JP2009176542A - 電磁レンズ - Google Patents

電磁レンズ Download PDF

Info

Publication number
JP2009176542A
JP2009176542A JP2008013154A JP2008013154A JP2009176542A JP 2009176542 A JP2009176542 A JP 2009176542A JP 2008013154 A JP2008013154 A JP 2008013154A JP 2008013154 A JP2008013154 A JP 2008013154A JP 2009176542 A JP2009176542 A JP 2009176542A
Authority
JP
Japan
Prior art keywords
coil
electromagnetic lens
acceleration voltage
amount
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013154A
Other languages
English (en)
Inventor
Keizo Yamada
恵三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holon Co Ltd
Original Assignee
Holon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holon Co Ltd filed Critical Holon Co Ltd
Priority to JP2008013154A priority Critical patent/JP2009176542A/ja
Publication of JP2009176542A publication Critical patent/JP2009176542A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】荷電粒子線ビームを集束させる電磁レンズに関し、加速電圧を変えても即時に発熱量を一定にしてドリフト量を小さく保持しかつ必要に応じて補正を行ってドリフト量、デフォーカス量などを閾値以下に補正する電磁レンズを実現する。
【解決手段】導電性がありかつ絶縁された2本の線あるいは平角線を隣接して所定回数巻いた、その一方の第1のコイルおよび他方の第2のコイルと、第1のコイルおよび第2のコイルに相互に逆電流を流してその差分に相当する電流Aと、第1のコイルおよび第2のコイルの回数Tとの積からなる起磁力ATを発生させる第1の手段と、第1のコイルおよび第2のコイルに流す電流の総和を一定にして発熱量を一定に制御する第2の手段とを備える。
【選択図】図1

Description

本発明は、荷電粒子線ビームを集束させる電磁レンズに関するものである。
従来、走査型電子顕微鏡は、電子線ビームを細く絞ってマスクなどの被測定対象に照射しつつ平面走査し、そのときに放出された2次電子や反射電子などを検出して増幅し、被測定対象の拡大画像をディスプレイ上に表示している。被測定対象の拡大画像上で十数nmから数nm程度の微細なパターンや欠陥などを検出したり、測定したりすることに使われるようになってきた。
このような高精度な測定などに使われる走査型電子顕微鏡などには、コイルを巻いてそれに直流電流を流して磁界を発生させる磁界型レンズ(電磁レンズ)が多用されている。上述した十数nmから数nm程度の微細なパターンを安定的に測長したりなどするには、当該電磁レンズの熱的安定性が極めて高く要求され、通常は、電子線ビームの加速電圧は一定にして電磁レンズのコイルに流す電流をほぼ一定に保持して発熱量を一定に保ちつつ、かつ周囲環境温度も一定に保ち、電子線ビームの安定性を損なわないように、静的に当該安定性が確保されるように努め、nmオーダーの測定再現性を実現していた。
しかし、被測定対象は、例えば半導体デバイス製造工程では無機物であるシリコン酸化物であれば数KV程度の高い電子線ビームにしてコントラストの高い良質な画像を得る必要がある。一方、有機物レジストが付着した被測定対象では数KV程度の高い電子線ビームを用いて画像を生成するとチャージアップ現象によって像が見えなくなったり、レジストに損傷を与えてしまうなどの問題があるため、数百V程度の低い電子線ビームにしてチャージの無い(少ない)良質な画像を得ていた。このように、被測定対象の材質などに併せて加速電圧を最適に調整する必要があるが、上述した電磁レンズでコイルに流す電流を変えたのでは発熱量が変化し、熱的安定性に到達するまでに長時間(例えば数時間)を要してしまうという問題が発生する。
これを解決する手法として、2つの1次コイルで2次コイルを挟み、2つの2次コイルと、1つの2次コイルとに流す電流を制御して全体の発熱量をほぼ一定に制御する技術がある(特許文献1の図3(B)、(C)参照)。
特開2005−38856号公報
上述した前者の技術では、電子線ビームの加速電圧を変えた場合、熱的安定性が満たされるまで長時間待ったのでは、電磁レンズを使う走査型電子顕微鏡などの操作性が極めて悪いという問題がある。
上述した後者の技術では、図3(B),(C)に示すように、2つの1次コイルとその間に挟まれた1つの2次コイルとに流す電流を制御して全体の発熱量をほぼ一定に制御し、1次コイルと、2次コイルとの全体の発熱量はほぼ一定に保持したとしても、当該1次コイルと、2次コイルとの間には距離があり、しかも、両者の発熱量が異なるのでその安定するまでの時間が上述した従来の技術に比して若干は軽減されるが、やはり、2つの1次コイルと、2次コイルとの間での熱の安定化にはかなりの時間が必要となり、迅速に安定化し得ないという問題がある。
本発明は、これらの問題を解決するため、荷電粒子線ビームを集束させる電磁レンズにおいて、導電性がありかつ絶縁された2本の線あるいは平角線を隣接して所定回数巻いた、その一方の第1のコイルおよび他方の第2のコイルと、第1のコイルおよび第2のコイルに相互に逆電流を流してその差分に相当する電流Aと、第1のコイルおよび第2のコイルの回数Tとの積からなる起磁力ATを発生させる第1の手段と、第1のコイルおよび第2のコイルに流す電流の総和を一定にして発熱量を一定に制御する第2の手段とを備えるようにしている。
この際、2本の線あるいは2本の平角線を隣接して巻くとして、2本の線あるいは2本の平角線を隣接させた状態で半径方向に渦巻き状に順次巻く、あるいは半径方向と直角方向に隣接して順次巻くようにしている。
また、ある加速電圧の荷電粒子線ビームがフォーカスされた状態で、他の加速電圧への指示があったときに、第1の手段に指示して他の加速電圧に相当する起磁力AT2になるようにかつ第2の手段に指示して発熱量が一定となるように第1のコイルおよび第2のコイルに流す電流を調整する第3の手段を備えるようにしている。
また、ある加速電圧の荷電粒子線ビームがフォーカスされた状態で、他の加速電圧への指示があったときに、第3の手段によって第1のコイルおよび第2のコイルに流す電流を調整した後、自動フォーカス機構を動作させてフォーカスさせてそのときのデフォーカス量が所定閾値以上のときは、所定閾値以内となるように第1の手段に指示して起磁力AT2を補正させかつ補正に対応して第2の手段に指示して発熱量が一定となるように第1のコイルおよび第2のコイルの電流を補正する第4の手段を備えるようにしている。
また、ある加速電圧の荷電粒子線ビームがフォーカスされた状態で、他の加速電圧への指示があったときに、第3の手段によって第1のコイルおよび第2のコイルに流す電流を調整した後、荷電粒子線ビームで生成された画像についてドリフト量測定機構を動作させて単位時間当たりの画像のドリフト量が所定閾値以上のときは、所定閾値以内となるように第2の手段に指示して当該発熱量を補正させる第5の手段を備えるようにしている。
また、第1のコイルおよび第2のコイルの巻き数Nが異なる場合には、巻き数Nが異なる割合に相当して第1の手段および第2の手段に指示して起磁力を発生および発熱量を一定に制御するようにしている。
本発明は、2本の線あるいは平角線を隣接して所定回数巻いた、その一方の第1のコイルおよび他方の第2のコイルと、第1のコイルおよび第2のコイルに相互に逆電流を流してその差分に相当する電流Aと、第1のコイルおよび第2のコイルの回数Tとの積からなる起磁力ATを発生させる第1の手段と、第1のコイルおよび第2のコイルに流す電流の総和を一定にして発熱量を一定に制御する第2の手段とを備えることにより、加速電圧を変えても即時に発熱量を一定にしてドリフト量を小さく保持しかつ必要に応じて補正を行ってドリフト量、デフォーカス量などを閾値以下に補正する電磁レンズを実現することが可能となった。
図1は、本発明の電磁レンズ例を示す。
図1において、電磁レンズ(対物レンズ)1は、第1のコイル2、第2のコイル3と、当該第1のコイル2,第2のコイル3で発生された起磁力ATを磁気抵抗の小さい磁性体からなるヨーク4で磁界が下方の被測定試料(マスク)5に可及的に近い部分に磁界レンズ(円筒型の磁界レンズ)として生成するものである。電磁レンズ1の軸上を上方から下方に入射した電子線ビーム(負の電荷を持つ電子線ビーム、正の電荷を持つイオンビームなどからなる荷電粒子線ビームのうちの電子線ビームについて以下説明する)は、電磁レンズ1で形成された円筒磁界により図示のように、当該電子線ビームはここでは被測定試料(マスク)5上に細く集束される。そして、図示外の偏向器によって被測定試料(マスク)5上に細く集束された電子線ビームは平面走査され、そのときに放出された2次電子あるいは反射電子が図示外の検出器で検出・増幅され、図示外のディスプレイの画面上に当該被測定試料の表面の画像が拡大画像として表示される(走査型電子顕微鏡の場合)。
第1のコイル2、第2のコイル3は、導電性があり、かつ表面が絶縁された線あるいは平角線である。第1のコイル2と第2のコイル3の2本は、ペアとして隣接して半径方向に渦巻き状に巻く、および半径方向と直角方向に隣接して巻いたものである。具体的には、例えば2本を最内側の1層にまき、次に2層というように最外側まで巻くことにより、2本ペアで巻かれることとなる。
ヨーク4は、第1のコイル2および第2のコイル3に逆方向に流した電流の差と、巻き数Tを乗算した起磁力ATについて、磁気抵抗の小さい磁性体である当該ヨーク4によってその起磁力ATを被測定試料(マスク)5に可及的に近い部分に誘導し、所定の磁界分布(円筒磁界分布)を生成するためのものである。当該生成された円筒磁界分布により、上方向から入射した電子線ビームは細く集束されて被測定試料(マスク)5上を照射することが可能となる。これにより、当該電磁レンズ1を使用した走査型電子顕微鏡では、数nm程度の電子線ビームのスポットサイズで照射しつつ、図示外の偏向器で平面走査し、数nm程度の分解能を持った拡大画像をディスプレイ上に表示することが可能となる。
尚、図1の電磁レンズ1の電子線ビームが通過する部分は、図示外の真空排気系により全て真空中に保持されるものである。
図2は、本発明のコイルの巻き方例(その1)を示す。図2は、導電性で、表面を絶縁された断面が円形の2本の線を、図1の第1のコイル2、第2のコイル3として巻いたときの断面の様子を模式的に示す。図示の第1のコイル2、第2のコイル3は、巻き方を模式的に示したものであり、コイルのサイズや巻き数を示すものではない(図3も同様)。
図2の(A−1)は、図1の第1のコイル2および第2のコイル3と同じ巻き方の例を示す。この場合には、第2のコイル3が最内側の1層、第1のコイル2が最内側から2層に相当し、半径方向と直角方向に端から他の端まで詰めて巻く。同様に、3層、4層について第2のコイル3および第1のコイル2を巻く。以下同様に繰り返し、全体として、第1のコイル2および第2のコイル3を作成する。
図2の(A−2)は、第2のコイル3が最内側の1層、2層、第1のコイル2が最内側から3層と巻くことを繰り返した後、第2のコイル3については2層分を外部で接続して1つの第2のコイル3とした例を示す。この場合には、第2のコイル3を連続して2層巻いた後、第1のコイル2を1層巻くことを繰り返し、第2のコイル3については2層分を外部で接続して1つの第2のコイルとすることとなる。
図2の(A−3)は、第2のコイル3が最内側の1層、2層、3層、第1のコイル2が最内側から4層と巻くことを繰り返した後、第2のコイル3については3層分を外部で接続して1つの第2のコイル4とした例を示す。この場合には、第2のコイル3を連続して3層巻いた後、第1のコイル2を1層巻くことを繰り返した後、第2のコイル3について3層分を外部で接続して1つの第2のコイル3とすることとなる。
図2の(B−1)は、第1のコイル2および第2のコイル3を最内側の1層にペアで巻き、同様に2層・・・と繰り返した例を示す。この場合には、第1のコイル2および第2のコイル3をペアにして最内側の1層に巻き、同様に、2層、3層・・・と繰り返すこととなる。
図2の(B−2)は、第1のコイル2を2本、第2のコイル3を1本の合計3本をペアにして最内側の1層に巻き、同様に、2層、3層・・・と巻くことを繰り返した後、第1のコイル2については2本については1本に外部で接続して第1のコイル2を作成した例を示す。
図2の(B−3)は、第1のコイル2を3本、第2のコイル3を1本の合計4本をペアにして最内側の1層に巻き、同様に、2層、3層・・・と巻くことを繰り返した後、第1のコイル2については3本を1本に外部で接続して第1のコイル2を作成した例を示す。
図3は、本発明のコイルの巻き方例(その2)を示す。図2は、導電性で、表面を絶縁された断面が平角の2本の線を、図1の第1のコイル2、第2のコイル3として巻いたときの断面の様子を示す。
図3の(C−1)は、第1のコイル2を最内側の1層、次の2層に第2のコイル3を巻くことを繰り返す巻き方の例を示す。この場合には、第1のコイル2を最内側の1層に巻いた後、第2のコイル3を最内側から2層に巻くことを繰り返し、全体として、第1のコイル2および第2のコイル3を作成する。
図3の(C−2)は、第1のコイル2を最内側の1層、次の第2のコイル3を2層、3層の全2層に巻くことを繰り返した後、第2のコイル3については2層分を外部で接続して1つの第2のコイルとした例を示す。この場合には、第1のコイル2を1層巻いた後、第2のコイル3を連続して2層巻くことを繰り返し、第2のコイル3については2層分を外部で接続して1つの第2のコイルとすることとなる。
図3の(C−3)は、第1のコイル2を最内側の1層、次の第2のコイル3を2層、3層、4層の全3層に巻くことを繰り返した後、第2のコイル3については3層分を外部で接続して1つの第2のコイルとした例を示す。この場合には、第1のコイル2を1層巻いた後、第2のコイル3を連続して3層巻くことを繰り返し、第2のコイル3については3層分を外部で接続して1つの第2のコイルとすることとなる。
図3の(D−1)は、第2のコイル3と第1のコイル2とをペアに最内側の1層に巻いた後、第1のコイル2と第2のコイル3とをペアに最内側の2層に巻くことを繰り返す巻き方の例を示す。この場合には、第2のコイル3と第1のコイル2とが交互に図示のように隣接し、第1のコイル2と第2のコイル3との熱(発熱量の相違による熱)の伝導距離を最小限にし、熱伝導を極めて高速にし、ドリフト量の安定化を高速化することが可能となる。
図3の(D−2)は、第1のコイル2と第2のコイル3とをペアに最内側の1層に巻いた後、第2のコイル3を最内側の2層に巻いた後、第2のコイル3と第1のコイル2とをペアに最内側の3層に巻くことを繰り返す巻き方の例を示す。この場合には、第2のコイル3と第1のコイル2とが交互、かつ間に第2のコイル3を1層設けたものである。
図3の(D−3)は、第2のコイル3と第1のコイル2とをペアに最内側の1層に巻いた後、第1のコイル2と第2のコイル3とをペアに最内側の2層に巻いた後、第2のコイル3を最内側の3層、4層に巻くことを繰り返す巻き方の例を示す。この場合には、第2のコイル3と第1のコイル2とが交互、かつ間に第2のコイル3を2層設けたものである。
図3の(E−1)は、第1のコイル2と第2のコイル3とをペアに最内側の1層に巻くことを繰り返す巻き方の例を示す。この場合には、図示のように、第1のコイル2と第2のコイル3とが半径方向に連続して作成される。
図3の(E−2)は、第1のコイル2と第2のコイル3の2本との合計3本をペアに最内側の1層に巻くことを繰り返した後、第2のコイル3についは2本を外部で接続して1本の第2のコイル3を作成する巻き方の例を示す。この場合には、図示のように、第1のコイル2と第2のコイル3の2本とが半径方向に連続して作成される。
図3の(E−3)は、第1のコイル2と第2のコイル3の3本との合計4本をペアに最内側の1層に巻くことを繰り返した後、第2のコイル3についは3本を外部で接続して1本の第2のコイル3を作成する巻き方の例を示す。この場合には、図示のように、第1のコイル2と第2のコイル3の3本とが半径方向に連続して作成される。
次に、図4のフローチャートの順番に従い、図1の電磁レンズ1を用いたときの動作を詳細に説明する。
図4は、本発明の動作説明フローチャートを示す。
図4において、S1は、加速電圧を変える。これは、図1の電磁レンズ1を、例えば公知の走査型電子顕微鏡の対物レンズとして用い、ある加速電圧、例えば1KVで加速した電子線ビームを、電磁レンズ1でフォーカスして被測定試料5に照射しつつ偏向系で平面走査し、そのときに放出された2次電子を検出・増幅し、ディスプレイの画面上に拡大画像を表示して当該拡大画像上のパターンを測長している状態のもとで、電子線ビームの加速電圧を例えば0.5KVに変える。
S2は、加速電圧の平方根分の1の電流を流す。これは、S1からS2に電子線ビームの加速電圧を変えた場合、変更後の加速電圧で丁度、電子線ビームが被測定試料5にフォーカスする理論値の電流(加速電圧の平方根分1の電流)を流す。例えば上記例では、1.0KVから0.5KVに変えたのであるから、
1/(1.0/.05)1/2 ≒0.707倍
の電流を電磁レンズ1(走査型電子顕微鏡の対物レンズ)に流す。つまり、変更前の電流に比して、0.707倍の電流に小さくする。
S3は、画面上でオートフォーカスを行う。
S4は、デフォーカス量を測定する。これらS3、S4は、S1、S2で加速電圧を変えたことに対応して電磁レンズ1に流す電流を変えた後の電流(理論値の電流)のもとで、ディスプレイ上に表示した画像上で、公知のオートフォーカス機能を動作させ、フォーカスされた点におけるデフォーカス量(S2で流した電流値(理論値)からのデフォーカス量Δdを測定する。
S5は、閾値以内か判別する。これは、S4で測定したデフォーカス量Δdが所定閾値以内か判別する。YESの場合には、S7に進む。NOの場合には、S2で設定した電流値(理論値)が閾値以上ずれていると判明したので、Δdに対応した補正を行い、図4以降を繰り返す。
以上のS1からS6によって、電子線ビームの加速電圧を変えた場合、ジャストフォーカスする理論値の電流を図1の電磁レンズ1(対物レンズ)に設定し、オートフォーカス機能を動作させてジャストフォーカスにしたときのデフォーカス量(電磁レンズ1に流した電流量)Δdが閾値以上のときは理論値を補正することが可能となる。これにより、次回からある加速電圧から他の加速電圧(上記例では、1.0KVから0.5KV)に変えたときにデフォーカス量が閾値以下となるような理論値(あるいは理論値を補正した補正値)を自動設定し、加速電圧を変えたときでも迅速にほぼフォーカスのあった状態に切り替えることが可能となる。この際、後述するように、加速電圧を切り替えた場合には、電磁レンズ1に必要な起磁力ATが異なるので、必要な起磁力ATを与え、かつ第1のコイル2、第2のコイル3に流す電流の総和が一定として発熱量を一定にするように制御しているので、加速電圧を切り替えても自動的に第1のコイル2、第2のコイル3の総合的な発熱量を一定に保持することが可能となる。
尚、公知のオートフォーカス機能は、例えば画面上に表示された被測定試料(マスク)5の、あるフォーカス電流(電磁レンズ1に流す電流)のときの画像全体、あるいは当該画像中の1本ないし複数本のラインを微分し、微分波形の振幅の最大値あるいは微分波形の面積を求めることを、異なるフォーカス電流について繰り返し、微分波形の振幅が最大あるいは面積が最大となるときのフォーカス電流値をジャストフォーカスの電流値と自動的に設定する機能である。その他の手法であっても、被測定試料のジャストフォーカスのときのフォーカス電流を自動的に設定できればよい。
S7は、ドリフト量を測定する。これは、画面上に表示した被測定試料5が所定時間経過後にドリフト(移動)したドリフト量(移動量)を測定する。
S8は、閾値以上か判別する。これは、S7で測定した被測定試料5の単位時間当りのドリフト量が閾値以上か判別する。YESの場合には、S9でトライアンドエラー補正を行い、S7、S8を繰り返し、ドリフト量が閾値以下となるように、電磁レンズ1の第1のコイル2および第2のコイル3に流す電流の総和を調整する。調整方法を詳細に説明すると、
(1)S7でドリフト量を測定する。
(2)S8で測定したドリフト量が閾値以下のときは終了する。
(3)S8で測定したドリフト量が閾値以上のときは、S9で電磁レンズ1の第1のコイル2および第2のコイル3に流す電流の総和(発熱量)を、例えば増加させる方向に所定電流だけ増やす(起磁力ATは一定に保持する)。
(4)(3)の状態でドリフト量を再測定し、前回よりも小さくなっていれば、更に増加させる方向に所定電流だけ増やすことを繰り返し、ドリフト量が所定閾値以下となるまで繰り返し、所定閾値以下となったときの電磁レンズ1の第1のコイル2および第2のコイル3に流す電流として設定する。
(5)一方、(3)の状態でドリフト量を再測定し、前回よりも大きくなっていれば、逆に減少させる方向に所定電流だけ減らすことを繰り返し、ドリフト量が所定閾値以下となるまで繰り返し、所定閾値以下となったときの電磁レンズ1の第1のコイル2および第2のコイル3に流す電流として設定する。
(6)尚、上記電磁レンズ1の第1のコイル2および第2のコイル3に電流の総和を変える場合には、第1のコイル2および第2のコイル3の電流差(起磁力AT)は常に一定になるようにする(S2からS6で設定したフォーカス状態が保持されるように、電流差(起磁力AT)を一定に保持する)。
図5は、本発明のシステム構成図を示す。
図5において、PC300は、パソコンであって、プログラムに従い各種制御を行うものであり、ここでは、電子線ビームエネルギー設定手段301、変換テーブル302、フォーカス測定手段303、ドリフト測定手段304、補正電流発生手段305、キーボード306などから構成されるものである。
電子線ビームエネルギー設定手段301は、電磁レンズ1を対物レンズとして用いた例えば走査型電子顕微鏡において、電子線ビームを加速する加速電圧を設定するものである。ここでは、キーボード306から操作者がキー入力して加速電圧を設定したり、図示外の測長アプリからの指示で加速電圧を設定したりするものである。
変換テーブル302は、入力された加速電圧(エネルギー)に対応づけて対物レンズを構成する図1の電磁レンズ1の第1のコイル2および第2のコイル3に流す電流の割合を設定したものである(図7参照)。
フォーカス測定手段303は、電磁レンズ1(対物レンズ)によるフォーカスを測定するものであって、現在のフォーカス状態から、ジャストフォーカスに設定したときのフォーカス電流の差を測定したりなどする、公知のものである。
ドリフト測定手段304は、被測定試料5の画面上におけるドリフト量を測定する、公知のものである。
補正電流発生手段305は、フォーカス測定手段303およびドリフト測定手段304で測定した値をもとに、所定起磁力ATを発生しかつ発熱量を一定に保持(更に、ドリフト量が閾値以下に保持)する補正電流を発生し、電磁レンズ1の第1のコイル2および第2のコイル3に供給するものである。
キーボード306は、電子線ビームの加速電圧を入力したりなどするものである。
DAC311,DAC312は、デジタルの第1のコイル2および第2のコイル3に流す補正電流に対応する電圧をアナログ電圧値にそれぞれ変換するものである。
電源(1)313、電源(2)314は、DAC311,DAC312から入力されたアナログ電圧値に対応するアナログ電流を発生するものである。
第1のコイル2および第2のコイル3は、対物レンズ(図1の電磁レンズ1)を構成するものであって、両者のコイルに流す電流の差が起磁力ATに対応し、両者のコイルに流す電流の総和が発熱量に対応するものである。尚、第1のコイル2と第2のコイル3とが異なる回数のときはその回数比に対応して起磁力ATおよび発熱量を、補正電流発生手段305で補正計算して設定するようにしている。
以上のシステム構成のもとで、既述した図4のフローチャートのS1で加速電圧を変えると、
(1)S2からS6に従いフォーカス測定手段303および補正電流発生手段305により変更後の加速電圧の電子線ビームを被測定試料5に照射しつつ平面走査したときに放出された2次電子の画像をディスプレイ上にジャストフォーカスとして表示すると共に電磁レンズ1の第1のコイル2および第2のコイル3に加速電圧の変更前と変更後とで同じ発熱量となるように自動調整されることとなる。
(2)更に、S7からS9に従いドリフト測定手段304および補正電流発生手段305により変更後の加速電圧の電子線ビームを被測定試料5に照射しつつ平面走査したときに放出された2次電子の画像をディスプレイ上にジャストフォーカスとして表示した画像上でドリフトが閾値以下となるように電磁レンズ1の第1のコイル2および第2のコイル3による起磁力ATを一定に保持した状態で発熱量のみを自動的に微細調整することが可能となる。
図6は、本発明の分割コイル例を示す。これは、図1の電磁レンズ1が第1のコイル2の1本(あるいは複数本)および第2のコイル3の1本(あるいは複数本)をペアにして当該電磁レンズ1の最内側の11、次にに2層に巻くことをなどを繰り返し、電磁レンズ1のコイルを作成したのに対して、図示のように分割コイル11、即ち縦横にそれぞれ複数に分割して第1のコイル2あるいは第2のコイル3をそれぞれ巻いた例を示す。図示の例では、縦横に3×3の領域にそれぞれ第1のコイル2あるいは第2のコイル3をそれぞれ隣接するように作成した例を示す。
図6において、断熱材12は、コイルに電流を流すことにより発生する熱が、ヨーク4に伝わらないようにするための断熱材12である。
冷却ヘッド13は、分割コイル11で発熱した熱を外部に取り出して一定に保持するための冷却ヘッドである。
以上の構成にすることにより、分割コイル11として縦横に複数に分割した各領域に第1のコイル2および第2のコイル3をそれぞれ隣接あるいは可及的に隣接して配置することにより、電子線ビームの加速電圧を切り替えても、各領域で発生する総熱量を常にほぼ一定に保持するように制御するため(図5の補正電流発生手段305が制御するため)、各領域で発生する熱量が変化しても全体の総熱量が一定に保持されるため、当該分割コイルを有する図1の電磁レンズ1を走査型電子顕微鏡の対物レンズに使用しても、画像上のドリフトを最小限に低減することが可能となる。
図7は、本発明の動作説明図を示す。
図7において、S11、S12は、操作者がキーボードを操作し、変更後の電子線ビームの加速電圧KVを図5のPC300に入力する。
S13は、変換テーブルを参照する。これは、右側に記載した変換テーブル302を参照し、S11、S12で入力された加速電圧KVに対応する第1のコイル2、および第2のコイル3の電流値(加速電圧1KVのときに2,−1としたときの相対電流値)を取り出す。
例えば、加速電圧1KVから加速電圧0.5KVに変更した場合には、変更後の加速電圧0.5KVの
・第1のコイル2:−1.14
・第2のコイル3:1.86
を取り出し、図5の補正電流発生S手段305が当該電流値に対応する第1のコイル2および第2のコイル3に対する補正電流(実際に流す電流)をそれぞれ生成する。
S14は、DACに出力する。これは、S13で生成した第1のコイル2および第2のコイル3に実際に流す電流に対応するデジタルの値をDAC311,312に入力する。
S15は、電源に出力する。これは、S14でDAC311,312から出力されたアナログ値を電源(1)313、電源(2)314に入力する。
S16は、レンズに入力する。これは、S15で電源(1)313、電源(2)314から出力された第1のコイル2への電流、および第2のコイル3への電流を、図1の電磁レンズ1の第1のレンズ2および第2のレンズ3にそれぞれ供給する。
以上のS11からS16により、図5のシステム構成のもとで、操作者が変更後の加速電圧KVを入力すると、自動的に変更後の加速電圧KVに適した発熱量を一定にした電磁レンズ1の第1のコイル2および第2のコイル3にそれぞれ供給されることとなる。そして、図5のフォーカス測定手段303、ドリフト測定手段303および補正電流発生手段305により、既述した図4のS2からS6、更に、S7からS9に従いデフォーカス量が閾値以下かつドリフト量が閾値以下に自動調整されることとなる。
図8は、本発明の動作説明図を示す。
図8の(a)は、フローチャートを示す。
図8の(a)において、S21は、ダイナミックフォーカスを起動する。
S22は、ダイナミックフォーカス点の測定を行う。これらS21,S22は、例えば図8の(b)の傾斜した被測定試料5に対して、図1の電磁レンズ1を走査型電子顕微鏡の対物レンズとして使用した場合に、走査する範囲におけるフォーカス点をそれぞれ複数測定する。例えば傾斜方向に10点について、既述した図5のフォーカス測定手段303によりそれぞれフォーカス電流値を測定する。
S23は、パワーWを算出する。これは、S22で算出した、ジャストフォーカスからの各フォーカス点におけるフォーカス電流値をもとに、ダイナミックスフォーカスしたときのパワーW(発熱量)を算出する。
S24は、Wに応じたコイルの電流補正を行う。これは、S23で算出したダイナミックフォーカスしたときのパワーをキャンセルして発熱量が一定となるように、図1の電磁レンズ1の第1のコイル2および第2のコイル3に流す電流値を補正する。
以上によって、ダイナミックフォーカスしたときに発生するパワーW(発熱量に相当)を算出し、これを補正(キャンセル)して発熱量が一定となるように、電磁レンズ1の第1のコイル2および第2のコイル3に補正電流を供給することが可能となる。
図8の(b)は、傾斜試料観察時の例を示す。被測定試料5が図示のように傾斜している場合には、フォーカス点がずれるので、電磁レンズ1のダイナミックフォーカス機構により傾斜した被測定試料5の全面に電子線ビームがフォーカスされるように調整した後、当該ダイナミックフォーカス時に流れる電流による発熱量を補正(キャンセル)するように、電磁レンズ1の第1のコイル2および第2のコイル3に補正電流を供給することにより、ダイナミックフォーカス時の発熱量を一定に保持し、ドリフトなどの発生を低減することが可能となる。
図8の(c)は、湾曲試料観察時の例を示す。被測定試料5が図示のように湾曲している場合には、フォーカス点がずれるので、電磁レンズ1のダイナミックフォーカス機構により湾曲した被測定試料5の全面に電子線ビームがフォーカスされるように調整した後、当該ダイナミックフォーカス時に流れる電流による発熱量を補正(キャンセル)するように、電磁レンズ1の第1のコイル2および第2のコイル3に補正電流を供給することにより、ダイナミックフォーカス時の発熱量を一定に保持し、ドリフトなどの発生を低減することが可能となる。
尚、ダイナミックフォーカスは上記説明では図1の電磁レンズ1を用いて行った。しかし、高速性応答性を持たせるために、別途、図1の電磁レンズ1と同構造のダイナミックフォーカス専用の小さい第2の電磁レンズを作成し、図1の電磁レンズ1の下部の内部の軸上に配置し、当該第2の電磁レンズを用いてダイナミックスキャンするようにし、高速安定性を確保するようにしてもよい。この際、第2の電子レンズは、ダイナミックフォーカスに足りるだけの小さなレンズ作用があればよいので、空芯にして図1の電磁レンズ1のときに用いるヨーク4(磁性材料)の無い構造とすることが望ましい。
本発明は、2本の線あるいは平角線を隣接して所定回数巻いた、その一方の第1のコイルおよび他方の第2のコイルと、第1のコイルおよび第2のコイルに相互に逆電流を流してその差分に相当する電流Aと、第1のコイルおよび第2のコイルの回数Tとの積からなる起磁力ATを発生させる第1の手段と、第1のコイルおよび第2のコイルに流す電流の総和を一定にして発熱量を一定に制御する第2の手段とを備えることにより、加速電圧を変えても即時に発熱量を一定にしてドリフト量を小さく保持しかつ必要に応じて補正を行ってドリフト量、デフォーカス量などを閾値以下に補正する電磁レンズに関するものである。
本発明の電磁レンズ例である。 本発明のコイルの巻き方例(その1)である。 本発明のコイルの巻き方例(その2)である。 本発明の動作説明フローチャートである。 本発明のシステム構成図である。 本発明の分割コイル例である。 本発明の動作説明図である。 本発明の動作説明図である。
符号の説明
1:電磁レンズ(対物レンズ)
2:第1のコイル
3:第2のコイル
4:ヨーク
5:被測定試料(マスク)
6:電子線ビーム
11:分割コイル
12:断熱材
13:冷却ヘッド
300:PC(パソコン)
301:電子線ビームエネルギー設定手段
302:変換テーブル
303:フォーカス測定手段
304:ドリフト測定手段
305:補正電流発生手段
306:キーボード
311,312:DAC
313,314:電源

Claims (6)

  1. 荷電粒子線ビームを集束させる電磁レンズにおいて、
    導電性がありかつ絶縁された2本の線あるいは平角線を隣接して所定回数巻いた、その一方の第1のコイルおよび他方の第2のコイルと、
    前記第1のコイルおよび第2のコイルに相互に逆電流を流してその差分に相当する電流Aと、当該第1のコイルおよび第2のコイルの回数Tとの積からなる起磁力ATを発生させる第1の手段と、
    前記第1のコイルおよび前記第2のコイルに流す電流の総和を一定にして発熱量を一定に制御する第2の手段と
    を備えた電磁レンズ。
  2. 前記2本の線あるいは2本の平角線を隣接して巻くとして、2本の線あるいは2本の平角線を隣接させた状態で半径方向に渦巻き状に順次巻く、あるいは半径方向と直角方向に隣接して順次巻くことを特徴とする請求項1記載の電磁レンズ。
  3. ある加速電圧の荷電粒子線ビームがフォーカスされた状態で、他の加速電圧への指示があったときに、前記第1の手段に指示して当該他の加速電圧に相当する起磁力AT2になるようにかつ前記第2の手段に指示して発熱量が一定となるように前記第1のコイルおよび前記第2のコイルに流す電流を調整する第3の手段を備えたことを特徴とする請求項1あるいは請求項2記載の電磁レンズ。
  4. ある加速電圧の荷電粒子線ビームがフォーカスされた状態で、他の加速電圧への指示があったときに、前記第3の手段によって第1のコイルおよび第2のコイルに流す電流を調整した後、自動フォーカス機構を動作させてフォーカスさせてそのときのデフォーカス量が所定閾値以上のときは、当該所定閾値以内となるように前記第1の手段に指示して当該起磁力AT2を補正させかつ当該補正に対応して前記第2の手段に指示して発熱量が一定となるように当該第1のコイルおよび第2のコイルの電流を補正する第4の手段を備えたことを特徴とする請求項3記載の電磁レンズ。
  5. ある加速電圧の荷電粒子線ビームがフォーカスされた状態で、他の加速電圧への指示があったときに、前記第3の手段によって第1のコイルおよび第2のコイルに流す電流を調整した後、荷電粒子線ビームで生成された画像についてドリフト量測定機構を動作させて単位時間当たりの画像のドリフト量が所定閾値以上のときは、当該所定閾値以内となるように前記第2の手段に指示して当該発熱量を補正させる第5の手段を備えたことを特徴とする請求項3記載の電磁レンズ。
  6. 前記第1のコイルおよび前記第2のコイルの巻き数Nが異なる場合には、当該巻き数Nが異なる割合に相当して前記第1の手段および前記第2の手段に指示して起磁力を発生および発熱量を一定に制御することを特徴とする請求項1から請求項5のいずれかに記載の電磁レンズ。
JP2008013154A 2008-01-23 2008-01-23 電磁レンズ Pending JP2009176542A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013154A JP2009176542A (ja) 2008-01-23 2008-01-23 電磁レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013154A JP2009176542A (ja) 2008-01-23 2008-01-23 電磁レンズ

Publications (1)

Publication Number Publication Date
JP2009176542A true JP2009176542A (ja) 2009-08-06

Family

ID=41031428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013154A Pending JP2009176542A (ja) 2008-01-23 2008-01-23 電磁レンズ

Country Status (1)

Country Link
JP (1) JP2009176542A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129124A1 (ja) * 2012-02-28 2013-09-06 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
US9892887B2 (en) 2015-10-15 2018-02-13 Hitachi High-Technologies Corporation Charged particle beam apparatus
EP3657527A1 (en) * 2018-11-26 2020-05-27 Jeol Ltd. Charged particle beam apparatus and control method of charged particle beam apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129124A1 (ja) * 2012-02-28 2013-09-06 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
US9892887B2 (en) 2015-10-15 2018-02-13 Hitachi High-Technologies Corporation Charged particle beam apparatus
US10340115B2 (en) 2015-10-15 2019-07-02 Hitachi High-Technologies Corporation Charged particle beam apparatus
US10714304B2 (en) 2015-10-15 2020-07-14 Hitachi High-Tech Corporation Charged particle beam apparatus
EP3657527A1 (en) * 2018-11-26 2020-05-27 Jeol Ltd. Charged particle beam apparatus and control method of charged particle beam apparatus
JP2020087701A (ja) * 2018-11-26 2020-06-04 日本電子株式会社 荷電粒子線装置及び荷電粒子線装置の制御方法
US11640894B2 (en) 2018-11-26 2023-05-02 Jeol Ltd. Charged particle beam apparatus and control method of charged particle beam apparatus

Similar Documents

Publication Publication Date Title
JP4794444B2 (ja) 粒子光学システム及び装置、並びに、かかるシステム及び装置用の粒子光学部品
JP5090887B2 (ja) 電子ビーム描画装置の描画方法及び電子ビーム描画装置
JP4171479B2 (ja) 荷電粒子線応用装置及び荷電粒子線応用方法
US9799483B2 (en) Charged particle beam device and detection method using said device
JP5637929B2 (ja) 分散補償電子ビーム装置および方法
WO2017002243A1 (ja) 収差補正方法、収差補正システムおよび荷電粒子線装置
US8067733B2 (en) Scanning electron microscope having a monochromator
JP3932894B2 (ja) 電子線装置
WO2015050201A1 (ja) 荷電粒子線の傾斜補正方法および荷電粒子線装置
JP4299195B2 (ja) 荷電粒子線装置及びその光軸調整方法
WO2012050018A1 (ja) 電子ビーム装置
US20240096587A1 (en) Distortion optimized multi-beam scanning system
JP2009176542A (ja) 電磁レンズ
JP5663591B2 (ja) 走査電子顕微鏡
NL2031161B1 (en) Multiple particle beam microscope and associated method with fast autofocus with special embodiments
JP6163255B2 (ja) 荷電粒子線装置及び球面収差補正方法
US20230245852A1 (en) Multiple particle beam microscope and associated method with fast autofocus around an adjustable working distance
JP7361213B2 (ja) 荷電粒子線装置、荷電粒子線装置の制御方法
JP4995858B2 (ja) 荷電粒子線装置の光軸調整方法
JP2024065713A (ja) 電子顕微鏡、多極子、および電子顕微鏡の制御方法