JP2009177209A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2009177209A
JP2009177209A JP2009114222A JP2009114222A JP2009177209A JP 2009177209 A JP2009177209 A JP 2009177209A JP 2009114222 A JP2009114222 A JP 2009114222A JP 2009114222 A JP2009114222 A JP 2009114222A JP 2009177209 A JP2009177209 A JP 2009177209A
Authority
JP
Japan
Prior art keywords
semiconductor device
wiring
semiconductor element
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009114222A
Other languages
Japanese (ja)
Other versions
JP5171726B2 (en
Inventor
Yoichiro Kurita
洋一郎 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2009114222A priority Critical patent/JP5171726B2/en
Publication of JP2009177209A publication Critical patent/JP2009177209A/en
Application granted granted Critical
Publication of JP5171726B2 publication Critical patent/JP5171726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

<P>PROBLEM TO BE SOLVED: To connect between a plurality of semiconductor elements in high density, and to improve the connection reliability of the plurality of semiconductor elements. <P>SOLUTION: A semiconductor device 100 includes a first semiconductor element 113 formed on a face of a flat plate like wiring body 101, an insulation resin 119 covering a face of the first wiring body 101 formed with the first semiconductor element 113 and the side of the first semiconductor element 113, and a second semiconductor element 111 formed on another face of the wiring body 101. The wiring body 101 is configured to have a wiring layer 103, silicon layer 105, and an insulation layer 107 stacked in this order. The wiring layer 103 is configured to have a flat plate like insulation body, and a conductor passing through the insulation body. The first semiconductor element 113 and the second semiconductor element 111 are electrically connected via the conductor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof.

従来の半導体装置としては、特許文献1に記載されたものがある。同文献には、回路基板の両面に半導体装置がフリップチップ実装により設けられている両面実装構造体が開示されている。特許文献1によれば、実装後の半導体装置を封止する封止樹脂のガラス転移温度を調節することにより、生産歩留まりおよび信頼性の向上が可能であるとされている。   A conventional semiconductor device is described in Patent Document 1. This document discloses a double-sided mounting structure in which semiconductor devices are provided on both sides of a circuit board by flip-chip mounting. According to Patent Document 1, it is said that production yield and reliability can be improved by adjusting the glass transition temperature of a sealing resin for sealing a semiconductor device after mounting.

特開2001−345418号公報JP 2001-345418 A

ところが、上記文献記載の従来技術では、基板と半導体素子の基材との間の熱膨張係数の差により接合精度や品質が劣化する懸念があった。このため、半導体素子への微細な配線の接続が困難であった。また、接続信頼性においても改善の余地があった。このため、配線密度の高い大規模なチップ間接続を実現することが困難であった。   However, in the prior art described in the above-mentioned document, there is a concern that the bonding accuracy and quality deteriorate due to the difference in thermal expansion coefficient between the substrate and the base material of the semiconductor element. For this reason, it is difficult to connect fine wiring to the semiconductor element. There is also room for improvement in connection reliability. For this reason, it has been difficult to realize large-scale chip-to-chip connections with high wiring density.

本発明は、上記事情に鑑みてなされたものであり、その目体は、複数の半導体素子間を高密度で接続する技術を提供することにある。また、本発明の別の目的は、複数の半導体素子の接続信頼性を向上させることにある。   The present invention has been made in view of the above circumstances, and its object is to provide a technique for connecting a plurality of semiconductor elements at high density. Another object of the present invention is to improve the connection reliability of a plurality of semiconductor elements.

本発明によれば、平板状の配線体と、前記配線体の一方の面に設けられた第一の半導体素子と、前記一方の面および前記第一の半導体素子の側面を被覆する封止樹脂と、前記配線体の他方の面に設けられた第二の半導体素子と、を有し、前記配線体は、配線層と、前記配線層を支持する支持層と、前記配線層および前記支持層を貫通する貫通電極と、を備え、前記配線体を介して前記第一の半導体素子と前記第二の半導体素子とが電気的に接続されていることを特徴とする半導体装置が提供される。   According to the present invention, a flat wiring body, a first semiconductor element provided on one surface of the wiring body, and a sealing resin that covers the one surface and the side surface of the first semiconductor element And a second semiconductor element provided on the other surface of the wiring body, the wiring body including a wiring layer, a support layer that supports the wiring layer, the wiring layer, and the support layer A semiconductor device, wherein the first semiconductor element and the second semiconductor element are electrically connected via the wiring body.

本発明の半導体装置は、配線層と、前記配線層を支持する支持層と、前記配線層および前記支持層を貫通する貫通電極と、を備えるため、貫通電極を高密度で配設することが可能とのある。また、支持層を有するため、貫通電極を高密度で設けた際にも、半導体素子と貫通電極との接続信頼性の向上が可能である。よって、複数のチップや大規模なチップ間接続が可能となる。   Since the semiconductor device of the present invention includes a wiring layer, a support layer that supports the wiring layer, and a through electrode that penetrates the wiring layer and the support layer, it is possible to dispose the through electrodes at high density. It is possible. In addition, since the support layer is provided, the connection reliability between the semiconductor element and the through electrode can be improved even when the through electrode is provided at a high density. Therefore, a plurality of chips and a large-scale chip-to-chip connection are possible.

本発明において、前記配線層および前記支持層がこの順に積層された構成とすることができる。また、貫通電極が複数の導電部材から構成されていてもよい。   In the present invention, the wiring layer and the support layer may be laminated in this order. Further, the through electrode may be composed of a plurality of conductive members.

本発明の半導体装置において、前記支持層の材料は、線膨張係数が0.5ppm/℃以上5ppm/℃以下であってもよい。こうすることにより、第一の半導体装置と第二の半導体装置との接続信頼性をさらに向上させることができる。   In the semiconductor device of the present invention, the material of the support layer may have a linear expansion coefficient of 0.5 ppm / ° C. or more and 5 ppm / ° C. or less. By doing so, the connection reliability between the first semiconductor device and the second semiconductor device can be further improved.

本発明の半導体装置において、前記支持層がシリコン層であってもよい。剛性の高いシリコン層上に微細な配線体を形成し、支持層と熱膨張係数が等しいシリコン半導体素子を接続することで、高精度でかつ信頼性の高い接続が可能となる。   In the semiconductor device of the present invention, the support layer may be a silicon layer. By forming a fine wiring body on a highly rigid silicon layer and connecting a silicon semiconductor element having the same thermal expansion coefficient as that of the support layer, a highly accurate and reliable connection can be achieved.

本発明の半導体装置において、前記支持層にトランジスタ等の能動素子が形成されていてもよい。   In the semiconductor device of the present invention, an active element such as a transistor may be formed on the support layer.

本発明の半導体装置において、前記配線体は、絶縁膜と、前記支持層と、前記配線層とがこの順に積層された構成を有し、前記第一の半導体素子が前記配線層に接続され、前記第二の半導体素子が前記絶縁膜に接続されていてもよい。こうすることにより、半導体の表面を確実に絶縁するとともに、半導体素子同士の接続信頼性を充分に確保することができる。本発明において、半導体素子同士が、シリコン層および絶縁膜を貫通する貫通電極と、配線層と、を介して電気的に接続されている構成とすることができる。   In the semiconductor device of the present invention, the wiring body has a configuration in which an insulating film, the support layer, and the wiring layer are stacked in this order, and the first semiconductor element is connected to the wiring layer, The second semiconductor element may be connected to the insulating film. By doing so, it is possible to reliably insulate the surface of the semiconductor and to ensure sufficient connection reliability between the semiconductor elements. In the present invention, the semiconductor elements can be configured to be electrically connected to each other through a through electrode penetrating the silicon layer and the insulating film and the wiring layer.

本発明によれば、平板状の配線体と、前記配線体の一方の面に設けられた第一の半導体素子と、前記一方の面および前記第一の半導体素子の側面を被覆する封止樹脂と、前記配線体の他方の面に設けられた第二の半導体素子と、を有し、前記配線体は、平板状の絶縁体と、前記絶縁体を貫通する導電体と、を有する配線層を備え、前記導電体を介して前記第一の半導体素子と前記第二の半導体素子とが電気的に接続されていることを特徴とする半導体装置が提供される。   According to the present invention, a flat wiring body, a first semiconductor element provided on one surface of the wiring body, and a sealing resin that covers the one surface and the side surface of the first semiconductor element And a second semiconductor element provided on the other surface of the wiring body, wherein the wiring body includes a plate-like insulator and a conductor penetrating the insulator. The semiconductor device is characterized in that the first semiconductor element and the second semiconductor element are electrically connected via the conductor.

本発明の半導体装置においては、導電体が平板状の絶縁体を貫通している。このため、導電体の狭ピッチ化が可能である。よって、第一の半導体素子と第二の半導体素子とを接続する導電体を高密度で配置することが可能である。   In the semiconductor device of the present invention, the conductor penetrates the flat insulator. For this reason, it is possible to reduce the pitch of the conductor. Therefore, it is possible to arrange the conductors connecting the first semiconductor element and the second semiconductor element with high density.

本発明において、絶縁体を貫通する導電体は連続する一部材から構成されていてもよいし、複数の導電部材が接合されて電気的接続が確保されている構成としてもよい。たとえば一つの導電体が一つの導電プラグからなる構成であってもよい。また、配線層が多層配線であって、導電体が配線層中の配線およびプラグが接合されている構成であってもよい。   In the present invention, the conductor penetrating the insulator may be composed of a single continuous member, or a plurality of conductive members are joined to ensure electrical connection. For example, one conductor may be composed of one conductive plug. Further, the wiring layer may be a multilayer wiring, and the conductor may be configured such that the wiring in the wiring layer and the plug are joined.

本発明の半導体装置において、前記導電体は、前記絶縁体のいずれかの面に設けられた接続電極を含み、前記接続電極の側面が前記絶縁体中に埋設されるとともに、前記接続電極の少なくとも一つの面の全体が前記絶縁体から露出している構成とすることができる。この構成では、接続電極の少なくとも一つの面の全体が前記絶縁体から露出しているため、外部引き出し電極が絶縁体に接していない。こうすることにより、接続電極を高密度で精密に設けることが可能となる。   In the semiconductor device of the present invention, the conductor includes a connection electrode provided on any surface of the insulator, and a side surface of the connection electrode is embedded in the insulator, and at least of the connection electrode. One whole surface may be exposed from the insulator. In this configuration, since the entire at least one surface of the connection electrode is exposed from the insulator, the external lead electrode is not in contact with the insulator. This makes it possible to provide the connection electrodes with high density and precision.

なお、本発明において、接続電極の側面が絶縁体に接している構成とすることができる。また、接続電極の側面外周全体が絶縁体に接していてもよい。また、本発明において、接続電極が設けられている側の配線体の面を平坦面とすることができる。   In the present invention, the side surface of the connection electrode can be in contact with the insulator. Further, the entire outer periphery of the side surface of the connection electrode may be in contact with the insulator. Further, in the present invention, the surface of the wiring body on which the connection electrode is provided can be a flat surface.

また、本発明において、接続電極は、半導体素子に電気的に接続する素子接続電極および素子の外部の導電部材に接続する外部接続電極を含む。本発明では、これらのいずれについても上述した構成とすることができる。   In the present invention, the connection electrode includes an element connection electrode electrically connected to the semiconductor element and an external connection electrode connected to a conductive member outside the element. In the present invention, any of these can be configured as described above.

本発明の半導体装置において、前記導電体は、前記絶縁体のいずれかの面に接して設けられた配線を含み、前記配線の側面の少なくとも一部および前記配線の一つの面が前記絶縁体から露出している構成とすることができる。こうすることにより、微細な配線を高密度で設けることが可能な構成とすることができる。   In the semiconductor device of the present invention, the conductor includes a wiring provided in contact with any surface of the insulator, and at least a part of a side surface of the wiring and one surface of the wiring are formed from the insulator. It can be set as the structure exposed. By doing so, a configuration in which fine wirings can be provided at high density can be obtained.

なお、本発明の半導体装置において、前記配線が前記引き出し電極に電気的に接続している構成とすることができる。また、本発明において、前記配線の側面全体が前記絶縁体から露出していてもよい。   Note that in the semiconductor device of the present invention, the wiring can be electrically connected to the extraction electrode. In the present invention, the entire side surface of the wiring may be exposed from the insulator.

本発明の半導体装置において、前記配線の少なくとも一部が前記封止樹脂に埋設されていてもよい。こうすることにより、半導体装置の強度を向上させることができる。   In the semiconductor device of the present invention, at least a part of the wiring may be embedded in the sealing resin. By doing so, the strength of the semiconductor device can be improved.

本発明の半導体装置において、前記導電体の最小間隔が50μm以下であってもよい。こうすることにより、半導体素子間のデータ転送能を向上させることができる。   In the semiconductor device of the present invention, the minimum interval between the conductors may be 50 μm or less. By doing so, the data transfer capability between the semiconductor elements can be improved.

本発明の半導体装置において、前記導電体は、種々の平面配置とすることができる。たとえば、正方格子状、千鳥格子等の斜格子状等の配置をとることができる。   In the semiconductor device of the present invention, the conductor can be arranged in various planes. For example, a square lattice shape, a diagonal lattice shape such as a staggered lattice, or the like can be employed.

本発明の半導体装置において、前記第一の半導体素子の前記配線体の側に設けられた第一導電パッドと、前記第二の半導体素子の前記配線体の側の面に設けられた第二導電パッドとが、平面視において一致している構成とすることができる。これにより、半導体素子間のデータ転送能をより一層向上させることができる。   In the semiconductor device of the present invention, a first conductive pad provided on the wiring body side of the first semiconductor element and a second conductive pad provided on a surface of the second semiconductor element on the wiring body side. It can be set as the structure which the pad corresponds in planar view. Thereby, the data transfer capability between semiconductor elements can be further improved.

本発明の半導体装置において、前記封止樹脂を貫通する貫通プラグを有する構成とすることができる。こうすることにより、熱応力緩和機能により優れた二次実装信頼性が得られる。また、複合素子である半導体装置全体がフリップチップ接続される構成とすることができる。なお、本発明の半導体装置において、前記貫通プラグは前記配線層中の配線に接続された構成とすることができる。   The semiconductor device of the present invention may have a structure having a through plug that penetrates the sealing resin. By doing so, excellent secondary mounting reliability can be obtained by the thermal stress relaxation function. Further, the entire semiconductor device which is a composite element can be flip-chip connected. In the semiconductor device of the present invention, the through plug may be connected to the wiring in the wiring layer.

本発明の半導体装置において、前記配線層が多層配線層であってもよい。これにより、配線体の設計の自由度を高めることができる。   In the semiconductor device of the present invention, the wiring layer may be a multilayer wiring layer. Thereby, the freedom degree of design of a wiring body can be raised.

本発明の半導体装置において、前記第一の半導体素子が前記封止樹脂に埋設されていてもよい。これにより、第一の半導体素子の表面を確実に絶縁するとともに、第一の半導体素子を保護することができる。   In the semiconductor device of the present invention, the first semiconductor element may be embedded in the sealing resin. Thereby, the surface of the first semiconductor element can be reliably insulated and the first semiconductor element can be protected.

本発明によれば、基板上に配線層を準備する工程と、前記配線層上に第一の半導体素子を接続する工程と、前記配線層の表面および前記第一の半導体素子の側面を封止樹脂により被覆する工程と、前記基板の前記配線層の形成面の裏面から前記基板を薄化する工程と、前記配線層を介して第二の半導体素子を前記第一の半導体素子に対向させて接続する工程と、を有することを特徴とする半導体装置の製造方法が提供される。   According to the present invention, a step of preparing a wiring layer on a substrate, a step of connecting a first semiconductor element on the wiring layer, and sealing the surface of the wiring layer and the side surface of the first semiconductor element A step of covering with a resin, a step of thinning the substrate from the back surface of the wiring layer forming surface of the substrate, and a second semiconductor element facing the first semiconductor element through the wiring layer And a connecting step. A method for manufacturing a semiconductor device is provided.

また、本発明の半導体装置において、基板上に前記配線体が形成され、前記配線体上に前記第一の半導体素子が接続され、前記第一の半導体素子の側面および前記配線体の露出面が前記封止樹脂により被覆された後に、前記基板を除去することにより得られる構成とすることができる。   In the semiconductor device of the present invention, the wiring body is formed on a substrate, the first semiconductor element is connected to the wiring body, and the side surface of the first semiconductor element and the exposed surface of the wiring body are It can be set as the structure obtained by removing the said board | substrate after coat | covering with the said sealing resin.

本発明においては、配線体が基板上に設けられた状態で第一の半導体素子が接続され、この後、基板が薄化または除去される。このため、第一の基板と配線体との接合を安定的に行うことが可能である。なお、本発明において、「半導体基板上」は、半導体基板上に接して設けられた構成であっても他の層を介して設けられた構成であってもよい。   In the present invention, the first semiconductor element is connected with the wiring body provided on the substrate, and then the substrate is thinned or removed. For this reason, it is possible to stably join the first substrate and the wiring body. In the present invention, “on the semiconductor substrate” may be a structure provided in contact with the semiconductor substrate or a structure provided via another layer.

本発明の半導体装置において、前記基板の線膨張係数が0.5ppm/℃以上5ppm/℃以下であってもよい。こうすれば、製造安定性にさらに優れた構成とすることができる。   In the semiconductor device of the present invention, the linear expansion coefficient of the substrate may be not less than 0.5 ppm / ° C. and not more than 5 ppm / ° C. If it carries out like this, it can be set as the structure which was further excellent in manufacture stability.

本発明の半導体装置において、前記基板がシリコン基板であってもよい。このようにすれば、より一層製造安定性に優れた構成とすることができる。   In the semiconductor device of the present invention, the substrate may be a silicon substrate. If it does in this way, it can be set as the structure which was further excellent in manufacture stability.

また、本発明の製造方法において、配線層を準備する工程に用いられる基板と、前記第一の半導体素子を構成する半導体基板と、前記第二の半導体素子を構成する半導体基板とが、同じ材料であってもよい。こうすれば、基板と素子の接続時における反りを確実に抑制することができる。このため、接続信頼性を向上させることができる。   In the manufacturing method of the present invention, the substrate used in the step of preparing the wiring layer, the semiconductor substrate constituting the first semiconductor element, and the semiconductor substrate constituting the second semiconductor element are made of the same material. It may be. If it carries out like this, the curvature at the time of a connection of a board | substrate and an element can be suppressed reliably. For this reason, connection reliability can be improved.

また、本発明の半導体装置の製造方法において、基板を薄化する前記工程は、前記基板を除去し、前記配線層の表面を露出させる工程を含んでもよい。こうすることにより、装置構成を簡素化しつつ、安定的な半導体装置の製造が可能となる。   In the method for manufacturing a semiconductor device of the present invention, the step of thinning the substrate may include a step of removing the substrate and exposing a surface of the wiring layer. This makes it possible to manufacture a stable semiconductor device while simplifying the device configuration.

本発明の半導体装置の製造方法において、配線層を準備する前記工程は、表面に絶縁膜と前記配線層を支持する支持層とがこの順に積層された前記基板を準備する工程と、前記支持層上に前記配線層を設ける工程と、を含んでもよい。こうすることにより、配線層と半導体素子の接続信頼性をより一層向上させることができる。   In the method for manufacturing a semiconductor device according to the present invention, the step of preparing a wiring layer includes the step of preparing the substrate having an insulating film and a support layer that supports the wiring layer stacked on the surface in this order, and the support layer A step of providing the wiring layer thereon. By doing so, the connection reliability between the wiring layer and the semiconductor element can be further improved.

本発明によれば、複数の半導体素子間を高密度で接続する技術が実現される。また、本発明によれば、複数の半導体素子の接続信頼性を向上させる技術が実現される。   According to the present invention, a technique for connecting a plurality of semiconductor elements at high density is realized. Further, according to the present invention, a technique for improving the connection reliability of a plurality of semiconductor elements is realized.

実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の製造工程を模式的に示した断面図である。It is sectional drawing which showed typically the manufacturing process of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment. 実施の形態に係る半導体装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the semiconductor device which concerns on embodiment.

以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同じ構成要素には共通の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same constituent elements are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

(第一の実施形態)
図1は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。図1に示した半導体装置100は、平板状の配線体101と、配線体101の一方の面に設けられた第一の半導体素子113と、配線体101の第一の半導体素子113の設けられた側の面および第一の半導体素子113の側面を被覆する絶縁樹脂119と、配線体101の他方の面に、第二の半導体素子111に対向配置させて設けられた第二の半導体素子111と、を有する。
(First embodiment)
FIG. 1 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the present embodiment. A semiconductor device 100 illustrated in FIG. 1 includes a flat wiring body 101, a first semiconductor element 113 provided on one surface of the wiring body 101, and a first semiconductor element 113 of the wiring body 101. An insulating resin 119 that covers the other side surface and the side surface of the first semiconductor element 113, and the second semiconductor element 111 provided on the other surface of the wiring body 101 so as to face the second semiconductor element 111. And having.

配線体101は、配線層103、シリコン層105および絶縁膜107がこの順に積層された構成である。第一の半導体素子113は配線層103に接して設けられ、第二の半導体素子111は絶縁膜107に接して設けられている。   The wiring body 101 has a configuration in which a wiring layer 103, a silicon layer 105, and an insulating film 107 are laminated in this order. The first semiconductor element 113 is provided in contact with the wiring layer 103, and the second semiconductor element 111 is provided in contact with the insulating film 107.

配線層103は、平板状の絶縁体と、絶縁体を貫通する導電体と、を有する。導電体を介して第二の半導体素子111と第一の半導体素子113とが電気的に接続される。また、配線層103は、所定の形状および配置を有する配線を備える。配線層103は、単層であってもよいし、多層であってもよい。なお、配線層103の具体的な構成は、第三の実施形態および第七の実施形態において後述する構成とすることができる。   The wiring layer 103 includes a flat insulator and a conductor that penetrates the insulator. The second semiconductor element 111 and the first semiconductor element 113 are electrically connected through a conductor. The wiring layer 103 includes wiring having a predetermined shape and arrangement. The wiring layer 103 may be a single layer or a multilayer. The specific configuration of the wiring layer 103 can be the configuration described later in the third embodiment and the seventh embodiment.

シリコン層105は、配線層103を支持する支持層である。シリコン層105の配線層103と反対側の面に設けられた絶縁膜107は、たとえばSiO2等の酸化膜、SiNやSiON等の窒化膜とする。 The silicon layer 105 is a support layer that supports the wiring layer 103. The insulating film 107 provided on the surface of the silicon layer 105 opposite to the wiring layer 103 is, for example, an oxide film such as SiO 2 or a nitride film such as SiN or SiON.

なお、配線層103の支持層として、本実施形態および以降の実施形態においてはシリコン層105を例示しているが、第一の半導体素子113および第二の半導体素子111の基板として通常用いられているSiと同程度の熱膨張率を有する他の材料とすることもできる。   In this embodiment and the following embodiments, the silicon layer 105 is illustrated as the support layer of the wiring layer 103. However, it is usually used as a substrate for the first semiconductor element 113 and the second semiconductor element 111. Other materials having the same thermal expansion coefficient as Si can be used.

支持層として、たとえば、線膨張係数が.0.5ppm/℃以上5ppm/℃以下の材料を用いることができる。線膨張係数を0.5ppm/℃以上とすることにより、半導体装置100の製造歩留まりを向上させることができる。また、5ppm/℃以下線膨張係数をとすることにより、第一の半導体素子113および第二の半導体素子111との電気的な接続信頼性を充分に確保することができる。また、支持層は、熱伝導性に優れた材料により構成するとよい。シリコン以外の支持層の材料として、具体的には、AlN等のセラミック材料や、パイレックス(登録商標)ガラス等の珪ホウ酸ガラス等が挙げられる。   As the support layer, for example, the linear expansion coefficient is. A material having a concentration of 0.5 ppm / ° C. to 5 ppm / ° C. can be used. By making the linear expansion coefficient 0.5 ppm / ° C. or higher, the manufacturing yield of the semiconductor device 100 can be improved. In addition, by setting the linear expansion coefficient to 5 ppm / ° C. or less, it is possible to sufficiently ensure the reliability of electrical connection with the first semiconductor element 113 and the second semiconductor element 111. Further, the support layer is preferably made of a material having excellent thermal conductivity. Specific examples of the material for the support layer other than silicon include ceramic materials such as AlN, silicoborate glass such as Pyrex (registered trademark) glass, and the like.

また、配線層103は、シリコン層105および絶縁膜107を貫通して設けられた導体ヴィア109を有する。これにより、配線層103の両面の電気的導通が確保される。導体ヴィア109の平面配置に特に制限はなく、半導体装置100の設計に応じて適宜選択することができる。たとえば、導体ヴィア109を正方格子状に配置したり、千鳥配置等の斜格子状に配置したりすることができる。   In addition, the wiring layer 103 has a conductor via 109 provided through the silicon layer 105 and the insulating film 107. Thereby, electrical conduction between both surfaces of the wiring layer 103 is ensured. The planar arrangement of the conductor via 109 is not particularly limited, and can be appropriately selected according to the design of the semiconductor device 100. For example, the conductor vias 109 can be arranged in a square lattice, or can be arranged in an oblique lattice such as a staggered arrangement.

第一の半導体素子113は、配線体101の配線層103の側にアンダーフィル樹脂127を介して接合されている。第一の半導体素子113中の導電部材(不図示)はアンダーフィル樹脂127中に埋設された電極117を介して導体ヴィア109にフリップチップ接続されている。また、配線体101において、第一の半導体素子113が設けられている側の面には、第一の半導体素子113の側壁を覆う絶縁樹脂119が設けられている。   The first semiconductor element 113 is bonded to the wiring layer 103 side of the wiring body 101 via an underfill resin 127. A conductive member (not shown) in the first semiconductor element 113 is flip-chip connected to the conductor via 109 via an electrode 117 embedded in the underfill resin 127. In addition, in the wiring body 101, an insulating resin 119 that covers the side wall of the first semiconductor element 113 is provided on the surface on which the first semiconductor element 113 is provided.

第一の半導体素子113および第二の半導体素子111の構成は、半導体装置100の設計に応じて適宜選択することができるが、たとえば、第一の半導体素子113をメモリLSIチップとし、第二の半導体素子111をロジックLSIチップとすることができる。   The configurations of the first semiconductor element 113 and the second semiconductor element 111 can be appropriately selected according to the design of the semiconductor device 100. For example, the first semiconductor element 113 is a memory LSI chip, and the second The semiconductor element 111 can be a logic LSI chip.

封止樹脂である絶縁樹脂119の材料に特に制限はなく、半導体封止用の樹脂を適宜選択して用いることができる。たとえば、シリカやアルミナ等の無機充填剤を含むエポキシ樹脂とすることができる。   There is no particular limitation on the material of the insulating resin 119 which is a sealing resin, and a semiconductor sealing resin can be appropriately selected and used. For example, an epoxy resin containing an inorganic filler such as silica or alumina can be used.

導体スルーホール121は、絶縁樹脂119を貫通し、配線体101中の導電体に電気的に接続されている。導体スルーホール121の配線体101と反対側の面は絶縁樹脂119から露出しており、露出面に電極端子123が設けられている。導体スルーホール121は電極端子123を介して外部に電気的に接続されている。   The conductor through hole 121 penetrates the insulating resin 119 and is electrically connected to the conductor in the wiring body 101. The surface of the conductor through hole 121 opposite to the wiring body 101 is exposed from the insulating resin 119, and the electrode terminal 123 is provided on the exposed surface. The conductor through hole 121 is electrically connected to the outside through the electrode terminal 123.

第二の半導体素子111は、配線体101の絶縁膜107の側にアンダーフィル樹脂127を介して接合されている。第二の半導体素子111中の導電部材(不図示)は、アンダーフィル樹脂125中に埋設された電極115を介して導体ヴィア109にフリップチップ接続されている。   The second semiconductor element 111 is bonded to the insulating film 107 side of the wiring body 101 via an underfill resin 127. A conductive member (not shown) in the second semiconductor element 111 is flip-chip connected to the conductor via 109 via an electrode 115 embedded in the underfill resin 125.

半導体装置100において、第一の半導体素子113と第二の半導体素子111とは、電極117、配線層103中の導電体、導体ヴィア109および電極115を介して電気的に接続された構成となっている。なお、本実施形態および以降の他の実施形態において、電極115および電極117は、たとえばバンプとすることができる。   In the semiconductor device 100, the first semiconductor element 113 and the second semiconductor element 111 are electrically connected via the electrode 117, the conductor in the wiring layer 103, the conductor via 109, and the electrode 115. ing. In the present embodiment and other embodiments described later, the electrode 115 and the electrode 117 may be bumps, for example.

次に、図1に示した半導体装置100の製造方法を説明する。半導体装置100は、シリコン基板上で配線層103が形成され、配線層103上に前記第一の半導体素子113が接続され、第一の半導体素子113の側面および第一の半導体素子113の露出面が樹脂封止された後に、シリコン基板を除去することにより得られる。図2(a)〜図2(c)、図3(a)〜図3(c)、および図4(a)〜図4(c)は、半導体装置100の製造工程を示す断面図である。   Next, a method for manufacturing the semiconductor device 100 shown in FIG. 1 will be described. In the semiconductor device 100, a wiring layer 103 is formed on a silicon substrate, the first semiconductor element 113 is connected to the wiring layer 103, a side surface of the first semiconductor element 113 and an exposed surface of the first semiconductor element 113. Can be obtained by removing the silicon substrate after the resin sealing. 2A to FIG. 2C, FIG. 3A to FIG. 3C, and FIG. 4A to FIG. 4C are cross-sectional views illustrating the manufacturing process of the semiconductor device 100. FIG. .

まず、図2(a)に示すように、ウェハ状態のシリコン基板133の上部に絶縁膜107を介してシリコン層105が形成された、SOI(シリコンオンインシュレータ)基板129を準備する。絶縁膜107は単層であってもよいし、多層であってもよい。   First, as shown in FIG. 2A, an SOI (silicon on insulator) substrate 129 in which a silicon layer 105 is formed on an upper portion of a silicon substrate 133 in a wafer state via an insulating film 107 is prepared. The insulating film 107 may be a single layer or a multilayer.

次に、SOI基板129の導体ヴィア109を設ける位置に、シリコン層105および絶縁膜107を貫通する開口部を形成する。そして、開口部が設けられたSOI基板129の表面に拡散防止膜を形成する。これにより、導体ヴィア109を構成する材料のSOI基板中への拡散を抑制することができる。そして、開口部を導電材料により埋め込むことにより、導体ヴィア109を形成する(図2(b))。導体ヴィア109は、SOI基板129において第二の半導体素子111および第一の半導体素子113が接合される領域に設けることができる。   Next, an opening that penetrates the silicon layer 105 and the insulating film 107 is formed at a position where the conductor via 109 of the SOI substrate 129 is provided. Then, a diffusion prevention film is formed on the surface of the SOI substrate 129 provided with the opening. Thereby, the diffusion of the material constituting the conductor via 109 into the SOI substrate can be suppressed. Then, the conductor via 109 is formed by filling the opening with a conductive material (FIG. 2B). The conductor via 109 can be provided in a region where the second semiconductor element 111 and the first semiconductor element 113 are bonded on the SOI substrate 129.

導体ヴィア109の材料としては、たとえば、銅、アルミニウム、タングステン等の金属や多結晶シリコンなどを用いることができる。なお、導体ヴィア109が絶縁膜107を貫通せずに、シリコン層105から絶縁膜107中の所定の位置にわたって設けられた構成としてもよい。また、導体ヴィア109がシリコン層105を貫通し絶縁膜107の上部に接する構成であってもよい。   As a material of the conductor via 109, for example, a metal such as copper, aluminum, tungsten, or polycrystalline silicon can be used. Note that the conductor via 109 may be provided from the silicon layer 105 to a predetermined position in the insulating film 107 without penetrating the insulating film 107. Alternatively, the conductor via 109 may penetrate the silicon layer 105 and be in contact with the upper portion of the insulating film 107.

次に、SOI基板129の上部に配線層103を形成する(図2(c))。配線層103の作製方法は、第三または第七の実施形態で後述する方法とすることができる。また、シリコン層105上に絶縁膜を形成し、たとえばダマシン法により所定の形状の配線を所定の位置に配置してもよい。配線は、導体ヴィア109に電気的に接続される。配線の材料は、導体ヴィア109の材料と同じ材料としてもよいし、異なる導電材料としてもよい。配線層103は単層構造であっても多層構造であっても構わない。また、配線層103を形成する前に、シリコン層105上にトランジスタ等の能動素子やメモリ素子等の受動素子など、所定の素子を形成してもよい。   Next, the wiring layer 103 is formed on the SOI substrate 129 (FIG. 2C). A method of manufacturing the wiring layer 103 can be a method described later in the third or seventh embodiment. In addition, an insulating film may be formed on the silicon layer 105, and wiring having a predetermined shape may be arranged at a predetermined position by, for example, a damascene method. The wiring is electrically connected to the conductor via 109. The material of the wiring may be the same material as that of the conductor via 109 or may be a different conductive material. The wiring layer 103 may have a single layer structure or a multilayer structure. Further, a predetermined element such as an active element such as a transistor or a passive element such as a memory element may be formed on the silicon layer 105 before the wiring layer 103 is formed.

次に、配線層103上に、図1における導体スルーホール121となる導体ポスト131を形成する(図3(a))。導体ポスト131の材料は、たとえば銅または金などの金属とすることができる。また、導体ポスト131は、配線層103上に、導体ポスト131を設ける領域を開口部とするレジストパターンを設け、たとえばセミアディティブ法の無電解めっき法により、開口部中に金属膜を成長させることにより作製することができる。   Next, a conductor post 131 to be the conductor through hole 121 in FIG. 1 is formed on the wiring layer 103 (FIG. 3A). The material of the conductor post 131 can be a metal such as copper or gold, for example. The conductor post 131 is provided with a resist pattern having an opening in the region where the conductor post 131 is provided on the wiring layer 103, and a metal film is grown in the opening by, for example, a semi-additive electroless plating method. Can be produced.

次に、配線層103上に第一の半導体素子113を電気的に接続する。接続方法としては各種の方法を用いることが可能であるが、たとえば、第一の半導体素子113上にあらかじめ形成した電極117としてバンプ電極を形成しておき、電極117と配線層103中の配線とをバンプ接合することにより接続することができる。このとき、フリップチップ接合法を用いることができる。フリップチップ接合法を用いることにより、配線層103と第一の半導体素子113とを簡便な方法で確実に接続することができる。また、他の接続方法としては、たとえば、配線層103の表面と第一の半導体素子113の表面をプラズマ照射などの方法で活性化した状態で押圧接合する、活性化接合法などが挙げられる。接合後、第一の半導体素子113とSOI基板129との間にアンダーフィル樹脂127を充填する(図3(b))。   Next, the first semiconductor element 113 is electrically connected to the wiring layer 103. As a connection method, various methods can be used. For example, a bump electrode is formed as the electrode 117 formed in advance on the first semiconductor element 113, and the electrode 117 and the wiring in the wiring layer 103 are connected. Can be connected by bump bonding. At this time, a flip chip bonding method can be used. By using the flip chip bonding method, the wiring layer 103 and the first semiconductor element 113 can be reliably connected by a simple method. In addition, as another connection method, for example, an activation bonding method in which the surface of the wiring layer 103 and the surface of the first semiconductor element 113 are pressed and bonded in a state where the surface is activated by a method such as plasma irradiation may be used. After bonding, an underfill resin 127 is filled between the first semiconductor element 113 and the SOI substrate 129 (FIG. 3B).

そして、トランスファーモールドなどの方法を用いて、配線層103の上面全面を絶縁性の絶縁樹脂119で封止する(図3(c))。これにより、第一の半導体素子113および導体ポスト131は絶縁樹脂119中に埋設される。封止方法としてはこの他にも絶縁樹脂シートを圧着する方法や、液状樹脂を塗布後、硬化させる方法など各種の方法から選択することができる。   Then, the entire upper surface of the wiring layer 103 is sealed with an insulating insulating resin 119 using a method such as transfer molding (FIG. 3C). As a result, the first semiconductor element 113 and the conductor post 131 are embedded in the insulating resin 119. In addition to this, the sealing method can be selected from various methods such as a method of pressure-bonding an insulating resin sheet and a method of curing after applying a liquid resin.

次に、絶縁樹脂119の形成面側の研削等により絶縁樹脂119を薄化して、第一の半導体素子113の上面および導体ポスト131の端部を露出させる(図4(a))。なお、この工程は、後述するシリコン基板133の除去工程(図4(b))の後に行うこともできる。また、図3(c)を用いて前述した絶縁樹脂119の形成工程において絶縁樹脂119の膜厚をあらかじめ所定の厚さにコントロールすることも可能であり、その場合、導体ポスト131の露出工程の省略が可能となる。   Next, the insulating resin 119 is thinned by grinding or the like on the surface on which the insulating resin 119 is formed, and the upper surface of the first semiconductor element 113 and the end portions of the conductor posts 131 are exposed (FIG. 4A). This step can also be performed after a silicon substrate 133 removal step (FIG. 4B) described later. In addition, in the step of forming the insulating resin 119 described above with reference to FIG. 3C, the thickness of the insulating resin 119 can be controlled in advance to a predetermined thickness. Omission is possible.

そして、第一の半導体素子113の接合面の裏面の側からシリコン基板133を除去する。このとき除去方法としては、機械研削、CMP、ケミカルエッチングなどを採用することができる。また、別の除去方法として、シリコン基板133と配線層103との界面に密着力の低い層をあらかじめ形成しておき、この介在層の部分から剥離させるなどの方法が挙げられる。さらに、絶縁膜107の一部や拡散防止膜(不図示)を除去し、導体ヴィア109の端面を露出させる(図4(b))。導体ヴィア109を露出させるプロセスに特に限定はなく、各種の方法が選択可能である。   Then, the silicon substrate 133 is removed from the back surface side of the bonding surface of the first semiconductor element 113. At this time, mechanical grinding, CMP, chemical etching, or the like can be employed as a removal method. Another removal method includes a method in which a layer having low adhesion is formed in advance at the interface between the silicon substrate 133 and the wiring layer 103, and the layer is peeled off from the intervening layer. Further, a part of the insulating film 107 and a diffusion prevention film (not shown) are removed to expose the end face of the conductor via 109 (FIG. 4B). There is no particular limitation on the process of exposing the conductor via 109, and various methods can be selected.

次に、露出した導体ヴィア109に第二の半導体素子111を接続する。接続方法として、第一の半導体素子113の接続(図3(b))の方法を用いることができる。たとえば、第二の半導体素子111の表面に電極115を形成し、シリコン層105と導体ヴィア109とを接合することにより接続できる。接続後、第二の半導体素子111とSOI基板129との間にアンダーフィル樹脂127を充填してもよい(図4(c))。   Next, the second semiconductor element 111 is connected to the exposed conductor via 109. As a connection method, the method of connecting the first semiconductor elements 113 (FIG. 3B) can be used. For example, the electrode 115 can be formed on the surface of the second semiconductor element 111 and the silicon layer 105 and the conductor via 109 can be joined together. After the connection, an underfill resin 127 may be filled between the second semiconductor element 111 and the SOI substrate 129 (FIG. 4C).

そして、導体ポスト131の露出面にはんだバンプなどの電極端子123を形成する。以上の工程により、図1に示した半導体装置100が製造可能される。以上のプロセスは初期的にはウェハすなわちシリコン基板133上に第二の半導体素子111および第一の半導体素子113がそれぞれ複数設けられた半導体装置の状態で実施されるが、絶縁樹脂119による封止工程以降、任意の位置で複数のチップに半導体装置間を分離することが可能である。また、前述したように、工程の順序としても、シリコン基板133除去と絶縁樹脂119の研削順序を逆にすることなどの変更が可能である。   Then, electrode terminals 123 such as solder bumps are formed on the exposed surfaces of the conductor posts 131. Through the above steps, the semiconductor device 100 shown in FIG. 1 can be manufactured. The above process is initially performed in the state of a semiconductor device in which a plurality of second semiconductor elements 111 and a plurality of first semiconductor elements 113 are provided on a wafer, that is, a silicon substrate 133, but sealing with an insulating resin 119 is performed. After the process, the semiconductor devices can be separated into a plurality of chips at an arbitrary position. Further, as described above, the process order can be changed such that the removal of the silicon substrate 133 and the grinding order of the insulating resin 119 are reversed.

次に、図1に示した半導体装置100の効果を説明する。
図1に示した半導体装置100において、配線体101は、絶縁膜107、シリコン層105および配線層103がこの順に積層された構造になっている。そして、配線層103中の導電体およびこれに接続して設けられた導体ヴィア109により構成される貫通電極が配線体101を貫通した構成となっている。また、配線体101の両面に第一の半導体素子113および第二の半導体素子111が対向して接合されている。
Next, the effect of the semiconductor device 100 shown in FIG. 1 will be described.
In the semiconductor device 100 shown in FIG. 1, the wiring body 101 has a structure in which an insulating film 107, a silicon layer 105, and a wiring layer 103 are stacked in this order. A through electrode constituted by a conductor in the wiring layer 103 and a conductor via 109 connected to the conductor penetrates the wiring body 101. The first semiconductor element 113 and the second semiconductor element 111 are bonded to both surfaces of the wiring body 101 so as to face each other.

支持層となるシリコン層105を設けることにより、熱膨張係数の相違による反りの発生、接合精度の低下や残留熱応力による接続信頼性の低下を抑制することができる。このため、高精度で信頼性の高い接続が可能となる。また、高密度で導体ヴィア109を配置した場合にも、確実に配線体101と第一の半導体素子113および第二の半導体素子111とを接続することができる。このため、配線体101を貫通する貫通電極構造の高密度配置が可能となる。なお、配線体101を貫通する貫通電極構造は、複数の導電体からなる構成とすることができる。   By providing the silicon layer 105 serving as a support layer, it is possible to suppress the occurrence of warpage due to the difference in thermal expansion coefficient, the decrease in bonding accuracy, and the decrease in connection reliability due to residual thermal stress. For this reason, highly accurate and reliable connection is possible. Further, even when the conductor vias 109 are arranged at high density, the wiring body 101 can be reliably connected to the first semiconductor element 113 and the second semiconductor element 111. For this reason, a high-density arrangement of the through electrode structure penetrating the wiring body 101 is possible. Note that the through electrode structure penetrating the wiring body 101 can be composed of a plurality of conductors.

また、支持層としてシリコン層105を有する配線体101の両面に、熱膨張係数の等しいシリコンデバイスすなわち第二の半導体素子111および第一の半導体素子113が接続される。このため、半導体装置100は構造の対称性に優れる。よって、半導体装置100は製造安定性に優れ、第一の半導体素子113と第二の半導体素子111とを確実に接続する構成となっている。   Also, silicon devices having the same thermal expansion coefficient, that is, the second semiconductor element 111 and the first semiconductor element 113 are connected to both surfaces of the wiring body 101 having the silicon layer 105 as a support layer. For this reason, the semiconductor device 100 is excellent in the symmetry of the structure. Therefore, the semiconductor device 100 is excellent in manufacturing stability, and is configured to reliably connect the first semiconductor element 113 and the second semiconductor element 111.

このように、半導体装置100では、配線体101の両面に設けられた第一の半導体素子113および第二の半導体素子111の間を高密度かつ優れた信頼性で接続することができる。半導体素子との接続信頼性の向上が可能なシリコン層105を有する配線体101を用いることで、高い配線密度で複数のチップや大規模なチップ間を接続することが可能となる。   Thus, in the semiconductor device 100, the first semiconductor element 113 and the second semiconductor element 111 provided on both surfaces of the wiring body 101 can be connected with high density and excellent reliability. By using the wiring body 101 having the silicon layer 105 capable of improving the connection reliability with the semiconductor element, a plurality of chips or large-scale chips can be connected with high wiring density.

たとえば、半導体装置100は、たとえば50μm以下の電極ピッチ間隔すなわち導体ヴィア109の最小間隔がたとえば50μm以下である構成にも対応可能な構成となっている。また、高密度な配線体101を介した接続構造が実現されるため、チップサイズや電極位置、外部端子への配線接続に関する設計に対して高い自由度を提供し、発熱の大きいロジックLSIチップを第二の半導体素子111とすれば、ロジックLSIチップに対してヒートスプレッダなどの放熱機構を付加することも可能になる。   For example, the semiconductor device 100 is configured to be compatible with a configuration in which the electrode pitch interval of 50 μm or less, that is, the minimum interval of the conductor vias 109 is, for example, 50 μm or less. In addition, since a connection structure through the high-density wiring body 101 is realized, a high degree of freedom can be provided for the design related to chip size, electrode position, and wiring connection to external terminals, and a logic LSI chip that generates a large amount of heat can be provided. If the second semiconductor element 111 is used, a heat dissipation mechanism such as a heat spreader can be added to the logic LSI chip.

また、半導体装置100において、平板状の配線体101の両面に接続された複数の半導体素子が配線体101を貫通する導体ヴィア109および導体ヴィア109に接続している配線層103中の配線を介して電気的に接続される。第一の半導体素子113および第二の半導体素子111が、シリコン層105と絶縁膜107とを貫通する導体スルーホールである導体ヴィア109および配線層103中の配線を介して電気的に接続されているため、第一の半導体素子113と第二の半導体素子111との接続距離を短くすることができる。このため、第一の半導体素子113と第二の半導体素子111との間の通信処理速度を増加させることができる。   Further, in the semiconductor device 100, a plurality of semiconductor elements connected to both surfaces of the flat wiring body 101 pass through the conductor via 109 penetrating the wiring body 101 and the wiring in the wiring layer 103 connected to the conductor via 109. Are electrically connected. The first semiconductor element 113 and the second semiconductor element 111 are electrically connected via the conductor via 109 which is a conductor through hole penetrating the silicon layer 105 and the insulating film 107 and the wiring in the wiring layer 103. Therefore, the connection distance between the first semiconductor element 113 and the second semiconductor element 111 can be shortened. For this reason, the communication processing speed between the first semiconductor element 113 and the second semiconductor element 111 can be increased.

また、複数のLSI間を微細な配線で高密度に接続することにより、電気特性に優れた構成となっている。また、従来のチップオンチップ(COC)構造の半導体装置などのマルチチップパッケージに比較して高い設計自由度を有する。これに伴い、放熱性に優れた構造も容易に実現可能である。さらには、2次実装信頼性も高いBGA型半導体装置とすることができる。さらにこのようにして高精度で接合された第一の半導体素子113を含む配線体101の片面を樹脂封止した後にシリコン基板133を取り除き、反対面に第二の半導体素子111を接続することにより、半導体素子間を高密度に電気的に接続することが可能になる。   In addition, by connecting the plurality of LSIs with fine wiring with high density, the structure has excellent electrical characteristics. In addition, it has a higher degree of design freedom than a multi-chip package such as a conventional semiconductor device having a chip-on-chip (COC) structure. Accordingly, a structure with excellent heat dissipation can be easily realized. Furthermore, a BGA type semiconductor device with high secondary mounting reliability can be obtained. Furthermore, by sealing one side of the wiring body 101 including the first semiconductor element 113 bonded with high accuracy in this way after resin sealing, the silicon substrate 133 is removed, and the second semiconductor element 111 is connected to the opposite surface. The semiconductor elements can be electrically connected with high density.

また、半導体装置100では、半導体素子間を高密度に電気的に接続することが可能になるため、バス幅の拡大に相当する効果が得られる。このため、高速化と低消費電力化の両立が可能となる。たとえば、同一の処理速度でのクロック周波数の低減が可能となる。また、同一のクロック周波数における処理速度を増加させることができる。   In the semiconductor device 100, the semiconductor elements can be electrically connected with high density, so that an effect corresponding to the expansion of the bus width can be obtained. For this reason, both high speed and low power consumption can be achieved. For example, the clock frequency can be reduced at the same processing speed. In addition, the processing speed at the same clock frequency can be increased.

したがって、たとえば、半導体装置100は、大容量メモリとシステムLSIとのチップオンチップ接続に適用することができる。このとき、バンプ接続等の電極接続の多ピン化および狭ピッチ化が可能となる。また、配線体101は、ロジック回路が形成された半導体チップとDRAM等のメモリ素子が設けられたメモリチップとの間に設けられ、これらを接続する接続部材として好適に用いることができる。   Therefore, for example, the semiconductor device 100 can be applied to chip-on-chip connection between a large-capacity memory and a system LSI. At this time, it is possible to increase the number of pins for electrode connection such as bump connection and to reduce the pitch. The wiring body 101 is provided between a semiconductor chip on which a logic circuit is formed and a memory chip on which a memory element such as a DRAM is provided, and can be suitably used as a connecting member for connecting them.

また、半導体装置100において、配線体101の少なくとも片面に絶縁樹脂119からなる層が形成されている。具体的には、配線体101の配線層103の側の面には絶縁樹脂119の層が形成されている。また、絶縁樹脂119を貫通し、配線層103中の配線に接続された導体スルーホール121の絶縁樹脂119からの露出面に電極端子123が形成されている。樹脂貫通スルーホールである導体スルーホール121を用いた構造とすることにより、熱応力緩和機能により優れた二次実装信頼性が得られる。   In the semiconductor device 100, a layer made of an insulating resin 119 is formed on at least one surface of the wiring body 101. Specifically, a layer of insulating resin 119 is formed on the surface of the wiring body 101 on the wiring layer 103 side. An electrode terminal 123 is formed on the exposed surface from the insulating resin 119 of the conductor through hole 121 that penetrates the insulating resin 119 and is connected to the wiring in the wiring layer 103. By adopting the structure using the conductor through-hole 121 which is a resin through-hole, excellent secondary mounting reliability can be obtained by the thermal stress relaxation function.

また、半導体装置100において、平板状の配線体101は、シリコン基板133上で形成される。半導体素子間を電気的に接続するための配線体101を剛性の高いシリコン基板133上で形成するため、配線パターンの微細化が可能となる。   In the semiconductor device 100, the flat wiring body 101 is formed on the silicon substrate 133. Since the wiring body 101 for electrically connecting the semiconductor elements is formed on the silicon substrate 133 having high rigidity, the wiring pattern can be miniaturized.

また、半導体装置100は、シリコン基板133上に配線体101が設けられ、配線体101上に第一の半導体素子113を接合した後シリコン基板133を除去することにより得られる。シリコン基板133を用いることにより、第一の半導体素子113と配線体101中の導電部材との接続プロセスにおける熱膨張係数の不一致による接続安定性の低下を抑制することができる。このため、非常に高精度で信頼性の高い接合が実現される。   Further, the semiconductor device 100 is obtained by providing the wiring body 101 on the silicon substrate 133, bonding the first semiconductor element 113 on the wiring body 101, and then removing the silicon substrate 133. By using the silicon substrate 133, it is possible to suppress a decrease in connection stability due to a mismatch of thermal expansion coefficients in the connection process between the first semiconductor element 113 and the conductive member in the wiring body 101. For this reason, very highly accurate and reliable joining is realized.

また、半導体装置100は、シリコン基板133を取り除いた後、反対面にもLSIすなわち第二の半導体素子111を接続することにより作製される。このように、半導体装置100は、複数のLSI間を微細な配線で高密度にかつ安定に接続された構成となっているため、従来のシステムインパッケージ(SiP)で実現できなかった良好な動作特性を発揮することができる。   The semiconductor device 100 is manufactured by removing the silicon substrate 133 and then connecting an LSI, that is, the second semiconductor element 111 to the opposite surface. As described above, since the semiconductor device 100 has a configuration in which a plurality of LSIs are connected with high density and stability with fine wiring, a favorable operation that could not be realized by the conventional system in package (SiP). The characteristic can be exhibited.

なお、図1に示した半導体装置100および以降の実施形態に記載の半導体装置において、第一の半導体素子113が絶縁樹脂119に埋設されている構成とすることもできる。図5は、第一の半導体素子113が絶縁樹脂119中に埋設された構成の半導体装置を模式的に示す断面図である。   Note that in the semiconductor device 100 illustrated in FIG. 1 and the semiconductor devices described in the following embodiments, the first semiconductor element 113 may be embedded in the insulating resin 119. FIG. 5 is a cross-sectional view schematically showing a semiconductor device having a configuration in which the first semiconductor element 113 is embedded in the insulating resin 119.

また、図1に示した半導体装置100および以降の実施形態に記載のシリコン層105を有する半導体装置において、支持層であるシリコン層105にトランジスタ等の能動素子が形成されていてもよい。こうすれば、配線体101をさらに高機能化することができる。   In the semiconductor device 100 shown in FIG. 1 and the semiconductor device having the silicon layer 105 described in the following embodiments, an active element such as a transistor may be formed in the silicon layer 105 that is a support layer. In this way, the wiring body 101 can be further enhanced in function.

また、半導体装置100および以降の実施形態に記載の半導体装置において、配線体101の第二の半導体素子111の接合された側の面にも絶縁樹脂が設けられていてもよい。図6は、第二の半導体素子111の側壁および絶縁膜107の表面を覆う絶縁樹脂135が設けられているフリップチップ型の半導体装置の構成を模式的に示す断面図である。配線体101の両面が絶縁樹脂119および絶縁樹脂135により封止された構成とすることにより、半導体装置の強度を向上させることができる。また、配線体101の両面の構成の対称性を高めることができるため、製造安定性を向上させることができる。   In the semiconductor device 100 and the semiconductor devices described in the following embodiments, an insulating resin may also be provided on the surface of the wiring body 101 on the side where the second semiconductor element 111 is bonded. FIG. 6 is a cross-sectional view schematically showing a configuration of a flip-chip type semiconductor device provided with an insulating resin 135 that covers the side wall of the second semiconductor element 111 and the surface of the insulating film 107. With the configuration in which both surfaces of the wiring body 101 are sealed with the insulating resin 119 and the insulating resin 135, the strength of the semiconductor device can be improved. Moreover, since the symmetry of the structure of both surfaces of the wiring body 101 can be improved, manufacturing stability can be improved.

以下の実施形態においては、第一の実施形態と異なる部分を中心に説明する。   In the following embodiment, it demonstrates centering on a different part from 1st embodiment.

(第二の実施形態)
第一の実施形態に記載の半導体装置100(図1)は、配線層103、シリコン層105、絶縁膜107がこの順に積層された構成の配線体101を備えていたが、配線体101は、配線層103およびシリコン層105の積層体からなる構成としてもよい。図7は、本実施形態に係る半導体装置110の構成を模式的に示す断面図である。
(Second embodiment)
The semiconductor device 100 (FIG. 1) described in the first embodiment includes the wiring body 101 having a configuration in which the wiring layer 103, the silicon layer 105, and the insulating film 107 are stacked in this order. The wiring layer 103 and the silicon layer 105 may be stacked. FIG. 7 is a cross-sectional view schematically showing the configuration of the semiconductor device 110 according to the present embodiment.

図7に示した半導体装置110の基本構成は第一の実施形態に記載の半導体装置100(図1)と同様であるが、絶縁膜107が設けられておらず、第二の半導体素子111は配線体101のシリコン層105の表面に電極115およびアンダーフィル樹脂127を介して接続されている点が異なる。また、半導体装置110において、導体ヴィア109は、シリコン層105を貫通し配線層103中の配線に電気的に接続されている。   The basic configuration of the semiconductor device 110 shown in FIG. 7 is the same as that of the semiconductor device 100 (FIG. 1) described in the first embodiment, but the insulating film 107 is not provided, and the second semiconductor element 111 is The difference is that it is connected to the surface of the silicon layer 105 of the wiring body 101 via an electrode 115 and an underfill resin 127. In the semiconductor device 110, the conductor via 109 penetrates the silicon layer 105 and is electrically connected to the wiring in the wiring layer 103.

半導体装置110は、図2(b)、図2(c)、図3(a)〜図3(c)、および図4(a)〜図4(c)を用いて前述した工程を用いて製造することができる。まず、シリコン基板133に導体ヴィア109を形成し、導体ヴィア109の形成面に配線層103を形成する。そして、第一の実施形態の場合と同様にして第一の半導体素子113および第二の半導体素子111を配線体101に接合する。なお、半導体装置110の製造においては、シリコン基板133を裏面から薄化し、除去せずに所定の厚さのシリコン基板133をシリコン層105として残存させる。   The semiconductor device 110 uses the steps described above with reference to FIGS. 2B, 2C, 3A to 3C, and 4A to 4C. Can be manufactured. First, the conductor via 109 is formed on the silicon substrate 133, and the wiring layer 103 is formed on the surface on which the conductor via 109 is formed. Then, the first semiconductor element 113 and the second semiconductor element 111 are joined to the wiring body 101 in the same manner as in the first embodiment. In manufacturing the semiconductor device 110, the silicon substrate 133 is thinned from the back surface, and the silicon substrate 133 having a predetermined thickness is left as the silicon layer 105 without being removed.

図7に示した半導体装置110においても、配線層103および支持層であるシリコン層105がこの順に積層された構成の配線体101を備えているため、第一の半導体素子113および第二の半導体素子111の接合時の熱膨張率差が小さい構成となっている。このため、これらの接続信頼性を充分に確保するとともに、接続する導体ヴィア109の間隔を充分に小さくすることができる。   The semiconductor device 110 shown in FIG. 7 also includes the wiring body 101 having a configuration in which the wiring layer 103 and the silicon layer 105 as the support layer are stacked in this order, and thus the first semiconductor element 113 and the second semiconductor The difference in thermal expansion coefficient when the element 111 is joined is small. For this reason, it is possible to sufficiently secure the connection reliability and sufficiently reduce the interval between the conductor vias 109 to be connected.

また、半導体装置110においては、バルクのシリコン基板133が利用可能であり、シリコン基板133の研削厚をコントロールすることにより所定の厚さのシリコン層105を有する配線体101を設けることができる。このため、SOI基板129を用いる必要がなく、装置構成を簡素化することができる。   In the semiconductor device 110, a bulk silicon substrate 133 can be used, and the wiring body 101 having the silicon layer 105 having a predetermined thickness can be provided by controlling the grinding thickness of the silicon substrate 133. Therefore, it is not necessary to use the SOI substrate 129, and the apparatus configuration can be simplified.

なお、半導体装置110においては、導体ヴィア109の周囲におけるシリコン層105の表面が絶縁される。これにより、第二の半導体素子111の電極間の絶縁性が確保される。図7では、絶縁性のアンダーフィル樹脂125をシリコン層105と第二の半導体素子111との間に埋設することより、導体ヴィア109の周囲が絶縁された構造となっている。   In the semiconductor device 110, the surface of the silicon layer 105 around the conductor via 109 is insulated. Thereby, the insulation between the electrodes of the second semiconductor element 111 is ensured. In FIG. 7, an insulating underfill resin 125 is buried between the silicon layer 105 and the second semiconductor element 111, so that the periphery of the conductor via 109 is insulated.

(第三の実施形態)
以上の実施形態に記載の半導体装置において、配線体101が配線層103のみから構成されていてもよい。図8は、本実施形態に係る半導体装置120の構成を模式的に示す断面図である。
(Third embodiment)
In the semiconductor device described in the above embodiment, the wiring body 101 may be composed of only the wiring layer 103. FIG. 8 is a cross-sectional view schematically showing the configuration of the semiconductor device 120 according to the present embodiment.

図8に示した半導体装置120の基本構成は第一の実施形態に記載の半導体装置100(図1)と同様であるが、配線体101が配線層103のみからなり、第一の半導体素子113および第二の半導体素子111が配線層103の異なる面に対向して設けられている点が異なる。また、第二の半導体素子111が配線層103の表面に電極115およびアンダーフィル樹脂127を介して接続されている点が異なる。   The basic configuration of the semiconductor device 120 shown in FIG. 8 is the same as that of the semiconductor device 100 (FIG. 1) described in the first embodiment, but the wiring body 101 includes only the wiring layer 103, and the first semiconductor element 113. The second semiconductor element 111 is different from the second surface of the wiring layer 103 in that the second semiconductor element 111 is opposed to the second surface. Another difference is that the second semiconductor element 111 is connected to the surface of the wiring layer 103 via an electrode 115 and an underfill resin 127.

半導体装置120において、配線層103からなる配線体101は、たとえば以下の方法により製造することができる。図9(a)〜図9(c)および図10(a)〜図10(c)は、配線層103の作製工程を模式的に示す断面図である。   In the semiconductor device 120, the wiring body 101 made of the wiring layer 103 can be manufactured, for example, by the following method. FIG. 9A to FIG. 9C and FIG. 10A to FIG. 10C are cross-sectional views schematically showing a manufacturing process of the wiring layer 103.

まず、シリコン基板133の表面に、スパッタ法などを用いて金属のシード層137を形成する(図9(a))。シード層137は、たとえばNiとすることができる。次に、シード層137上に配線形成位置を露出させるレジストパターンを形成し、シード層137の露出部を起点として所定のパターンの接続電極139を形成する(図9(b))。接続電極139は、後述する絶縁樹脂膜141の下面側の電極である。接続電極139は、外部引き出し電極として用いることができる。接続電極139は、たとえば電解めっき法により形成することができる。   First, a metal seed layer 137 is formed on the surface of the silicon substrate 133 by sputtering or the like (FIG. 9A). The seed layer 137 can be, for example, Ni. Next, a resist pattern for exposing the wiring formation position is formed on the seed layer 137, and a connection electrode 139 having a predetermined pattern is formed starting from the exposed portion of the seed layer 137 (FIG. 9B). The connection electrode 139 is an electrode on the lower surface side of an insulating resin film 141 described later. The connection electrode 139 can be used as an external extraction electrode. The connection electrode 139 can be formed by, for example, an electrolytic plating method.

接続電極139の材料は、Cu、Al、Au、Ni、W等の金属や合金、メタルシリサイド、またはポリシリコンなどの各種導電性材料で形成することができ、単層構造の他、半田の拡散防止層や電極強度の補強層を含む積層構造とすることもできる。積層構造の電極としては、下端側からAu、Ni、Cuがこの順で積層された電極(Au/Ni/Cu電極)、下端側からNi、Au、Ni、Cuがこの順で積層された電極(Ni/Au/Ni/Cu電極)、このNi/Au/Ni/Cu電極から最下端層のNi層が除去されたAu/Ni/Cu電極、下端側からCu、Ag、Cuがこの順で積層された電極(Cu/Ag/Cu電極)を挙げることができる。上記電極において、中間のNi層は半田の拡散防止層として機能する。また、Cu/Ag/Cu電極において、Ag層は電極の強度を向上する補強層として機能する。   The material of the connection electrode 139 can be formed of various conductive materials such as metals, alloys such as Cu, Al, Au, Ni, and W, metal silicide, or polysilicon. It can also be set as the laminated structure containing the prevention layer and the reinforcement layer of electrode intensity | strength. As an electrode having a laminated structure, an electrode in which Au, Ni, and Cu are laminated in this order from the lower end side (Au / Ni / Cu electrode), and an electrode in which Ni, Au, Ni, and Cu are laminated in this order from the lower end side (Ni / Au / Ni / Cu electrode), an Au / Ni / Cu electrode from which the Ni layer at the bottom end is removed from the Ni / Au / Ni / Cu electrode, and Cu, Ag and Cu in this order from the bottom end side A laminated electrode (Cu / Ag / Cu electrode) can be mentioned. In the electrode, the intermediate Ni layer functions as a solder diffusion preventing layer. In the Cu / Ag / Cu electrode, the Ag layer functions as a reinforcing layer that improves the strength of the electrode.

次に、接続電極139の形成面の全面に絶縁樹脂膜141を設け、接続電極139を絶縁樹脂で埋め込む(図9(c))。絶縁樹脂膜141は、たとえばラミネートフィルム状の絶縁樹脂シートを接合する方法や、スピンコート法等により形成することができる。そして、絶縁樹脂膜141の所定の位置にレーザー光を照射し、レーザーヴィアすなわち開口部143を設ける(図10(a))。また、絶縁樹脂膜141に感光性樹脂を用い、フォトリソグラフィー法により開口部143を形成してもよい。   Next, an insulating resin film 141 is provided on the entire surface where the connection electrode 139 is formed, and the connection electrode 139 is embedded with an insulating resin (FIG. 9C). The insulating resin film 141 can be formed by, for example, a method of bonding laminated film-like insulating resin sheets, a spin coating method, or the like. Then, a laser beam is irradiated to a predetermined position of the insulating resin film 141 to provide a laser via, that is, an opening 143 (FIG. 10A). Alternatively, a photosensitive resin may be used for the insulating resin film 141, and the opening 143 may be formed by a photolithography method.

その後、開口部143をCu等の所定の金属膜で埋めこみ、ヴィアプラグ145とする(図10(b))。そして、ヴィアプラグ145に接続し、所定のパターンを有する配線147を絶縁樹脂膜141上に形成する(図10(c))。配線147の材料は、たとえばCu等の金属とする。そして、配線147の表面に、上層からAu/Niからなるめっき層(不図示)を形成する。以上の工程により、シリコン基板133上に多層の配線層103が形成される。   Thereafter, the opening 143 is filled with a predetermined metal film such as Cu to form a via plug 145 (FIG. 10B). Then, a wiring 147 having a predetermined pattern connected to the via plug 145 is formed on the insulating resin film 141 (FIG. 10C). The material of the wiring 147 is a metal such as Cu. Then, a plating layer (not shown) made of Au / Ni is formed on the surface of the wiring 147 from the upper layer. Through the above steps, the multilayer wiring layer 103 is formed on the silicon substrate 133.

なお、ヴィアプラグ145の平面配置に特に制限はなく、半導体装置120の設計に応じて適宜選択することができる。たとえば、ヴィアプラグ145を正方格子状に配置したり、千鳥配置等の斜格子状に配置したりすることができる。   Note that the planar arrangement of the via plug 145 is not particularly limited, and can be appropriately selected according to the design of the semiconductor device 120. For example, the via plugs 145 can be arranged in a square lattice, or can be arranged in an oblique lattice such as a staggered arrangement.

図8に示した半導体装置120は、以上の方法でシリコン基板133上に配線層103を作製した後、第二の実施形態に記載の半導体装置110(図7)の製造工程を用いて製造することができる。ここで、第二の実施形態においては配線体101がシリコン層105を有する構成であったため、シリコン基板133を薄化したが、本実施形態に係る半導体装置120はシリコン層105を有しない構成であるため、第一の半導体素子113を接合した後、第一の実施形態の場合と同様にシリコン基板133を除去する。そして、配線体101に第二の半導体素子111を接合する   The semiconductor device 120 shown in FIG. 8 is manufactured using the manufacturing process of the semiconductor device 110 (FIG. 7) described in the second embodiment after the wiring layer 103 is formed on the silicon substrate 133 by the above method. be able to. Here, in the second embodiment, since the wiring body 101 has the configuration including the silicon layer 105, the silicon substrate 133 is thinned. However, the semiconductor device 120 according to the present embodiment has a configuration that does not include the silicon layer 105. Therefore, after bonding the first semiconductor element 113, the silicon substrate 133 is removed as in the case of the first embodiment. Then, the second semiconductor element 111 is bonded to the wiring body 101.

こうして得られる半導体装置120(図8、図10(c))において、接続電極139は、絶縁樹脂膜141の第二の半導体素子111の側に設けられる。接続電極139は、第二の半導体素子111を第一の半導体素子113に接続するための素子接続電極と、第二の半導体素子111を外部に接続するための外部接続電極とを含む。接続電極139がこれらのいずれである場合においても、接続電極139の側面全面が絶縁樹脂膜141中に埋設されるとともに、接続電極139の絶縁樹脂119と反対側の面の全体が絶縁樹脂膜141から露出し、この面では接続電極139が絶縁樹脂膜141に接していない構成となっている。   In the semiconductor device 120 (FIGS. 8 and 10C) thus obtained, the connection electrode 139 is provided on the second semiconductor element 111 side of the insulating resin film 141. The connection electrode 139 includes an element connection electrode for connecting the second semiconductor element 111 to the first semiconductor element 113 and an external connection electrode for connecting the second semiconductor element 111 to the outside. In any case where the connection electrode 139 is any of these, the entire side surface of the connection electrode 139 is embedded in the insulating resin film 141, and the entire surface of the connection electrode 139 opposite to the insulating resin 119 is the entire insulating resin film 141. In this surface, the connection electrode 139 is not in contact with the insulating resin film 141.

これにより、接続電極139の高密度配置が可能となる。また、接続電極139の側面外周を確実に絶縁することができる。また、配線層103の第二の半導体素子111の側の面を平坦面としつつ、電極端子123を所定の領域に確実に設け、電極端子123の周囲を確実に絶縁することが可能となる。   Thereby, the connection electrodes 139 can be arranged at high density. Further, the outer periphery of the side surface of the connection electrode 139 can be reliably insulated. In addition, it is possible to reliably provide the electrode terminal 123 in a predetermined region and to reliably insulate the periphery of the electrode terminal 123 while making the surface of the wiring layer 103 on the second semiconductor element 111 side flat.

また、接続電極139を外部接続電極とする場合、従来のワイヤボンディング形式の接続に対し、高密度かつ短い接続距離での接続が可能となる。   Further, when the connection electrode 139 is an external connection electrode, it is possible to connect at a higher density and with a shorter connection distance than a conventional wire bonding type connection.

なお、半導体装置120において、接続電極139は、複数の導電部材が接合されて構成されていてもよい。また、接続電極139の絶縁樹脂膜141からの露出面は平坦面でなくてもよい。たとえば、接続電極139の露出面が絶縁樹脂膜141の表面から凸状にはりだした曲面であってもよい。また、接続電極139は、絶縁樹脂膜141からの露出面にバンプ電極が接合されていてもよい。   Note that in the semiconductor device 120, the connection electrode 139 may be formed by bonding a plurality of conductive members. Further, the exposed surface of the connection electrode 139 from the insulating resin film 141 may not be a flat surface. For example, the exposed surface of the connection electrode 139 may be a curved surface protruding from the surface of the insulating resin film 141. The connection electrode 139 may have a bump electrode bonded to the exposed surface from the insulating resin film 141.

接続電極139の絶縁樹脂膜141からの露出面を曲面とすることにより、接続電極139を他の接続部材に接合するのに充分な高さが確保される。こうした構成は、たとえば接続電極139の露出面に、無電解めっき法などにより曲面状の電極を形成することにより得られる。   By making the exposed surface of the connection electrode 139 from the insulating resin film 141 a curved surface, a height sufficient to join the connection electrode 139 to another connection member is secured. Such a configuration can be obtained, for example, by forming a curved electrode on the exposed surface of the connection electrode 139 by an electroless plating method or the like.

また、図8に示した半導体装置120は、バルクのシリコン基板133を利用して製造することが可能である。このため、低コストで高密度な配線構造により第一の半導体素子113と第二の半導体素子111とを接続することができる。また、配線体101が配線層103からなるため、簡素な構成である。このため、製造工程を簡素化し、製造コストの低減が可能である。   In addition, the semiconductor device 120 illustrated in FIG. 8 can be manufactured using a bulk silicon substrate 133. Therefore, the first semiconductor element 113 and the second semiconductor element 111 can be connected with a low-cost and high-density wiring structure. In addition, since the wiring body 101 includes the wiring layer 103, the configuration is simple. For this reason, a manufacturing process can be simplified and manufacturing cost can be reduced.

第一の半導体素子113および第二の半導体素子111は、線膨張係数が0.5ppm/℃以上5ppm/℃以下の基板を有する構成とした場合、シリコン基板133との熱膨張係数の差を小さくすることができるため、配線体101と第一の半導体素子113および第二の半導体素子111との接続信頼性を向上させることができる。また、第一の半導体素子113および第二の半導体素子111の基板の種類に応じて、バルクのシリコン基板133に代えて、これらの半導体素子の基板との線膨張係数差の小さい材料を用いて半導体装置120を製造してもよい。   When the first semiconductor element 113 and the second semiconductor element 111 have a substrate having a linear expansion coefficient of 0.5 ppm / ° C. or more and 5 ppm / ° C. or less, the difference in thermal expansion coefficient from the silicon substrate 133 is reduced. Therefore, the connection reliability between the wiring body 101 and the first semiconductor element 113 and the second semiconductor element 111 can be improved. Further, depending on the types of substrates of the first semiconductor element 113 and the second semiconductor element 111, instead of the bulk silicon substrate 133, a material having a small difference in linear expansion coefficient from the substrate of these semiconductor elements is used. The semiconductor device 120 may be manufactured.

また、第一の半導体素子113および第二の半導体素子111が、シリコン基板を有する素子であってもよく、この場合、バルクのシリコン基板133を用いることによる効果が顕著に発揮される。このため、第一の半導体素子113と第二の半導体素子111とを接続する導体ヴィア109を高密度で設け、これらの半導体素子間を高密度で接続することが可能となる。   In addition, the first semiconductor element 113 and the second semiconductor element 111 may be elements having a silicon substrate. In this case, the effect of using the bulk silicon substrate 133 is remarkably exhibited. For this reason, it is possible to provide the conductor vias 109 for connecting the first semiconductor element 113 and the second semiconductor element 111 with high density and to connect these semiconductor elements with high density.

また、配線層103中の接続電極139およびヴィアプラグ145の側面は絶縁樹脂膜141に覆われているため、接続電極139の端面に電極115または電極117として半田バンプを接続する場合、半田の流動による接続不良を抑制することができる。   Further, since the side surfaces of the connection electrode 139 and the via plug 145 in the wiring layer 103 are covered with the insulating resin film 141, when solder bumps are connected to the end surfaces of the connection electrode 139 as the electrode 115 or the electrode 117, the flow of solder Connection failure due to can be suppressed.

また、半導体装置120は、配線体101の両面に半導体素子が接合されるため、対称性が高い構成である。このため、第二の半導体素子111と第一の半導体素子113との接続信頼性を充分に確保することが可能となる。   In addition, the semiconductor device 120 has a highly symmetrical structure because semiconductor elements are bonded to both surfaces of the wiring body 101. For this reason, it becomes possible to ensure sufficient connection reliability between the second semiconductor element 111 and the first semiconductor element 113.

また、第一の半導体素子113の配線層103の側の面と、第二の半導体素子111の配線層103の側の面とが、配線層103の面に略垂直に一直線に接続されている。このため、接続距離を短縮し、安定的な接続が確保された構成となっている。なお、配線体101の内部で水平方向に延在する配線を介さずに接続されていれば、半導体素子間の接続が完全に垂直でなくてもよい。また、本実施形態において、配線体101の面に垂直方向に設けられた導電部材すなわちヴィアプラグ145の最小間隔をたとえば50μm以下と高密度化することができる。   Further, the surface on the wiring layer 103 side of the first semiconductor element 113 and the surface on the wiring layer 103 side of the second semiconductor element 111 are connected in a straight line substantially perpendicular to the surface of the wiring layer 103. . For this reason, the connection distance is shortened and a stable connection is ensured. Note that the connections between the semiconductor elements do not have to be completely vertical as long as they are connected without the wiring extending in the horizontal direction inside the wiring body 101. In the present embodiment, the minimum interval between the conductive members provided in the direction perpendicular to the surface of the wiring body 101, that is, the via plugs 145 can be increased to, for example, 50 μm or less.

本実施形態において、配線層103からなる配線体101を有する半導体装置は、以下の構成としてもよい。図31は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。図31に示した半導体装置150の基本構成は図8に示した半導体装置120と同様であるが、絶縁樹脂119中を貫通する導体スルーホール121を有さず、配線体101の第二の半導体素子111の側の面に接して設けられ、配線体101中の配線に接続した電極端子123を有する点が異なる。   In the present embodiment, the semiconductor device having the wiring body 101 made of the wiring layer 103 may have the following configuration. FIG. 31 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the present embodiment. The basic configuration of the semiconductor device 150 illustrated in FIG. 31 is the same as that of the semiconductor device 120 illustrated in FIG. 8, but does not include the conductor through hole 121 penetrating through the insulating resin 119, and the second semiconductor of the wiring body 101. The difference is that an electrode terminal 123 is provided in contact with the surface on the element 111 side and connected to the wiring in the wiring body 101.

半導体装置150は、図8に示した半導体装置120と同様に、平板状の絶縁樹脂膜141およびこれを貫通する導電体を有するため、第一の半導体素子113と第二の半導体素子111とを高密度で確実に接続することができる。また、絶縁樹脂119中に導体スルーホール121を設ける工程を設けることなく製造可能であるため、製造プロセスを簡素化可能な構成となっている。   Like the semiconductor device 120 shown in FIG. 8, the semiconductor device 150 includes a flat insulating resin film 141 and a conductor penetrating the insulating resin film 141, so that the first semiconductor element 113 and the second semiconductor element 111 are connected to each other. High density and reliable connection. Moreover, since it can manufacture without providing the process of providing the conductor through-hole 121 in the insulating resin 119, it has the structure which can simplify a manufacturing process.

図32および図33は、図31に示した半導体装置150の配線層103の構成を詳細に示した断面図である。   32 and 33 are cross-sectional views showing in detail the configuration of the wiring layer 103 of the semiconductor device 150 shown in FIG.

図32に示した半導体装置では、配線層103が、ヴィアプラグ145およびパッド175が設けられた層と配線147が設けられた層との二層構造となっている場合を例示している。なお、ヴィアプラグ145およびパッド175が設けられた層には、ヴィアプラグ145およびパッド175以外の所定の配線が形成されていてもよい。   In the semiconductor device shown in FIG. 32, the case where the wiring layer 103 has a two-layer structure of a layer provided with a via plug 145 and a pad 175 and a layer provided with a wiring 147 is illustrated. A predetermined wiring other than the via plug 145 and the pad 175 may be formed in the layer provided with the via plug 145 and the pad 175.

図32において、電極端子123は、配線147に接合されている。また、配線147は、所定のヴィアプラグ145またはパッド175に接合されている   In FIG. 32, the electrode terminal 123 is joined to the wiring 147. The wiring 147 is bonded to a predetermined via plug 145 or pad 175.

ヴィアプラグ145およびパッド175は、絶縁樹脂膜141の第二の半導体素子111に設けられた接続電極である。これらは、前述した図10(c)における接続電極139に相当する。これらの接続電極の側面全面が絶縁樹脂膜141中に埋設されるとともに、接続電極の絶縁樹脂119と反対側の面が全面絶縁樹脂膜141から露出し、この面では接続電極が絶縁樹脂膜141に接していない構成となっている。これにより、配線層103を平坦面としつつ、電極端子123を所定の領域に選択的に設けることが可能となる。   The via plug 145 and the pad 175 are connection electrodes provided on the second semiconductor element 111 of the insulating resin film 141. These correspond to the connection electrode 139 in FIG. The entire side surfaces of these connection electrodes are embedded in the insulating resin film 141, and the surface of the connection electrode opposite to the insulating resin 119 is exposed from the entire insulating resin film 141. On this surface, the connection electrodes are insulated resin film 141. It is the composition which is not touching. Thereby, the electrode terminal 123 can be selectively provided in a predetermined region while the wiring layer 103 is a flat surface.

なお、図32において、ヴィアプラグ145は第二の半導体素子111との素子接続電極であり、パッド175は電極端子123に接続する外部引き出しパッド、すなわち外部接続電極である。   In FIG. 32, a via plug 145 is an element connection electrode with the second semiconductor element 111, and a pad 175 is an external lead pad connected to the electrode terminal 123, that is, an external connection electrode.

配線147は、絶縁樹脂膜141第一の半導体素子113の接続面上に設けられている。配線147の側面および絶縁樹脂119の側の面は、絶縁樹脂膜141に埋設されておらず、絶縁樹脂膜141から露出している。また、露出部分は絶縁樹脂119中に埋設されている。これにより、配線層103の強度が充分に確保されている。   The wiring 147 is provided on the connection surface of the insulating resin film 141 and the first semiconductor element 113. The side surface of the wiring 147 and the surface on the insulating resin 119 side are not embedded in the insulating resin film 141 and are exposed from the insulating resin film 141. The exposed part is embedded in the insulating resin 119. Thereby, the strength of the wiring layer 103 is sufficiently ensured.

なお、図32において、第一の半導体素子113をメモリチップとし、第二の半導体素子111をロジックチップとしてもよい。このとき、図31における電極115として、第二の半導体素子111を第一の半導体素子113に接続させるメモリ通信用電極179および第二の半導体素子111を電極端子123に接続させる外部入出力用電極183を設けることができる。また、図31における電極117として、第一の半導体素子113を第二の半導体素子111に接続させるメモリ電極181を設けることができる。   In FIG. 32, the first semiconductor element 113 may be a memory chip and the second semiconductor element 111 may be a logic chip. At this time, as the electrode 115 in FIG. 31, the memory communication electrode 179 that connects the second semiconductor element 111 to the first semiconductor element 113 and the external input / output electrode that connects the second semiconductor element 111 to the electrode terminal 123. 183 can be provided. In addition, as the electrode 117 in FIG. 31, a memory electrode 181 that connects the first semiconductor element 113 to the second semiconductor element 111 can be provided.

また、図33に示した半導体装置の基本構成は図32と同様であるが、図32と異なり、ヴィアプラグ145とパッド175とが異なる層に設けられている。このため、パッド175の層すなわち接続電極139の層、ヴィアプラグ145の層、および配線147の層がこの順に積層された配線層103は、図32よりも一層多い三層構造となっている。この構成では、接続電極139を有する層が一つの面が絶縁樹脂膜141から露出した接続電極の層となっている。接続電極139の一部は第二の半導体素子111に接続する素子接続電極であり、他の一部は電極端子123に接続するパッド175である。   The basic structure of the semiconductor device shown in FIG. 33 is the same as that of FIG. 32, but unlike FIG. 32, the via plug 145 and the pad 175 are provided in different layers. Therefore, the wiring layer 103 in which the layer of the pad 175, that is, the layer of the connection electrode 139, the layer of the via plug 145, and the layer of the wiring 147 are stacked in this order has a three-layer structure more than that in FIG. In this configuration, the layer having the connection electrode 139 is a connection electrode layer having one surface exposed from the insulating resin film 141. A part of the connection electrode 139 is an element connection electrode connected to the second semiconductor element 111, and another part is a pad 175 connected to the electrode terminal 123.

また、図33において、第二の半導体素子111をメモリチップとし、第一の半導体素子113をロジックチップとしてもよい。このとき、図32の場合とは逆に、図31の電極115としてメモリ電極181を設け、図31の電極117としてメモリ通信用電極179および外部入出力用電極183を設けることができる。   In FIG. 33, the second semiconductor element 111 may be a memory chip, and the first semiconductor element 113 may be a logic chip. At this time, contrary to the case of FIG. 32, the memory electrode 181 can be provided as the electrode 115 of FIG. 31, and the memory communication electrode 179 and the external input / output electrode 183 can be provided as the electrode 117 of FIG.

なお、図31に示した半導体装置150において、配線層103の構成および積層数は図32および図33に示した態様に限られず、装置構成に応じて適宜設定することができる。また、図32および図33に示した半導体装置における配線層103は、たとえば第七の実施形態にて後述する方法により製造することができる。   In the semiconductor device 150 shown in FIG. 31, the configuration and the number of stacked layers of the wiring layer 103 are not limited to the modes shown in FIGS. 32 and 33, and can be set as appropriate according to the device configuration. Moreover, the wiring layer 103 in the semiconductor device shown in FIGS. 32 and 33 can be manufactured, for example, by a method described later in the seventh embodiment.

さらに、本実施形態に係る半導体装置は、他の半導体装置と積層接続して用いることもできる。図34および図35は、こうした半導体装置の構成を模式的に示す断面図である。   Furthermore, the semiconductor device according to the present embodiment can be used in a stacked connection with other semiconductor devices. 34 and 35 are cross-sectional views schematically showing the configuration of such a semiconductor device.

図34は、図8に示した半導体装置120を他の半導体装置185と接続した構成を示す図である。半導体装置120と半導体装置185とは、半導体装置185に設けられた電極端子および半導体装置120に設けられた導体スルーホール121を介して接続されている。   FIG. 34 is a diagram illustrating a configuration in which the semiconductor device 120 illustrated in FIG. 8 is connected to another semiconductor device 185. The semiconductor device 120 and the semiconductor device 185 are connected to each other through an electrode terminal provided in the semiconductor device 185 and a conductor through hole 121 provided in the semiconductor device 120.

また、図35は、図31に示した半導体装置150を他の半導体装置187と接続した構成を示す図である。半導体装置150と半導体装置187とは、半導体装置150に設けられた電極端子123および半導体装置187に設けられた導体スルーホールを介して接続されている。   FIG. 35 is a diagram illustrating a configuration in which the semiconductor device 150 illustrated in FIG. 31 is connected to another semiconductor device 187. The semiconductor device 150 and the semiconductor device 187 are connected via an electrode terminal 123 provided in the semiconductor device 150 and a conductor through hole provided in the semiconductor device 187.

なお、本実施形態において、配線層103からなる配線体101の構成を第七の実施形態において後述する構成としてもよい。また、第七の実施形態に記載の半導体装置に本実施形態の構成を適用することもできる。   In the present embodiment, the configuration of the wiring body 101 including the wiring layer 103 may be a configuration described later in the seventh embodiment. Further, the configuration of this embodiment can be applied to the semiconductor device described in the seventh embodiment.

(第四の実施形態)
第一の実施形態に記載の半導体装置100において、配線体101の配線層103の側に接合された第一の半導体素子113が、複数の半導体素子の積層体であってもよい。図11は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。図11に示した半導体装置の基本構成は第一の実施形態に記載の半導体装置100(図1)と同様であるが、第一の半導体素子113に代えて複数の半導体素子149が面の法線に沿って積層された構成である点が異なる。
(Fourth embodiment)
In the semiconductor device 100 described in the first embodiment, the first semiconductor element 113 bonded to the wiring layer 103 side of the wiring body 101 may be a stacked body of a plurality of semiconductor elements. FIG. 11 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the present embodiment. The basic configuration of the semiconductor device shown in FIG. 11 is the same as that of the semiconductor device 100 (FIG. 1) described in the first embodiment, but a plurality of semiconductor elements 149 are used instead of the first semiconductor element 113. The difference is that the configuration is stacked along the line.

図11に示した半導体装置において、配線体101の配線層103の面に、アンダーフィル樹脂127、半導体素子149、アンダーフィル樹脂127、半導体素子149、・・・、アンダーフィル樹脂127、半導体素子149が繰り返し設けられた構成によって複数の半導体素子149が積層されている。それぞれの半導体素子149には、当該半導体素子149を貫通する導体スルーホール151が設けられている。また、それぞれのアンダーフィル樹脂127には隣接する二つの半導体素子149間を接続する電極117が設けられている。   In the semiconductor device shown in FIG. 11, an underfill resin 127, a semiconductor element 149, an underfill resin 127, a semiconductor element 149,..., An underfill resin 127, a semiconductor element 149 are formed on the surface of the wiring layer 103 of the wiring body 101. A plurality of semiconductor elements 149 are stacked with a structure in which are repeatedly provided. Each semiconductor element 149 is provided with a conductor through hole 151 that penetrates the semiconductor element 149. Each underfill resin 127 is provided with an electrode 117 that connects between two adjacent semiconductor elements 149.

図11に示した半導体装置は、絶縁樹脂119の形成面側に複数の積層された半導体素子149が接続され、積層された半導体素子149間が、半導体素子149を貫通する導体スルーホール151を介して電気的に接続されている構成になっている。具体的には、複数の半導体素子149は、配線層103に接続する電極117、導体スルーホール151、電極117、導体スルーホール151、・・・、電極117という電極117と導体スルーホール151の繰り返し構造により配線体101に電気的に接続される。電極117と導体スルーホール151との繰り返し構造は、配線体101の表面に対する法線方向に略一直線上に形成されている。このため、図11に示した半導体装置は、半導体素子149間の接続距離が短く、接続信頼性に優れた構成となっている。   In the semiconductor device illustrated in FIG. 11, a plurality of stacked semiconductor elements 149 are connected to the surface on which the insulating resin 119 is formed, and the stacked semiconductor elements 149 are interposed between conductor through holes 151 penetrating the semiconductor elements 149. Are electrically connected. Specifically, the plurality of semiconductor elements 149 include the electrode 117, the conductor through hole 151, the electrode 117, the conductor through hole 151,..., The electrode 117 connected to the wiring layer 103, and the repetition of the electrode 117 and the conductor through hole 151. The structure is electrically connected to the wiring body 101. The repeating structure of the electrode 117 and the conductor through hole 151 is formed on a substantially straight line in the normal direction to the surface of the wiring body 101. For this reason, the semiconductor device shown in FIG. 11 has a structure in which the connection distance between the semiconductor elements 149 is short and the connection reliability is excellent.

また、図11では、配線層103の側に半導体素子149の積層体が配置されたが、配線体101の絶縁膜107の側の面に接続される第二の半導体素子111が複数の半導体素子の積層構造を有していてもよい。図12は、こうした半導体素子の構成を模式的に示す断面図である。図12に示した半導体装置の基本構成は第一の実施形態に記載の半導体装置100(図1)と同様であるが、第二の半導体素子111に代えて複数の半導体素子149が面の法線に沿って積層された構成である点が異なる。   In FIG. 11, the stacked body of the semiconductor elements 149 is arranged on the wiring layer 103 side. However, the second semiconductor element 111 connected to the surface of the wiring body 101 on the insulating film 107 side includes a plurality of semiconductor elements. You may have the laminated structure of. FIG. 12 is a cross-sectional view schematically showing the configuration of such a semiconductor element. The basic configuration of the semiconductor device shown in FIG. 12 is the same as that of the semiconductor device 100 (FIG. 1) described in the first embodiment, but a plurality of semiconductor elements 149 are used instead of the second semiconductor element 111. The difference is that the configurations are stacked along the line.

図12に示した半導体装置において、配線体101の絶縁膜107の面に、アンダーフィル樹脂125、半導体素子149、アンダーフィル樹脂125、半導体素子149、・・・、アンダーフィル樹脂125、半導体素子149が繰り返し設けられた構成によって複数の半導体素子149が積層されている。それぞれの半導体素子149には、当該半導体素子149を貫通する導体スルーホール151が設けられている。また、それぞれのアンダーフィル樹脂125には隣接する二つの半導体素子149を接続する電極115が設けられている。   In the semiconductor device shown in FIG. 12, the underfill resin 125, the semiconductor element 149, the underfill resin 125, the semiconductor element 149,..., The underfill resin 125, the semiconductor element 149 are formed on the surface of the insulating film 107 of the wiring body 101. A plurality of semiconductor elements 149 are stacked with a structure in which are repeatedly provided. Each semiconductor element 149 is provided with a conductor through hole 151 that penetrates the semiconductor element 149. Each underfill resin 125 is provided with an electrode 115 for connecting two adjacent semiconductor elements 149.

また、複数の半導体素子149は、絶縁膜107に接続する電極115、導体スルーホール151、電極115、導体スルーホール151、・・・、電極115という電極115と導体スルーホール151の繰り返し構造により配線体101に電気的に接続される。電極115と導体スルーホール151との繰り返し構造は、配線体101の表面に対する法線方向に略一直線上に形成されている。このため、図12に示した半導体装置も、図11に示した半導体素子の場合と同様に、半導体素子149間の接続距離が短く、接続信頼性に優れた構成となっている。   In addition, the plurality of semiconductor elements 149 are wired by an electrode 115 connected to the insulating film 107, a conductor through hole 151, an electrode 115, a conductor through hole 151,. It is electrically connected to the body 101. The repeating structure of the electrode 115 and the conductor through hole 151 is formed on a substantially straight line in the normal direction to the surface of the wiring body 101. For this reason, the semiconductor device shown in FIG. 12 also has a configuration in which the connection distance between the semiconductor elements 149 is short and the connection reliability is excellent, as in the case of the semiconductor element shown in FIG.

なお、第一の半導体素子113または第二の半導体素子111が複数の半導体素子149の積層体からなる構成は、第二および第三の実施形態に記載の配線体101の構成に適用することもできる。   The configuration in which the first semiconductor element 113 or the second semiconductor element 111 is formed of a stacked body of a plurality of semiconductor elements 149 may be applied to the configuration of the wiring body 101 described in the second and third embodiments. it can.

また、本実施形態および積層された半導体素子149を有する他の実施形態の半導体装置において、積層された半導体素子149は、積層メモリモジュールとすることができる。これにより、メモリ容量を増加させつつ、ロジック部等を有する第二の半導体素子111との良好な電気的接続を得ることができる。   In the semiconductor device of this embodiment and another embodiment having the stacked semiconductor elements 149, the stacked semiconductor elements 149 can be a stacked memory module. Thereby, it is possible to obtain a good electrical connection with the second semiconductor element 111 having a logic portion or the like while increasing the memory capacity.

(第五の実施形態)
以上の実施形態に記載の半導体装置において、配線体101の一つの面に複数の半導体素子が平面配置されていてもよい。以下、第四の実施形態に記載の半導体装置(図11)の場合を例に説明する。図13は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。
(Fifth embodiment)
In the semiconductor device described in the above embodiment, a plurality of semiconductor elements may be arranged in a plane on one surface of the wiring body 101. Hereinafter, the case of the semiconductor device (FIG. 11) described in the fourth embodiment will be described as an example. FIG. 13 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the present embodiment.

図13に示した半導体装置の基本構成は図11に示した半導体装置の構成と同様に、配線体101の絶縁樹脂119形成面側、すなわち配線層103側の面に、複数の積層された半導体素子149が接続され、積層された半導体素子149間が、半導体素子149を貫通する導体スルーホール151および電極117を介して電気的に接続されている。また、図13に示した半導体装置では、図11に示した半導体装置と異なり、配線体101の絶縁樹脂119形成面に対向する面、すなわち絶縁膜107側の面に、複数の第二の半導体素子111が配設されている点が異なる。   The basic structure of the semiconductor device shown in FIG. 13 is similar to the structure of the semiconductor device shown in FIG. The elements 149 are connected, and the stacked semiconductor elements 149 are electrically connected via a conductor through hole 151 and an electrode 117 that penetrate the semiconductor element 149. Further, unlike the semiconductor device shown in FIG. 11, the semiconductor device shown in FIG. 13 has a plurality of second semiconductors on the surface facing the insulating resin 119 formation surface of the wiring body 101, that is, on the surface on the insulating film 107 side. The difference is that the element 111 is disposed.

図13に示した半導体装置においては、複数の第二の半導体素子111が同一平面に配置されて、これらが電極117および導体ヴィア109を介して配線層103に接続する構成となっている。このため、複数の第二の半導体素子111と配線層103との接続距離をそろえ、これらを短縮することができる。よって、複数の第二の半導体素子111と半導体素子149との接続信頼性に優れた構成となっている。また、シリコン層105に形成する導体ヴィア109を高密度化することが可能であるため、第二の半導体素子111を高密度で確実に配線層103に接続することができる。   In the semiconductor device shown in FIG. 13, a plurality of second semiconductor elements 111 are arranged on the same plane and connected to the wiring layer 103 via the electrodes 117 and the conductor vias 109. For this reason, it is possible to align the connection distances between the plurality of second semiconductor elements 111 and the wiring layer 103 and to shorten them. Therefore, the connection reliability between the plurality of second semiconductor elements 111 and the semiconductor elements 149 is excellent. In addition, since the conductor via 109 formed in the silicon layer 105 can be increased in density, the second semiconductor element 111 can be reliably connected to the wiring layer 103 at a high density.

(第六の実施形態)
以上の実施形態に記載の半導体装置において、配線体101中に設けられている導体ヴィア109を導体ワイヤとの接続部材として利用することもできる。また、配線体101の絶縁樹脂119形成面と対向する面に接着材により積層された複数の半導体素子が接続され、そのうち少なくとも1つの半導体素子が、ワイヤを介して、配線体101に電気的に接続された構成とすることができる。図14は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。
(Sixth embodiment)
In the semiconductor device described in the above embodiment, the conductor via 109 provided in the wiring body 101 can be used as a connection member with the conductor wire. In addition, a plurality of semiconductor elements stacked with an adhesive material are connected to a surface of the wiring body 101 facing the insulating resin 119 formation surface, and at least one of the semiconductor elements is electrically connected to the wiring body 101 via a wire. It can be a connected configuration. FIG. 14 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the present embodiment.

図14に示した半導体装置の基本構成は第一の実施形態に記載の半導体装置(図6)と同様であるが、第一の半導体素子113および第二の半導体素子111が設けられていない領域においても配線体101のシリコン層105および絶縁膜107を貫通する導体ヴィア109が設けられている点が異なる。   The basic configuration of the semiconductor device shown in FIG. 14 is the same as that of the semiconductor device described in the first embodiment (FIG. 6), but the region where the first semiconductor element 113 and the second semiconductor element 111 are not provided. The conductor via 109 penetrating the silicon layer 105 and the insulating film 107 of the wiring body 101 is also provided.

また、図14に示した半導体装置においては、配線体101の絶縁樹脂119形成面と対向する面すなわち絶縁膜107の側の面に、接着剤153により積層された複数の第二の半導体素子111が接続されている。そして、少なくとも1つの第二の半導体素子111が、配線体101のシリコン層105と絶縁膜107を貫通する導体ヴィア109に接続して形成された導体パッド159に、導体パッド157および導体からなるワイヤ155を介して接続された構成となっている。導体パッド157は、たとえば無電解めっき法により形成することができる。   In the semiconductor device shown in FIG. 14, a plurality of second semiconductor elements 111 laminated with an adhesive 153 on the surface of the wiring body 101 facing the surface on which the insulating resin 119 is formed, that is, the surface on the insulating film 107 side. Is connected. Then, at least one second semiconductor element 111 is connected to a conductor pad 159 formed by connecting to the conductor via 109 penetrating the silicon layer 105 and the insulating film 107 of the wiring body 101, and a wire made of the conductor pad 157 and the conductor. 155 is connected through 155. The conductor pad 157 can be formed by, for example, an electroless plating method.

本実施形態では、導体ヴィア109を第一の半導体素子113および第二の半導体素子111の接合領域以外の絶縁樹脂119および絶縁樹脂135に封止された領域にも設けることにより、第二の半導体素子111とのワイヤボンディングに好適に利用することができる。このため、第二の半導体素子111と配線体101との電気的接続の設計の自由度の大きい構成となっている。   In the present embodiment, the conductor via 109 is provided also in a region sealed with the insulating resin 119 and the insulating resin 135 other than the bonding region of the first semiconductor element 113 and the second semiconductor element 111, whereby the second semiconductor It can be suitably used for wire bonding with the element 111. For this reason, the second semiconductor element 111 and the wiring body 101 have a high degree of freedom in designing the electrical connection.

(第七の実施形態)
図15(a)および図15(b)は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。図15(a)は、図15(b)に示した半導体装置のボンディング前の状態を示す図である。図15(a)に示した半導体装置は、第三の実施形態に記載の配線層103からなる配線体101の一方の面に第一の半導体素子113が接合され、他方の面に第二の半導体素子111が配設された構成を有する。第一の半導体素子113は、配線体101上を覆う絶縁樹脂119中に埋設されている。なお、絶縁樹脂119を貫通する導体スルーホール121および導体スルーホール121に接続する電極端子123は、図15(a)においては設けられていない。
(Seventh embodiment)
FIG. 15A and FIG. 15B are cross-sectional views schematically showing the configuration of the semiconductor device according to the present embodiment. FIG. 15A is a diagram showing a state before bonding of the semiconductor device shown in FIG. In the semiconductor device shown in FIG. 15A, the first semiconductor element 113 is bonded to one surface of the wiring body 101 including the wiring layer 103 described in the third embodiment, and the second surface is connected to the other surface. The semiconductor element 111 is disposed. The first semiconductor element 113 is embedded in an insulating resin 119 that covers the wiring body 101. Note that the conductor through-hole 121 passing through the insulating resin 119 and the electrode terminal 123 connected to the conductor through-hole 121 are not provided in FIG.

図15(a)に示した半導体装置は、チップ間が電気的に接続された半導体モジュールである。図15(b)に示したように、図15(a)に示した半導体装置は、接着剤153によりヒートスプレッダ171の表面に接着される。半導体装置の側方においてヒートスプレッダ171の表面にサポートリング161およびTABテープ基板163がこの順に接着剤153により接着されている。TABテープ基板163の表面には配線層165が設けられている。配線層165は、端部が配線層103に向かって引き出されたインナーリード169を有し、インナーリード169はインナーリード封止樹脂167により封止されている。そして、図15(a)に示した半導体装置の外部に引き出された配線層103からなる配線体101は、TAB(Tape Automated Bonding)技術によりインナーリード169を介してTABテープ基板163上の配線層165に接続されている。   The semiconductor device shown in FIG. 15A is a semiconductor module in which chips are electrically connected. As shown in FIG. 15B, the semiconductor device shown in FIG. 15A is bonded to the surface of the heat spreader 171 with an adhesive 153. On the side of the semiconductor device, a support ring 161 and a TAB tape substrate 163 are bonded to the surface of the heat spreader 171 with an adhesive 153 in this order. A wiring layer 165 is provided on the surface of the TAB tape substrate 163. The wiring layer 165 has an inner lead 169 with an end drawn toward the wiring layer 103, and the inner lead 169 is sealed with an inner lead sealing resin 167. Then, the wiring body 101 composed of the wiring layer 103 drawn to the outside of the semiconductor device shown in FIG. 15A is connected to the wiring layer on the TAB tape substrate 163 via the inner leads 169 by TAB (Tape Automated Bonding) technology. 165.

このように、配線層103を有する半導体装置は、TAB接続型の装置に適用することもできる。TAB技術を用いてインナーリードを接続することにより、半導体装置の設計の自由度をさらに増すことができる。   As described above, the semiconductor device including the wiring layer 103 can be applied to a TAB connection type device. By connecting the inner leads using the TAB technique, the degree of freedom in designing the semiconductor device can be further increased.

なお、本実施形態および配線層103からなる配線体101を有する他の実施形態に係る半導体装置において、配線体101の両面に第一の半導体素子113および第二の半導体素子111が接合された半導体モジュールの構成は、たとえば以下のようにすることができる。図16は、本実施形態に係る半導体モジュールの構成を模式的に示す断面図である。   In the semiconductor device according to this embodiment and another embodiment having the wiring body 101 composed of the wiring layer 103, a semiconductor in which the first semiconductor element 113 and the second semiconductor element 111 are bonded to both surfaces of the wiring body 101. The module configuration can be as follows, for example. FIG. 16 is a cross-sectional view schematically showing the configuration of the semiconductor module according to the present embodiment.

図16に示した半導体モジュールは、図32に示した配線層103と同様の基本構成を有する配線体101を備える。接続電極であるヴィアプラグ145と外部引き出し用のパッド175とが同層に設けられている。また、これらと同層に樹脂止めパターン177が設けられている。樹脂止めパターン177は、ヴィアプラグ145やパッド175と同じ材料で同一工程により形成することができる。   The semiconductor module shown in FIG. 16 includes a wiring body 101 having the same basic configuration as the wiring layer 103 shown in FIG. A via plug 145 as a connection electrode and an external lead pad 175 are provided in the same layer. In addition, a resin stopper pattern 177 is provided in the same layer as these. The resin stopper pattern 177 can be formed by the same process using the same material as the via plug 145 and the pad 175.

パッド175は、第一の半導体素子113および第二の半導体素子111の形成領域の側方における配線層103に設けられている。また、樹脂止めパターン177は、アンダーフィル樹脂125およびアンダーフィル樹脂127の形成領域の近傍において、これらのアンダーフィル樹脂の形成領域の側方に設けられている。   The pad 175 is provided in the wiring layer 103 on the side of the formation region of the first semiconductor element 113 and the second semiconductor element 111. Further, the resin stopper pattern 177 is provided in the vicinity of the underfill resin 125 and the underfill resin 127 in the vicinity of these underfill resin formation regions.

また、絶縁樹脂119の形成面と反対側の面に接続された第二の半導体素子111(ロジックLSIチップ)は、外部入出力用電極183、ヴィアプラグ145および配線147を介して配線147に接続されている。また、第二の半導体素子111は、メモリ通信用電極179が、ヴィアプラグ145、配線147およびメモリ電極181を介して配線層103の反対面に接続された第一の半導体素子113(メモリLSIチップ)と接続されている。   The second semiconductor element 111 (logic LSI chip) connected to the surface opposite to the surface on which the insulating resin 119 is formed is connected to the wiring 147 via the external input / output electrode 183, the via plug 145 and the wiring 147. Has been. The second semiconductor element 111 includes a first semiconductor element 113 (memory LSI chip) in which a memory communication electrode 179 is connected to the opposite surface of the wiring layer 103 via a via plug 145, a wiring 147, and a memory electrode 181. ).

図16に示した半導体モジュールは、たとえば第三の実施形態に記載の方法(図9(a)〜図9(c)、図10(a)〜図10(c))を用いて作製することができる。また、以下の方法により作製してもよい。図21(a)〜図21(c)、図22(a)〜図22(c)、および図23は、図16に示した半導体モジュールの別の製造工程を模式的に示す断面図である。   The semiconductor module shown in FIG. 16 is manufactured using, for example, the method described in the third embodiment (FIGS. 9A to 9C and FIGS. 10A to 10C). Can do. Moreover, you may produce with the following method. 21 (a) to 21 (c), 22 (a) to 22 (c), and 23 are cross-sectional views schematically showing another manufacturing process of the semiconductor module shown in FIG. .

まず、シリコン基板133の表面に、スパッタ法などを用いて金属のシード層137を形成する(図21(a))。シード層137は、たとえばCuやNi等とすることができる。次に、シリコン基板133におけるシード層137の形成面の全面に絶縁樹脂膜141を設け、絶縁樹脂膜141の所定の位置にレーザー光を照射し、レーザーヴィアすなわち開口部143を設ける(図21(b))。   First, a metal seed layer 137 is formed on the surface of the silicon substrate 133 by sputtering or the like (FIG. 21A). The seed layer 137 can be Cu, Ni, or the like, for example. Next, an insulating resin film 141 is provided on the entire surface of the silicon substrate 133 where the seed layer 137 is formed, and a laser beam is irradiated to a predetermined position of the insulating resin film 141 to provide a laser via, that is, an opening 143 (FIG. 21 ( b)).

その後、開口部143をCu等の所定の金属膜で埋めこみ、ヴィアプラグ145等の接続電極とする(図21(c))。接続電極の材料は、Cu、Ni、Au、W等の金属または合金等の導電材料とすることができる。さらに具体的には、接続電極を、上からCu/Ni/Au/Niの4層構造とすることができる。また、上からCu/Ni/Auの3層構造とすることもできる。   Thereafter, the opening 143 is filled with a predetermined metal film such as Cu to form a connection electrode such as a via plug 145 (FIG. 21C). The material of the connection electrode can be a metal such as Cu, Ni, Au, W, or a conductive material such as an alloy. More specifically, the connection electrode can have a four-layer structure of Cu / Ni / Au / Ni from the top. Moreover, it can also be set as the three-layer structure of Cu / Ni / Au from the top.

そして、接続電極に接続し、所定のパターンを有する配線147を絶縁樹脂膜141上に形成する(図22(a))。配線147の材料は、たとえばCu等の金属とする。そして、配線147の表面に、上層からAu/Niからなるめっき層(不図示)を形成する。以上の工程により、シリコン基板133上に配線層103が形成される。   Then, a wiring 147 having a predetermined pattern connected to the connection electrode is formed on the insulating resin film 141 (FIG. 22A). The material of the wiring 147 is a metal such as Cu. Then, a plating layer (not shown) made of Au / Ni is formed on the surface of the wiring 147 from the upper layer. Through the above steps, the wiring layer 103 is formed on the silicon substrate 133.

次に、第二の実施形態に記載の半導体装置110(図7)の製造工程を用いて第一の半導体素子113を配線体101の表面に接続する。第一の半導体素子113のメモリ電極181と配線層103の配線147とを接合させて、第一の半導体素子113と配線層103との間にアンダーフィル樹脂127を充填する(図22(b))。そして、配線層103の表面全面に絶縁樹脂119を成形し、第一の半導体素子113をモールド封入する(図22(c))。   Next, the first semiconductor element 113 is connected to the surface of the wiring body 101 using the manufacturing process of the semiconductor device 110 (FIG. 7) described in the second embodiment. The memory electrode 181 of the first semiconductor element 113 and the wiring 147 of the wiring layer 103 are joined, and the underfill resin 127 is filled between the first semiconductor element 113 and the wiring layer 103 (FIG. 22B). ). Then, an insulating resin 119 is formed on the entire surface of the wiring layer 103, and the first semiconductor element 113 is molded and sealed (FIG. 22C).

そして、裏面研削等により、シリコン基板133を除去し、シード層137およびNi層をエッチング除去する。さらに、絶縁樹脂119の一部を研削し、ヴィアプラグ145の表面を露出させる(図23)。そして、配線体101の面に第一の半導体素子113に対向させて第二の半導体素子111を接続する。こうして、図16に示した半導体モジュールが得られる。   Then, the silicon substrate 133 is removed by back grinding or the like, and the seed layer 137 and the Ni layer are removed by etching. Further, a part of the insulating resin 119 is ground to expose the surface of the via plug 145 (FIG. 23). Then, the second semiconductor element 111 is connected to the surface of the wiring body 101 so as to face the first semiconductor element 113. In this way, the semiconductor module shown in FIG. 16 is obtained.

また、図24は、図16に示した半導体モジュールの変形例である。図24に示した半導体モジュールの基本構成は図16と同様であるが、配線体101への第二の半導体素子111および第一の半導体素子113の接合面が反転している。この構成では、たとえば、第一の半導体素子113をロジックLSIチップとし、第二の半導体素子111をメモリチップとすることができる。   FIG. 24 shows a modification of the semiconductor module shown in FIG. The basic configuration of the semiconductor module shown in FIG. 24 is the same as that of FIG. 16, but the bonding surfaces of the second semiconductor element 111 and the first semiconductor element 113 to the wiring body 101 are reversed. In this configuration, for example, the first semiconductor element 113 can be a logic LSI chip and the second semiconductor element 111 can be a memory chip.

また、本実施形態において、配線層103からなる配線体101を有する半導体モジュールの構成は、図25または図29に示す構成としてもよい。図25および図29は、本実施形態に係る半導体モジュールの構成を模式的に示す断面図である。図25および図29に示した半導体モジュールは、それぞれ基本構成を図16および図24に示した半導体モジュールと同様としているが、配線層103が、接続電極139の形成層、ヴィアプラグ145の形成層、および配線147の形成層の三層の積層構造となっている点が異なる。接続電極139の一部は素子接続電極であり、他の一部は外部接続電極であるパッド175となっている。   In the present embodiment, the configuration of the semiconductor module having the wiring body 101 made of the wiring layer 103 may be the configuration shown in FIG. 25 or FIG. 25 and 29 are cross-sectional views schematically showing the configuration of the semiconductor module according to the present embodiment. The basic configurations of the semiconductor modules shown in FIGS. 25 and 29 are the same as those of the semiconductor modules shown in FIGS. 16 and 24, respectively. However, the wiring layer 103 includes the formation layer of the connection electrode 139 and the formation layer of the via plug 145. , And the formation layer of the wiring 147 is different. A part of the connection electrode 139 is an element connection electrode, and the other part is a pad 175 which is an external connection electrode.

また、図25に示した構成では、たとえば、第一の半導体素子113をメモリチップとし、第二の半導体素子111をロジックLSIチップとすることができる。また、図29に示した半導体モジュールの基本構成は図25と同様であるが、配線体101への第二の半導体素子111および第一の半導体素子113の接合面が反転している。この構成では、たとえば、第一の半導体素子113をロジックLSIチップとし、第二の半導体素子111をメモリチップとすることができる。   In the configuration shown in FIG. 25, for example, the first semiconductor element 113 can be a memory chip and the second semiconductor element 111 can be a logic LSI chip. The basic configuration of the semiconductor module shown in FIG. 29 is the same as that of FIG. 25, but the bonding surfaces of the second semiconductor element 111 and the first semiconductor element 113 to the wiring body 101 are inverted. In this configuration, for example, the first semiconductor element 113 can be a logic LSI chip and the second semiconductor element 111 can be a memory chip.

図25に示した半導体モジュールは、たとえば次のようにして作製される。図26(a)〜図26(c)、図27(a)〜図27(c)および図28(a)〜図28(b)は、図25に示した半導体モジュールの製造工程を模式的に示す断面図である。   The semiconductor module shown in FIG. 25 is manufactured as follows, for example. 26 (a) to 26 (c), 27 (a) to 27 (c) and 28 (a) to 28 (b) schematically illustrate the manufacturing process of the semiconductor module shown in FIG. FIG.

まず、シリコン基板133の表面に、スパッタ法などを用いて金属のシード層137を形成する(図26(a))。次に、シード層137上に配線形成位置を露出させるレジストパターンを形成し、シード層137の露出部を起点として所定のパターンの接続電極139を形成する(図26(b))。   First, a metal seed layer 137 is formed on the surface of the silicon substrate 133 by sputtering or the like (FIG. 26A). Next, a resist pattern for exposing the wiring formation position is formed on the seed layer 137, and a connection electrode 139 having a predetermined pattern is formed starting from the exposed portion of the seed layer 137 (FIG. 26B).

次に、接続電極139の形成面の全面に絶縁樹脂膜141を設け、接続電極139を絶縁樹脂で埋め込む(図26(c))。絶縁樹脂膜141は、たとえばラミネートフィルム状の絶縁樹脂シートを接合する方法や、スピンコート法等により形成することができる。シリコン基板133におけるシード層137の形成面の全面に絶縁樹脂膜141を設け、絶縁樹脂膜141の所定の位置にレーザー光を照射し、レーザーヴィアすなわち開口部143を設ける(図26(c))。   Next, an insulating resin film 141 is provided on the entire surface where the connection electrode 139 is formed, and the connection electrode 139 is embedded with an insulating resin (FIG. 26C). The insulating resin film 141 can be formed by, for example, a method of bonding laminated film-like insulating resin sheets, a spin coating method, or the like. An insulating resin film 141 is provided on the entire surface of the silicon substrate 133 where the seed layer 137 is formed, and a laser beam is irradiated to a predetermined position of the insulating resin film 141 to provide a laser via, that is, an opening 143 (FIG. 26C). .

その後、開口部143をCu等の所定の金属膜で埋めこみ、ヴィアプラグ145とする(図27(a))。ヴィアプラグ145の材料は、たとえばCu等の金属とすることができる。また、ヴィアプラグ145は、たとえばめっき法により形成することができる。   Thereafter, the opening 143 is filled with a predetermined metal film such as Cu to form a via plug 145 (FIG. 27A). The material of the via plug 145 can be a metal such as Cu, for example. The via plug 145 can be formed by, for example, a plating method.

そして、ヴィアプラグ145に接続し、所定のパターンを有する配線147を絶縁樹脂膜141上に形成する(図27(b))。配線147の材料は、たとえばCu等の金属とする。そして、配線147の表面に、上層からAu/Niからなるめっき層(不図示)を形成する。以上の工程により、シリコン基板133上に配線層103が形成される。   Then, a wiring 147 having a predetermined pattern connected to the via plug 145 is formed on the insulating resin film 141 (FIG. 27B). The material of the wiring 147 is a metal such as Cu. Then, a plating layer (not shown) made of Au / Ni is formed on the surface of the wiring 147 from the upper layer. Through the above steps, the wiring layer 103 is formed on the silicon substrate 133.

次に、第二の実施形態に記載の半導体装置110(図7)の製造工程を用いて第一の半導体素子113を配線体101の表面に接続する。第一の半導体素子113のメモリ電極181と配線層103の配線147とを接合させて、第一の半導体素子113と配線層103との間にアンダーフィル樹脂127を充填する(図27(c))。そして、配線層103の表面全面に絶縁樹脂119を成形し、第一の半導体素子113をモールド封入する(図28(a))。そして、裏面研削等により、シリコン基板133を除去し、シード層137およびNi層をエッチング除去し、ヴィアプラグ145の表面を露出させる(図28(b))。そして、配線体101の面に第一の半導体素子113に対向させて第二の半導体素子111を接続する。こうして、図25に示した半導体モジュールが得られる。   Next, the first semiconductor element 113 is connected to the surface of the wiring body 101 using the manufacturing process of the semiconductor device 110 (FIG. 7) described in the second embodiment. The memory electrode 181 of the first semiconductor element 113 and the wiring 147 of the wiring layer 103 are joined, and the underfill resin 127 is filled between the first semiconductor element 113 and the wiring layer 103 (FIG. 27C). ). Then, an insulating resin 119 is formed on the entire surface of the wiring layer 103, and the first semiconductor element 113 is molded and sealed (FIG. 28A). Then, the silicon substrate 133 is removed by backside grinding or the like, the seed layer 137 and the Ni layer are removed by etching, and the surface of the via plug 145 is exposed (FIG. 28B). Then, the second semiconductor element 111 is connected to the surface of the wiring body 101 so as to face the first semiconductor element 113. In this way, the semiconductor module shown in FIG. 25 is obtained.

なお、こうした半導体モジュールは、配線層103からなる配線体101を有する半導体装置だけでなく、たとえば第六の実施形態に記載の半導体装置(図14)等に適用することも可能である。   Such a semiconductor module can be applied not only to the semiconductor device having the wiring body 101 made of the wiring layer 103 but also to the semiconductor device described in the sixth embodiment (FIG. 14), for example.

(第八の実施形態)
図17(a)および図17(b)は、本実施形態に係る半導体装置の構成を模式的に示す断面図である。図17(a)に示した半導体装置は、配線層103からなる平板状の配線体と、配線層103の一方の面に設けられた第一の半導体素子と、一方の面および第一の半導体素子の側面を被覆する絶縁樹脂119と、絶縁樹脂119を貫通する導体スルーホール121と、配線層103の他方の面に設けられた第二の半導体素子111と、を有する。
(Eighth embodiment)
FIG. 17A and FIG. 17B are cross-sectional views schematically showing the configuration of the semiconductor device according to the present embodiment. The semiconductor device shown in FIG. 17A includes a flat wiring body composed of the wiring layer 103, a first semiconductor element provided on one surface of the wiring layer 103, one surface, and the first semiconductor. Insulating resin 119 that covers the side surface of the element, conductor through hole 121 that penetrates insulating resin 119, and second semiconductor element 111 provided on the other surface of wiring layer 103 are included.

そして、第一の半導体素子は、複数の半導体素子149が面に垂直な方向に沿って積層された積層体であり、配線147において最も配線体101から遠い側に設けられた電極117と、第一の半導体素子113の配線層103の側の面に設けられた電極115とが、平面視において一致している構成なっている。   The first semiconductor element is a stacked body in which a plurality of semiconductor elements 149 are stacked in a direction perpendicular to the surface, and the electrode 117 provided on the side farthest from the wiring body 101 in the wiring 147, and the first semiconductor element The electrode 115 provided on the surface of the one semiconductor element 113 on the wiring layer 103 side is configured to match in plan view.

なお、本実施形態においても、配線層103は、平板状の絶縁樹脂膜141(図17(a)では不図示)と、絶縁体を貫通する導電体と、を有し、導電体を介して複数の半導体素子149と第二の半導体素子111とを電気的に接続する。   Also in this embodiment, the wiring layer 103 has a flat insulating resin film 141 (not shown in FIG. 17A) and a conductor penetrating the insulator, with the conductor interposed therebetween. The plurality of semiconductor elements 149 and the second semiconductor element 111 are electrically connected.

図17(a)に示した半導体モジュールは、図17(b)に示したように、配線層103中に配線に接続する導体パッド157および導体パッド157に接続しているワイヤ155により配線基板173に接続され、半導体モジュールとワイヤ155とが絶縁樹脂135により封止されている。   As shown in FIG. 17B, the semiconductor module shown in FIG. 17A has a wiring board 173 by a conductor pad 157 connected to the wiring in the wiring layer 103 and a wire 155 connected to the conductor pad 157. The semiconductor module and the wire 155 are sealed with an insulating resin 135.

次に、図17(a)に示した半導体モジュールの製造方法を説明する。図18(a)〜図18(c)および図19(a)、図19(b)は、図17に示した半導体装置の製造工程を説明する断面図である。   Next, a method for manufacturing the semiconductor module shown in FIG. 18 (a) to 18 (c), 19 (a), and 19 (b) are cross-sectional views illustrating a manufacturing process of the semiconductor device shown in FIG.

まず、図18(a)に示したシリコン基板133上に配線層103を形成する(図18(b))。配線層103の形成方法は、たとえば第三の実施形態または第七の実施形態に記載の方法とすることができる。次に、あらかじめ一方の面に電極117を形成した半導体素子149を配線層103上の配線に接合する。そして、半導体素子149と電極117との間にアンダーフィル樹脂127を充填する。これを繰り返すことにより、所定の数の半導体素子149が配線層103上に積層される(図18(c))。   First, the wiring layer 103 is formed on the silicon substrate 133 shown in FIG. 18A (FIG. 18B). The method for forming the wiring layer 103 can be, for example, the method described in the third embodiment or the seventh embodiment. Next, the semiconductor element 149 having the electrode 117 formed in advance on one surface is bonded to the wiring on the wiring layer 103. Then, an underfill resin 127 is filled between the semiconductor element 149 and the electrode 117. By repeating this, a predetermined number of semiconductor elements 149 are stacked on the wiring layer 103 (FIG. 18C).

次に、配線層103の半導体素子149が積層された側の面を絶縁樹脂135で被覆する。このとき、半導体素子149を絶縁樹脂135中に埋設させる(図19(a))。そして、裏面研削等の方法により、シリコン基板133を裏面側から除去する(図19(b))。そして、シリコン基板133の除去により露出した配線層103の表面に第二の半導体素子111を接合する。これにより、図17(a)に示した半導体モジュールが得られる。   Next, the surface of the wiring layer 103 on which the semiconductor element 149 is laminated is covered with an insulating resin 135. At this time, the semiconductor element 149 is embedded in the insulating resin 135 (FIG. 19A). Then, the silicon substrate 133 is removed from the back surface side by a method such as back surface grinding (FIG. 19B). Then, the second semiconductor element 111 is bonded to the surface of the wiring layer 103 exposed by removing the silicon substrate 133. Thereby, the semiconductor module shown in FIG. 17A is obtained.

図17(b)に示した半導体装置は、以上の工程で得られた半導体モジュールを、配線基板173の表面に接着し、ワイヤ155によるボンディングおよび絶縁樹脂135による封止を行う。そして、電極端子123の形成を行うことにより得ることができる。   In the semiconductor device shown in FIG. 17B, the semiconductor module obtained through the above steps is bonded to the surface of the wiring substrate 173, and bonding with the wires 155 and sealing with the insulating resin 135 are performed. And it can obtain by forming the electrode terminal 123. FIG.

図17(a)および図17(b)に示した半導体装置は、第二の半導体素子111と半導体素子149とが配線体101の主面の法線方向に一直線に導電部材が設けられて第二の半導体素子111と半導体素子149とが接続された構成となっている。このため、第二の半導体素子111と半導体素子149との接続距離を短くしつつ、導電部材を高密度に配置することができる。このため、第二の半導体素子111と半導体素子149との間の信号処理速度を向上することができる。   In the semiconductor device shown in FIGS. 17A and 17B, the second semiconductor element 111 and the semiconductor element 149 are provided with conductive members in a straight line in the normal direction of the main surface of the wiring body 101. The second semiconductor element 111 and the semiconductor element 149 are connected. For this reason, it is possible to arrange the conductive members at high density while shortening the connection distance between the second semiconductor element 111 and the semiconductor element 149. For this reason, the signal processing speed between the second semiconductor element 111 and the semiconductor element 149 can be improved.

また、図20(a)および図20(b)は、それぞれ図17(a)および図17(b)に示した半導体装置において、配線体101が絶縁膜107、シリコン層105および配線層103の積層体であるとともに、半導体素子149の積層体にかえて一つの第一の半導体素子113を配線層103の一方の面に接合した構成の半導体装置を模式的に示す断面図である。   20A and 20B illustrate the semiconductor device illustrated in FIGS. 17A and 17B, respectively, in which the wiring body 101 includes the insulating film 107, the silicon layer 105, and the wiring layer 103. 2 is a cross-sectional view schematically showing a semiconductor device which is a stacked body and has a structure in which one first semiconductor element 113 is bonded to one surface of a wiring layer 103 instead of the stacked body of semiconductor elements 149. FIG.

図20(b)に示したように、この半導体装置は、シリコン層105および絶縁膜107を貫通する導体ヴィア109に接続して形成された導体パッド157を有する半導体モジュール(図20(a))を、配線基板173に接着剤153を介して搭載している。そして、導体パッド157と配線基板173とをワイヤ155により電気的に接続するとともに、半導体モジュールとワイヤ155を絶縁樹脂135により封止した構成になっている。   As shown in FIG. 20B, this semiconductor device has a semiconductor module having a conductor pad 157 formed in connection with a conductor via 109 penetrating the silicon layer 105 and the insulating film 107 (FIG. 20A). Is mounted on the wiring board 173 via an adhesive 153. The conductor pad 157 and the wiring board 173 are electrically connected by a wire 155 and the semiconductor module and the wire 155 are sealed with an insulating resin 135.

また、図30は、図20(b)に示した半導体装置に配線層103からなる配線体101を有する半導体モジュールを適用した例を示す断面図である。なお、図30では、第一の半導体素子113が絶縁樹脂119から露出せずに埋設された構成となっている。   FIG. 30 is a cross-sectional view showing an example in which a semiconductor module having the wiring body 101 made of the wiring layer 103 is applied to the semiconductor device shown in FIG. In FIG. 30, the first semiconductor element 113 is embedded without being exposed from the insulating resin 119.

図30においては、接続電極139に導体パッド157を接合し、導体パッド157と配線基板173との間をワイヤ155で接続することにより、配線層103を介して配線基板173と第一の半導体素子113および第二の半導体素子111とが電気的に接続されている。この構成において、絶縁樹脂119と配線基板173とを接続する接着剤153は、たとえばAgペーストとすることができる。なお、図30において、接続電極139の一部はヴィアプラグ145となっている。   In FIG. 30, by connecting a conductor pad 157 to the connection electrode 139 and connecting the conductor pad 157 and the wiring board 173 with a wire 155, the wiring board 173 and the first semiconductor element are interposed via the wiring layer 103. 113 and the second semiconductor element 111 are electrically connected. In this configuration, the adhesive 153 that connects the insulating resin 119 and the wiring board 173 can be, for example, an Ag paste. In FIG. 30, a part of the connection electrode 139 is a via plug 145.

図30に示した半導体装置では、配線体101と配線基板173とを確実に接続しつつ、第二の半導体素子111と第一の半導体素子113とを短距離で高密度に接続されるため、動作特性に優れた構成となっている。   In the semiconductor device shown in FIG. 30, the second semiconductor element 111 and the first semiconductor element 113 are connected with high density at a short distance while securely connecting the wiring body 101 and the wiring substrate 173. It has a configuration with excellent operating characteristics.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

たとえば、以上の実施形態に記載の半導体装置において、配線体101の構成は第一の実施形態〜第三の実施形態のいずれかに記載された構成を適宜選択して用いることができる。   For example, in the semiconductor device described in the above embodiments, the configuration of the wiring body 101 can be appropriately selected from the configurations described in any of the first to third embodiments.

100 半導体装置
101 配線体
103 配線層
105 シリコン層
107 絶縁膜
109 導体ヴィア
110 半導体装置
111 半導体素子
113 半導体素子
115 電極
117 電極
119 絶縁樹脂
120 半導体装置
121 導体スルーホール
123 電極端子
125 アンダーフィル樹脂
127 アンダーフィル樹脂
129 基板
131 導体ポスト
133 シリコン基板
135 絶縁樹脂
137 シード層
139 接続電極
141 絶縁樹脂膜
143 開口部
145 ヴィアプラグ
147 配線
149 半導体素子
150 半導体装置
151 導体スルーホール
153 接着剤
155 ワイヤ
157 導体パッド
159 導体パッド
161 サポートリング
163 テープ基板
165 配線層
167 インナーリード封止樹脂
169 インナーリード
171 ヒートスプレッダ
173 配線基板
175 パッド
177 樹脂止めパターン
179 メモリ通信用電極
181 メモリ電極
183 外部入出力用電極
185 半導体装置
187 半導体装置
DESCRIPTION OF SYMBOLS 100 Semiconductor device 101 Wiring body 103 Wiring layer 105 Silicon layer 107 Insulating film 109 Conductor via 110 Semiconductor device 111 Semiconductor element 113 Semiconductor element 115 Electrode 117 Electrode 119 Insulating resin 120 Semiconductor device 121 Conductor through-hole 123 Electrode terminal 125 Underfill resin 127 Under Fill resin 129 Substrate 131 Conductor post 133 Silicon substrate 135 Insulating resin 137 Seed layer 139 Connection electrode 141 Insulating resin film 143 Opening 145 Via plug 147 Wiring 149 Semiconductor element 150 Semiconductor device 151 Conductor through hole 153 Adhesive 155 Wire 157 Conductor pad 15 Conductor pad 161 Support ring 163 Tape substrate 165 Wiring layer 167 Inner lead sealing resin 169 Inner lead 71 the heat spreader 173 wiring board 175 pads 177 resin stopper pattern 179 memory communication electrodes 181 memory electrode 183 external input and output electrodes 185 a semiconductor device 187 a semiconductor device

Claims (18)

平板状の配線体と、
前記配線体の一方の面に設けられた第一の半導体素子と、
前記一方の面および前記第一の半導体素子の側面を被覆する封止樹脂と、
前記配線体の他方の面に設けられた第二の半導体素子と、を有し、
前記配線体は、
配線層と、
前記配線層を支持する支持層と、
前記配線層および前記支持層を貫通する貫通電極と、を備え、
前記配線体を介して前記第一の半導体素子と前記第二の半導体素子とが電気的に接続されていることを特徴とする半導体装置。
A flat wiring body;
A first semiconductor element provided on one surface of the wiring body;
A sealing resin covering the one surface and the side surface of the first semiconductor element;
A second semiconductor element provided on the other surface of the wiring body,
The wiring body is
A wiring layer;
A support layer for supporting the wiring layer;
A through electrode penetrating the wiring layer and the support layer,
The semiconductor device, wherein the first semiconductor element and the second semiconductor element are electrically connected through the wiring body.
請求項1に記載の半導体装置において、前記支持層の材料は、線膨張係数が0.5ppm/℃以上5ppm/℃以下であることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the material of the support layer has a linear expansion coefficient of 0.5 ppm / ° C. or more and 5 ppm / ° C. or less. 請求項1または2に記載の半導体装置において、前記支持層がシリコン層であることを特徴とする半導体装置。   3. The semiconductor device according to claim 1, wherein the support layer is a silicon layer. 請求項1乃至3いずれかに記載の半導体装置において、前記支持層に能動素子が形成されていることを特徴とする半導体装置。   4. The semiconductor device according to claim 1, wherein an active element is formed in the support layer. 請求項1乃至4いずれかに記載の半導体装置において、前記配線体は、絶縁膜と、前記支持層と、前記配線層とがこの順に積層された構成を有し、前記第一の半導体素子が前記配線層に接続され、前記第二の半導体素子が前記絶縁膜に接続されていることを特徴とする半導体装置。   5. The semiconductor device according to claim 1, wherein the wiring body has a configuration in which an insulating film, the support layer, and the wiring layer are stacked in this order, and the first semiconductor element includes A semiconductor device connected to the wiring layer, wherein the second semiconductor element is connected to the insulating film. 平板状の配線体と、
前記配線体の一方の面に設けられた第一の半導体素子と、
前記一方の面および前記第一の半導体素子の側面を被覆する封止樹脂と、
前記配線体の他方の面に設けられた第二の半導体素子と、を有し、
前記配線体は、平板状の絶縁体と、前記絶縁体を貫通する導電体と、を有する配線層を備え、
前記導電体を介して前記第一の半導体素子と前記第二の半導体素子とが電気的に接続されていることを特徴とする半導体装置。
A flat wiring body;
A first semiconductor element provided on one surface of the wiring body;
A sealing resin covering the one surface and the side surface of the first semiconductor element;
A second semiconductor element provided on the other surface of the wiring body,
The wiring body includes a wiring layer having a flat insulator and a conductor penetrating the insulator,
The semiconductor device, wherein the first semiconductor element and the second semiconductor element are electrically connected through the conductor.
請求項6に記載の半導体装置において、
前記導電体は、前記絶縁体のいずれかの面に設けられた接続電極を含み、
前記接続電極の側面が前記絶縁体中に埋設されるとともに、
前記接続電極の少なくとも一つの面の全体が前記絶縁体から露出していることを特徴とする半導体装置。
The semiconductor device according to claim 6.
The conductor includes a connection electrode provided on any surface of the insulator,
While the side surface of the connection electrode is embedded in the insulator,
A semiconductor device, wherein at least one surface of the connection electrode is exposed from the insulator.
請求項6または7に記載の半導体装置において、
前記導電体は、前記絶縁体のいずれかの面に接して設けられた配線を含み、
前記配線の側面の少なくとも一部および前記配線の一つの面の全体が前記絶縁体から露出していることを特徴とする半導体装置。
The semiconductor device according to claim 6 or 7,
The conductor includes a wiring provided in contact with any surface of the insulator,
At least a part of a side surface of the wiring and the entire one surface of the wiring are exposed from the insulator.
請求項6乃至8いずれかに記載の半導体装置において、前記導電体の最小間隔が50μm以下であることを特徴とする半導体装置。   9. The semiconductor device according to claim 6, wherein a minimum interval between the conductors is 50 [mu] m or less. 請求項1乃至9いずれかに記載の半導体装置において、前記封止樹脂を貫通する貫通プラグを備えることを特徴とする半導体装置。   10. The semiconductor device according to claim 1, further comprising a through plug that penetrates the sealing resin. 請求項1乃至10いずれかに記載の半導体装置において、基板上に前記配線体が形成され、前記配線体上に前記第一の半導体素子が接続され、前記第一の半導体素子の側面および前記配線体の露出面が前記封止樹脂により被覆された後に、前記基板を除去することにより得られることを特徴とする半導体装置。   11. The semiconductor device according to claim 1, wherein the wiring body is formed on a substrate, the first semiconductor element is connected on the wiring body, a side surface of the first semiconductor element, and the wiring A semiconductor device obtained by removing the substrate after an exposed surface of a body is covered with the sealing resin. 請求項11に記載の半導体装置において、前記基板の線膨張係数が0.5ppm/℃以上5ppm/℃以下であることを特徴とする半導体装置。   The semiconductor device according to claim 11, wherein a linear expansion coefficient of the substrate is 0.5 ppm / ° C. or more and 5 ppm / ° C. or less. 請求項11または12に記載の半導体装置において、前記基板がシリコン基板であることを特徴とする半導体装置。   13. The semiconductor device according to claim 11, wherein the substrate is a silicon substrate. 請求項1乃至13いずれかに記載の半導体装置において、前記配線層が多層配線層であることを特徴とする半導体装置。   14. The semiconductor device according to claim 1, wherein the wiring layer is a multilayer wiring layer. 請求項1乃至14いずれかに記載の半導体装置において、前記第一の半導体素子が前記封止樹脂に埋設されていることを特徴とする半導体装置。   15. The semiconductor device according to claim 1, wherein the first semiconductor element is embedded in the sealing resin. 基板上に配線層を準備する工程と、
前記配線層上に第一の半導体素子を接続する工程と、
前記配線層の表面および前記第一の半導体素子の側面を封止樹脂により被覆する工程と、
前記基板の前記配線層の形成面の裏面から前記基板を薄化する工程と、
前記配線層を介して第二の半導体素子を前記第一の半導体素子に対向させて接続する工程と、
を有することを特徴とする半導体装置の製造方法。
Preparing a wiring layer on the substrate;
Connecting a first semiconductor element on the wiring layer;
Coating the surface of the wiring layer and the side surface of the first semiconductor element with a sealing resin;
Thinning the substrate from the back surface of the wiring layer forming surface of the substrate;
Connecting the second semiconductor element to face the first semiconductor element through the wiring layer;
A method for manufacturing a semiconductor device, comprising:
請求項16に記載の半導体装置の製造方法において、基板を薄化する前記工程は、前記基板を除去し、前記配線層の表面を露出させる工程を含むことを特徴とする半導体装置の製造方法。   17. The method of manufacturing a semiconductor device according to claim 16, wherein the step of thinning the substrate includes a step of removing the substrate and exposing a surface of the wiring layer. 請求項17に記載の半導体装置の製造方法において、
配線層を準備する前記工程は、
表面に絶縁膜と前記配線層を支持する支持層とがこの順に積層された前記基板を準備する工程と、
前記支持層上に前記配線層を設ける工程と、
を含むことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 17,
The step of preparing the wiring layer includes:
Preparing the substrate in which an insulating film and a support layer supporting the wiring layer are laminated in this order on the surface;
Providing the wiring layer on the support layer;
A method for manufacturing a semiconductor device, comprising:
JP2009114222A 2009-05-11 2009-05-11 Semiconductor device Expired - Fee Related JP5171726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114222A JP5171726B2 (en) 2009-05-11 2009-05-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114222A JP5171726B2 (en) 2009-05-11 2009-05-11 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004194690A Division JP4865197B2 (en) 2004-06-30 2004-06-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009177209A true JP2009177209A (en) 2009-08-06
JP5171726B2 JP5171726B2 (en) 2013-03-27

Family

ID=41031898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114222A Expired - Fee Related JP5171726B2 (en) 2009-05-11 2009-05-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5171726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121779A1 (en) * 2010-03-31 2011-10-06 富士通株式会社 Multichip module, printed wiring board unit, method for manufacturing multichip module, and method for manufacturing printed wiring board unit
KR20150000173A (en) * 2013-06-24 2015-01-02 삼성전기주식회사 Electric component module and manufacturing method threrof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548801B1 (en) 2013-08-28 2015-08-31 삼성전기주식회사 Electric component module and manufacturing method threrof
US10475767B2 (en) 2018-01-04 2019-11-12 Kabushiki Kaisha Toshiba Electronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548001A (en) * 1991-08-19 1993-02-26 Fujitsu Ltd Mounting method for semiconductor integrated circuit
JPH07176684A (en) * 1993-12-17 1995-07-14 Interu Japan Kk Semiconductor device
JPH11154728A (en) * 1997-09-16 1999-06-08 Matsushita Electric Ind Co Ltd Semiconductor device and package thereof
JP2001177049A (en) * 1999-12-20 2001-06-29 Toshiba Corp Semiconductor device and ic card
JP2002164467A (en) * 2000-09-14 2002-06-07 Sony Corp Circuit block body, its manufacturing method, wiring circuit device, its manufacturing method, semiconductor device and its manufacturing method
JP2002314031A (en) * 2001-04-13 2002-10-25 Fujitsu Ltd Multichip module
JP2003218264A (en) * 2002-01-24 2003-07-31 Shinko Electric Ind Co Ltd Multilayer circuit board for semiconductor device and manufacturing method thereof, and semiconductor device
JP2004039867A (en) * 2002-07-03 2004-02-05 Sony Corp Multilayer wiring circuit module and its manufacturing method
JP2004079756A (en) * 2002-08-16 2004-03-11 Fujitsu Ltd Thin-film multilayer wiring board, and electronic component package and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548001A (en) * 1991-08-19 1993-02-26 Fujitsu Ltd Mounting method for semiconductor integrated circuit
JPH07176684A (en) * 1993-12-17 1995-07-14 Interu Japan Kk Semiconductor device
JPH11154728A (en) * 1997-09-16 1999-06-08 Matsushita Electric Ind Co Ltd Semiconductor device and package thereof
JP2001177049A (en) * 1999-12-20 2001-06-29 Toshiba Corp Semiconductor device and ic card
JP2002164467A (en) * 2000-09-14 2002-06-07 Sony Corp Circuit block body, its manufacturing method, wiring circuit device, its manufacturing method, semiconductor device and its manufacturing method
JP2002314031A (en) * 2001-04-13 2002-10-25 Fujitsu Ltd Multichip module
JP2003218264A (en) * 2002-01-24 2003-07-31 Shinko Electric Ind Co Ltd Multilayer circuit board for semiconductor device and manufacturing method thereof, and semiconductor device
JP2004039867A (en) * 2002-07-03 2004-02-05 Sony Corp Multilayer wiring circuit module and its manufacturing method
JP2004079756A (en) * 2002-08-16 2004-03-11 Fujitsu Ltd Thin-film multilayer wiring board, and electronic component package and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121779A1 (en) * 2010-03-31 2011-10-06 富士通株式会社 Multichip module, printed wiring board unit, method for manufacturing multichip module, and method for manufacturing printed wiring board unit
EP2555238A1 (en) * 2010-03-31 2013-02-06 Fujitsu Limited Multichip module, printed wiring board unit, method for manufacturing multichip module, and method for manufacturing printed wiring board unit
EP2555238A4 (en) * 2010-03-31 2013-06-12 Fujitsu Ltd Multichip module, printed wiring board unit, method for manufacturing multichip module, and method for manufacturing printed wiring board unit
JPWO2011121779A1 (en) * 2010-03-31 2013-07-04 富士通株式会社 MULTI-CHIP MODULE, PRINTED WIRING BOARD UNIT, MULTI-CHIP MODULE MANUFACTURING METHOD, AND PRINTED WIRING BOARD UNIT MANUFACTURING METHOD
KR20150000173A (en) * 2013-06-24 2015-01-02 삼성전기주식회사 Electric component module and manufacturing method threrof
KR101994715B1 (en) * 2013-06-24 2019-07-01 삼성전기주식회사 Manufacturing method of electronic component module

Also Published As

Publication number Publication date
JP5171726B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP4865197B2 (en) Semiconductor device and manufacturing method thereof
JP5091221B2 (en) Semiconductor device
TWI764032B (en) Integrated antenna package structure and manufacturing method thereof
TWI544599B (en) Fabrication method of package structure
KR20080038035A (en) Semiconductor package and stacked layer type semiconductor package
CN102169842A (en) Techniques and configurations for recessed semiconductor substrates
TWI581387B (en) Package structure and method of manufacture
US8692386B2 (en) Semiconductor device, method of manufacturing semiconductor device, and electronic device
TWI550737B (en) Chip package and method thereof
WO2021018014A1 (en) Tsv-based multi-chip package structure and method for manufacturing same
JP5358089B2 (en) Semiconductor device
TWI574333B (en) Electronic package and method for fabricating the same
TW201209987A (en) Chip structure having TSV connections and its stacking application
JP5171726B2 (en) Semiconductor device
KR101341619B1 (en) Semiconductor package and method for manufacturing semiconductor package
JP2007142026A (en) Interposer and method of manufacturing same, and semiconductor device
JP4028211B2 (en) Semiconductor device
TW200939442A (en) Semiconductor chip having TSV (through silicon via) and stacked assembly including the chips
TW202121613A (en) Chip package structure and manufacturing method thereof
CN220526904U (en) Electronic device
JP4356196B2 (en) Semiconductor device assembly
CN114975396A (en) Package structure and method for forming the same
CN111816645A (en) Antenna integrated packaging structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees