の67%に分割したものと混合した。それぞれの物性を表2に示す。
(実施例4)
分割回数を3回にし、分割比率を16.5%、16.5%、67%と変更した以外は実施例3と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B2)全量は、最初に(A)の16.5%に分割したものと混合した。それぞれの物性を表2に示す。
(実施例5)
配合を表1の配合系3に変更し、分割比率を25%と75%に変更した以外は実施例1と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B3)全量は、最初に(A)の25%に分割したものと混合した。それぞれの物性を表2に示す。
(実施例6)
分割回数を3回にし、分割比率を50%、25%、25%と変更した以外は実施例5と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B3)全量は、最初に(A)の50%に分割したものと混合した。それぞれの物性を表2に示す。
(比較例1)
製造例1で得られた成分(A)、成分(B1)、成分(C)、成分(D)、触媒を表1の配合系1に示した割合で合計40gになるように計量し、次に、成分(A)全量、成分(B1)全量を170℃に設定したラボプラストミルにて3分間混練し、次いで成分(C)全量、触媒全量を投入しトルクの最高値を示した3分後に取り出した。得られた熱可塑性エラストマー組成物は190℃で加熱プレス(神藤金属工業株式会社製)にてシート状に成形することができた。得られたシートの、硬度、引張特性、分散性を上記方法に従って測定した。それぞれのシートの物性を表3に示す。
(比較例2)
分割比率を5%と95%と変更した以外は実施例1と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B1)全量は、最初に(A)の5%に分割したものと混合した。それぞれの物性を表3に示す。
(比較例3)
配合を表1の配合系2に変更した以外は比較例1と同様にして熱可塑性エラストマー組成物を得、物性を評価した。それぞれの物性を表3に示す。
(比較例4)
分割比率を95%と5%と変更した以外は実施例3と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B2)全量は、最初に(A)の95%に分割したものと混合した。それぞれの物性を表3に示す。
(比較例5)
配合を表1の配合系3に変更した以外は比較例1と同様にして熱可塑性エラストマー組成物を得、物性を評価した。それぞれの物性を表3に示す。
(比較例6)
分割数を分割比率を5%、5%、90%と変更した以外は実施例6と同様にして熱可塑性エラストマー組成物を得、物性を評価した。成分(B3)全量は、最初に(A)の5%に分割したものと混合した。それぞれの物性を表3に示す。
Figure 2009179688
Figure 2009179688
Figure 2009179688
実施例1〜6はすべて成型体表面性、および分散性に優れている。それに対して分割を行っていない、比較例1、3、5と分割比率が10%より小さい、もしくは90%より大きい比較例2、4,6は成型体表面性、および分散性に劣る結果ということが分かる。
上記のことから、本発明の製造法にかかる組成物は、硬度、圧縮永久歪み特性、強度のバランスの取れた材料であり、特に成型体の表面性に優れることが分かる。従って、これらの特性が要求される、飲料用キャップライナーや医療用薬栓、プリンタ用インクチューブ、ホース、などに好適に用いることができる。

Claims (6)

  1. 末端にアルケニル基を有するイソブチレン系重合体(A)、ポリプロピレン系樹脂(B1)及び/又はポリエチレン系樹脂(B2)及び/又はスチレン−イソブチレン−スチレンブロック共重合体(B3)からなる樹脂成分(B)を溶融混練しながらイソブチレン系重合体(A)をヒドロシリル基含有ポリシロキサン(C)により動的に架橋することで得られる熱可塑性エラストマー組成物の製造法であり、イソブチレン系重合体(A)の溶融混練系中への添加を少なくとも2回以上分割して添加し、かつ各回の添加量はイソブチレン系重合体(A)最終仕込量の10〜80%の範囲にあることを特徴とする熱可塑性エラストマー組成物の製造法。
  2. イソブチレン系重合体(A)100重量部に対して、ポリプロピレン系樹脂(B1)及び/又はポリエチレン系樹脂(B2)及び/又はスチレン−イソブチレン−スチレンブロック共重合体(B3)からなる樹脂成分(B)を5〜100重量部含有することを特徴とする請求項1に記載の熱可塑性エラストマー組成物の製造法。
  3. さらにイソブチレン系重合体(A)100重量部に対して軟化剤(D)を1〜300重量部含有することを特徴とする請求項1又は2に記載の熱可塑性エラストマー組成物の製造法。
  4. 軟化剤(D)が、パラフィン系オイルまたはポリブテンであることを特徴とする請求項1〜3のいずれか一項に記載の熱可塑性エラストマー組成物の製造法。
  5. ポリプロピレン系樹脂(B1)が、ランダムポリプロピレンであることを特徴とする請求1〜4のいずれか一項に記載の熱可塑性エラストマー組成物の製造法。
  6. ポリエチレン系樹脂(B2)が、高密度ポリエチレンであることを特徴とする請求項1〜5のいずれか一項に記載の熱可塑性エラストマー組成物の製造法。
JP2008019007A 2008-01-30 2008-01-30 熱可塑性エラストマー組成物の製造方法 Expired - Fee Related JP5331346B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019007A JP5331346B2 (ja) 2008-01-30 2008-01-30 熱可塑性エラストマー組成物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019007A JP5331346B2 (ja) 2008-01-30 2008-01-30 熱可塑性エラストマー組成物の製造方法

