WO2020022291A1 - Conductive paste, electronic component, and laminated ceramic capacitor - Google Patents

Conductive paste, electronic component, and laminated ceramic capacitor Download PDF

Info

Publication number
WO2020022291A1
WO2020022291A1 PCT/JP2019/028713 JP2019028713W WO2020022291A1 WO 2020022291 A1 WO2020022291 A1 WO 2020022291A1 JP 2019028713 W JP2019028713 W JP 2019028713W WO 2020022291 A1 WO2020022291 A1 WO 2020022291A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
dispersant
powder
mass
conductive
Prior art date
Application number
PCT/JP2019/028713
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 伸寿
勝彦 高木
亮 関塚
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020207037657A priority Critical patent/KR20210040290A/en
Priority to CN201980048675.4A priority patent/CN112470236B/en
Publication of WO2020022291A1 publication Critical patent/WO2020022291A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a conductive paste, an electronic component, and a multilayer ceramic capacitor.
  • Multilayer ceramic capacitors have a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, and by reducing the thickness of these dielectric layers and internal electrode layers, miniaturization and high capacitance are achieved. Can be achieved.
  • the multilayer ceramic capacitor is manufactured, for example, as follows. First, a conductive paste for an internal electrode is printed (applied) on a surface of a green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin in a predetermined electrode pattern, dried, and dried. Form a dry film. Next, a laminated body is formed in which the dried film and the green sheet are laminated so as to be alternately overlapped, and then heat-pressed and integrated. The laminate is cut, subjected to a deorganizing binder treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain a fired chip. Next, an external electrode paste is applied to both ends of the fired chip, and after firing, nickel plating is applied to the surface of the external electrode to obtain a multilayer ceramic capacitor.
  • a conductive paste for an internal electrode is printed (applied) on a surface of a green sheet containing a dielectric powder such as barium titanate (BaTiO 3 )
  • the conductive paste used to form the internal electrode layer contains a conductive powder, a ceramic powder, a binder resin, and an organic solvent.
  • the conductive paste may include a dispersant in order to improve the dispersibility of the conductive powder and the like.
  • the conductive powder With the recent thinning of the internal electrode layer, the conductive powder also tends to be reduced in particle size. When the particle size of the conductive powder is small, the specific surface area of the particle surface becomes large, so that the surface activity of the conductive powder (metal powder) becomes high, which may cause a decrease in dispersibility and a decrease in viscosity characteristics. .
  • Patent Document 1 discloses a conductive paste containing at least a metal component, an oxide, a dispersant, and a binder resin, wherein the metal component has a surface composition of Ni having a specific composition ratio.
  • a conductive paste is described, which is a powder, the acid point amount of the dispersant is 500 to 2000 ⁇ mol / g, and the acid point amount of the binder resin is 15 to 100 ⁇ mol / g. According to Patent Literature 1, this conductive paste has good dispersibility and viscosity stability.
  • Patent Document 2 discloses a conductive paste for an internal electrode, comprising a conductive powder, a resin, an organic solvent, a common material of ceramic powder mainly composed of TiBaO 3 , and a coagulation inhibitor, which contains the coagulation inhibitor.
  • the conductive paste for an internal electrode is described in which the amount is 0.1% by weight or more and 5% by weight or less and the aggregation inhibitor is a tertiary amine or a secondary amine represented by a specific structural formula.
  • the conductive paste for an internal electrode suppresses aggregation of the common material component, is excellent in long-term storage properties, and can make a multilayer ceramic capacitor thinner.
  • Patent Document 3 discloses a metal ultrafine powder slurry containing an organic solvent, a surfactant, and metal ultrafine particles, wherein the surfactant is oleoyl sarcosine, and the metal ultrafine powder slurry contains A metal ultrafine powder slurry containing 70% by mass or more and 95% by mass or less of the metal ultrafine powder, and containing the surfactant in an amount of more than 0.05 part by mass and less than 2.0 parts by mass based on 100 parts by mass of the metal ultrafine powder.
  • Patent Document 3 by preventing aggregation of ultrafine particles, it is possible to obtain a metal ultrafine powder slurry having excellent dispersibility and dry film density in which no aggregated particles are present.
  • the present invention has high dry film surface smoothness and high dry film density, is excellent in dispersibility of conductive powder, has high adhesion at the time of forming a laminate, and has a long life It is an object of the present invention to provide a conductive paste that has a very small change in viscosity and is excellent in viscosity stability.
  • a conductive paste containing a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent, wherein the dispersant is an amino acid-based dispersant represented by the following general formula (1): And an amine-based dispersant represented by the following general formula (2), and the compounding ratio of the amino acid-based dispersant and the amine-based dispersant (amino acid-based dispersant / amine-based dispersant) is 1/100 by mass ratio.
  • a conductive paste is provided.
  • R 1 represents a chain hydrocarbon having 10 to 20 carbon atoms.
  • R 2 represents an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms
  • R 3 represents an oxyethylene group, an oxypropylene group, or a methylene group
  • R 3 and R 4 may be the same, or a different may.
  • N atom in formula (2), in R 3 and R 4 It is not directly bonded to an O atom, Y is a number of 0 to 2, and Z is a number of 1 to 2.
  • R 1 preferably represents a linear hydrocarbon group having 10 to 20 carbon atoms.
  • the conductive powder preferably contains at least one kind of metal powder selected from Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. Further, it is preferable that the conductive powder is contained in an amount of 40% by mass or more and 60% by mass or less based on the whole conductive paste.
  • the conductive powder preferably has an average particle size of 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the ceramic powder preferably contains a perovskite oxide. Further, the ceramic powder preferably has an average particle size of 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the binder resin preferably contains at least one of a cellulose resin, an acrylic resin, and a butyral resin.
  • the conductive paste is for an internal electrode of a multilayer ceramic capacitor.
  • an electronic component formed using the conductive paste.
  • a multilayer ceramic capacitor having a laminate in which a dielectric layer and an internal electrode formed using the conductive paste are laminated.
  • the conductive paste of the present invention has a very small change in viscosity over time, is excellent in viscosity stability, is excellent in dispersibility of conductive powder, and has a high surface smoothness and a high dry film density in a dried film after application. Having. Further, the electrode pattern of an electronic component such as a multilayer ceramic capacitor formed using the conductive paste of the present invention has excellent adhesion of the conductive paste even when a thinned electrode is formed, and has a uniform width and precision. It has a thickness.
  • FIG. 1A is a perspective view illustrating a multilayer ceramic capacitor according to the present embodiment
  • FIG. 1B is a cross-sectional view of the multilayer ceramic capacitor according to the present embodiment.
  • the conductive paste of the present embodiment contains a conductive powder, a ceramic powder, a dispersant, a binder resin, and an organic solvent.
  • a conductive powder a ceramic powder
  • a dispersant a binder resin
  • an organic solvent an organic solvent
  • the conductive powder is not particularly limited, and a metal powder can be used.
  • a metal powder can be used.
  • one or more powders selected from Ni, Pd, Pt, Au, Ag, Cu, and an alloy thereof can be used.
  • Ni or an alloy powder thereof is preferable from the viewpoints of conductivity, corrosion resistance and cost.
  • the Ni alloy for example, an alloy of at least one or more elements selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd with Ni (Ni alloy) Can be used.
  • the content of Ni in the Ni alloy is, for example, 50% by mass or more, and preferably 80% by mass or more.
  • the Ni powder may contain about several hundred ppm of S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during the binder removal treatment.
  • the average particle size of the conductive powder is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the conductive powder can be suitably used as a paste for an internal electrode of a laminated ceramic capacitor having a reduced thickness, and for example, the smoothness of a dry film and the dry film density are improved.
  • the average particle diameter is a value obtained by observation with a scanning electron microscope (SEM). The average particle diameter is obtained by measuring the particle diameter of each of a plurality of particles from an image observed with a SEM at a magnification of 10,000 times. Average value.
  • the content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less based on the total amount of the conductive paste.
  • the conductivity and the dispersibility are excellent.
  • the ceramic powder is not particularly limited.
  • a known ceramic powder is appropriately selected depending on the type of the multilayer ceramic capacitor to be applied.
  • the ceramic powder include a perovskite oxide containing Ba and Ti, and preferably barium titanate (BaTiO 3 ).
  • a ceramic powder containing barium titanate as a main component and an oxide as a subcomponent may be used.
  • the oxide include oxides of Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb, and one or more rare earth elements.
  • a ceramic powder for example, a perovskite-type oxide ferroelectric ceramic powder in which Ba atom or Ti atom of barium titanate (BaTiO 3 ) is replaced with another atom, for example, Sn, Pb, Zr, or the like.
  • a powder having the same composition as the dielectric ceramic powder constituting the green sheet of the multilayer ceramic capacitor may be used. This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer in the sintering step.
  • a ceramic powder other than the above include, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , TiO 2 , Nd 2 O 3 and the like. Oxides.
  • One type of ceramic powder may be used, or two or more types may be used.
  • the average particle size of the ceramic powder is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less, and preferably 0.01 ⁇ m or more and 0.3 ⁇ m or less.
  • the average particle size is a value obtained by observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average particle size is obtained by measuring the particle size of each of a plurality of particles from an image observed at a magnification of 50,000 times with a SEM. Average value.
  • the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 5% by mass or more and 20% by mass or less based on the total amount of the conductive paste.
  • the conductivity and the dispersibility are excellent.
  • the binder resin is not particularly limited, and a known resin can be used.
  • the binder resin include cellulosic resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose; acrylic resins; and butyral-based resins such as polyvinyl butyral.
  • cellulosic resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose
  • acrylic resins and butyral-based resins such as polyvinyl butyral.
  • a butyral-based resin may be used alone, or a butyral-based resin may be used alone from the viewpoint of improving the adhesive strength to the green sheet.
  • binder resin One type may be used, or two or more types may be used.
  • the binder resin for example, a cellulose resin and a butyral resin can be used.
