JP2000154059A - Production of piezoelectric ceramics - Google Patents

Production of piezoelectric ceramics

Info

Publication number
JP2000154059A
JP2000154059A JP10329247A JP32924798A JP2000154059A JP 2000154059 A JP2000154059 A JP 2000154059A JP 10329247 A JP10329247 A JP 10329247A JP 32924798 A JP32924798 A JP 32924798A JP 2000154059 A JP2000154059 A JP 2000154059A
Authority
JP
Japan
Prior art keywords
powder
pulverization
raw material
pulverizing
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10329247A
Other languages
Japanese (ja)
Inventor
Hideaki Hiramitsu
秀明 平光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP10329247A priority Critical patent/JP2000154059A/en
Publication of JP2000154059A publication Critical patent/JP2000154059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the pore diameter, and the number of pores and to increase denseness and mechanical strength by pulverizing the source material power and the calcined material each in a wet state and controlling each pulverizing time to a specified or longer period. SOLUTION: The pulverization time is controlled to >=20 hours for the source material and to >=60 hours for the calcined material. Preferably, fine lead dioxide powder having <=1.0 μm average particle size and fine zirconia power having <=1.0 μm average particle size are used as the source material powder. As for the source material of the titanium component, titania powder generally used can be used. By using the source powder above described and pulverizing the powder in a wet state, a mixture powder containing fine particles having <=1.5 μm particle size by >=85 wt.% can be obtd., and a calcined powder containing fine particles having <=1.5 μm particle size by >=90 wt.% can be obtd. The calcining temp. can be decreased to 760 to 800 deg.C. The average diameter of the pores in the obtd. sintered body is <4 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、比較的低い仮焼温度で
あっても、平均気孔径が小さく、また、気孔が少なく、
緻密な焼結体からなる圧電セラミックスを製造する方法
に関する。また、本発明は、比較的低い焼成温度におい
て、緻密で機械的強度が大きく、且つ優れた圧電特性を
有する圧電セラミックスを製造する方法に関する。本発
明の製造方法により得られる圧電セラミックスは、積層
型圧電トランス、積層型フィルタ、積層型コンデンサ及
びバイモルフ等において、内部電極とともに一体焼結す
ることができる低温焼成用として好適である。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a material having a small average pore diameter and a small number of pores even at a relatively low calcining temperature.
The present invention relates to a method for producing a piezoelectric ceramic made of a dense sintered body. In addition, the present invention relates to a method for producing a piezoelectric ceramic which is dense, has high mechanical strength, and has excellent piezoelectric properties at a relatively low firing temperature. The piezoelectric ceramic obtained by the manufacturing method of the present invention is suitable for low-temperature firing that can be integrally sintered together with internal electrodes in a multilayer piezoelectric transformer, a multilayer filter, a multilayer capacitor, a bimorph, and the like.

【0002】[0002]

【従来の技術】圧電セラミックスは、その機械的振動の
共振周波数の温度変化及び経時変化が小さく、安定であ
り、且つ成分元素の含有量や置換等により組成を変化さ
せるこによって機械的品質係数を任意に制御することが
できる等の優れた特性を有する。そのため、それを用い
た圧電振動子(共振子)等は周波数フィルタ、超音波機
器、音響機器等のデバイス或いはシステムにおいて広く
使用されている。PZTという略称でよく知られたチタ
ン酸ジルコン酸鉛がその代表的な組成物であるが、特
に、積層型圧電トランス等の用途においては、内部電極
との同時焼成を可能にするため、できるだけ低い温度で
焼成することができ、低温焼成であっても十分な緻密性
及び機械的強度等を有する圧電セラミックスが必要とさ
れている。
2. Description of the Related Art Piezoelectric ceramics are stable with little change in temperature and time-dependent change of the resonance frequency of mechanical vibration, and have a low mechanical quality factor by changing the composition by the content or substitution of component elements. It has excellent properties such that it can be arbitrarily controlled. Therefore, piezoelectric vibrators (resonators) and the like using the same are widely used in devices or systems such as frequency filters, ultrasonic devices, and acoustic devices. Lead zirconate titanate, which is well known under the abbreviation of PZT, is a typical composition. In particular, in applications such as multilayer piezoelectric transformers, the composition is as low as possible to enable simultaneous firing with internal electrodes. There is a need for piezoelectric ceramics that can be fired at a temperature and have sufficient denseness and mechanical strength even at a low temperature.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の問題
を解決するものであり、原料粉末及び仮焼物を湿式で長
時間粉砕することにより、気孔径が小さく、気孔が少な
く、緻密、且つ機械的強度の大きい焼結体からなる圧電
セラミックスを製造する方法を提供することを目的とす
る。また、本発明は、粒径の小さい特定の原料粉末を使
用し、且つこの原料粉末及び仮焼物を湿式で長時間粉砕
することにより、内部電極との同時焼成が可能な比較的
低い焼成温度において、緻密であり、且つ優れた圧電特
性を有する圧電セラミックスを製造する方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and the raw material powder and the calcined product are pulverized in a wet process for a long period of time, so that the pore diameter is small, the pores are small, the density is high, and It is an object of the present invention to provide a method for producing a piezoelectric ceramic made of a sintered body having high mechanical strength. In addition, the present invention uses a specific raw material powder having a small particle size, and pulverizes the raw material powder and the calcined product in a wet manner for a long period of time, at a relatively low firing temperature at which simultaneous firing with an internal electrode is possible. It is an object of the present invention to provide a method for producing a piezoelectric ceramic which is dense and has excellent piezoelectric characteristics.