Publications (2)

Publication Number Publication Date
JP2009179688A true JP2009179688A (ja) 2009-08-13
JP5331346B2 JP5331346B2 (ja) 2013-10-30

Family

ID=41033911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019007A Expired - Fee Related JP5331346B2 (ja) 2008-01-30 2008-01-30 熱可塑性エラストマー組成物の製造方法

Country Status (1)

Country Link
JP (1) JP5331346B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124331A (ja) * 2011-12-15 2013-06-24 Sumitomo Rubber Ind Ltd ゴム組成物、医療用ゴム組成物および医療用ガスケットゴム組成物
CN103562302A (zh) * 2011-05-31 2014-02-05 普立万公司 具有优异压缩形变性能的热塑性弹性体复合物
JP2018104573A (ja) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 動的架橋物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189653A (ja) * 1997-09-30 1999-07-13 Mitsui Chem Inc 熱可塑性エラストマーおよび製造方法
JP2005023195A (ja) * 2003-07-02 2005-01-27 Kaneka Corp 熱可塑性エラストマー組成物
JP2006176590A (ja) * 2004-12-21 2006-07-06 Kaneka Corp 熱可塑性エラストマー組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189653A (ja) * 1997-09-30 1999-07-13 Mitsui Chem Inc 熱可塑性エラストマーおよび製造方法
JP2005023195A (ja) * 2003-07-02 2005-01-27 Kaneka Corp 熱可塑性エラストマー組成物
JP2006176590A (ja) * 2004-12-21 2006-07-06 Kaneka Corp 熱可塑性エラストマー組成物の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562302A (zh) * 2011-05-31 2014-02-05 普立万公司 具有优异压缩形变性能的热塑性弹性体复合物
EP2714798A2 (en) * 2011-05-31 2014-04-09 PolyOne Corporation Thermoplastic elastomer compounds exhibiting superior compression set properties
EP2714798A4 (en) * 2011-05-31 2014-11-05 Polyone Corp THERMOPLASTIC ELASTOMER COMPOUNDS WITH EXCELLENT PRESSURE HARDENING CHARACTERISTICS
KR101572240B1 (ko) 2011-05-31 2015-11-26 폴리원 코포레이션 우수한 압축 세트 특성을 나타내는 열가소성 엘라스토머 컴파운드
CN103562302B (zh) * 2011-05-31 2016-10-12 普立万公司 具有优异压缩形变性能的热塑性弹性体复合物
JP2013124331A (ja) * 2011-12-15 2013-06-24 Sumitomo Rubber Ind Ltd ゴム組成物、医療用ゴム組成物および医療用ガスケットゴム組成物
JP2018104573A (ja) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 動的架橋物の製造方法

Also Published As

Publication number Publication date
JP5331346B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
US7105611B2 (en) Thermoplastic elastomer composition
JP4287126B2 (ja) 熱可塑性エラストマー組成物
JP4160379B2 (ja) 熱可塑性エラストマー組成物
JP4860902B2 (ja) 熱可塑性エラストマー組成物
JP5331346B2 (ja) 熱可塑性エラストマー組成物の製造方法
JP4686118B2 (ja) ガスバリア性に優れた熱可塑性エラストマー組成物
JP4177186B2 (ja) 熱可塑性エラストマー組成物
JP5047549B2 (ja) 熱可塑性エラストマー組成物
JP4287137B2 (ja) 熱可塑性エラストマー組成物
JP4568455B2 (ja) 熱可塑性エラストマー組成物
JP4354800B2 (ja) 熱可塑性エラストマー組成物及び成形品
JP4705279B2 (ja) 熱可塑性エラストマー組成物
JP4160378B2 (ja) 熱可塑性エラストマー組成物
JP2008031315A (ja) 熱可塑性樹脂エラストマー組成物
JP2006152030A (ja) 熱可塑性エラストマー組成物の製造法
JP7242540B2 (ja) アリル基末端スチレン-イソブチレンブロック共重合体、その組成物、およびそれらの製造方法
JP2003113286A (ja) グリップ性の改良されたゴム組成物およびその製造方法
JP2008239641A (ja) 熱可塑性樹脂組成物
JP2004204183A (ja) 熱可塑性エラストマー組成物
JP2004196844A (ja) 熱可塑性エラストマー組成物の製造方法
JP2005023244A (ja) 熱可塑性エラストマー組成物
JP2008262731A (ja) 燃料電池用ホース
JPWO2006095854A1 (ja) 防振材組成物
JP2012057068A (ja) 樹脂組成物からなる成形体および改質剤
JP2004204182A (ja) 熱可塑性エラストマー組成物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees