JP2009162034A - 構造物基礎の工事方法 - Google Patents

構造物基礎の工事方法 Download PDF

Info

Publication number
JP2009162034A
JP2009162034A JP2008002987A JP2008002987A JP2009162034A JP 2009162034 A JP2009162034 A JP 2009162034A JP 2008002987 A JP2008002987 A JP 2008002987A JP 2008002987 A JP2008002987 A JP 2008002987A JP 2009162034 A JP2009162034 A JP 2009162034A
Authority
JP
Japan
Prior art keywords
steel pipe
foundation
design
depth
maximum error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008002987A
Other languages
English (en)
Inventor
Toyoji Okabe
豊二 岡部
Yoshimitsu Takeuchi
快充 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008002987A priority Critical patent/JP2009162034A/ja
Publication of JP2009162034A publication Critical patent/JP2009162034A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

【課題】構造物基礎の定着耐力を確保できる技術を提供する。
【解決手段】構造物の脚材の下部と地盤中に構築される杭の上部とを包み込むように、かつ前記構造物を支持する支持層に接するように鋼管を設け、該鋼管の内部にコンクリートを打設することで該脚材と該杭とを接続して該構造物の基礎を構築する構造物基礎の工事方法であって、前記構造物の構築現場において予め行われる地盤調査の調査条件情報に基づいて、該構造物の基礎を構成する前記杭と前記鋼管とを含む部材の設計を行う設計工程と、前記設計工程において設計された部材を用いて前記構造物の基礎を構築する構造物基礎構築工程と、を備え、前記設計工程では、前記地盤調査によって求められるN値の取得位置情報を含む前記調査条件情報に基づいて、前記支持層の設計深度と出現深度との最大誤差を求め、該最大誤差を考慮して前記部材の設計を行う。
【選択図】図4

Description

本発明は、構造物基礎の工事方法に関する。
地盤中に構築された杭と鉄塔用脚材とをコンクリート打設により接合し、鉄塔基礎を構築する方法として特許文献1に記載の技術が知られている。図1は、特許文献1に記載の技術によって構築された鉄塔基礎の断面図を示す。特許文献1に記載の技術では、鋼管3の内壁にずれ止め用のリブ4を設けることで、鋼管3が接続される杭2と鉄塔用脚材1との定着耐力が高められている。また、かかる技術によれば、杭2の頭部の曲げ耐力を高めることで杭2の大型化を抑制することもできる。
特許第3764729号公報
鋼管の内壁にずれ止め用のリブを設ける技術(以下、従来技術とする。)が知られている。この従来技術によれば、鉄塔基礎の定着耐力を高めることができる。この従来技術を用いて鉄塔基礎の工事を行うに際しては、まず地盤中に設置される鋼管を安定的に支持可能な支持層(良質地盤)の高さ位置等を事前のボーリング調査によって確認する。そして、鋼管の設置位置は、ボーリング調査によって確認された支持層の高さ位置に関する情報を基に決定される。なお、ボーリング調査は、一般的に標準貫入試験(JIS A 1219)を実施し、N値を求めるとともに土試料を採取することで行われる。但し、N値は、通常1m間隔毎(垂直方向)に求められ、また、ボーリングが行われる水平位置と鋼管が設置される水平位置との間には多少のずれが存在する。従ってボーリング調査によって得られた支持層の設計深度と、実際の施工における支持層の出現深度との間には誤差が存在することがある。その結果、支持層の出現深度が設計深度よりも高い場合には、鋼管を設計深度まで圧入することができないといった事態を招く虞がある。一方、支持層の出現深度が設計深度よりも低い場合には、鋼管を設計深度以上に圧入する必要があるといった事態を招く虞がある。
ここで、図2は、支持層の出現深度毎の鋼管の設置位置を示す。図2(a)は、設計深度に対応する鋼管の設置位置を示す。図2(a)に示す鉄塔の基礎は、鋼管3の内壁にずれ止め用のリブ4が設けられ、鋼管3内に挿入される鉄塔用脚材1の周囲には支圧板5が設けられ、鋼管3と鉄塔用脚材1との定着耐力を高めるように設計されている。また、鋼管3は、その下端が支持層6に達し、かつ支持層6に所定の根入長7が確保されるように埋設されている。なお、杭2(現場打ちコンクリート杭)と鋼管3との間には、十分な定着耐力を維持するように、鉄筋定着長さ8が確保されている。また、図2(a)における支持層6の位置が、設計深度に相当する。
一方、図2(b)は、支持層の出現深度が設計深度よりも高い場合の鋼管の設置位置を示す。この場合には、設計深度よりも高い位置において鋼管3の支持が可能である。すなわち、鋼管3が、設計時よりも高い位置にくることから、鋼管3の内壁に設けられているずれ止め用のリブ4も設計時よりも高い位置にくることになる。その結果、鋼管3と鉄塔用脚材1との定着長さに着目すると、鋼管3の下部のずれ止め用のリブ4(P2で示す範囲)が不足することになり、十分な定着耐力を確保できないといった事態を招く虞がある。また、鋼管3と杭2との定着長さに着目すると、杭2の鉄筋長さ(P1で示す範囲)が不足することになり、十分な定着耐力を確保できないといった事態を招く虞がある。
また、図2(c)は、支持層の出現深度が設計深度よりも低い場合の鋼管の設置位置を示す。この場合には、設計深度よりも低い位置まで鋼管3を埋設しなければならない。すなわち、鋼管3が設計時よりも低い位置にくることになる。その結果、鋼管3と鉄塔用脚材1との定着長さに着目すると、鋼管3の上部のずれ止め用のリブ4(P3で示す範囲)が不足することになり、十分な定着耐力を確保できないといった事態を招く虞がある。また、鋼管3のそのものの長さが足りないといった事態を招く虞もある。
本発明は、上記問題に鑑みてなされたものであり、支持層の設計深度と出現深度との間に誤差が生じる場合であっても、構造物基礎の定着耐力を確保できる技術を提供することを課題とする。
本発明では、上記の課題を解決するために、地盤調査の調査条件情報に基づいて支持層の設計深度と出現深度との最大誤差を求め、この最大誤差を考慮して構造物基礎を構成する部材の設計を行うこととした。これにより、本発明によれば、支持層の設計深度と出現深度との間に誤差が生じる場合であっても、構造物基礎の十分な定着耐力を確保することができる。
より詳細には、本発明は、構造物の脚材の下部と地盤中に構築される杭の上部とを包み込むように、かつ前記構造物を支持する支持層に接するように鋼管を設け、該鋼管の内部にコンクリートを打設することで該脚材と該杭とを接続して該構造物の基礎を構築する構造物基礎の工事方法であって、前記構造物の構築現場において予め行われる地盤調査の調査条件情報に基づいて、該構造物の基礎を構成する前記杭と前記鋼管とを含む部材の設計を行う設計工程と、前記設計工程において設計された部材を用いて前記構造物の基礎を構築する構造物基礎構築工程と、を備え、前記設計工程では、前記地盤調査によって求められるN値の取得位置情報を含む前記調査条件情報に基づいて、前記支持層の設計深度と出現深度との最大誤差を求め、該最大誤差を考慮して前記部材の設計を行うものである。
本発明によれば、調査条件情報に着目したことで、前記鋼管を支持する支持層の設計深度と出現深度との最大誤差を求めることが可能となる。本発明では、この最大誤差を予め考慮して部材の設計を行うことで、構造物基礎の十分な定着耐力を確保することができる。
本発明は、構造物基礎の工事に適用可能である。構造物には、鉄塔をはじめ、地盤中に杭を必要とする様々な構造物が含まれる。鉄塔は、単柱鉄塔、四角鉄塔などいずれであってもよい。支持層は、構造物を支持するのに十分な強度を備える地盤であり、支持地盤、良質地盤、硬質地盤と呼ばれるものである。
設計工程では、調査条件情報に基づいて部材の設計が行われる。調査条件情報とは、構造物の構築現場において予め行われる地盤調査の条件に関する情報である。地盤調査とは、構造物を十分に支持可能な支持層の高さ位置、支持層の強度、地下水の位置、支持層以外の地盤の強度等を確認するものである。構造物を構築するに際しては、このような地盤調査の結果に基づいて構造物を構成する部材の各種設計が行われる。地盤調査は、ボーリング調査によって行うことが一般的である。また、ボーリング調査は、標準貫入試験(JIS A 1219)を実施し、N値を求めるとともに土試料を採取することで行われるのが一般的である。なお、N値は、通常1m間隔毎(垂直方向)に求められことが多い。従って、あるN値の取得位置と次のN値の取得位置との間には、最大で1mの非測定領域が存在することになり、この非測定領域は、支持層の設計深度と出現深度との間に誤差を生じさせる原因となる虞がある。そしてこのような誤差は、例えば、支持層の出現深度が設計深度よりも低い場合、鋼管を設計深度以上に圧入する必要があり、鋼管の長さが不足
するといった事態を招く虞がある。
そこで、本発明では、支持層の設計深度と出現深度の間に誤差を生じさせる虞があるN値の取得位置情報に着目し、N値の取得位置情報を含む調査条件情報を予め考慮して部材の設計を行うこととした。より具体的には、本発明では、このような調査条件情報に基づいて、支持層の設計深度と出現深度との最大誤差を求め、この最大誤差を考慮して部材の設計を行うこととした。最大誤差とは、調査条件情報に基づいて想定される最大誤差である。例えば、N値を1m間隔毎に求めた場合には、最大誤差は1mとなる。従って、部材の設計は、垂直方向において支持層が1mずれることを想定して行えばよい。なお、調査条件情報には、N値の取得位置情報の他、ボーリングの水平位置情報を含めることができる。ボーリングの水平位置情報とは、文字通りボーリングを実際に行った水平位置に関する情報である。構造物を構築するに際しては、その基礎が構築される箇所と完全に一致する箇所においてボーリングを行うことが好ましい。しかし、実際には、構造物基礎の構築位置とボーリング水平位置とを完全に一致させることは困難であり、この構造物基礎の構築位置とボーリング水平位置との差が支持層の設計深度と出現深度との間に誤差を生じさせる原因となる虞がある。そこで、ボーリングの水平位置情報も考慮して部材の設計を行うことで、より正確な最大誤差を求めることが可能となる。なお、調査条件情報には、地盤調査が行われる地盤の地形や傾斜等に関する情報を含めてもよい。
構造物基礎構築工程では、設計工程において設計された部材を用いて構造物の基礎が構築される。構造物基礎構築工程は、例えば、鋼管の内部を掘削しながら該鋼管を前記支持層に接するように埋設する鋼管埋設工程と、埋設された鋼管の下部が前記杭の上部を包み込むように前記杭を現場打ちコンクリートにて構築する杭構築工程と、杭構築工程終了後、埋設された鋼管の上部が前記脚材の下部を包み込むように該脚材を設置しコンクリートを打設する脚材接続工程と、を有するようにすることができる。これにより、設計工程において設計された部材を用いた構造物の基礎の構築が完了する。
ここで、本発明において、前記鋼管の内壁には、該鋼管の内部に打設されるコンクリートと係合する係合部材が設けられ、前記設計工程では、前記最大誤差を考慮して前記係合部材の垂直方向における設置範囲を設計するようにしてもよい。
係合部材を設けることで鋼管とコンクリートとの定着耐力を高めることができる。但し、支持層の設計深度と出現深度との間に誤差が生じると、鋼管の設置位置がずれることになり、それに伴って係合部材の位置にもずれが生じる虞がある。その結果、定着耐力が不足する虞がある。そこで、本発明では、鋼管の内壁に設けられる係合部材の設置範囲を、支持層の設計深度と出現深度との最大誤差を考慮して設計することとした。具体的には、垂直方向における係合部材の設置範囲を最大誤差を考慮して従来よりも大きく設計すればよい。これにより、本発明によれば、支持層の設計深度と出現深度との間に誤差が生じた場合であっても、構造物基礎の十分な定着耐力を確保することができる。
また、本発明において、前記設計工程では、前記最大誤差を考慮して前記杭の全長を設計するようにしてもよい。更に、本発明において、前記設計工程では、前記最大誤差を考慮して前記鋼管の全長を設計するようにしてもよい。
支持層の設計深度と出現深度との間に生じる誤差の影響は、上述した鋼管に設けられた係合部材に対するものばかりではない。誤差の影響は、杭の全長や鋼管の全長にも影響を及ぼす虞がある。例えば、出現深度が設計深度より低い場合には、鋼管の長さが不足するといった問題が生じる。そこで、本発明では、杭の全長や鋼管の全長についても、支持層の設計深度と出現深度との最大誤差を考慮して設計することとした。具体的には、杭の全長及び鋼管の全長を、最大誤差を考慮して従来よりも長く設計すればよい。これにより、
本発明によれば、支持層の設計深度と出現深度との間に誤差が生じた場合であっても、構造物基礎の十分な定着耐力を確保することができる。
また、本発明において、前記脚材の側面には、前記コンクリートを支圧するための複数の支圧板が最上段から最下段までの距離で表される定着長が所定の長さとなるように該脚材の側面と略直交するように設けられ、前記係合部材は、前記鋼管の内壁の上部と前記鋼管の内壁の下部とのうち少なくともいずれか一方に前記支圧板を挟み込むように複数設けられ、前記上部の複数の係合部材は、前記構造物に加わる引揚荷重に対するものであって、該係合部材のうち少なくとも一つを前記支圧板の最上段よりも略45度上方の前記鋼管の内壁に前記脚材中心方向に所定の出幅が突出するように設けられ、前記下部の複数の係合部材は、前記構造物基礎に加わる圧縮荷重に対するものであって、該係合部材のうち少なくとも一つを前記支持板の最下段よりも略45度下方の前記鋼管の内壁に前記脚材中心方向に所定の出幅が突出するように設けられるようにしてもよい。
本発明によれば、脚材の側面に支圧板設けられ、また、係合部材がこの支圧板を挟み込むように複数設けられることで、コンクリートの拘束をより向上させ、定着耐力を飛躍的に向上させることができる。所定の長さは、定着耐力を確保できる長さとして適宜設計することができる。なお、本発明は、本出願人が先に出願し特許された特許第3764729号に記載の技術に本発明の特徴である支持層の設計深度と出現深度との最大誤差を考慮して部材を設計するといった技術を適用するものである。従って、本発明によれば、支持層の設計深度と出現深度との間の誤差にかかわらず、従来に比べて定着耐力を飛躍的に向上させることが可能となる。
本発明によれば、支持層の設計深度と出現深度との間に誤差が生じる場合であっても、構造物基礎の定着耐力を確保できる技術を提供することができる。
次に本発明の構造物基礎の工事方法の実施形態について図面に基づいて説明する。
<第一実施形態>
第一実施形態では、本発明の構造物基礎の工事方法を単柱鉄塔の工事に適用する場合を例に説明する。図3は、第一実施形態の工事方法によって構築される単柱鉄塔100を示す。同図に示すように、地上には単柱鉄塔100が設けられており、この単柱鉄塔100は、地盤中の基礎部90によって支持されている。基礎部90は、単柱鉄塔100の下部に設けられている脚材1と、鉄筋籠21と現場打ちコンクリートによって形成される杭2と、脚材1と杭2とを拘束する鋼管3と、によって構成され、脚材1と杭2とは、鋼管3の内部に充填されるコンクリートによって接続されている。なお、図示では一部省略されているが、脚材1の側面には、コンクリートを支圧するための支圧板5が複数設けられている。また、鋼管3の内壁には、支圧板を挟み込むようにずれ止め用のリブ4が所定の出幅が内側に突出するように複数設置されている。また、このリブ4のうち、上部のリブ4は、単柱鉄塔100に加わる引揚荷重に対するものであり、少なくとも一つのリブ4が最上段の支圧板5よりも45度上方に設置されることでより高い定着耐力が確保されている。更に、リブ4のうち、下部のリブ4は、基礎部90に加わる圧縮荷重に対するものであり、少なくとも一つのリブ4が最下段の支圧板5よりも45度下方に設置されることでより高い定着耐力が確保されている。
(工事方法)
次に図3に示す単柱鉄塔100の工事方法について説明する。ここで、図4は、調査条件情報に基づく部材の設計フローを示す。ステップS11では、単柱鉄塔100が構築さ
れる現場において予め行われるボーリング調査におけるN値の取得位置情報が確認される。N値は、土の強さや固さの指標として広く用いられるものであり、標準貫入試験(JIS A 1219)によって求めることができ、垂直方向に1m間隔毎に取得されるのが一般的である。そこで、本実施形態においても、N値の取得位置情報としてN値が1m毎に取得される場合を例に単柱鉄塔100を構成する部材を設計するものとする。N値の取得位置情報が確認されると、ステップS12へ進む。
ステップS12では、支持層6の設計深度と出現深度との最大誤差が求められる。本実施形態では、垂直方向において1m間隔でN値が求められていることから、最大誤差が1mとして設定される。但し、これに限定されるものではない。また、最大誤差を求めるに際しては、他の調査条件情報を更に考慮してもよい。本実施形態では、ボーリング位置(水平位置)と単柱鉄塔100の構築位置が比較的近いことから、N値の取得位置情報から最大誤差を求めることとした。しかし、ボーリング位置と単柱鉄塔100の構築位置との間に距離があるような場合には、設計深度と出現深度の間の誤差は更に大きくなる虞がある。従って、支持層の設計深度と出現深度との最大誤差を求めるに際しては、ボーリング位置と単柱鉄塔100の構築位置との間の水平距離を考慮することが好ましい。すなわち、ボーリング位置と単柱鉄塔100の構築位置との間の水平距離が大きくなるに従って、最大誤差も大きくなるものとして求めればよい。これにより、N値の取得位置情報のみに基づいて最大誤差を求める場合に比べ、より正確な最大誤差を求めることが可能となる。その結果、より正確な最大誤差が考慮された部材の設計が可能となる。支持層6の設計深度と出現深度との最大誤差が設定されるとステップS13へ進む。
ステップS13では、支持層6の設計深度と出現深度との最大誤差が考慮された部材の設計が行われる。具体的には、最大誤差を考慮して、鋼管3の内壁に設けられるリブ4の設置範囲、杭2の全長(鉄筋籠21の全長)、鋼管3の全長が設計される。ここで図5Aは、従来設計における鉄筋籠21aと本実施形態における設計に基づく鉄筋籠21との対比を示す。同図に示すように、本実施形態の鉄筋籠21は、従来の鉄筋籠21よりも全長が1m長く設計されている。また、図5Bは、従来設計における鋼管3aと本実施形態における設計に基づく鋼管3との対比を示す。同図に示すように、本実施形態の鋼管3は、従来の鋼管3aよりも全長が1m長く設計されている。また、リブ4の設置範囲が上下方向に夫々1mずつ広げられている。本実施形態では、20cmピッチでリブが設けられることから、本実施形態の鋼管3は、上下にそれぞれ6ずつ、合計12のリブが従来よりも多く設置されている。
なお、本実施形態では、部材の設計が支持層の設計深度と出現深度との最大誤差を考慮して行われるが、部材の基本的な強度設計等は、特許第3764729号に開示の設計方法に準じて行うことができる。なお、この設計方法は、割裂破壊を防止することで生じる破壊形態(鋼管3の降伏耐力、支圧板5周囲のコンクリート付着耐力、リブ4の耐力)を終局耐力とする合理的な設計方法である。
次に上述した設計方法によって設計された部材を実際に用いて単柱鉄塔100を構築する手順について説明する。ここで、図6は、単柱鉄塔100の工事方法の作業フローを示す。まず、ステップS01では、上述した手順により部材の設計が行われる(ステップS11から13)。次にステップS02では、内壁にリブ4が設置された鋼管3の建て込みが行われる。すなわち、設計手順により設計された設置範囲にリブ4が設置された鋼管3の建て込みが行われる。なお、鋼管3の建て込みは、パワージャッキ30によって行うことができる。図7は、鋼管3の建て込み状態を示す。同図に示すように、パワージャッキ30により鋼管3が地盤中に圧入される。
次にステップS03では、鋼管3内部の掘削が行われる。鋼管3内部の掘削は、ハンマ
グラブ31により行うことができる。図8は、鋼管3内の掘削状態を示す。同図に示すように、ハンマグラブ31により鋼管3の内部が掘削される。鋼管3が支持層6に達すると掘削を終了し、必要に応じて鋼管3の内部の洗浄等を行う。鋼管3の内部の洗浄は、ブラシや水圧洗浄によって行うことができる。
ステップS04では、掘削が完了した鋼管3の内部に鉄筋籠21が挿入される。すなわち、最大誤差を考慮してその全長が従来よりも長く設計された鉄筋籠21が鋼管3の内部に挿入される。図9は、鋼管3の内部に鉄筋籠21を挿入した状態を示す。同図に示すように、鋼管3の内部に鉄筋籠21が挿入されている。なお、鉄筋籠21の挿入は、移動式クレーン等によって行うことができる。なお、鋼管3の内部掘削が完了した時点で、支持層6の設計深度と出現深度との誤差をより正確に把握することができる。鋼管3が予定より高い位置にきた場合には、出現深度が設計深度よりも高いと判断することができるからである。従って、鉄筋籠21を挿入するに際しては、鋼管3の設置状況に応じて鉄筋籠21の長さを再度調整した上で挿入するようにしてもよい。
ステップS05では、杭2のコンクリートが打設される。すなわち、挿入された鉄筋籠21の上端が隠れる高さまでコンクリートが打設される。杭2のコンクリート打設は、例えばトレミー管を挿入して行うことができる。杭2のコンクリート打設が終了後、コンクリートは所定期間養生され、また、鋼管3の内壁の洗浄等が行われる。
ステップS06では、鋼管3の周囲の掘削、鋼管3の切断、脚材1の据付が行われる。鋼管3の周囲の掘削は、工事終了後に鋼管3の上端が地表に露出しないよう鋼管3の上部を切断するために行うものである。掘削が完了すると、鋼管3の上部が切断される。そして、脚材1が移動式クレーン等により鋼管3の内部、かつ杭2の頭部の天端に設置される。
ステップS07では、二次コンクリート打設が行われる。具体的には、杭2の頭部の天端のレイタンス処理が行われた後、鋼管3内部にコンクリートが充填される。これにより、コンクリートによって杭2と脚材1とが接続される。ここで、図10は、二次コンクリートの打設状態を示す。二次コンクリート打設は、状況に応じてトレミー管32やバイブレータ33等を用いて行うことができる。
ステップS08では、単柱鉄塔100の基礎部90の仕上げが行われる。例えば、脚材1の周囲にひび割れ防止用の鉄筋を配置し、型枠を設け、コンクリートを打設する。コンクリートの養生が終わったら、型枠の解体、掘削箇所の埋め戻しを行う。基礎部90の仕上げが完了すると、その後、地表に露出する単柱鉄塔100の構築が行われる。
(効果)
以上説明した第一実施形態の単柱鉄塔の工事方法によれば、支持層6の出現深度と設計深度との間に誤差が生じる場合であっても、定着耐力が十分に確保された単柱鉄塔100の基礎部90を構築することができる。ここで、図11は、支持層6の出現深度毎の鋼管3の設置位置を示す。図11(a)は、支持層の設計深度と出現深度が一致した場合を示す。図11(b)は、支持層6の出現深度が設計深度よりも高い場合を示す。図11(c)は、出現深度が設計深度よりも低い場合を示す。このように、本実施形態の単柱鉄塔の工事方法によれば、支持層6の出現深度と設計深度との間に誤差が生じた場合であっても、その最大誤差を予め考慮して杭2の全長、鋼管3の全長、鋼管3に設置されるリブ4の設置範囲が設計されているので、単柱鉄塔100の基礎部90の定着耐力を確保することができる。
すなわち、図2(b)で説明したように、従来の工事方法では、支持層6の出現深度が
設計深度よりも高い場合には、杭2を構成する鉄筋籠21の長さ(図2(b)P1で示す範囲)が不足し、また、リブ4の設置範囲(図2(b)P2で示す範囲)が不足し、その結果、十分な定着耐力を確保することができないといった事態を招く虞があった。しかし、本実施形態の単柱鉄塔の工事方法によれば、図11(b)に示すように、鉄筋籠21についてはL1で示す部分が従来よりも延長され、また、リブ4の設置範囲についてはL2で示す部分が従来よりも広く設計された上で基礎部90が構築されている。従って、単柱鉄塔100の基礎部90の定着耐力が確保されている。
また、図2(c)で説明したように、従来の工事方法では、支持層6の出現深度が設計深度よりも低い場合には、鋼管3の上部のリブ4の設置範囲(図2(c)P3で示す範囲)が不足し、また、鋼管3の全長が不足し、その結果、十分な定着耐力を確保することができないといった事態を招く虞があった。しかし、本実施形態の単柱鉄塔の工事方法によれば、図11(c)に示すように、リブ4の設置範囲についてはL3で示す部分が従来よりも広く設計された上で基礎部90が構築されている。また、鋼管3の全長も予め長く設計されている。従って、単柱鉄塔100の基礎部90の定着耐力が確保されている。
このように、本実施形態の単柱鉄塔の工事方法によれば、十分な定着耐力が確保された単柱鉄塔100の基礎部90を構築することができる。なお、従来技術では、例えば鋼管3が所定高さまで挿入できない場合には、鋼管3を圧入するための大型重機等を更に搬入するなどの必要があったが、本実施形態の単柱鉄塔の工事方法によればこのような問題も解消することができる。また、大型重機の搬入ができない現場では、リブ4の設置範囲を再度変更するなど、工事のやり直しが必要となる虞もあった。しかし、本実施形態の単柱鉄塔の工事方法によれば、このような問題も解消することができる。
<第二実施形態>
次に第二実施形態について説明する。第二実施形態では、本発明の構造物基礎の工事方法を四角鉄塔の工事に適用する場合を例に説明する。つまり、第一実施形態と第二実施形態では、工事の対象が異なるが、基本的の工事の方法は、同じである。従って、以下の説明では、相違点のみ説明するものとする。
図12は、第二実施形態の工事方法によって構築される四角鉄塔101を示す。同図に示すように、地上には四角鉄塔101が設けられており、この四角鉄塔101は、地盤中の四つの基礎部90によって支持されている。四つの基礎部90は、上述した第一実施形態の基礎部90と同じく、脚材1と、現場打ちコンクリートによって形成される杭2と、脚材1と杭2とを拘束する鋼管3と、によって構成され、脚材1と杭2とは、鋼管3の内部に充填されるコンクリートによって接続されている。
第二実施形態の工事方法においても、基本的には、上述した第一実施形態と同じであり、四つの基礎部90の夫々についてステップS01からステップS08の工程を行うことで、夫々の基礎部90が構築される。また、調査条件情報に基づく部材の設計も基本的には、同様の手順により行うことができる。但し、四角鉄塔101を構築する場合、一般的には、四角鉄塔101の中心(図においてXで示す)においてボーリング調査を行うことが一般的である。すなわち、実際に基礎部90が構築される箇所とボーリング位置Xとの間の誤差が、単柱鉄塔100を構築する場合に比べて大きくなることが予測される。従って、四角鉄塔101を構築する場合に際しては、N値の取得位置に加えてボーリング位置と基礎部90との平面距離を更に考慮した上で部材の設計を行うことが望ましい。例えば、第一実施形態ではN値の取得間隔が1mであることに基づいて最大誤差を1mとして部材の設計を行ったが、本実施形態では最大誤差をこれより大きくすることが好ましい。これにより、支持層6の出現深度と設計深度との間に誤差が生じる場合であっても、定着耐力が十分に確保された四角鉄塔101の基礎部90を構築することができる。
以上、本発明の好適な実施形態を説明したが、本発明の構造物基礎の工事方法はこれらに限らず、可能な限りこれらの組合せを含むことができる。
従来の工法によって構築された鉄塔基礎の断面図を示す。 支持層の出現深度毎の鋼管の設置位置を示す。 第一実施形態の工事方法によって構築される単柱鉄塔を示す。 調査条件情報に基づく部材の設計フローを示す。 従来設計の鉄筋籠と本実施形態の設計に基づく鉄筋籠との対比を示す。 従来設計の鋼管と本実施形態の設計に基づく鋼管との対比を示す。 単柱鉄塔の工事方法の作業フローを示す。 鋼管の建て込み状態を示す。 鋼管内の掘削状態を示す。 鋼管の内部に鉄筋籠を挿入した状態を示す。 二次コンクリートの打設状態を示す。 支持層の出現深度毎の鋼管の設置位置を示す。 第二実施形態の工事方法によって構築される四角鉄塔を示す。
符号の説明
1・・・脚材
2・・・杭
3・・・鋼管
4・・・リブ
5・・・支圧板
6・・・支持層
21・・・鉄筋籠
90・・・基礎部
100・・・単柱鉄塔
101・・・四角鉄塔

Claims (5)

  1. 構造物の脚材の下部と地盤中に構築される杭の上部とを包み込むように、かつ前記構造物を支持する支持層に接するように鋼管を設け、該鋼管の内部にコンクリートを打設することで該脚材と該杭とを接続して該構造物の基礎を構築する構造物基礎の工事方法であって、
    前記構造物の構築現場において予め行われる地盤調査の調査条件情報に基づいて、該構造物の基礎を構成する前記杭と前記鋼管とを含む部材の設計を行う設計工程と、
    前記設計工程において設計された部材を用いて前記構造物の基礎を構築する構造物基礎構築工程と、を備え、
    前記設計工程では、前記地盤調査によって求められるN値の取得位置情報を含む前記調査条件情報に基づいて、前記支持層の設計深度と出現深度との最大誤差を求め、該最大誤差を考慮して前記部材の設計を行う、構造物基礎の工事方法。
  2. 前記鋼管の内壁には、該鋼管の内部に打設されるコンクリートと係合する係合部材が設けられ、
    前記設計工程では、前記最大誤差を考慮して前記係合部材の垂直方向における設置範囲を設計する、請求項1に記載の構造物基礎の工事方法。
  3. 前記設計工程では、前記最大誤差を考慮して前記杭の全長を設計する、請求項1又は請求項2に記載の構造物基礎の工事方法。
  4. 前記設計工程では、前記最大誤差を考慮して前記鋼管の全長を設計する、請求項1から請求項3のいずれか1項に記載の構造物基礎の工事方法。
  5. 前記脚材の側面には、前記コンクリートを支圧するための複数の支圧板が最上段から最下段までの距離で表される定着長が所定の長さとなるように該脚材の側面と略直交するように設けられ、
    前記係合部材は、前記鋼管の内壁の上部と前記鋼管の内壁の下部とのうち少なくともいずれか一方に前記支圧板を挟み込むように複数設けられ、
    前記上部の複数の係合部材は、前記構造物に加わる引揚荷重に対するものであって、該係合部材のうち少なくとも一つを前記支圧板の最上段よりも略45度上方の前記鋼管の内壁に前記脚材中心方向に所定の出幅が突出するように設けられ、
    前記下部の複数の係合部材は、前記構造物基礎に加わる圧縮荷重に対するものであって、該係合部材のうち少なくとも一つを前記支持板の最下段よりも略45度下方の前記鋼管の内壁に前記脚材中心方向に所定の出幅が突出するように設けられる、請求項1から請求項4のいずれか1項に記載の構造物基礎の工事方法。
JP2008002987A 2008-01-10 2008-01-10 構造物基礎の工事方法 Pending JP2009162034A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002987A JP2009162034A (ja) 2008-01-10 2008-01-10 構造物基礎の工事方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002987A JP2009162034A (ja) 2008-01-10 2008-01-10 構造物基礎の工事方法

