JP2009155142A - Method for producing ceramic slurry - Google Patents

Method for producing ceramic slurry Download PDF

Info

Publication number
JP2009155142A
JP2009155142A JP2007333294A JP2007333294A JP2009155142A JP 2009155142 A JP2009155142 A JP 2009155142A JP 2007333294 A JP2007333294 A JP 2007333294A JP 2007333294 A JP2007333294 A JP 2007333294A JP 2009155142 A JP2009155142 A JP 2009155142A
Authority
JP
Japan
Prior art keywords
slurry
powder
subcomponent
ceramic slurry
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007333294A
Other languages
Japanese (ja)
Other versions
JP5459951B2 (en
Inventor
Nobutake Hirai
伸岳 平井
Takashi Maki
貴史 真木
Kotaro Hatake
宏太郎 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to JP2007333294A priority Critical patent/JP5459951B2/en
Priority to KR1020080059284A priority patent/KR100951318B1/en
Publication of JP2009155142A publication Critical patent/JP2009155142A/en
Application granted granted Critical
Publication of JP5459951B2 publication Critical patent/JP5459951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ceramic slurry having satisfactory dispersibility. <P>SOLUTION: The method for producing ceramic slurry comprises: a stage where a mixture at least comprising auxiliary component powder is subjected to a first dispersion treatment, so as to regulate auxiliary component slurry; and a stage where the main component powder is added to the auxiliary component slurry, and a second dispersion treatment is performed thereto, so as to prepare the ceramic slurry. The auxiliary component powder is composed of at least one kind of compound selected from the group consisting of a compound comprising either one kind of element among Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho and Yb, and the average grain size of the auxiliary component powder in the auxiliary component slurry is controlled to ≤0.1 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、表面粗さが小さく焼成温度安定性が高いグリーンシートを作製することができ、延いては、ショート率が低い積層セラミックコンデンサを得ることができる、分散性が良好なセラミックスラリーの製造方法に関するものである。   The present invention can produce a green sheet having a small surface roughness and a high firing temperature stability, and in turn, a multilayer ceramic capacitor having a low short-circuit rate, and producing a ceramic slurry with good dispersibility. It is about the method.

従来の積層セラミックコンデンサは、チタン酸バリウム(BaTiO)系のセラミック誘電体材料を使用して、これをシート状に成形してグリーンシートを作製し、このグリーンシート上に電極を印刷したものを積層する工程を繰り返すことにより作製されている。 A conventional multilayer ceramic capacitor uses a barium titanate (BaTiO 3 ) -based ceramic dielectric material, which is formed into a sheet shape to produce a green sheet, and electrodes are printed on the green sheet. It is produced by repeating the lamination process.

近時、電子機器製品の小型化に伴い、電子回路の高密度化が進み、この結果、積層セラミックコンデンサの小型大容量化が強く求められている。そして、この要望を実現するために、内部電極層と誘電体層の薄層化と積層数の増加が試みられている。   In recent years, with the miniaturization of electronic equipment products, the density of electronic circuits has been increasing, and as a result, there has been a strong demand for the reduction in size and capacity of multilayer ceramic capacitors. In order to realize this demand, attempts have been made to reduce the number of internal electrode layers and dielectric layers and increase the number of layers.

そのため、誘電体層を形成するグリーンシートも薄層化しており、グリーンシートの表面粗さ(凹凸)が厚さに対して無視できなくなっている。この表面粗さに起因して、焼成後の誘電体層厚みにバラツキが生じると、積層セラミックコンデンサの電界強度が不均一となり、短絡(ショート)不良が引き起こされるからである。   Therefore, the green sheet forming the dielectric layer is also made thinner, and the surface roughness (unevenness) of the green sheet cannot be ignored with respect to the thickness. This is because if the thickness of the dielectric layer after firing varies due to the surface roughness, the electric field strength of the multilayer ceramic capacitor becomes non-uniform, causing a short circuit failure.

従って、表面が平滑で、かつ厚さの均一なグリーンシートを作製する技術が、積層セラミックコンデンサの製造に不可欠となっている。薄層化したグリーンシートの表面を平滑化し、かつ厚さを均一にするには、グリーンシート中のセラミック粉末を微細化し、かつ、グリーンシート中のセラミック粉末の分散性を高めることが必要である。また、グリーンシート中のセラミック粉末の分散が不充分だと、焼成後のセラミック粉末の粒径の安定性、積層セラミックコンデンサの電気特性の安定性にも悪影響が及ぶ。   Therefore, a technique for producing a green sheet having a smooth surface and a uniform thickness is indispensable for the production of multilayer ceramic capacitors. In order to smooth the surface of the thinned green sheet and make the thickness uniform, it is necessary to refine the ceramic powder in the green sheet and to increase the dispersibility of the ceramic powder in the green sheet. . Moreover, if the ceramic powder is not sufficiently dispersed in the green sheet, the stability of the particle size of the ceramic powder after firing and the stability of the electrical characteristics of the multilayer ceramic capacitor are also adversely affected.

グリーンシート中のセラミック粉末の分散性を高めるには、その原料となるセラミックスラリー中のセラミック粉末の分散性を高めることが必要であるが、特許文献1に記載のように、主成分及び副成分を含有するセラミック粉末を、分散媒、分散剤、バインダ、可塑剤等と所定の割合で配合し、ビーズミル、ボールミル等の分散機を用いて、混合・解砕しても、セラミックスラリー中にセラミック粉末を充分に分散させることは困難である。また、特許文献2に記載されているような副成分のセラミック粉末を高圧分散処理する方法によっても、均一に分散されたセラミックスラリーを得ることはできていない。   In order to increase the dispersibility of the ceramic powder in the green sheet, it is necessary to increase the dispersibility of the ceramic powder in the ceramic slurry as the raw material. Even if the ceramic powder containing is mixed with a dispersion medium, a dispersing agent, a binder, a plasticizer, etc. at a predetermined ratio, and mixed and pulverized using a dispersing machine such as a bead mill or a ball mill, the ceramic powder is mixed into the ceramic slurry. It is difficult to sufficiently disperse the powder. Further, even with a method of performing high-pressure dispersion treatment of ceramic powder of subcomponents as described in Patent Document 2, a uniformly dispersed ceramic slurry cannot be obtained.

従って、セラミック粉末が均一に分散されたセラミックスラリーを調製する方法が求められている。
特開2001−106578 特開2007−137693
Accordingly, there is a need for a method of preparing a ceramic slurry in which ceramic powder is uniformly dispersed.
JP 2001-106578 A JP2007-137693A

そこで本発明は、上記現状に鑑み、分散性が良好なセラミックスラリーの製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of a ceramic slurry with favorable dispersibility in view of the said present condition.

すなわち本発明に係るセラミックスラリーの製造方法は、誘電体材料として用いるセラミックスラリーを製造する方法であって、少なくとも副成分粉末を含む混合物に、第1の分散処理を施して、副成分スラリーを調整する工程と、前記副成分スラリーに、主成分粉末を添加してから、第2の分散処理を施して、前記セラミックスラリーを調製する工程と、を備えており、前記副成分粉末は、Mg、Ba、Ca、Si、Mn、Al、V、Dy、Y、Ho、又は、Ybのいずれか1種の元素を含む化合物からなる群より選ばれる少なくとも1種の化合物からなるものであり、前記副成分スラリー中の前記副成分粉末の平均粒径は、0.1μm以下であることを特徴とする。   That is, the method for producing a ceramic slurry according to the present invention is a method for producing a ceramic slurry used as a dielectric material, and a mixture containing at least an auxiliary component powder is subjected to a first dispersion treatment to adjust the auxiliary component slurry. And a step of adding a main component powder to the subcomponent slurry and then performing a second dispersion treatment to prepare the ceramic slurry, and the subcomponent powder includes Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, or Yb consisting of at least one compound selected from the group consisting of compounds containing any one element, An average particle diameter of the subcomponent powder in the component slurry is 0.1 μm or less.

このようなものであれば、副成分粉末として平均粒径が0.1μm以下のナノ粒子を使用して、ビーズミル等を用いて分散処理を行うことによって、凝集している副成分粉末がほぐれ、副成分粉末が均一に分散した副成分スラリーを得ることができる。更に、当該副成分スラリーに主成分粉末を添加し、ビーズミル等を用いて分散処理を行うことによって、凝集している主成分粉末がほぐれ、主成分粉末と副成分粉末とが均一に分散したセラミックスラリーを得ることができる。   If it is such, by using nanoparticles having an average particle size of 0.1 μm or less as a subcomponent powder, by performing a dispersion treatment using a bead mill or the like, the coagulated subcomponent powder is loosened, A subcomponent slurry in which the subcomponent powder is uniformly dispersed can be obtained. Furthermore, by adding the main component powder to the subcomponent slurry and performing a dispersion treatment using a bead mill or the like, the agglomerated main component powder is loosened, and the main component powder and the subcomponent powder are uniformly dispersed. You can get a rally.

なお、特許文献2には、副成分粉末の原料を仮焼成して得られたもの(段落番号[0043][0095])を粉砕処理して平均粒径0.1μm以下の副成分粉末のスラリーを調整してから、当該スラリーを高圧分散処理することが記載されているが、本発明における「副成分粉末」は特許文献2における副成分粉末の「原料」に相当し、実質的に2種以上の金属元素を含まないものである。そして、特許文献2に記載の方法ではこのように煩雑な工程を経てセラミックスラリーを調製するのにもかかわらず、得られたセラミックスラリーの粒度分布はD50=0.37μmにすぎず(段落番号[0100])、その効果は甚だ不充分なものである。これは副成分粉末の平均粒径が0.1μm以下であっても、粒径のばらつきが大きく、粒径が大きいものも相当割合で含まれていたためであると思われる。これに対して、後述するように、本発明に係る方法を用いて製造されたセラミックスラリーはいずれもD99値が0.35μm以下であり、主成分及び副成分のセラミック粉末が極めて均一に分散したものである。   Patent Document 2 discloses a slurry of subcomponent powder having an average particle size of 0.1 μm or less obtained by pulverizing a raw material of subcomponent powder (paragraph numbers [0043] and [0095]). However, the “subcomponent powder” in the present invention corresponds to the “raw material” of the subcomponent powder in Patent Document 2, and there are substantially two types. It does not contain the above metal elements. And although the method of patent document 2 prepares a ceramic slurry through such a complicated process, the particle size distribution of the obtained ceramic slurry is only D50 = 0.37 micrometer (paragraph number [ 0100]), the effect is very inadequate. This seems to be because even if the average particle size of the subcomponent powder was 0.1 μm or less, the variation in the particle size was large, and a large particle size was included in a considerable proportion. On the other hand, as will be described later, the ceramic slurry produced by using the method according to the present invention has a D99 value of 0.35 μm or less, and the ceramic powders of the main component and the subcomponent are dispersed very uniformly. Is.

本発明において、前記分散処理は、ビーズミルを用いて行なわれることが好ましい。   In the present invention, the dispersion treatment is preferably performed using a bead mill.

前記ビーズミルを用いた分散処理は、粒径が0.03〜0.3mmのビーズを用いて、5m/s<v<15m/sの周速vで行なわれることが好ましい。   The dispersion treatment using the bead mill is preferably performed using beads having a particle size of 0.03 to 0.3 mm at a peripheral speed v of 5 m / s <v <15 m / s.

前記主成分粉末は、チタン酸バリウム系誘電体粉末であることが好ましい。   The main component powder is preferably a barium titanate-based dielectric powder.

前記第2の分散処理前の前記チタン酸バリウム系誘電体粉末の平均粒径は、0.3μm以下であることが好ましい。   The average particle diameter of the barium titanate-based dielectric powder before the second dispersion treatment is preferably 0.3 μm or less.

前記副成分スラリー中の副成分粉末の最大粒径が、前記第2の分散処理前の前記主成分粉末の平均粒径の3/4以下であることが好ましい。   The maximum particle size of the subcomponent powder in the subcomponent slurry is preferably 3/4 or less of the average particle size of the main component powder before the second dispersion treatment.

少なくとも前記副成分粉末を含有する前記混合物は、第1混合溶剤及び第1分散剤を含有していることが好ましい。   The mixture containing at least the subcomponent powder preferably contains a first mixed solvent and a first dispersant.

前記副成分スラリーに、前記主成分粉末を添加する際に、更に第2分散剤を添加することが好ましい。   When adding the main component powder to the subcomponent slurry, it is preferable to add a second dispersant.

本発明に係る製造方法により得られたセラミックスラリーに、第2混合溶剤及びバインダを添加し、混合して得られたスラリーもまた、本発明の1つである。   The slurry obtained by adding and mixing the second mixed solvent and the binder to the ceramic slurry obtained by the production method according to the present invention is also one aspect of the present invention.

本発明に係るスラリーを、基材上にシート状に塗布することにより製造されるグリーンシートもまた、本発明の1つである。   The green sheet manufactured by apply | coating the slurry which concerns on this invention on a base material in a sheet form is also one of this invention.

本発明に係るグリーンシートを焼成することにより製造される焼結体もまた、本発明の1つである。   A sintered body produced by firing the green sheet according to the present invention is also one aspect of the present invention.

複数の電極と、前記電極間に設けられた本発明に係る焼結体からなる誘電体層と、を備えているセラミックコンデンサもまた、本発明の1つである。   A ceramic capacitor including a plurality of electrodes and a dielectric layer made of a sintered body according to the present invention provided between the electrodes is also one aspect of the present invention.

前記電極は、Ni又はNi合金を含有していることが好ましい。   The electrode preferably contains Ni or a Ni alloy.

本発明によれば、セラミック粉末の凝集がほぐれ、分散性が良いセラミックスラリーを得ることができる。このようなセラミックスラリーを用いて作製されたグリーンシートは、主成分粉末及び副成分粉末の分散性が高いため表面粗さが小さいので、焼結後の誘電体層厚みは均一になり、積層セラミックコンデンサのショート率が低くなる。また、このようなセラミックスラリーを用いて作製されたグリーンシートは、組織が緻密で粒径が均一であるので、焼成後の粒径も安定し、電気特性が安定するとともに、有効な焼成温度の温度範囲も広くなる。   According to the present invention, ceramic powder can be agglomerated and a ceramic slurry with good dispersibility can be obtained. The green sheet produced using such a ceramic slurry has a low surface roughness due to the high dispersibility of the main component powder and subcomponent powder, so the dielectric layer thickness after sintering becomes uniform, and the multilayer ceramic Capacitor short-circuit rate is reduced. In addition, since the green sheet produced using such a ceramic slurry has a dense structure and a uniform particle size, the particle size after firing is stable, the electrical characteristics are stabilized, and an effective firing temperature is achieved. The temperature range is also widened.

以下に本発明の一実施形態に係る積層セラミックコンデンサ1について図面を参照して説明する。   A multilayer ceramic capacitor 1 according to an embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る積層セラミックコンデンサ1は、図1に示すように、誘電体層3と内部電極4とが交互に積層されてなるコンデンサチップ体2と、このコンデンサチップ体2の表面に設けられ内部電極4と導通する外部電極5と、を備えている。内部電極4は、その端部がコンデンサチップ体2の対向する2つの表面に交互に露出するように積層されて、コンデンサチップ体2の当該表面上に形成されて所定のコンデンサ回路を構成する外部電極5と、電気的に接続している。   As shown in FIG. 1, the multilayer ceramic capacitor 1 according to this embodiment is provided on a capacitor chip body 2 in which dielectric layers 3 and internal electrodes 4 are alternately stacked, and on the surface of the capacitor chip body 2. An external electrode 5 electrically connected to the internal electrode 4. The internal electrodes 4 are laminated so that the ends thereof are alternately exposed on the two opposing surfaces of the capacitor chip body 2, and are formed on the surfaces of the capacitor chip body 2 to form a predetermined capacitor circuit. The electrode 5 is electrically connected.

誘電体層3は、セラミック粉末の焼結体からなるものであり、本実施形態においては、前記セラミック粉末はセラミックスラリーとして得られる。前記セラミック粉末をセラミックスラリーとして得るには、まず、少なくとも副成分粉末を含む混合物を分散処理(第1の分散処理)して副成分スラリーを調整する。   The dielectric layer 3 is made of a sintered body of ceramic powder, and in the present embodiment, the ceramic powder is obtained as a ceramic slurry. In order to obtain the ceramic powder as a ceramic slurry, first, a mixture containing at least an auxiliary component powder is subjected to a dispersion treatment (first dispersion treatment) to prepare an auxiliary component slurry.

前記副成分粉末としては、Mg、Ba、Ca、Si、Mn、Al、V、Dy、Y、Ho、Ybのいずれか1種の元素を含む酸化物、炭酸塩等の化合物の粉末が挙げられる。このような化合物の粉末は、1種が用いられても良く、2種以上が併用されても良い。   Examples of the sub-component powder include powders of compounds such as oxides and carbonates containing any one of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, and Yb. . As for the powder of such a compound, 1 type may be used and 2 or more types may be used together.

前記第1の分散処理は、ビーズミルを用いて行なわれることが好ましい。このようなビーズミルを用いた分散処理は、粒径が0.03〜0.3mmのビーズを用いて、5m/s<v<15m/sの周速vで行なわれることが好ましい。玉石の粒径及び周速がこの範囲より小さいと、凝集している副成分粉末を充分にほぐして分散させることが難しく、一方、玉石の粒径及び周速がこの範囲より大きいと、副成分粉末の結晶性が低下して微粉末化してしまう。   The first dispersion treatment is preferably performed using a bead mill. Such a dispersion treatment using a bead mill is preferably performed at a peripheral speed v of 5 m / s <v <15 m / s using beads having a particle size of 0.03 to 0.3 mm. If the particle size and peripheral speed of the cobblestone are smaller than this range, it is difficult to sufficiently disperse and disperse the agglomerated subcomponent powder, while if the particle size and peripheral speed of the cobblestone are larger than this range, the subcomponent The crystallinity of the powder is reduced and it becomes fine powder.

前記混合物は、副成分粉末に加えて、更に、第1混合溶剤及び第1分散剤を含有していることが好ましい。   The mixture preferably further contains a first mixed solvent and a first dispersant in addition to the subcomponent powder.

前記第1混合溶剤としては特に限定されず、例えば、エチルカルビトール、ブタンジオール、2−ブトキシエタノール等のグリコール類:メタノール、エタノール、プロパノール、ブタノール等のアルコール:アセトン、メチルエチルケトン、ジアセトンアルコール等のケトン類:酢酸メチル、酢酸エチル等のエステル類:トルエン、キシレン、酢酸ベンジル等の芳香族類等が挙げられる。   The first mixed solvent is not particularly limited, and examples thereof include glycols such as ethyl carbitol, butanediol, and 2-butoxyethanol: alcohols such as methanol, ethanol, propanol, and butanol: acetone, methyl ethyl ketone, diacetone alcohol, and the like. Ketones: Esters such as methyl acetate and ethyl acetate: Aromatics such as toluene, xylene and benzyl acetate.

前記第1分散剤としては特に限定されず、例えば、ポリビニルブチラール系分散剤、ポリビニルアセタール系分散剤、ポリカルボン酸系分散剤、マレイン酸系分散剤、ポリエチレングリコール系分散剤、アリルエーテルコポリマー系分散剤等が挙げられる。   The first dispersant is not particularly limited. For example, a polyvinyl butyral dispersant, a polyvinyl acetal dispersant, a polycarboxylic acid dispersant, a maleic acid dispersant, a polyethylene glycol dispersant, an allyl ether copolymer dispersant. Agents and the like.

前記第1の分散処理により得られた副成分スラリー中の副成分粉末の平均粒径は、0.1μm以下であり、好ましくは0.02〜0.06μmである。0.1μmを超えると、表面の平滑性が低く、厚みが不均一なグリーンシートが得られる。   The average particle size of the subcomponent powder in the subcomponent slurry obtained by the first dispersion treatment is 0.1 μm or less, preferably 0.02 to 0.06 μm. When it exceeds 0.1 μm, a green sheet with low surface smoothness and non-uniform thickness can be obtained.

前記セラミックスラリーを得るには、次いで、副成分スラリーに、主成分粉末を添加して、分散処理(第2の分散処理)を行なう。   In order to obtain the ceramic slurry, the main component powder is then added to the subcomponent slurry and a dispersion treatment (second dispersion treatment) is performed.

前記主成分粉末としては特に限定されないが、例えば、BaCa1−xTiO(0<x≦1)等からなるチタン酸バリウム系誘電体粉末が好適に用いられる。 Wherein there is no particular limitation on the major component powder, for example, Ba x Ca 1-x TiO 3 (0 <x ≦ 1) barium titanate-based dielectric powder comprising the like are suitably used.

前記チタン酸バリウム系誘電体粉末の平均粒径は、0.3μm以下であることが好ましい。0.3μmを超えると、表面の平滑性が低く、厚みが不均一なグリーンシートが得られる。   The barium titanate-based dielectric powder preferably has an average particle size of 0.3 μm or less. When it exceeds 0.3 μm, a green sheet with low surface smoothness and non-uniform thickness can be obtained.

前記第2の分散処理前において、副成分スラリー中の副成分粉末の最大粒径は、主成分粉末の平均粒径の3/4以下であることが好ましい。副成分スラリー中の副成分粉末の最大粒径がこの範囲を超えると、焼成時に主成分粉末と副成分粉末との焼結反応が均一に起こりにくくなる。   Before the second dispersion treatment, it is preferable that the maximum particle size of the subcomponent powder in the subcomponent slurry is 3/4 or less of the average particle size of the main component powder. When the maximum particle size of the subcomponent powder in the subcomponent slurry exceeds this range, the sintering reaction between the main component powder and the subcomponent powder hardly occurs uniformly during firing.

前記副成分スラリーに、主成分粉末を添加する際に、更に第2分散剤を添加することが好ましい。第2分散剤としては特に限定されず、例えば、第1分散剤と同じものが挙げられる。   When adding the main component powder to the subcomponent slurry, it is preferable to further add a second dispersant. It does not specifically limit as a 2nd dispersing agent, For example, the same thing as a 1st dispersing agent is mentioned.

前記第2の分散処理は、前記第1の分散処理と同様に例えばビーズミルを用いて行うことが好ましい。   The second dispersion process is preferably performed using, for example, a bead mill in the same manner as the first dispersion process.

このようにして得られたセラミックスラリーに、第2混合溶剤及びバインダを添加し、混合することによりグリーンシート形成用のスラリーが得られる。   A slurry for forming a green sheet is obtained by adding and mixing the second mixed solvent and the binder to the ceramic slurry thus obtained.

第2混合溶剤としては特に限定されず、例えば、前記第1混合溶剤と同じものが挙げられる。   It does not specifically limit as a 2nd mixed solvent, For example, the same thing as the said 1st mixed solvent is mentioned.

前記バインダとしては特に限定されず、例えば、アクリル樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、エチルセルロース樹脂等が挙げられる。   The binder is not particularly limited, and examples thereof include acrylic resin, polyvinyl butyral resin, polyvinyl acetal resin, and ethyl cellulose resin.

前記バインダは、予め、前記第2混合溶剤に溶解し濾過して溶液にしておき、その溶液に、前記セラミックスラリーを添加することが好ましい。高重合度のバインダ樹脂は溶剤に溶け難く、通常の方法では、スラリーの分散性が悪化する傾向にある。高重合度のバインダ樹脂を溶剤に溶解してから、その溶液にその他の成分を添加することにより、グリーンシート形成用スラリーにおける各成分の分散性を改善することができ、また、未溶解バインダ樹脂の発生を抑制することもできる。なお、前記第2混合溶剤以外の溶剤では、固形分濃度を上げられないと共に、ラッカー粘度の経時変化が増大する傾向にある。   It is preferable that the binder is previously dissolved in the second mixed solvent and filtered to obtain a solution, and the ceramic slurry is added to the solution. A binder resin having a high degree of polymerization is difficult to dissolve in a solvent, and the dispersibility of the slurry tends to be deteriorated by an ordinary method. Dispersibility of each component in the slurry for green sheet formation can be improved by dissolving the binder resin having a high degree of polymerization in a solvent and then adding other components to the solution. Can also be suppressed. In the case of a solvent other than the second mixed solvent, the solid content concentration cannot be increased and the change in lacquer viscosity with time tends to increase.

このようにして製造されたグリーンシート形成用のスラリーを、ポリエチレンテレフタレート等からなる基材上にシート状に塗布することによりグリーンシートが形成される。誘電体層3は、得られたグリーンシートを焼成することにより得られる焼結体からなる。   The green sheet is formed by applying the slurry for forming the green sheet thus produced on a base material made of polyethylene terephthalate or the like. The dielectric layer 3 is made of a sintered body obtained by firing the obtained green sheet.

内部電極4としては特に限定されず、例えば、Cu、Ni、W、Mo、Ag等の金属又はこれらの合金等が挙げられる。   The internal electrode 4 is not particularly limited, and examples thereof include metals such as Cu, Ni, W, Mo, Ag, and alloys thereof.

外部電極5としては特に限定されず、例えば、Cu、Ni、W、Mo、Ag等の金属又はこれらの合金;In−Ga、Ag−10Pd等の合金;カーボン、グラファイト、カーボンとグラファイトとの混合物等からなるものが挙げられる。   The external electrode 5 is not particularly limited, and examples thereof include metals such as Cu, Ni, W, Mo, and Ag or alloys thereof; alloys such as In—Ga and Ag-10Pd; carbon, graphite, and a mixture of carbon and graphite. The thing which consists of etc. is mentioned.

本実施形態に係る積層セラミックコンデンサの製造方法としては特に限定されないが、例えば、以下のようにして製造される。まず、前記グリーンシート上に、上記の各種金属等を含有する内部電極4用導電ペーストを所定形状にスクリーン印刷して、内部電極4用導電性ペースト膜を形成する。   Although it does not specifically limit as a manufacturing method of the multilayer ceramic capacitor which concerns on this embodiment, For example, it manufactures as follows. First, the conductive paste for the internal electrode 4 containing the various metals described above is screen-printed in a predetermined shape on the green sheet to form the conductive paste film for the internal electrode 4.

次いで、上述のように内部電極4用導電性ペースト膜が形成された複数のグリーンシートを積層するとともに、これらグリーンシートを挟むように、導電性ペースト膜が形成されていないグリーンシートを積層して、圧着した後、必要に応じてカットすることによって、積層体(グリーンチップ)を得る。   Next, a plurality of green sheets on which the conductive paste film for the internal electrode 4 is formed as described above are stacked, and a green sheet on which no conductive paste film is formed is stacked so as to sandwich the green sheets. After pressure bonding, the laminate (green chip) is obtained by cutting as necessary.

そして、得られたグリーンチップに脱バインダ処理を施した後、当該グリーンチップを例えば還元性雰囲気中において焼成して、コンデンサチップ体2を得る。コンデンサチップ体2においては、グリーンシートを焼成してなる焼結体からなる誘電体層3と内部電極4とが交互に積層されている。   And after performing a binder removal process to the obtained green chip, the said green chip is baked, for example in reducing environment, and the capacitor chip body 2 is obtained. In the capacitor chip body 2, dielectric layers 3 and internal electrodes 4 made of a sintered body obtained by firing a green sheet are alternately laminated.

得られたコンデンサチップ体2には、誘電体層3を再酸化するためアニール処理を施すことが好ましい。   The obtained capacitor chip body 2 is preferably subjected to an annealing treatment to reoxidize the dielectric layer 3.

次に、コンデンサチップ体2の端面から露出した内部電極4の各端縁それぞれに外部電極5が電気的に接続するように、コンデンサチップ体2の端面上に、上記の各種金属等からなる電極を塗布することによって外部電極5を形成する。そして、必要に応じ、外部電極5表面に、めっき等により被覆層を形成する。   Next, an electrode made of the above-mentioned various metals or the like on the end surface of the capacitor chip body 2 so that the external electrode 5 is electrically connected to each end edge of the internal electrode 4 exposed from the end surface of the capacitor chip body 2. The external electrode 5 is formed by coating. Then, if necessary, a coating layer is formed on the surface of the external electrode 5 by plating or the like.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

副成分として、BaCO、MgO、SiO、Mn及びDyを用意した。後に副成分に加えることになる主成分のチタン酸バリウム(BaTiO)に対して、Ba元素の添加量は0.95mol%であり、Si元素の添加量は1.55mol%であり、Dy元素の添加量は0.65mol%であり、Mg元素の添加量は1.2mol%であり、Mn元素の添加量は0.13mol%である。 BaCO 3 , MgO, SiO 2 , Mn 3 O 4 and Dy 2 O 3 were prepared as subcomponents. The addition amount of Ba element is 0.95 mol%, the addition amount of Si element is 1.55 mol%, and the Dy element is added to the main component barium titanate (BaTiO 3 ) to be added to the subcomponent later. The addition amount of Mg is 0.65 mol%, the addition amount of Mg element is 1.2 mol%, and the addition amount of Mn element is 0.13 mol%.

次に、用意した副成分100重量部に対して、溶剤としてエタノールとトルエンの混合溶液を390重量部、分散剤としてポリビニルブチラール系分散剤(積水化学工業株式会社製BL−1)を6重量部添加し、ホモジナイザーで混合した。次にこれらの混合物を、遠心力でビーズとスラリーの分離を行う機能が付いた縦型ビーズミルを用いて、表1に示す条件で分散・解砕した。尚、試料供給量は、100ml/minである。   Next, 390 parts by weight of a mixed solution of ethanol and toluene as a solvent and 6 parts by weight of a polyvinyl butyral dispersant (BL-1 manufactured by Sekisui Chemical Co., Ltd.) as a dispersant with respect to 100 parts by weight of the prepared subcomponent. Add and mix with homogenizer. Next, these mixtures were dispersed and pulverized under the conditions shown in Table 1 using a vertical bead mill having a function of separating beads and slurry by centrifugal force. The sample supply rate is 100 ml / min.

次に、主成分であるチタン酸バリウム粉末100重量部に対して、分散・解砕処理後の副成分スラリーを各元素が上述の添加量となるように加えた。なお、副成分スラリー中の副成分粉末と主成分粉末の粒径は表2に示すとおりである。表2に記載の粒径は、走査型電子顕微鏡によって各粉末を観察し、それぞれ300個の粒子の粒径を測長してその平均値を算出することにより求めた。   Next, with respect to 100 parts by weight of the main component barium titanate powder, the subcomponent slurry after the dispersion and pulverization treatment was added so that each element had the above-described addition amount. The particle sizes of the subcomponent powder and the main component powder in the subcomponent slurry are as shown in Table 2. The particle sizes shown in Table 2 were determined by observing each powder with a scanning electron microscope, measuring the particle size of 300 particles, and calculating the average value.

更に、分散剤として上記のBL−1をチタン酸バリウム粉末100重量部に対して0.87wt%添加し、ホモジナイザーで混合した。次にこれらの混合物を、遠心力でビーズとスラリーの分離を行う機能が付いた縦型ビーズミルを用いて、表3に示す条件で分散・解砕した。尚、試料供給量は、100ml/minである。   Furthermore, 0.87 wt% of the above BL-1 was added as a dispersant to 100 parts by weight of the barium titanate powder, and mixed with a homogenizer. Next, these mixtures were dispersed and pulverized under the conditions shown in Table 3 using a vertical bead mill having a function of separating beads and slurry by centrifugal force. The sample supply rate is 100 ml / min.

次に、得られたセラミックスラリーをボールミルに入れ、トルエン−エタノール混合溶剤、ポリビニルブチラール系バインダ及び可塑剤とともに適度な粘度になるまで混合し、グリーンシート形成用スラリーを調製した。そして、ポリエチレンテレフタレートフィルム上に、ドクターブレード法により当該スラリーを塗布してグリーンシートを作製した。   Next, the obtained ceramic slurry was put into a ball mill and mixed with a toluene-ethanol mixed solvent, a polyvinyl butyral binder and a plasticizer until an appropriate viscosity was obtained, thereby preparing a green sheet forming slurry. And the said slurry was apply | coated by the doctor blade method on the polyethylene terephthalate film, and the green sheet was produced.

次に、各グリーンシート上に、Ni粉末からなる内部電極用の導電ペーストを所定形状にスクリーン印刷した後、導電ペースト膜が形成されたグリーンシートを複数枚積層し、熱圧着して一体化し、積層体を作製した。   Next, on each green sheet, a conductive paste for an internal electrode made of Ni powder is screen-printed in a predetermined shape, and then a plurality of green sheets on which a conductive paste film is formed are laminated, thermocompression bonded and integrated, A laminate was produced.

そして、その積層体を、300℃で10時間、空気中にて加熱することで有機バインダを除去した後、1100℃の還元性雰囲気で2時間焼成し、更に1000℃のNガス雰囲気中で2時間再酸化処理して焼結し、コンデンサチップ体を得た。次に、得られたコンデンサチップ体の端面をサンドブラストにて研磨した後、In−Ga電極を前記端面に塗布することによって外部電極を形成し、図1に例示される構造を有する積層セラミックコンデンサを作製した。 Then, the laminate was heated in air at 300 ° C. for 10 hours to remove the organic binder, and then fired in a reducing atmosphere at 1100 ° C. for 2 hours, and further in an N 2 gas atmosphere at 1000 ° C. The capacitor chip body was obtained by reoxidation treatment for 2 hours and sintering. Next, after polishing the end surface of the obtained capacitor chip body by sand blasting, an external electrode is formed by applying an In-Ga electrode to the end surface, and a multilayer ceramic capacitor having the structure illustrated in FIG. 1 is obtained. Produced.

セラミックスラリー、グリーンシート、及び、積層セラミックコンデンサについて、以下のようにして各種特性を評価し、結果を表4に記載した。   Various characteristics of the ceramic slurry, the green sheet, and the multilayer ceramic capacitor were evaluated as follows, and the results are shown in Table 4.

<セラミックスラリーの評価>
作製されたセラミックスラリーの粒度分布を堀場製作所製のLA−920で測定した。D99値が0.35μmを超えた試料をNGと評価した。
<Evaluation of ceramic slurry>
The particle size distribution of the prepared ceramic slurry was measured with LA-920 manufactured by Horiba. A sample having a D99 value exceeding 0.35 μm was evaluated as NG.

<グリーンシートの評価>
グリーンシートの表面粗さ(Rz)を走査型プローブ顕微鏡(島津製作所製SPM-9500J3)で測定した。Rzが0.4μmを超えた試料をNGと評価した。
<Evaluation of Green Sheet>
The surface roughness (Rz) of the green sheet was measured with a scanning probe microscope (SPM-9500J3 manufactured by Shimadzu Corporation). Samples with Rz exceeding 0.4 μm were evaluated as NG.

<積層セラミックコンデンサの評価>
各積層セラミックコンデンサにつき100個のサンプルの抵抗値を絶縁抵抗計で測定して、抵抗値が100kΩ以下になるサンプルを不良品と判定することにより、ショート率を求めた。ショート率が10%を超えた試料をNGと評価した。
<Evaluation of multilayer ceramic capacitor>
The resistance value of 100 samples for each multilayer ceramic capacitor was measured with an insulation resistance meter, and a sample having a resistance value of 100 kΩ or less was determined as a defective product, thereby obtaining a short-circuit rate. A sample having a short-circuit rate exceeding 10% was evaluated as NG.

<単板試料の作製方法と測定条件>
単板の評価試料は、以下のようにして作製した。グリーンシートを1cm角に切り、厚みが1mmとなるように積み重ねた。次に、それを1000kg/cmの圧力で成型した。次に、樹脂成分を焼却するため、300℃で10時間、大気中で焼成を行い、その後、表5に示す焼成温度かつ還元雰囲気中で2時間焼成した。この後、窒素ガス中で、1000℃に安定させ2時間再酸化処理を行った。
<Production method and measurement conditions of single plate sample>
A single plate evaluation sample was prepared as follows. The green sheets were cut into 1 cm squares and stacked so as to have a thickness of 1 mm. Next, it was molded at a pressure of 1000 kg / cm 3 . Next, in order to incinerate the resin component, baking was performed in the air at 300 ° C. for 10 hours, and then baking was performed in the baking temperature and reducing atmosphere shown in Table 5 for 2 hours. Then, it was stabilized at 1000 ° C. in nitrogen gas and reoxidation treatment was performed for 2 hours.

得られた単板試料について、密度、粒径、及び、有効焼成温度範囲を以下のようにして評価し、結果を表5に記載した。   For the obtained single plate sample, the density, particle size, and effective firing temperature range were evaluated as follows, and the results are shown in Table 5.

密度(g/cm)は、アルキメデス法を用いて測定した。 The density (g / cm 3 ) was measured using the Archimedes method.

粒径0.5μm以上の粒子の有無は、走査型電子顕微鏡によって、焼結体の粒径を測定することにより判定した。   The presence or absence of particles having a particle size of 0.5 μm or more was determined by measuring the particle size of the sintered body with a scanning electron microscope.

有効焼成温度範囲は、密度5.8g/cm以上、粒径0.5μm以上の粒子が無いことを条件とする、焼成温度の有効範囲を示す。 The effective firing temperature range indicates the effective range of the firing temperature on condition that there are no particles having a density of 5.8 g / cm 3 or more and a particle size of 0.5 μm or more.

密度が5.8g/cm以上、焼結後の粒径が0.5μm未満、有効焼成温度範囲が20℃以上の各条件の内、少なくともいずれかを満たさない場合、所望の特性が得られていないとして、評価結果を「NG」とした。 Desired characteristics can be obtained when the density is not less than 5.8 g / cm 3 , the sintered particle size is less than 0.5 μm, and the effective firing temperature range is not less than 20 ° C. The evaluation result was “NG”.

本発明の一実施形態に係る積層セラミックコンデンサの模式断面図。1 is a schematic cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

符号の説明Explanation of symbols

1・・・積層セラミックコンデンサ
2・・・コンデンサチップ体
3・・・積層体層
4・・・内部電極
5・・・外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 2 ... Capacitor chip body 3 ... Laminate body layer 4 ... Internal electrode 5 ... External electrode

Claims (13)

誘電体材料として用いるセラミックスラリーを製造する方法であって、
少なくとも副成分粉末を含む混合物に、第1の分散処理を施して、副成分スラリーを調整する工程と、
前記副成分スラリーに、主成分粉末を添加してから、第2の分散処理を施して、前記セラミックスラリーを調製する工程と、を備えており、
前記副成分粉末は、Mg、Ba、Ca、Si、Mn、Al、V、Dy、Y、Ho、又は、Ybのいずれか1種の元素を含む化合物からなる群より選ばれる少なくとも1種の化合物からなるものであり、
前記副成分スラリー中の前記副成分粉末の平均粒径は、0.1μm以下であるセラミックスラリーの製造方法。
A method for producing a ceramic slurry for use as a dielectric material, comprising:
Subjecting the mixture containing at least the subcomponent powder to a first dispersion treatment to prepare a subcomponent slurry; and
A step of adding a main component powder to the subcomponent slurry, and then performing a second dispersion treatment to prepare the ceramic slurry, and
The subcomponent powder is at least one compound selected from the group consisting of compounds containing any one element of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, or Yb. It consists of
The method for producing a ceramic slurry, wherein an average particle size of the subcomponent powder in the subcomponent slurry is 0.1 μm or less.
前記分散処理は、ビーズミルを用いて行なわれる請求項1記載のセラミックススラリーの製造方法。   The method for producing a ceramic slurry according to claim 1, wherein the dispersion treatment is performed using a bead mill. 前記ビーズミルを用いた分散処理は、粒径が0.03〜0.3mmのビーズを用いて、5m/s<v<15m/sの周速vで行なわれる請求項2記載のセラミックスラリーの製造方法。   The ceramic slurry production according to claim 2, wherein the dispersion treatment using the bead mill is performed using beads having a particle diameter of 0.03 to 0.3 mm at a peripheral speed v of 5 m / s <v <15 m / s. Method. 前記主成分粉末は、チタン酸バリウム系誘電体粉末である請求項1、2又は3記載のセラミックスラリーの製造方法。   4. The method for producing a ceramic slurry according to claim 1, wherein the main component powder is a barium titanate dielectric powder. 前記第2の分散処理前の前記チタン酸バリウム系誘電体粉末の平均粒径は、0.3μm以下である請求項4記載のセラミックスラリーの製造方法。   The method for producing a ceramic slurry according to claim 4, wherein an average particle diameter of the barium titanate-based dielectric powder before the second dispersion treatment is 0.3 µm or less. 前記副成分スラリー中の副成分粉末の最大粒径が、前記第2の分散処理前の前記主成分粉末の平均粒径の3/4以下である請求項1、2、3、4又は5記載のセラミックスラリーの製造方法。   The maximum particle size of the subcomponent powder in the subcomponent slurry is 3/4 or less of the average particle size of the main component powder before the second dispersion treatment. Of manufacturing ceramic slurry. 少なくとも前記副成分粉末を含有する前記混合物は、第1混合溶剤及び第1分散剤を含有している請求項1、2、3、4、5又は6記載のセラミックスラリーの製造方法。   The method for producing a ceramic slurry according to claim 1, 2, 3, 4, 5 or 6, wherein the mixture containing at least the subcomponent powder contains a first mixed solvent and a first dispersant. 前記副成分スラリーに、前記主成分粉末を添加する際に、更に第2分散剤を添加する請求項1、2、3、4、5、6又は7記載のセラミックスラリーの製造方法。   The method for producing a ceramic slurry according to claim 1, 2, 3, 4, 5, 6 or 7, wherein a second dispersant is further added to the subcomponent slurry when the main component powder is added. 請求項1、2、3、4、5、6、7又は8記載の製造方法により得られたセラミックスラリーに、第2混合溶剤及びバインダを添加し、混合して得られたスラリー。   A slurry obtained by adding a second mixed solvent and a binder to the ceramic slurry obtained by the production method according to claim 1, 2, 3, 4, 5, 6, 7 or 8. 請求項9記載のスラリーを、基材上にシート状に塗布することにより製造されるグリーンシート。   The green sheet manufactured by apply | coating the slurry of Claim 9 on a base material in a sheet form. 請求項10記載のグリーンシートを焼成することにより製造される焼結体。   The sintered compact manufactured by baking the green sheet of Claim 10. 複数の電極と、前記電極間に設けられた請求項11記載の焼結体からなる誘電体層と、を備えているセラミックコンデンサ。   A ceramic capacitor comprising: a plurality of electrodes; and a dielectric layer made of the sintered body according to claim 11 provided between the electrodes. 前記電極は、Ni又はNi合金を含有していることを特徴とする請求項12記載のセラミックコンデンサ。   The ceramic capacitor according to claim 12, wherein the electrode contains Ni or a Ni alloy.
JP2007333294A 2007-12-25 2007-12-25 Method for producing ceramic slurry Active JP5459951B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007333294A JP5459951B2 (en) 2007-12-25 2007-12-25 Method for producing ceramic slurry
KR1020080059284A KR100951318B1 (en) 2007-12-25 2008-06-23 Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333294A JP5459951B2 (en) 2007-12-25 2007-12-25 Method for producing ceramic slurry

