JP2009163013A - 波長合分波器およびその調整方法 - Google Patents

波長合分波器およびその調整方法 Download PDF

Info

Publication number
JP2009163013A
JP2009163013A JP2008000651A JP2008000651A JP2009163013A JP 2009163013 A JP2009163013 A JP 2009163013A JP 2008000651 A JP2008000651 A JP 2008000651A JP 2008000651 A JP2008000651 A JP 2008000651A JP 2009163013 A JP2009163013 A JP 2009163013A
Authority
JP
Japan
Prior art keywords
wavelength
waveguide
refractive index
demultiplexer
wavelength multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008000651A
Other languages
English (en)
Inventor
Masaki Kamitoku
正樹 神徳
Tsutomu Kito
勤 鬼頭
Arata Kamei
新 亀井
Tomohiro Shibata
知尋 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008000651A priority Critical patent/JP2009163013A/ja
Publication of JP2009163013A publication Critical patent/JP2009163013A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

【課題】製造段階で特性を調整可能な波長合分波器を提供する。
【解決手段】本発明の一実施形態によれば、導波路に溝を形成し、その中に導波路の実効屈折率の温度係数とは異なる温度補償材料を充填することによってアサーマル化した波長合分波器の波長特性を調整することができる。具体的には、導波路に別の溝を形成し、その中に屈折率の異なる複数の屈折率調整材料を充填することによって波長特性を調整する。波長合分波器の波長特性を測定し、その測定結果に応じて、充填する屈折率調整材料の組み合わせを変更してもよい。これにより、波長合分波器の作製誤差に起因する特性のばらつきを補償し、歩留まりを改善することができる。特に、アサーマル化された波長合分波器において、製造段階で波長合分波器の特性が調整可能になる。
【選択図】図2

Description

本発明は、波長合分波器に関し、特に、アサーマル化した波長合分波器の波長合分波特性を調整することに関する。
インターネットをはじめとする通信需要の増大に対応するためには、通信容量の増大を可能にする通信技術の開発が望まれている。このような状況の中、光通信技術においては、さらなる通信容量の増大に向けて、高密度波長分割多重(D−WDM)技術の開発が進められている。
光通信システムの進展に伴い、従来の2点間を接続するpoint-to-pointのシステムから、リング網やメッシュ網など、多地点を接続しフレキシブルに通信路を切り替え可能な通信システムが構築され始めている。従来のpoint-to-pointのシステムでは、接続点で必ず電気信号に復調されていたが、このような高度なネットワークでは、光信号が電気信号に復調される事なく、光信号のまま、多地点を通過する事が求められている。このため、波長合分波器として、優れた特性を有するアレイ導波路回折格子(AWG)やマッハツェンダ干渉計(MZI)が不可欠なものとなっている。特に、D−WDMでは、高密度で波長を合分波するため、より優れた温度特性を有する波長合分波器が要求される。
要求される温度特性を確保するためには、サーミスタとペルチェ素子により波長合分波器の温度を一定に保つ方法が知られているが、温度制御に伴う部品点数の増加により、波長合分波器としてのサイズが大きく、コストも高くなるといった問題がある。そこで、波長合分波器の導波路の一部に、導波路の実効屈折率の温度特性と異なる樹脂などの温度補償材料を用いて、波長合分波器の温度特性を無依存化(アサーマル化)する技術が用いられている(特許文献1)。
特許第3436937号公報 特許第3266632号公報 特許第3569419号公報 特許第3996971号公報 特許第3374990号公報 特許第3578376号公報 山田他,信学会総合大会C−253(1995)
しかしながら、波長合分波器の作製プロセスのばらつきなどにより、波長合分波器に作製誤差が生じ、中心波長などの波長合分波特性にばらつきが生じるという問題がある。サーミスタとペルチェ素子を用いた温度制御機構により波長合分波器の温度依存性を補償する技術においては、このような作製誤差に起因する波長合分波特性のばらつきも温度制御機構により解消することができる。しかし、温度補償材料によりアサーマル化した波長合分波器においては、温度制御機構などの制御手段がなく、作製誤差に起因する波長合分波特性の解消は容易ではない。そのため、アサーマル化した波長合分波器では、その特性のばらつきにより、歩留まりが悪くなるという問題があった。特に、D−WDMにおいては、波長合分波特性の要求が厳しいので、波長合分波器の歩留まり悪化によるコスト増が問題となっている。このような問題を解決する為に、これまでに、中心波長のトリミングの方法(もしくは、位相誤差の調整方法)として、PLC表面上に膜を装荷する方法(特許文献2)、導波路の中間部に位相調整板を挿入する方法(特許文献3)、エッチングにより調整する手法(特許文献4)、UVトリミングにより調整する手法(特許文献5および6)、多数本のアレイ光導波路の一つ一つに薄膜ヒータ型熱光学位相シフタを設け、位相誤差を調整する方法(非特許文献1)などが報告されている。
しかしながら、上記の手法は、いずれも高額な装置設備やプロセスを必要とする為、コスト増が問題となる。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、製造段階で特性を調整可能な波長合分波器を安価に提供することにある。
本発明は、このような目的を達成するために、請求項1に記載の発明は、導波路に第1の溝を形成し、その中に導波路の実効屈折率の温度係数とは異なる温度補償材料を充填することによってアサーマル化した波長合分波器において、導波路に第2の溝を形成し、その中に屈折率の異なる複数の屈折率調整材料のいずれかを充填することによって波長特性が調整されたことを特徴とする。
また、請求項2に記載の発明は、請求項1に記載の波長合分波器において、前記第2の溝は、複数形成されたことを特徴とする。
また、請求項3に記載の発明は、請求項1または2に記載の波長合分波器であって、アレイ導波路回折格子を備えたことを特徴とする。
また、請求項4に記載の発明は、請求項1から3のいずれかに記載の波長合分波器であって、マッハツェンダ干渉計を備えたことを特徴とする。
また、請求項5に記載の発明は、波長合分波器の波長特性を調整する方法であって、導波路に形成された第1の溝に、波長合分波器をアサーマル化するための温度補償材料を充填し、導波路に形成された第2の溝に、屈折率の異なる複数の屈折率調整材料のいずれかを充填する工程と、波長合分波器の波長特性を測定する工程と、前記測定の結果に応じて、前記充填した屈折率調整剤を別のものに変更する工程とを備えることを特徴とする。
また、請求項6に記載の発明は、波長合分波器の波長特性を調整する方法であって、導波路に形成された第1の溝に、波長合分波器をアサーマル化するための温度補償材料を充填し、導波路に形成された複数の第2の溝に、屈折率の異なる複数の屈折率調整材料を組み合わせて充填する工程と、波長合分波器の波長特性を測定する工程と、前記測定の結果に応じて、前記充填した屈折率調整材料の組み合わせを変更する工程とを備えることを特徴とする。
本発明によれば、製造段階で波長合分波器の特性を調整することができるので、波長合分波器の作製誤差に起因する特性のばらつきを補償し、歩留まりを改善することができる。特に、アサーマル化された波長合分波器において、製造段階で波長合分波器の特性が調整可能になる。
以下、図面を参照しながら本発明の実施形態について詳細に説明する。
(第1の実施形態)
図1に、本発明の第1の実施形態に係るアレイ導波路回折格子の一例を示す。このアレイ導波路回折格子(AWG)100は、入力導波路102と、第1のスラブ導波路104と、アレイ導波路106と、第2のスラブ導波路108と、複数の出力導波路110とから構成されている。
この構成において、複数の波長を有する光が入力導波路102に入射すると、光は第1のスラブ導波路104で拡散し、それぞれのアレイ導波路106に入射する。アレイ導波路では、導波路間の光路長の差により、波長に応じて位相差が生じる。アレイ導波路106を通過した光は第2のスラブ導波路108で干渉し、その位相差(すなわち波長)に応じてスラブ導波路108の出力で集光する光の位置が変化する。したがって、波長に応じて、第2のスラブ導波路の出力で集光する光の位置に出力導波路110を設けることによって、所望の波長の光を取り出すことができる。すなわち、このAWGは、波長分波器として使用することができる。また、このAWG100は、出力導波路110からそれぞれ波長の異なる光を入射すると、入力導波路102から波長多重された光が出射され、波長合波器として使用することができる。
図1に示すように、このAWGは、温度特性を無依存化するために、スラブ導波路に第1の溝が形成され、その中に導波路の実効屈折率の温度係数とは異なる温度補償材料の樹脂112が充填されている。また、スラブ導波路に形成された、前記第1の溝と異なる、第2の溝が形成されており、その中に、樹脂やオイルなどの屈折率調整材料114が充填されている。なお、図1に示す構成は一例であり、温度補償材料112ならびに屈折率調整材料114は、損失低減の為に複数の溝に分割して充填する事が望ましい。また、温度補償材料112は、第1のスラブ導波路104に限らず、アレイ導波路106や第2のスラブ導波路108に溝を形成して充填してもよい。また、屈折率調整材料114は、第2のスラブ導波路108に限らず、第1のスラブ導波路104やアレイ導波路106に充填してもよい。
一般に、AWGの透過率が最大となる中心波長λcは、導波路の実効屈折率をn、アレイ導波路の隣り合う導波路の長さの差をΔL、回折次数をmとして、次式で与えられる。
λc=n×ΔL/m
したがって、導波路の実効屈折率を変更することができれば、AWGの中心波長λcを調整することができる。そこで、本発明では、AWGの導波路の一部に屈折率調整用の溝を設け、屈折率の異なる材料を選択的に充填することにより、導波路の実効屈折率nを調整する。ここで、屈折率調整用の溝の幅は、AWGの各チャネルの光の相対位相が変化しないように、各チャネルについて導波路全体の長さに対する溝の幅の割合が一定になるように設定する。
図2に、図1の構成において、屈折率の異なる2つ以上の屈折率調整材料を用いて、波長合分波特性を補償する工程を示す。まず、屈折率の異なる複数の調整材料を用意する(ステップ202)。例えば、屈折率の低い方の調整材料をAとし、屈折率の高い方の調整材料をBとする。そして、第1のスラブ導波路104に設けた溝に所定の温度補償材料を充填し、第2のスラブ導波路108に設けた溝に屈折率調整材料Aを充填する(ステップ204)。この状態で、AWGの透過率が最大となる波長λmを測定する(ステップ206)。この中心波長の測定値λmが中心波長の設計値λcの許容範囲λc±αに満たない場合には、調整材料Aを取り除き、調整材料Bを充填することで、波長λmを増大することができる(ステップ208)。これにより、AWG100の中心波長を個別に調整することができるので、AWGの作製誤差に起因する波長合分波特性のばらつきを抑え、歩留まりを改善することができる。
ここで、波長λの調整量Δλは、調整材料AとBの屈折率の差ならびに調整材料を充填する溝の幅によって決めることができる。また、屈折率の異なる調整材料の種類が多ければ多いほど、調整の自由度が大きくなる。また、屈折率調整材の溝の数が多ければ多いほど、調整の自由度が大きくなる。したがって、製造プロセスのばらつき等によって生じる波長合分波特性のばらつきの範囲に応じて、調整材料の種類、溝の幅および溝の数などを決定することができる。なお、屈折率調整材料の1つとして、温度補償材料と同じものを用いてもよい。
屈折率調整材料を使用すると、温度補償材料によってアサーマル化したAWGの温度特性が変動することになる。しかし、屈折率調整材料を充填する溝の幅は、AWG全体の導波路の長さに比べて短いので、屈折率調整材料の温度特性に起因する変動は小さい。また、アサーマル化の際に屈折率調整材料の温度特性(実効屈折率の温度係数)を考慮して、温度補償材料の種類や溝の幅を決定するようにしてもよい。
(第2の実施形態)
図3は、本発明の第2の実施形態に係るアレイ導波路回折格子の一例を示す。このアレイ導波路回折格子300は、基本的に図1のアレイ導波路回折格子100と同様であるが、第2のスラブ導波路308に設けられた屈折率調整材料314の溝が複数に分割されている。
第1の実施形態では、屈折率の異なる調整材料の種類が多ければ多いほど、調整の自由度が大きくなる。しかし、実際に屈折率調整材料として用いるためには、調整材料の信頼性を確認しなければならず、大変な労力が必要となる。そこで、本実施形態では、2種類の屈折率調整材料を用い、屈折率調整用の溝の数を増やすことによって、調整の自由度を確保できるようにしている。この場合、屈折率調整材料の1つとして、温度補償材料と同じものを用いてもよい。充填する樹脂やオイルなどは、溝からはみ出しやすく、目的としている溝以外にも容易に広がってしまう問題を有している。この樹脂広がりを防止する為、これらの溝には、流路を通じて樹脂だめ(プール)に接続されており、それぞれの溝に別々の樹脂を充填する事を可能としている。
図4に、図3の構成において、屈折率の異なる2つの屈折率調整材料を用いて、波長合分波特性を補償する工程を示す。まず、屈折率の異なる2つの調整材料を用意する(ステップ402)。例えば、屈折率の低い方の調整材料をAとし、屈折率の高い方の調整材料をBとする。ここで、1つの溝で調整できる中心波長のステップサイズΔλは、溝幅がすべて等しい場合、2つの屈折率調整材料AおよびBの屈折率差によって決まる。そして、第1のスラブ導波路304に設けた溝に所定の温度補償材料を充填し、第2のスラブ導波路308に設けた8つの溝の半分(4つの溝)に屈折率調整材料Aを充填し、残りの半分(4つの溝)に屈折率調整材料Bを充填する(ステップ404)。この状態で、AWGの透過率が最大となる波長λmを測定する(ステップ406)。この中心波長の測定値λmと設計値λcとの差が最小になるように、調整材料AおよびBを充填する溝の数の組み合わせ決定する(ステップ408)。
具体的には、測定値λmが設計値λcよりも大きい場合には、屈折率の高い調整材料Bに代えて屈折率の低い調整材料Aを充填する溝の数を増やし、測定値λmが設計値λcよりも小さい場合には、屈折率の低い調整材料Aに代えて屈折率の高い調整材料Bを充填する溝の数を増やす。これにより、AWGの中心波長を個別に調整することができるので、AWGの作製誤差による波長合分波特性のばらつきを抑え、歩留まりを改善することができる。
図5を参照して、AWGの歩留まりの改善について説明する。図5は、AWGの中心波長のばらつきの許容範囲を示している。図5(a)は、従来の手法において、AWGの中心波長の許容範囲をλc±0.02nmとした場合、半数近くのAWGが不良品となることを示している。アサーマルAWGの中心波長の設定精度は、±0.02nm程度に設定を行なう事が望ましい。これは、アサーマルAWGでは、完全に2次の温度特性を抑制する事が技術的に困難である為、通常のAWGと比べても厳しい波長設定精度が求められる為である。AWGの中心波長の測定値λmをこの許容範囲内に収めるためには、調整材料AおよびBで調整できる中心波長のステップサイズΔλは中心波長の許容範囲よりも大きくすることはできない。すなわち、Δλは0.04nm以下にしなければならない。逆に言えば、ステップサイズΔλを0.04nmとすれば、最大の波長調整範囲を得ることができる。この場合、8本の溝で調整できる波長範囲は8×0.04nmとなり、図5(b)に示すように、AWGの中心波長の許容範囲をλc±0.02からλc±0.18nmにまで拡大できるので、AWGの歩留まりがほぼ100%となる。
具体的に、屈折率を調整する溝の本数と、屈折率調整材料Aと屈折率調整材料Bの屈折率の選択として望ましい条件を、図6を用いて説明を行なう。図6は、屈折率調整材料による屈折率変化量に対する中心波長λcの波長変化量を示している。図6(a)は、屈折率調整用の溝が1つの溝で形成されている場合(第1の実施形態に相当)であり、Δλmax=0.32nmの波長可変量を実現する為には、屈折率調整材料Aと屈折率調整材料Bの屈折率の差は0.01以上に設定する事が望ましい事が分かる。ここで、中心波長の変化のステップサイズΔλ≦0.04nmとするためには、屈折率調整材料Bは0.01×0.04÷0.32=0.00125ずつ屈折率を変えられる必要がある。すなわち、すくなくとも8種類の屈折率が0.00125ずつ異なる樹脂を準備する事が求められる。
一方、屈折率調整用の溝がN個の溝で形成されている場合(第2の実施形態に相当)を考えると、樹脂の充填割合を変える事により、2種類の樹脂を用いるだけでN段階に中心波長を調整する事が可能になる。ここでは、N=8として説明を行なう。全ての溝を屈折率調整材料Bで充填した場合、ならびに、1つの溝を屈折率調整材料Bで充填し、残りを屈折率調整材料Aで充填した場合を図6(b)に示す。
この場合、全ての溝に屈折率材料Bを充填した場合の可変量は、図6(a)と同じである。このため屈折率調整材料Aと屈折率調整材料Bの屈折率の差は0.01以上に設定する事が望ましい。この0.01の屈折率差を仮定した場合に、1つの溝のみに屈折率調整材料Bを充填した場合には、波長可変量は0.32/8=0.04nmとなる事がわかる。屈折率調整材料Bを充填する溝の本数を1、2・・・8とすることで、0.04、0.08・・・0.32nmの可変量を得る事が出来る事が分かる。
すなわち望ましい形態としては、溝の分割数はN以上、屈折率調整材料Aと屈折率調整材料Bの屈折率差は0.01が望ましい。ここでは、屈折率調整材料の温度係数は導波路の温度係数の約30倍とし、正負が逆の温度係数を持っているものとした。
なお、屈折率調整材料AとBの屈折率の差の望ましい値は、プロセスに起因する中心波長誤差、ならびに中心波長の求められる精度(場合により±0.01nmの精度が求められる)、求める歩留りにより異なるが、少なくとも波長可変量Δλ=0.08nmが得られれば歩留りの大幅向上が見込まれる為、0.0025以上の差がついている事が望ましい。また、溝の分割数は、4以上(Δλmax=0.08nm/Δλ=0.02nm)であることが望ましい。
(第3の実施形態)
図7に、本発明の第3の実施形態に係るマッハツェンダ干渉計の一例を示す。このマッハツェンダ干渉計(MZI)700は、入力導波路702と、Y分岐704と、2つのアーム導波路706と、方向性結合器708と、2つの出力導波路710とから構成されている。
このような構成において、複数の波長を有する光が入力導波路702に入射すると、Y分岐704で2つのアーム導波路706に分岐され、アーム導波路間の光路長の差により、波長に応じて位相差が生じる。アーム導波路706を通過した光は方向性結合器708で干渉し、その位相差(すなわち波長)に応じて2つの出力導波路710の一方から出射する。したがって、MZI700に入射した光は、波長に応じて、2つの出力導波路710のいずれかから出射するので、このMZIは、波長分波器として使用することができる。また、このMZI700は、出力導波路710からそれぞれ波長の異なる光を入射すると、入力導波路702から波長多重された光が出射され、波長合波器として使用することができる。
図7に示すように、このMZIのアーム導波路の一方には8つの溝が形成され、その一部の溝には導波路の実効屈折率の温度係数とは異なる樹脂などの温度補償材料712が充填され、その他の溝には温度補償材料とは屈折率の異なる屈折率調整材料714が充填されている。
一般に、MZIの透過率が最大となる中心波長λcは、アーム導波路の光路長差をΔσとして、次式で与えられる。
λc=Δσ/k (k:整数)
図7の場合、光路長差Δσは、アーム導波路の長い方の実効屈折率をnl、アーム導波路の短い方の実効屈折率をns、アーム導波路の長い方の導波路長の長さをLl、アーム導波路の短い方の導波路長の長さLsとして、次式で表される。
Δσ=(nl×Ll−ns×Ls)
したがって、アーム導波路のいずれかの実効屈折率を、屈折率調整材料で変更すれば、MZIの中心波長λcを調整することができる。屈折率調整材料は、図7では、長い方のアーム導波路に充填し、上式のnlを変更するように図示されているが、短い方のアーム導波路に充填し、上式のnsを変更するようにしてもよい。
(第4の実施形態)
図8に、本発明の第4の実施形態に係る波長合分波器の一例を示す。この波長合分波器は、マッハツェンダ干渉計(MZI)とアレイ導波路回折格子(AWG)を組み合わせて、透過帯域特性を平坦化したものである。この波長分波器800は、入力導波路802と、マッハツェンダ干渉計と、アレイ導波路回折格子と、複数の出力導波路812とから構成されている。マッハツェンダ干渉計は、光路長が異なる2つのアーム導波路804から構成されており、この2つのアーム導波路は出力において光が干渉するように近接して配置されている。また、アレイ導波路回折格子は、第1のスラブ導波路806と、アレイ導波路808と、第2のスラブ導波路810とから構成されている。なお、第1のスラブ導波路806には、アレイ導波路回折光子単体での特性を測定するためのモニター用の導波路822が接続されている。
複数の波長を有する光が入力導波路802に入射すると、マッハツェンダ干渉計の2つのアーム導波路804の光路長の差により、波長に応じて位相差が生じる。この光は、MZIの出力において近接して配置された2つの導波路間で干渉し、その位相差(すなわち波長)に応じて2つの導波路の間でパワーが分配される。そのため、MZIの出力で集光する光の位置が、その位相差(波長)によって2つの導波路の間で変化することになる。
一方、MZIからAWGに入射した光は、第1のスラブ導波路806で拡散し、それぞれのアレイ導波路808に入射する。アレイ導波路では、導波路間の光路長の差により、波長に応じて位相差が生じる。アレイ導波路808を透過した光は第2のスラブ導波路810で干渉し、その位相差(すなわち波長)に応じてスラブ導波路の出力で集光する光の位置が変化する。したがって、波長に応じて、第2のスラブ導波路810の出力で集光する光の位置に出力導波路812を設けることによって、所望の波長の光を取り出すことができる。
ここで、MZIの出力で集光する光の位置が変わると、第1のスラブ導波路806の光の入射位置が変化し、各アレイ導波路808までの光路長が変化する。そうすると、アレイ導波路の導波路間の光路長が変わらなくても、AWG全体での光路長が変化し、第2のスラブ導波路810の出力で集光する光の位置が変わる。このことは、第2のスラブ導波路の出力で集光する光の位置は、MZIにより調整できることを意味する。すなわち、ある周波数間隔において、MZIの出力で集光する光の位置変化が、AWGの第2のスラブ導波路の出力で集光する光の位置変化を相殺するように設定されていれば、AWGの第2のスラブ導波路の出力で集光する光の位置は変化せず、したがって、この周波数間隔での透過帯域特性は平坦になる。なお、この波長分波器800は、出力導波路812からそれぞれ波長の異なる光を入射すると、入力導波路802から波長多重された光が出射され、波長合波器として使用することができるので、波長合分波器と総称する。
このような波長合分波器において、温度特性を無依存化するためには、MZIおよびAWGそれぞれの温度特性を考慮しなければならない。図8においては、MZIおよびAWGのそれぞれについて、実効屈折率の温度特性が導波路と異なる温度補償材料を用いて全体として温度特性を無依存化(アサーマル化)している。具体的には、MZIについては、アーム導波路804の一方に溝が形成され、その中に導波路の実効屈折率の温度係数とは異なる温度補償材料814が充填され、AWGについては、第1のスラブ導波路806に溝が形成され、その中に導波路の実効屈折率の温度係数とは異なる温度補償材料818が充填されている。
また、波長合分波器の波長特性を調整するためには、MZIおよびAWGそれぞれの波長特性を考慮しなければならない。図8においては、MZIおよびAWGのそれぞれについて、屈折率の異なる複数の屈折率調整材料を用いて全体として波長特性を調整している。具体的には、MZIについては、アーム導波路804の一方に溝が形成され、その中に屈折率調整材料816が充填され、AWGについては、第2のスラブ導波路810に溝が形成され、その中に屈折率調整材料820が充填されている。
図9に、図8の構成において、屈折率の異なる複数の屈折率調整材料を用いて、波長合分波特性を補償する工程を示す。まず、屈折率の異なる複数の調整材料を用意する(ステップ902)。例えば、屈折率の低い方の調整材料をAとし、屈折率の高い方の調整材料をBとする。そして、AWGの第1のスラブ導波路804に設けた溝に所定の温度補償材料818を充填し、第2のスラブ導波路810に設けた溝に屈折率調整材料Aを充填する(ステップ904)。この状態で、AWGのモニター用の導波路822から所定の光を入射し、出力導波路812で透過率が最大となる波長λmを測定する(ステップ906)。この測定結果に応じて、調整材料AとBの組み合わせを変更することで、波長λmを調整することができる(ステップ908)。
次に、MZIのアーム導波路804に設けた溝に所定の温度補償材料814と屈折率調整材料Aを充填する(ステップ910)。この状態で、入力導波路802から所定の光を入射し、出力導波路812で波長合分波器全体の特性を測定する(ステップ912)。例えば、中心波長における挿入損失を測定することで波長合分波器におけるAWGとMZIの波長のずれを推定することができる。具体的には、図10に示すAWGとMZIの波長のずれに対する波長合分波器の挿入損失の関係に基づいて、測定した挿入損失からAWGとMZIの波長ずれを推定することができる。また、波長合分波器全体の波長透過特性の形状から、波長のずれがプラス側にずれているのか、マイナス側にずれているのかが判定できる。したがって、AWGとMZIの波長のずれに応じて、調整材料AとBの組み合わせを変更することで、波長のずれを低減することができる(ステップ914)。これにより、波長合分波器800のは中心波長を調整することができるので、波長合分波器の作製誤差に起因する特性のばらつきを抑え、歩留まりを改善することができる。
以上、本発明について、具体的にいくつかの実施形態について説明したが、本発明の原理を適用できる多くの実施可能な形態に鑑みて、ここに記載した実施形態は、単に例示に過ぎず、本発明の範囲を限定するものではない。ここに例示した実施形態は、本発明の趣旨から逸脱することなくその構成と詳細を変更することができる。さらに、説明のための構成要素および手順は、本発明の趣旨から逸脱することなく変更、補足、またはその順序を変えてもよい。
本発明の第1の実施形態に係るアレイ導波路回折格子の一例を示す図である。 本発明の第1の実施形態に係るアレイ導波路回折格子において、波長合分波特性を調整する工程を示す流れ図である。 本発明の第2の実施形態に係るアレイ導波路回折格子の一例を示す図である。 本発明の第2の実施形態に係るアレイ導波路回折格子において、波長合分波特性を調整する工程を示す流れ図である。 図5は、AWGの中心波長のばらつきの許容範囲を示す図であり、図5(a)は、従来の場合であり、図5(b)は、本発明の場合である。 屈折率調整材料による屈折率変化量に対する中心波長の波長変化量を示す図であり、図6(a)は、屈折率調整用溝が1つの場合であり、図6(b)は、屈折率調整用溝が8つの場合である。 本発明の第3の実施形態に係るマッハツェンダ干渉計の一例を示す図である。 本発明の第4の実施形態に係る波長合分波器の一例を示す図である。 本発明の第4の実施形態に係る波長合分波器において、波長合分波特性を調整する工程を示す流れ図である。 本発明の第4の実施形態に係る波長合分波器においてAWGとMZIの波長のずれに対する波長合分波器の挿入損失の関係を示す図である。
符号の説明
100,300 アレイ導波路回折格子
102,302 入力導波路
104,304 スラブ導波路
106,306 アレイ導波路
108,308 スラブ導波路
110,310 出力導波路
112,312 温度補償材料
114,314 屈折率調整材料
700 マッハツェンダ干渉計
702 入力導波路
704 Y分岐
706 アーム導波路
708 方向性結合器
710 出力導波路
712 温度補償材料
714 屈折率調整材料
800 波長合分波器
802 入力導波路
804 アーム導波路
806 スラブ導波路
808 アレイ導波路
810 スラブ導波路
812 出力導波路
814 温度補償材料
816 屈折率調整材料
818 温度補償材
820 屈折率調整材料
822 モニター用の導波路

Claims (6)

  1. 導波路に第1の溝を形成し、その中に導波路の実効屈折率の温度係数とは異なる温度補償材料を充填することによってアサーマル化した波長合分波器において、
    導波路に第2の溝を形成し、その中に屈折率の異なる複数の屈折率調整材料のいずれかを充填することによって波長特性が調整されたことを特徴とする波長合分波器。
  2. 請求項1に記載の波長合分波器において、
    前記第2の溝は、複数形成されたことを特徴とする波長合分波器。
  3. 請求項1または2に記載の波長合分波器であって、
    アレイ導波路回折格子を備えたことを特徴とする波長合分波器。
  4. 請求項1から3のいずれかに記載の波長合分波器であって、
    マッハツェンダ干渉計を備えたことを特徴とする波長合分波器。
  5. 波長合分波器の波長特性を調整する方法であって、
    導波路に形成された第1の溝に、波長合分波器をアサーマル化するための温度補償材料を充填し、導波路に形成された第2の溝に、屈折率の異なる複数の屈折率調整材料のいずれかを充填する工程と、
    波長合分波器の波長特性を測定する工程と、
    前記測定の結果に応じて、前記充填した屈折率調整剤を別のものに変更する工程と
    を備えることを特徴とする方法。
  6. 波長合分波器の波長特性を調整する方法であって、
    導波路に形成された第1の溝に、波長合分波器をアサーマル化するための温度補償材料を充填し、導波路に形成された複数の第2の溝に、屈折率の異なる複数の屈折率調整材料を組み合わせて充填する工程と、
    波長合分波器の波長特性を測定する工程と、
    前記測定の結果に応じて、前記充填した屈折率調整材料の組み合わせを変更する工程と
    を備えることを特徴とする方法。
JP2008000651A 2008-01-07 2008-01-07 波長合分波器およびその調整方法 Pending JP2009163013A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000651A JP2009163013A (ja) 2008-01-07 2008-01-07 波長合分波器およびその調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000651A JP2009163013A (ja) 2008-01-07 2008-01-07 波長合分波器およびその調整方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011197435A Division JP4936575B2 (ja) 2011-09-09 2011-09-09 波長合分波器およびその調整方法

Publications (1)

Publication Number Publication Date
JP2009163013A true JP2009163013A (ja) 2009-07-23

Family

ID=40965700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000651A Pending JP2009163013A (ja) 2008-01-07 2008-01-07 波長合分波器およびその調整方法

Country Status (1)

Country Link
JP (1) JP2009163013A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014151A (ja) * 2010-06-04 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> 石英導波路溝内の充填用材料および光波長合分波回路の屈折率調整方法
CN116974010A (zh) * 2023-08-15 2023-10-31 Nano科技(北京)有限公司 一种片上光波导相位偏差修正结构、mzi及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973018A (ja) * 1995-09-05 1997-03-18 Hitachi Cable Ltd 光波長合分波器
JP2002202420A (ja) * 2000-12-28 2002-07-19 Hitachi Cable Ltd 光波長合分波器
WO2006096602A2 (en) * 2005-03-04 2006-09-14 Gemfire Corporation Optical device with reduced temperature dependence
JP2007240781A (ja) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 平面光導波回路およびその作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973018A (ja) * 1995-09-05 1997-03-18 Hitachi Cable Ltd 光波長合分波器
JP2002202420A (ja) * 2000-12-28 2002-07-19 Hitachi Cable Ltd 光波長合分波器
WO2006096602A2 (en) * 2005-03-04 2006-09-14 Gemfire Corporation Optical device with reduced temperature dependence
JP2007240781A (ja) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 平面光導波回路およびその作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014151A (ja) * 2010-06-04 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> 石英導波路溝内の充填用材料および光波長合分波回路の屈折率調整方法
CN116974010A (zh) * 2023-08-15 2023-10-31 Nano科技(北京)有限公司 一种片上光波导相位偏差修正结构、mzi及制备方法

Similar Documents

Publication Publication Date Title
Pathak et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator
JP3649918B2 (ja) 光学デバイス
US8369666B2 (en) Optical wavelength multiplexing/ de-multiplexing circuit
KR100942070B1 (ko) 어레이 도파로 회절 격자
JP5399693B2 (ja) 光波長合分波回路
US8494319B2 (en) Arrayed waveguide grating (AWG) with different radii in the input and output slab regions
US7555175B2 (en) Arrayed waveguide grating optical multiplexer/demultiplexer
WO2001059495A1 (fr) Interferometre optique a guide d&#39;ondes
US7174071B2 (en) Arrayed waveguide grating with increased uniformity of a performance parameter
JP3842804B2 (ja) デュアルバンド波長分割多重化器
JP2006284955A (ja) 光波長合分波器
US8467642B2 (en) Waveguide type optical device
US6798952B2 (en) Optical multiplexer/demultiplexer
JP4936575B2 (ja) 波長合分波器およびその調整方法
JP2009163013A (ja) 波長合分波器およびその調整方法
US20130101252A1 (en) Arrayed-waveguide grating having tailored thermal-shift characteristics and an optical assembly employing the same
JP2010250238A (ja) 光波長合分波回路およびその偏波依存性調整方法
US20030048989A1 (en) Planar lightwave circuit and method for compensating center wavelength of optical transmission of planar lightwave circuit
JP2006251152A (ja) 導波路型温度無依存光合分波器
JP3746776B2 (ja) 導波路型光波長合分波器
JP2009186688A (ja) 波長合分波器
Takahashi Arrayed Waveguide Grating (AWG)
JP2009180837A (ja) 波長合分波器
JP2005326468A (ja) 光波長合分波器
JP4682698B2 (ja) 光機器および光機器配線方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110610