Publications (1)

Publication Number Publication Date
JP2009162034A true JP2009162034A (ja) 2009-07-23

Family

ID=40964948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002987A Pending JP2009162034A (ja) 2008-01-10 2008-01-10 構造物基礎の工事方法

Country Status (1)

Country Link
JP (1) JP2009162034A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821911A (zh) * 2015-12-15 2016-08-03 中国石油天然气集团公司 一种自升式平台桩腿或带桩靴的桩腿贯入深度预测方法
JP2018091132A (ja) * 2018-02-14 2018-06-14 株式会社オーク 杭施工管理方法
CN114134928A (zh) * 2021-12-22 2022-03-04 中铁四局集团有限公司 一种钢管柱塔吊基础施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288755A (ja) * 2000-04-04 2001-10-19 Shimizu Corp 基礎の施工方法
JP2002348868A (ja) * 2000-06-12 2002-12-04 Mitani Sekisan Co Ltd 杭穴根固め層の構築方法、基礎杭の施工管理装置、基礎杭の施工管理方法
JP2003074045A (ja) * 2000-12-27 2003-03-12 Nippon Steel Corp 地盤調査方法並びに地盤調査装置
JP3764729B2 (ja) * 2003-03-24 2006-04-12 東京電力株式会社 コンクリート拘束接合部材を用いた鉄塔基礎の構築方法
JP2006169828A (ja) * 2004-12-16 2006-06-29 Mitani Sekisan Co Ltd 杭穴の掘削方法及び基礎杭構造
JP2007270542A (ja) * 2006-03-31 2007-10-18 Doyu Daichi Co Ltd 道路橋基礎設計方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288755A (ja) * 2000-04-04 2001-10-19 Shimizu Corp 基礎の施工方法
JP2002348868A (ja) * 2000-06-12 2002-12-04 Mitani Sekisan Co Ltd 杭穴根固め層の構築方法、基礎杭の施工管理装置、基礎杭の施工管理方法
JP2003074045A (ja) * 2000-12-27 2003-03-12 Nippon Steel Corp 地盤調査方法並びに地盤調査装置
JP3764729B2 (ja) * 2003-03-24 2006-04-12 東京電力株式会社 コンクリート拘束接合部材を用いた鉄塔基礎の構築方法
JP2006169828A (ja) * 2004-12-16 2006-06-29 Mitani Sekisan Co Ltd 杭穴の掘削方法及び基礎杭構造
JP2007270542A (ja) * 2006-03-31 2007-10-18 Doyu Daichi Co Ltd 道路橋基礎設計方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821911A (zh) * 2015-12-15 2016-08-03 中国石油天然气集团公司 一种自升式平台桩腿或带桩靴的桩腿贯入深度预测方法
JP2018091132A (ja) * 2018-02-14 2018-06-14 株式会社オーク 杭施工管理方法
CN114134928A (zh) * 2021-12-22 2022-03-04 中铁四局集团有限公司 一种钢管柱塔吊基础施工方法

Similar Documents

Publication Publication Date Title
KR100788623B1 (ko) Pc기둥을 이용한 탑다운 공법
KR20060092552A (ko) 현장타설파일을 이용한 무지보 하향골조 시공방법
KR100984898B1 (ko) 지하구조물 하강 시공공법
JP2006328716A (ja) 既設構造物のアンダーピニング構造及び方法、並びに、既設構造物の近くに新設構造物を構築する方法
JP5446774B2 (ja) 仮設杭の施工方法
JP2003232033A (ja) 基礎杭構造
JP2008308945A (ja) 引張杭併用コンクリート基礎及びその構築方法
JP2022078187A (ja) 基礎修復のための耐久ブロック圧入基礎施工法
JP2009162034A (ja) 構造物基礎の工事方法
JP5465086B2 (ja) 地下構造物の構築方法
JP4373824B2 (ja) 場所打ち杭と鋼管柱との接合方法
JP6441030B2 (ja) 地下施設増設方法
JP5028781B2 (ja) 既設岸壁の改修補強方法およびその改修補強構造
JP5016521B2 (ja) アースアンカーおよびその撤去方法
KR20050113450A (ko) 가설보조기둥을 이용한 철근콘크리트 역타설 지하구조물축조 공법
KR20080059951A (ko) 가시설 겸용 파일기초와 지하옹벽 시공방법 및 그를 위한전단마찰 보강재
JP4329068B2 (ja) 山留め合成壁、及び山留め合成壁の構築方法
JP2017197910A (ja) 土留壁構造の構築方法および土留壁構造
JP6534026B2 (ja) 免震建物及びその施工方法
JP4749858B2 (ja) 既存建物の上部構造物の増築又は改築における支持力増強方法
JP6093458B1 (ja) 沈設構造物の構築方法
JP6133621B2 (ja) 山留壁
JP7007691B1 (ja) スプリングスペーサー、鉄筋籠及び地中杭の打設工法
JP2009174135A (ja) 柱構築方法および柱構造
JP4879582B2 (ja) 既存建物の基礎下の地下階増築方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A02