Publications (2)

Publication Number Publication Date
JP2009155142A true JP2009155142A (en) 2009-07-16
JP5459951B2 JP5459951B2 (en) 2014-04-02

Family

ID=40959555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333294A Active JP5459951B2 (en) 2007-12-25 2007-12-25 Method for producing ceramic slurry

Country Status (2)

Country Link
JP (1) JP5459951B2 (en)
KR (1) KR100951318B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129185A (en) * 2012-12-27 2014-07-10 Kyushu Univ Ceramic slurry and method for producing the same, and solid oxide fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104782A (en) * 2003-09-30 2005-04-21 Tdk Corp Slurry, green sheet, stacked electronic component and their manufacturing methods
JP2007137693A (en) * 2005-11-15 2007-06-07 Tdk Corp Method for producing ceramic slurry
JP2008251699A (en) * 2007-03-29 2008-10-16 Tdk Corp Manufacturing method of multilayer electronic part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255549A (en) * 1997-03-05 1998-09-25 Tdk Corp Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JP2000154059A (en) 1998-11-19 2000-06-06 Ngk Spark Plug Co Ltd Production of piezoelectric ceramics
KR100674846B1 (en) * 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104782A (en) * 2003-09-30 2005-04-21 Tdk Corp Slurry, green sheet, stacked electronic component and their manufacturing methods
JP2007137693A (en) * 2005-11-15 2007-06-07 Tdk Corp Method for producing ceramic slurry
JP2008251699A (en) * 2007-03-29 2008-10-16 Tdk Corp Manufacturing method of multilayer electronic part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129185A (en) * 2012-12-27 2014-07-10 Kyushu Univ Ceramic slurry and method for producing the same, and solid oxide fuel cell

Also Published As

Publication number Publication date
JP5459951B2 (en) 2014-04-02
KR100951318B1 (en) 2010-04-05
KR20090069209A (en) 2009-06-30

Similar Documents

Publication Publication Date Title
JP2010153485A (en) Electronic component
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
JP2010153486A (en) Electronic component
JP5870625B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JP2006005222A (en) Ceramic electronic component and its manufacturing method
JP4152841B2 (en) Method for producing ceramic slurry, green sheet and multilayer ceramic component
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
JP4433162B2 (en) Ceramic slurry, method for producing ceramic slurry, and method for producing multilayer ceramic electronic component
WO2020022291A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2007234330A (en) Conductor paste and electronic part
JP2005033070A (en) Multilayer ceramic condenser and its manufacturing method
JP2011132071A (en) Method for producing dielectric ceramic material
JP5459952B2 (en) Method for manufacturing dielectric ceramic material
JP5459951B2 (en) Method for producing ceramic slurry
JP4601438B2 (en) Green sheet manufacturing method
JP5184333B2 (en) Method for manufacturing dielectric ceramic material
JP5803688B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2008218532A (en) Green-sheet laminated unit, manufacturing method for electronic part and electronic part
JP2007180217A (en) Manufacturing method of laminated ceramic electronic components
JP3756885B2 (en) Paint for thick film green sheet, method for producing paint for thick film green sheet, method for producing thick film green sheet, method for producing thick film green sheet and electronic component
JP2011084433A (en) Methods for producing ceramic slurry, green sheet and electronic component
JP4837721B2 (en) Method for manufacturing dielectric ceramic material
JP2008186933A (en) Method for manufacturing laminated electronic component
JP2004134808A (en) Manufacturing method and binder removal method of ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5459951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250