【0004】[0004]

【課題を解決するための手段】第1発明の圧電セラミッ
クスの製造方法は、原料粉末を混合し、粉砕して混合粉
末とする工程、該混合粉末を仮焼して仮焼物とする工
程、及び該仮焼物を粉砕してスラリーを調製した後、成
形し、焼成して焼結体とする工程を備える、チタン酸ジ
ルコン酸鉛系の圧電セラミックスの製造方法において、
上記原料粉末の粉砕及び上記仮焼物の粉砕をいずれも湿
式粉砕とし、且つ上記原料粉末の粉砕時間を20時間以
上とし、上記仮焼物の粉砕時間を60時間以上とするこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a piezoelectric ceramic, comprising the steps of mixing and pulverizing raw material powders to form a mixed powder, calcining the mixed powder to form a calcined product, and After preparing the slurry by pulverizing the calcined product, forming and firing a sintered body, in a method for producing a lead zirconate titanate-based piezoelectric ceramics,
The pulverization of the raw material powder and the pulverization of the calcined product are both wet pulverization, and the pulverization time of the raw material powder is 20 hours or more, and the pulverization time of the calcined material is 60 hours or more.

【0005】また、第5発明の圧電セラミックスの製造
方法は、原料粉末を混合し、粉砕して混合粉末とする工
程、該混合粉末を仮焼して仮焼物とする工程、及び該仮
焼物を粉砕してスラリーを調製した後、成形し、焼成し
て焼結体とする工程を備える、チタン酸ジルコン酸鉛系
の圧電セラミックスの製造方法において、上記原料粉末
として、平均粒径が1.0μm以下の二酸化鉛粉末及び
平均粒径が1.0μm以下のジルコニア粉末を使用し、
上記原料粉末の粉砕及び上記仮焼物の粉砕をいずれも湿
式粉砕とし、且つ上記原料粉末の粉砕時間を20時間以
上とし、上記仮焼物の粉砕時間を60時間以上とするこ
とを特徴とする。
In a fifth aspect of the present invention, there is provided a method for manufacturing a piezoelectric ceramic, comprising: mixing and pulverizing raw material powders to form a mixed powder; calcining the mixed powder to form a calcined product; A method for producing a lead zirconate titanate-based piezoelectric ceramic, comprising the steps of: preparing a slurry by pulverizing, shaping and firing to form a sintered body, wherein the raw material powder has an average particle size of 1.0 μm Using the following lead dioxide powder and zirconia powder having an average particle size of 1.0 μm or less,
The pulverization of the raw material powder and the pulverization of the calcined product are both wet pulverization, and the pulverization time of the raw material powder is 20 hours or more, and the pulverization time of the calcined material is 60 hours or more.

【0006】本発明の製造方法によって得られる圧電セ
ラミックスは、PZTとしてよく知られたチタン酸ジル
コン酸鉛系の圧電セラミックスである。このPZTで
は、チタン酸鉛とジルコン酸鉛の両組成のほぼ中央部
に、電気機械結合係数、誘電率及び圧電定数が最大とな
る点がある。そのため、本発明でも、チタンとジルコニ
ウムのモル比が0.92〜1.08の範囲のものを使用
することが好ましい。このモル比が0.92未満である
場合、又は1.08を越える場合は、いずれも圧電特性
が低下する傾向にある。
The piezoelectric ceramic obtained by the manufacturing method of the present invention is a lead zirconate titanate-based piezoelectric ceramic well known as PZT. In this PZT, there is a point at which the electromechanical coupling coefficient, the dielectric constant, and the piezoelectric constant are maximized substantially at the center of both compositions of lead titanate and lead zirconate. Therefore, also in the present invention, it is preferable to use one having a molar ratio of titanium to zirconium in the range of 0.92 to 1.08. When the molar ratio is less than 0.92 or exceeds 1.08, the piezoelectric properties tend to decrease.

【0007】また、第1及び第5発明においては、原料
粉末の粉砕及び仮焼物の粉砕をともに湿式粉砕とし、且
つ原料粉末の粉砕時間を20時間以上とし、仮焼物の粉
砕時間を60時間以上とする。この原料粉末の粉砕時間
は24時間以上、特に30時間以上、更には40時間以
上とすることが好ましく、仮焼物の粉砕時間は特に65
時間以上、更には70時間以上とすることが好ましい。
更に、原料粉末として平均粒径が1.2μm以下、特
に、第5発明のように、1.0μm以下の微細な二酸化
鉛粉末と、平均粒径が1.0μm以下、特に0.8μm
以下の微細なジルコニア粉末を使用することが好まし
い。尚、チタン成分の原料としては、チタン酸ジルコン
酸鉛系の圧電セラミックスの製造において一般に用いら
れるチタニア粉末等を、特に制限されることなく使用す
ることができる。
In the first and fifth inventions, the pulverization of the raw material powder and the pulverization of the calcined product are both wet pulverization, the pulverization time of the raw material powder is 20 hours or more, and the pulverization time of the calcined material is 60 hours or more. And The pulverization time of this raw material powder is preferably 24 hours or more, particularly 30 hours or more, and more preferably 40 hours or more.
It is preferably at least 70 hours, more preferably at least 70 hours.
Further, as a raw material powder, a fine lead dioxide powder having an average particle size of 1.2 μm or less, particularly 1.0 μm or less as in the fifth invention, and an average particle size of 1.0 μm or less, particularly 0.8 μm
It is preferable to use the following fine zirconia powder. As a raw material of the titanium component, titania powder or the like generally used in the production of lead zirconate titanate-based piezoelectric ceramics can be used without any particular limitation.

【0008】第1発明では、原料粉末及び仮焼物の粉砕
をともに長時間の湿式粉砕とすることにより、第2発明
のように、85重量%以上が粒径1.5μm以下の微細
粒子からなる混合粉末とすることができ、且つ90重量
%以上が粒径1.5μm以下の微細粒子からなる仮焼粉
末とすることができる。また、第5発明では、長時間の
湿式粉砕に加え、特定の微細な原料粉末を使用すること
により、第6発明のように、90重量%以上が粒径1.
5μm以下の微細粒子からなる混合粉末とすることがで
き、且つ95重量%以上が粒径1.5μm以下の微細粒
子からなる仮焼粉末とすることができる。
In the first invention, both the raw material powder and the calcined material are wet-ground for a long time, so that 85% by weight or more consists of fine particles having a particle size of 1.5 μm or less as in the second invention. It can be a mixed powder, and can be a calcined powder comprising 90% by weight or more of fine particles having a particle size of 1.5 μm or less. In the fifth invention, 90% by weight or more has a particle diameter of 1.90% by using a specific fine raw material powder in addition to a long-time wet pulverization, as in the sixth invention.
It can be a mixed powder composed of fine particles of 5 μm or less, and a calcined powder composed of fine particles of 95% by weight or more having a particle size of 1.5 μm or less.

【0009】上記のような微細粒子からなる混合粉末と
することにより、第1発明では、第3発明のように、仮
焼温度を、乾式粉砕の場合、或いは湿式粉砕であっても
粉砕時間が短い場合に比べて20〜25℃低い、760
〜800℃とすることができる。更に、仮焼粉末も微細
粒子からなる粉末であるため、特に、第5発明では、第
7発明のように、仮焼温度を710〜750℃と更に低
くすることができ、且つ焼成温度を880〜930℃と
低くすることができる。また、本発明の製造方法によれ
ば、このように仮焼温度或いは焼成温度が低いにもかか
わらず、粒径が2μm以下、特に1.5μm以下と小さ
く、緻密な焼結体からなる圧電セラミックスが得られ
る。更に、この焼結体に含まれる気孔の平均径も、第4
及び第8発明のように、4μm以下、特に3μm以下と
小さく、気孔の数も少ない。従って、機械的強度も大き
く向上する。
According to the first aspect of the present invention, the calcination temperature is set to the same value as in the third aspect of the invention by using the mixed powder composed of fine particles as described above. 760 which is 20-25 ° C lower than the short case
800800 ° C. Further, since the calcined powder is also a powder composed of fine particles, particularly in the fifth invention, the calcining temperature can be further reduced to 710 to 750 ° C and the baking temperature is 880, as in the seventh invention. ~ 930 ° C. Further, according to the production method of the present invention, the piezoelectric ceramic formed of a dense sintered body having a small particle size of 2 μm or less, particularly 1.5 μm or less despite the low calcination temperature or calcination temperature. Is obtained. Further, the average diameter of the pores contained in the sintered body is also the fourth diameter.
And as in the eighth invention, it is as small as 4 μm or less, particularly 3 μm or less, and the number of pores is small. Therefore, the mechanical strength is greatly improved.

【0010】また、第5発明の製造方法では、焼成温度
を900℃程度と低くすることができるため、Ag、C
u等の、耐熱性は低いが安価な導電材料を内部電極等と
して使用し、同時焼成することができる。これは、特
に、積層型圧電トランス等の用途において、Pt、Pd
等の融点の高い高価な導電材料を使用する必要がないた
め、コストの面においても有利である。
Further, in the manufacturing method of the fifth invention, since the firing temperature can be lowered to about 900 ° C., Ag, C
An inexpensive conductive material having low heat resistance, such as u, can be used as an internal electrode or the like and fired simultaneously. This is especially true for applications such as multilayer piezoelectric transformers, where Pt, Pd
Since there is no need to use an expensive conductive material having a high melting point, such is also advantageous in terms of cost.

【0011】更に、第1発明では、従来と同様、例え
ば、1000℃程度で焼成すれば、また、第5発明で
は、900℃程度の低い温度で焼成しても、誘電率(ε
r)が1000以上、結合係数(Kr)が50%以上、
機械的品質係数(Qm)が800以上及びキュリー点が
300℃以上の所要の圧電特性を有する圧電セラミック
スとすることができる。この圧電特性は、原料粉末及び
仮焼物の粉砕において使用する玉石として、第9発明の
ように、アルミナ製ではなく、ジルコニア製の玉石を使
用することによって、より向上させることができる。
Further, in the first invention, as in the prior art, if fired at, for example, about 1000 ° C., and in the fifth invention, even if fired at a low temperature of about 900 ° C., the dielectric constant (ε
r ) is 1000 or more, the coupling coefficient (Kr) is 50% or more,
A piezoelectric ceramic having a required piezoelectric characteristic having a mechanical quality factor (Qm) of 800 or more and a Curie point of 300 ° C. or more can be obtained. This piezoelectric characteristic can be further improved by using a zirconia-made cobblestone instead of an alumina-made cobblestone as in the ninth invention as used in the pulverization of the raw material powder and the calcined product.

【0012】[0012]

【発明の実施の形態】以下、実施例により本発明を具体
的に説明する。 (1)第1発明に対応する湿式で長時間粉砕した場合の
検討 実施例1 表1に記載の平均粒径を有する酸化鉛粉末及びジルコニ
ア粉末、並びにチタニア粉末の所定量を秤量し、15m
mφのジルコニア玉石を使用して、振動ミル内で混合し
た後、これに適量のイオン交換水を加え、湿式で24時
間粉砕した。その後、振動流動乾燥機を用いて乾燥し
た。次いで、大気雰囲気中、780℃で2時間仮焼した
後、この仮焼物に適量の有機バインダと水を加え、15
mmφのジルコニアボールにより湿式で72時間粉砕
し、スラリーを調製した。その後、ドクターブレードに
よりキャスティング成形し、乾燥して、0.3〜0.5
mm厚さの未焼成シートを得た。次いで、このシートを
打ち抜き、25mmφの円板状の成形体を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. (1) Investigation in case of wet grinding for a long time corresponding to the first invention Example 1 A predetermined amount of a lead oxide powder, a zirconia powder and a titania powder having an average particle diameter shown in Table 1 was weighed, and 15 m was weighed.
After mixing in a vibration mill using zirconia cobblestone of mφ, an appropriate amount of ion-exchanged water was added thereto, and the mixture was pulverized for 24 hours by a wet method. Then, it dried using the vibration fluidization dryer. Next, after calcining at 780 ° C. for 2 hours in an air atmosphere, an appropriate amount of an organic binder and water are added to the calcined product, and
The mixture was pulverized with a zirconia ball having a diameter of mm for 72 hours in a wet system to prepare a slurry. After that, casting molding with a doctor blade, drying, and 0.3-0.5
An unsintered sheet having a thickness of mm was obtained. Next, this sheet was punched out to obtain a disk-shaped formed body of 25 mmφ.

【0013】一方、多量のPbとZrよりなるペレット
(組成補償用成形体:25mmφ、厚さ1mm)を2枚
作製し、これらのペレット間に上記成形体を挟持し、電
気炉中で、大気雰囲気下、975℃で2時間焼成して焼
結体を得た。この焼結体の密度をアルキメデス法によっ
て測定した。また、その平均粒径、平均気孔径及び気孔
数を走査型電子顕微鏡写真により実測した。
On the other hand, two pellets composed of a large amount of Pb and Zr (compound for compensating for composition: 25 mmφ, 1 mm in thickness) are prepared, and the compact is sandwiched between these pellets. It was fired at 975 ° C. for 2 hours in an atmosphere to obtain a sintered body. The density of the sintered body was measured by the Archimedes method. The average particle diameter, average pore diameter, and number of pores were measured by a scanning electron microscope photograph.

【0014】実施例2〜4及び比較例1〜8 原料粉末の粉砕の方法、時間及び仮焼温度、並びに仮焼
物の粉砕の方法、時間及び焼成温度を表1乃至3のとお
りとし、実施例1と同様にして焼結体を得た。また、こ
れらの焼結体の密度、平均粒径、平均気孔径及び気孔数
を実施例1と同様にして測定した。結果を表1乃至3に
併記する。尚、表2及び表3の比較例では、ジルコニア
玉石に代えてアルミナ玉石を用いた。
Examples 2 to 4 and Comparative Examples 1 to 8 The method, time and calcining temperature of the raw material powder, and the method, time and calcining temperature of the calcined material are shown in Tables 1 and 3, In the same manner as in Example 1, a sintered body was obtained. The density, average particle size, average pore diameter, and number of pores of these sintered bodies were measured in the same manner as in Example 1. The results are also shown in Tables 1 to 3. In the comparative examples of Tables 2 and 3, alumina cobblestone was used instead of zirconia cobblestone.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表1の結果によれば、原料粉末の粉砕時間
が下限に近い実施例1も含め、いずれの実施例において
も、得られた焼結体は十分に緻密化され、密度が高く、
平均粒径も小さい。また、平均気孔径も小さく、気孔数
は少なく、優れた品質の焼結体からなる圧電セラミック
スが得られていることが分かる。更に、第3発明の範囲
内の温度で仮焼した実施例1及び3では、仮焼温度が高
い実施例2及び4に比べて密度が高く、より緻密化され
ており、第3発明の効果が裏付けられている。
According to the results shown in Table 1, in each of the examples, including Example 1 in which the pulverization time of the raw material powder was close to the lower limit, the obtained sintered body was sufficiently densified and had a high density.
The average particle size is also small. In addition, it can be seen that a piezoelectric ceramic made of a sintered body of excellent quality has a small average pore diameter and a small number of pores. Further, in Examples 1 and 3 where the calcination was performed at a temperature within the range of the third invention, the density was higher and the density was higher than in Examples 2 and 4 where the calcination temperature was higher. Is supported.

【0019】一方、表2及び表3の結果によれば、原料
粉末及び仮焼物の粉砕が乾式であり、しかも粉砕時間も
短い比較例1〜2、及び仮焼物の粉砕のみが湿式ではあ
るものの同様に粉砕時間が短い比較例3では、焼成温度
が高ければ緻密化はされるものの、平均気孔径が大き
く、気孔数も多い。また、原料粉末及び仮焼物の粉砕が
湿式ではあるものの、いずれの粉砕時間も短い比較例4
と6、並びに仮焼物の粉砕時間は長いものの原料粉末の
粉砕時間が短い比較例5及び7〜8では、焼成温度が高
ければ緻密化はされるものの、平均気孔径が大きく、気
孔数も多いことが分かる。尚、焼成温度が低い比較例8
では、緻密化も十分ではなく、密度も低い。
On the other hand, according to the results shown in Tables 2 and 3, although the pulverization of the raw material powder and the calcined product is of a dry type and the pulverization time is short in Comparative Examples 1 and 2, only the pulverization of the calcined product is of a wet type. Similarly, in Comparative Example 3 in which the pulverization time is short, although the densification is performed when the firing temperature is high, the average pore diameter is large and the number of pores is large. Comparative Example 4 in which the pulverization of the raw material powder and the calcined product was of a wet type, but the pulverization time was short.
And 6, and Comparative Examples 5 and 7 to 8 in which the pulverization time of the calcined product is long but the pulverization time of the raw material powder is short, the densification is increased when the firing temperature is high, but the average pore diameter is large and the number of pores is large. You can see that. Comparative Example 8 having a low firing temperature
Then, the densification is not enough and the density is low.

【0020】(2)第5発明に対応する微細な原料粉末
を使用し、且つ湿式で長時間粉砕した場合の検討 実施例5 表4に記載の平均粒径を有する二酸化鉛粉末及びジルコ
ニア粉末、並びにチタニア粉末の所定量を秤量し、15
mmφのジルコニア玉石を使用して、振動ミル内で混合
した後、これに適量のイオン交換水を加え、湿式で48
時間粉砕した。その後、振動流動乾燥機を用いて乾燥し
た。次いで、大気雰囲気中、730℃で2時間仮焼した
後、この仮焼物に適量の有機バインダと水を加え、15
mmφのジルコニア玉石により湿式で72時間粉砕し、
スラリーを調製した。その後、ドクターブレードにより
キャスティング成形し、乾燥して、0.3〜0.5mm
厚さの未焼成シートを得た。次いで、このシートを打ち
抜き、25mmφの円板状の成形体を得た。
(2) Examination in the case of using a fine raw material powder corresponding to the fifth invention and pulverizing it for a long time by a wet method Example 5 Lead dioxide powder and zirconia powder having the average particle diameters shown in Table 4 In addition, a predetermined amount of titania powder is weighed, and 15
After mixing in a vibrating mill using zirconia balls of mmφ, an appropriate amount of ion-exchanged water was added thereto, and the mixture was wet-processed for 48 hours.
Crushed for hours. Then, it dried using the vibration fluidization dryer. Next, after calcining at 730 ° C. for 2 hours in an air atmosphere, an appropriate amount of an organic binder and water are added to the calcined product, and
pulverized by zirconia cobblestone of mmφ in wet condition for 72 hours,
A slurry was prepared. After that, it was casted with a doctor blade, dried, and dried to 0.3 to 0.5 mm.
An unsintered sheet having a thickness was obtained. Next, this sheet was punched out to obtain a disk-shaped formed body of 25 mmφ.

【0021】一方、多量のPbとZrよりなるペレット
(組成補償用成形体:直径25mm、厚さ1mm)を2
枚作製し、これらのペレット間に上記成形体を挟持し、
電気炉中で、大気雰囲気下、900℃で2時間焼成して
焼結体を得た。この焼結体の密度、平均粒径、平均気孔
径及び気孔数を実施例1と同様にして測定した。また、
この焼結体の表裏面を精密研磨し、厚さ(0.2〜0.
35)±0.005mmとし、その上に焼付温度720
℃で銀電極を焼付けた。次いで、これを80℃の絶縁オ
イル中において35kv/cmの直流電圧を20分間印
加して分極したものを試片とし、I.R.E.の標準回
路の方法に従ってεr及びKrを測定した。また、共振
−反共振法に基づき、インピーダンスアナライザーを用
いてQmを測定した。
On the other hand, pellets composed of a large amount of Pb and Zr (composition for compensating for composition: diameter 25 mm, thickness 1 mm)
Sheets, sandwiching the molded body between these pellets,
The sintered body was obtained by firing in an electric furnace at 900 ° C. for 2 hours in the air atmosphere. The density, average particle diameter, average pore diameter and number of pores of this sintered body were measured in the same manner as in Example 1. Also,
The front and back surfaces of this sintered body are precisely polished to a thickness (0.2-0.
35) ± 0.005 mm and a baking temperature of 720
The silver electrode was baked at 0 ° C. Then, the sample was polarized by applying a DC voltage of 35 kv / cm for 20 minutes in an insulating oil at 80 ° C. to obtain a specimen. R. E. FIG. Ε r and Kr were measured according to the standard circuit method. In addition, Qm was measured using an impedance analyzer based on the resonance-antiresonance method.

【0022】実施例6〜9及び比較例9〜14 鉛酸化物の種類及び平均粒径、ZrO2の平均粒径、原
料粉末の粉砕時間及び仮焼温度、並びに仮焼物の粉砕時
間及び焼成温度を表4乃至6のとおりとし、実施例5と
同様にして焼結体を得た。また、これらの焼結体の密
度、平均粒径、平均気孔径及び気孔数を実施例1と同様
にして測定した。更に、実施例6〜9については、
εr、Kr及びQmを実施例5と同様にして測定した。
結果を表4乃至6に併記する。尚、表5及び表6の比較
例では、ジルコニア玉石に代えてアルミナ玉石を用い
た。
Examples 6 to 9 and Comparative Examples 9 to 14 Kind and average particle size of lead oxide, average particle size of ZrO 2 , grinding time and calcining temperature of raw material powder, and grinding time and calcining temperature of calcined product Was as shown in Tables 4 to 6, and a sintered body was obtained in the same manner as in Example 5. The density, average particle size, average pore diameter, and number of pores of these sintered bodies were measured in the same manner as in Example 1. Further, for Examples 6 to 9,
ε r , Kr and Qm were measured in the same manner as in Example 5.
The results are shown in Tables 4 to 6. In the comparative examples of Tables 5 and 6, alumina cobblestone was used instead of zirconia cobblestone.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】表4の結果によれば、実施例5〜9では、
焼成温度が900℃と低いにもかかわらず、得られた焼
結体は十分に緻密化され、密度は7.934g/cm3
以上と高く、平均粒径も小さい。また、気孔数も少な
く、平均気孔径も小さく、良質な焼結体からなる圧電セ
ラミックスが得られている。更に、誘電率(εr)が1
000以上、結合係数(Kr)が50%以上、機械的品
質係数(Qm)が800以上の優れた圧電特性を備える
圧電セラミックスが得られていることが分かる。
According to the results in Table 4, in Examples 5 to 9,
Although the firing temperature is as low as 900 ° C., the obtained sintered body is sufficiently densified and has a density of 7.934 g / cm 3.
Above is high and the average particle size is small. In addition, piezoelectric ceramics having a small number of pores, a small average pore diameter, and a good quality sintered body have been obtained. Further, the dielectric constant (ε r ) is 1
It can be seen that a piezoelectric ceramic having excellent piezoelectric properties of 000 or more, a coupling coefficient (Kr) of 50% or more, and a mechanical quality factor (Qm) of 800 or more is obtained.

【0027】一方、表5及び表6の結果によれば、原料
粉末及び仮焼物の粉砕がともに湿式ではあるものの、い
ずれの粉砕時間も短い比較例9、仮焼物の粉砕時間は長
いものの原料粉末の粉砕時間が短い比較例10、及び原
料粉末の粉砕時間は長いものの仮焼物の粉砕時間が短い
比較例11では、925℃の焼成温度では十分に緻密化
されず、平均気孔径が大きく、気孔数も多いことが分か
る。また、原料粉末及び仮焼物の粉砕がともに湿式であ
り、且つ粉砕時間も十分に長いものの、原料粉末の種類
或いは平均粒径が第5発明の範囲外である比較例12〜
14では、900〜925℃の焼成温度では十分に緻密
化せず、平均気孔径も大きく、気孔数も多いことが分か
る。
On the other hand, according to the results shown in Tables 5 and 6, although both the pulverization of the raw material powder and the calcined product are of the wet type, the pulverization time of Comparative Example 9 is short, and the pulverization time of the calcined material is long. In Comparative Example 10 where the pulverization time of the raw material powder is short and in Comparative Example 11 where the pulverization time of the raw material powder is long but the pulverization time of the calcined product is short, the densification is not sufficiently performed at the firing temperature of 925 ° C., and the average pore diameter is large. It turns out that there are many numbers. In addition, although the pulverization of the raw material powder and the calcined product was both wet and the pulverization time was sufficiently long, the types or average particle diameters of the raw material powders were out of the range of Comparative Examples 12 to 12.
14 shows that at a firing temperature of 900 to 925 ° C, densification was not sufficient, the average pore diameter was large, and the number of pores was large.

【0028】(3)本発明の範囲内である場合と、範囲
外である場合との、電子顕微鏡写真による気孔径及び気
孔数の比較、及び焼成温度と焼結体の密度との相関 図1は、第2発明の方法によって製造された実施例5の
圧電セラミックスの表面を研磨し、研磨面を走査型電子
顕微鏡によって観察し、撮影した倍率1300倍の電子
顕微鏡写真であるが、気孔径は大きいものでも2μm程
度であり、気孔数も比較的少ない良質な焼結体であるこ
とが分かる。一方、図2は、比較例3の圧電セラミック
スについて同様に撮影した電子顕微鏡写真であるが、図
1に比べて気孔径が大きいことは明らかである。
(3) Comparison of the pore diameter and the number of pores by electron micrographs between the case within the range of the present invention and the case outside the range, and the correlation between the firing temperature and the density of the sintered body. Is an electron micrograph at a magnification of 1300, which was obtained by polishing the surface of the piezoelectric ceramic of Example 5 manufactured by the method of the second invention, observing the polished surface with a scanning electron microscope, and photographing it at a magnification of 1300. It can be seen that even a large sintered body has a size of about 2 μm and a good quality sintered body having a relatively small number of pores. On the other hand, FIG. 2 is an electron micrograph taken similarly for the piezoelectric ceramic of Comparative Example 3, and it is clear that the pore diameter is larger than that of FIG.

【0029】また、図3は、実施例5において、焼成温
度を872〜950℃の間で変化させ、比較例3におい
て、焼成温度を900〜1025℃の間で変化させた場
合の、焼成温度と焼結体の密度との相関をグラフに表わ
したものである。この図3から明らかなとおり、実施例
5では、高温側はもとより、900℃以下の温度であっ
ても7.900g/cm3以上の十分に緻密化された焼
結体が得られることが分かる。これに対して、比較例3
では、7.900g/cm3程度の密度とするために
は、少なくとも950℃以上の温度で焼成する必要があ
ることが分かる。しかも、950℃で焼成した場合、得
られる焼結体には径の大きい気孔が多数みられ、実際に
は、この焼成温度を更に高く、1000℃程度にしない
と十分に緻密化しない。
FIG. 3 shows the firing temperature when the firing temperature was changed between 87 and 950 ° C. in Example 5 and the firing temperature was changed between 900 and 1025 ° C. in Comparative Example 3. FIG. 4 is a graph showing the correlation between the density and the density of the sintered body. As is clear from FIG. 3, in Example 5, a sufficiently densified sintered body of 7.900 g / cm 3 or more can be obtained not only at the high temperature side but also at a temperature of 900 ° C. or less. . On the other hand, Comparative Example 3
It can be seen that in order to obtain a density of about 7.900 g / cm 3 , firing at a temperature of at least 950 ° C. is necessary. Moreover, when fired at 950 ° C., the resulting sintered body has many pores having a large diameter. In practice, the sintered body is not sufficiently densified unless the firing temperature is further increased to about 1000 ° C.

【0030】尚、本発明においては、上記の具体的な実
施例に記載してものに限られず、目的、用途に応じて本
発明の範囲内で種々変更した実施例とすることができ
る。例えば、Pbの一部をSr、Ba、Cr等によって
置換することができ、Ti及び/又はZrの一部をSn
等によって置換することもできる。また、1重量%以下
のMnO2を添加することにより、より優れた温度特性
を有する圧電セラミックスとすることができる。更に、
La23等の希土類元素酸化物、及びWO3、Nb
25、Ta25、Bi23等を0.5〜1.5重量%添
加することにより、ε r、Kr及びQm等の圧電特性を
適宜調整することもできる。また、MnO2とWO3とを
併用した場合は、経時安定性に優れ、Qmの高い圧電セ
ラミックスとすることができ、この圧電セラミックス
は、積層型圧電トランスのように1000℃以下の低温
において焼成することが好ましい圧電材料において特に
有用である。
In the present invention, the above specific examples
Not limited to those described in the examples,
Various modifications can be made within the scope of the invention.
You. For example, a part of Pb is formed by Sr, Ba, Cr, etc.
And a part of Ti and / or Zr can be substituted with Sn
Etc. can be substituted. 1% by weight or less
MnOTwoExcellent temperature characteristics by adding
Can be obtained. Furthermore,
LaTwoOThreeAnd rare earth element oxides such as WOThree, Nb
TwoOFive, TaTwoOFive, BiTwoOThree0.5-1.5% by weight
By adding r, Kr and Qm etc.
It can also be adjusted appropriately. Also, MnOTwoAnd WOThreeAnd
When used together, a piezoelectric cell with excellent stability over time and high Qm
This piezoelectric ceramic can be lamix
Is a low temperature of 1000 ° C or less like a multilayer piezoelectric transformer.
Especially in the piezoelectric material which is preferably fired at
Useful.

【0031】[0031]

【発明の効果】第1発明の圧電セラミックスの製造方法
によれば、混合した原料粉末の粉砕及び仮焼物の粉砕
を、いずれも湿式粉砕とし、且つ特定の時間以上の長時
間粉砕とすることにより、仮焼温度を低くすることがで
き、気孔径が小さく、気孔の数も少なく、緻密であっ
て、機械的強度の大きい圧電セラミックスを得ることが
できる。また、第5発明の圧電セラミックスの製造方法
によれば、第1発明の製造方法において、原料粉末とし
て特定の平均粒径を有する二酸化鉛粉末及びジルコニア
粉末を使用することにより、焼成温度を低くすることが
できるため、内部電極を形成するための導電材料と同時
焼成することができ、この製造方法は特に積層型圧電ト
ランス等の用途において有用である。
According to the method for manufacturing a piezoelectric ceramic of the first invention, the pulverization of the mixed raw material powder and the pulverization of the calcined material are both wet pulverization and long-term pulverization for a specific time or more. In addition, the calcining temperature can be lowered, the pore diameter is small, the number of pores is small, and a dense piezoelectric ceramic having high mechanical strength can be obtained. Further, according to the method of manufacturing a piezoelectric ceramic of the fifth invention, in the manufacturing method of the first invention, the firing temperature is reduced by using a lead dioxide powder and a zirconia powder having a specific average particle size as the raw material powder. Therefore, it can be co-fired with a conductive material for forming an internal electrode, and this manufacturing method is particularly useful in applications such as a multilayer piezoelectric transformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例5の圧電セラミックスの表面を研磨し、
研磨面を走査型電子顕微鏡によって観察し、撮影した倍
率1300倍の電子顕微鏡写真である。
FIG. 1 shows the surface of a piezoelectric ceramic of Example 5 polished,
It is the electron microscope photograph at a magnification of 1300 times, which was obtained by observing the polished surface with a scanning electron microscope.

【図2】比較例3の圧電セラミックスの表面を研磨し、
研磨面を走査型電子顕微鏡によって観察し、撮影した倍
率1300倍の電子顕微鏡写真である。
FIG. 2 shows the surface of the piezoelectric ceramic of Comparative Example 3 polished,
It is the electron microscope photograph at a magnification of 1300 times, which was obtained by observing the polished surface with a scanning electron microscope.

【図3】実施例5及び比較例3において、焼成温度を変
化させた場合の焼成温度と焼結体の密度との相関を表わ
すグラフである。
FIG. 3 is a graph showing the correlation between the firing temperature and the density of a sintered body when the firing temperature is changed in Example 5 and Comparative Example 3.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末を混合し、粉砕して混合粉末と
する工程、該混合粉末を仮焼して仮焼物とする工程、及
び該仮焼物を粉砕してスラリーを調製した後、成形し、
焼成して焼結体とする工程を備える、チタン酸ジルコン
酸鉛系の圧電セラミックスの製造方法において、上記原
料粉末の粉砕及び上記仮焼物の粉砕をいずれも湿式粉砕
とし、且つ上記原料粉末の粉砕時間を20時間以上と
し、上記仮焼物の粉砕時間を60時間以上とすることを
特徴とする圧電セラミックスの製造方法。
1. A step of mixing and pulverizing raw material powders to form a mixed powder, a step of calcining the mixed powder to form a calcined product, and a step of preparing a slurry by pulverizing the calcined product and then molding the mixture. ,
A method for producing a lead zirconate titanate-based piezoelectric ceramic, comprising a step of firing to obtain a sintered body, wherein both the pulverization of the raw material powder and the pulverization of the calcined material are wet pulverization, and the pulverization of the raw material powder A method for producing a piezoelectric ceramic, wherein the time is 20 hours or more, and the pulverization time of the calcined product is 60 hours or more.
【請求項2】 上記混合粉末の85重量%以上が粒径
1.5μm以下の粒子からなり、上記仮焼物を粉砕して
得られる粉末の90重量%以上が粒径1.5μm以下の
粒子からなる請求項1記載の圧電セラミックスの製造方
法。
2. 85% by weight or more of the mixed powder comprises particles having a particle size of 1.5 μm or less, and 90% by weight or more of the powder obtained by pulverizing the calcined product comprises particles having a particle size of 1.5 μm or less. The method for producing a piezoelectric ceramic according to claim 1.
【請求項3】 上記仮焼温度が760〜800℃である
請求項1又は2記載の圧電セラミックスの製造方法。
3. The method for producing a piezoelectric ceramic according to claim 1, wherein the calcination temperature is 760 to 800 ° C.
【請求項4】 上記焼結体に含まれる気孔の平均孔径が
4μm以下である請求項1乃至3のうちのいずれか1項
に記載の圧電セラミックスの製造方法。
4. The method for producing a piezoelectric ceramic according to claim 1, wherein the average pore diameter of the pores contained in the sintered body is 4 μm or less.
【請求項5】 原料粉末を混合し、粉砕して混合粉末と
する工程、該混合粉末を仮焼して仮焼物とする工程、及
び該仮焼物を粉砕してスラリーを調製した後、成形し、
焼成して焼結体とする工程を備える、チタン酸ジルコン
酸鉛系の圧電セラミックスの製造方法において、上記原
料粉末として、平均粒径が1.0μm以下の二酸化鉛粉
末及び平均粒径が1.0μm以下のジルコニア粉末を使
用し、上記原料粉末の粉砕及び上記仮焼物の粉砕をいず
れも湿式粉砕とし、且つ上記原料粉末の粉砕時間を20
時間以上とし、上記仮焼物の粉砕時間を60時間以上と
することを特徴とする圧電セラミックスの製造方法。
5. A step of mixing and pulverizing raw material powders to form a mixed powder, a step of calcining the mixed powder to form a calcined product, and a step of preparing a slurry by pulverizing the calcined product and then forming the mixture. ,
In a method for producing lead zirconate titanate-based piezoelectric ceramics, comprising a step of firing to form a sintered body, as the raw material powder, a lead dioxide powder having an average particle diameter of 1.0 μm or less and an average particle diameter of 1. Using a zirconia powder of 0 μm or less, the pulverization of the raw material powder and the pulverization of the calcined material are both wet pulverization, and the pulverization time of the raw material powder is 20 μm.
And a pulverizing time of the calcined product is 60 hours or more.
【請求項6】 上記混合粉末の90重量%以上が粒径
1.5μm以下の粒子からなり、上記仮焼物を粉砕して
得られる粉末の95重量%以上が粒径1.5μm以下の
粒子からなる請求項5記載の圧電セラミックスの製造方
法。
6. 90% by weight or more of the mixed powder comprises particles having a particle size of 1.5 μm or less, and 95% by weight or more of the powder obtained by pulverizing the calcined product comprises particles having a particle size of 1.5 μm or less. The method for producing a piezoelectric ceramic according to claim 5.
【請求項7】 上記仮焼温度が710〜750℃であ
り、上記焼成温度が870〜930℃である請求項5又
は6記載の圧電セラミックスの製造方法。
7. The method according to claim 5, wherein the calcining temperature is 710 to 750 ° C., and the calcining temperature is 870 to 930 ° C.
【請求項8】 上記焼結体に含まれる気孔の平均気孔径
が4μm以下である請求項5乃至7のうちのいずれか1
項に記載の圧電セラミックスの製造方法。
8. The method according to claim 5, wherein the average pore diameter of the pores contained in the sintered body is 4 μm or less.
13. The method for producing a piezoelectric ceramic according to the above item.
【請求項9】上記原料粉末の粉砕及び上記仮焼物の粉砕
において使用する玉石がジルコニア製である請求項1乃
至8のうちのいずれか1項に記載の圧電セラミックスの
製造方法。
9. The method for producing a piezoelectric ceramic according to claim 1, wherein the cobblestone used in grinding the raw material powder and the calcined product is made of zirconia.
JP10329247A 1998-11-19 1998-11-19 Production of piezoelectric ceramics Pending JP2000154059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10329247A JP2000154059A (en) 1998-11-19 1998-11-19 Production of piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10329247A JP2000154059A (en) 1998-11-19 1998-11-19 Production of piezoelectric ceramics

Publications (1)

Publication Number Publication Date
JP2000154059A true JP2000154059A (en) 2000-06-06

Family

ID=18219312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10329247A Pending JP2000154059A (en) 1998-11-19 1998-11-19 Production of piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JP2000154059A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056443B2 (en) 2002-05-30 2006-06-06 Tdk Corporation Piezoelectric ceramic production method and piezoelectric element production method
WO2007139111A1 (en) * 2006-05-30 2007-12-06 Hayashi Chemical Industry Co., Ltd. Low-temperature-sintering piezoelectric material
KR100951318B1 (en) 2007-12-25 2010-04-05 삼성전기주식회사 Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056443B2 (en) 2002-05-30 2006-06-06 Tdk Corporation Piezoelectric ceramic production method and piezoelectric element production method
WO2007139111A1 (en) * 2006-05-30 2007-12-06 Hayashi Chemical Industry Co., Ltd. Low-temperature-sintering piezoelectric material
WO2007138675A1 (en) * 2006-05-30 2007-12-06 Hayashi Chemical Industry Co., Ltd. Piezoelectric material
KR100951318B1 (en) 2007-12-25 2010-04-05 삼성전기주식회사 Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry

Similar Documents

Publication Publication Date Title
KR20030074692A (en) Ceramic material and piezoelectric element using the same
JP3654408B2 (en) Piezoelectric ceramic composition
JP6175528B2 (en) Piezoelectric device
KR100630417B1 (en) Piezoelectric porcelain composition, laminated piezoelectric device therefrom and process for producing the same
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP2000169223A (en) Piezoelectric ceramic composition and its production
JP3108724B2 (en) High durability piezoelectric composite ceramics and its manufacturing method
JP2613671B2 (en) Ferroelectric ceramics
JPH08259323A (en) Compound lanthanum/lead/zirconium/titanium perovskite, ceramic composition and actuator
JP2000154059A (en) Production of piezoelectric ceramics
JP3634930B2 (en) Dielectric porcelain composition
JP2006265055A (en) Method of manufacturing piezoelectric ceramic
JP3781317B2 (en) Piezoelectric ceramic material
JP4092542B2 (en) Piezoelectric porcelain composition and piezoelectric element using the same
JP3250917B2 (en) Dielectric porcelain composition
JP4370135B2 (en) Piezoelectric ceramic composition
JP2005194150A (en) Piezoelectric ceramics
JPH05139825A (en) Production of lead titanate based piezoelectric ceramic
JPH0629140B2 (en) Piezoelectric element material and manufacturing method thereof
JP3618033B2 (en) Piezoelectric ceramic and manufacturing method thereof
JP2926827B2 (en) Dielectric porcelain composition
JP2005035843A (en) Piezoelectric ceramics, sintering aid, and laminated piezoelectric element
JP3450134B2 (en) Dielectric porcelain composition
JP3467927B2 (en) Dielectric porcelain composition
JPH10167821A (en) Piezoelectric ceramic composition