  • the molecular weight of the binder resin is, for example, about 20,000 to 200,000.
  • the content of the binder resin is preferably from 1 part by mass to 10 parts by mass, more preferably from 1 part by mass to 8 parts by mass, based on 100 parts by mass of the conductive powder.
  • the content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 6% by mass or less based on the total amount of the conductive paste.
  • the conductivity and the dispersibility are excellent.
  • the organic solvent is not particularly limited, and a known organic solvent that can dissolve the binder resin can be used.
  • the organic solvent include dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, and the like.
  • terpene solvents such as terpineol and dihydroterpineol, and hydrocarbon solvents such as tridecane, nonane and cyclohexane.
  • One type of organic solvent may be used, or two or more types may be used.
  • the content of the organic solvent is preferably 40 parts by mass or more and 100 parts by mass or less, more preferably 65 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the content of the organic solvent is preferably from 20% by mass to 60% by mass, more preferably from 35% by mass to 55% by mass, based on the total amount of the conductive paste.
  • the content of the organic solvent is in the above range, the conductivity and the dispersibility are excellent.
  • the conductive paste of the present embodiment contains a dispersant.
  • the dispersant includes an amino acid dispersant represented by the general formula (1) (amino acid surfactant) and an amine dispersant represented by the general formula (2).
  • the dispersant may include a dispersant other than the amino acid dispersant represented by the general formula (1) and the amine dispersant represented by the general formula (2).
  • the present inventors have studied various dispersants for the conductive paste, and as a result, by combining the two types of dispersants at a specific compounding ratio, the viscosity change of the conductive paste over time. , The viscosity stability is very excellent, the dispersibility of the conductive powder is excellent, and the dried film after application has high surface smoothness and high dried film density.
  • the present inventors combine the two types of dispersants in a specific compounding ratio, and set the total content of the two types of dispersants to a specific amount, thereby improving the viscosity stability of the conductive paste. It has been found that the dispersibility can be further improved, and the adhesiveness when the laminate is formed is excellent.
  • the amino acid-based dispersant used in the present embodiment has an N-acylamino acid skeleton and has a chain hydrocarbon group having 10 to 20 carbon atoms as shown in the following general formula (1).
  • R1 represents a chain hydrocarbon having 10 to 20 carbon atoms.
  • R 1 represents a chain hydrocarbon group having 10 to 20 carbon atoms.
  • R 1 preferably has 15 to 20 carbon atoms.
  • the chain hydrocarbon group may be a linear hydrocarbon group or a branched hydrocarbon group.
  • the chain hydrocarbon group may be an alkyl group, an alkenyl group, or an alkynyl group.
  • R 1 is preferably a straight-chain hydrocarbon group, more preferably a straight-chain alkenyl group, having a double bond.
  • amino acid-based dispersant represented by the above formula (1) for example, one that satisfies the above characteristics can be selected from commercially available products and used.
  • the amino acid-based dispersant may be manufactured using a conventionally known manufacturing method so as to satisfy the above-described properties.
  • the amine-based dispersant is a tertiary amine or a secondary amine as shown by the following general formula (2), and has a structure in which an amine group and one or two oxyalkylene groups are bonded. .
  • R 2 represents an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms
  • R 3 represents an oxyethylene group, an oxypropylene group, or a methylene group
  • R 3 and R 4 may be the same or may be different.
  • the N atom in formula (2), R 3 and R 4 (It is not directly bonded to the O atom therein, Y is a number of 0 to 2, and Z is a number of 1 to 2.)
  • R 2 represents an alkyl group having 8 to 16 carbon atoms, an alkenyl group, or an alkynyl group.
  • the powder in the conductive paste has sufficient dispersibility and is excellent in solubility in a solvent.
  • R 2 is preferably a straight-chain hydrocarbon group.
  • R 3 represents an oxyethylene group, an oxypropylene group or a methylene group
  • R 4 represents an oxyethylene group or an oxypropylene group
  • R 3 and R 4 may be the same. Or may be different.
  • the N atom in the formula (2) and the O atom in R 3 and R 4 are not directly bonded
  • Y is a number from 0 to 2
  • Z is a number from 1 to 2.
  • R 3 when R 3 is an oxyalkylene group represented by —AO— and Y is 1 to 2, the O atom in the endmost oxyalkylene group is (R 3 ) Bonds to an H atom adjacent to Y.
  • (R 3 ) Y is represented by — (CH 2 ) Y —, and when Y is 1 to 2, it is bonded to an adjacent H element to form a methyl group (—CH 2 3 ) or an ethyl group (—CH 2 —CH 3 ).
  • R 4 is an oxyalkylene group represented by —AO—, the O atom in the oxyalkylene group at the extreme end bonds to an H atom adjacent to (R 4 ) Z.
  • the amine-based dispersant when Y is 0, is a secondary amine having —R 2 , one hydrogen group, and — (R 4 ) z H.
  • the amine-based dispersant when Y is 0 and Z is 2, includes an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms, one hydrogen group, and — (R 4 ) 2
  • the amine-based dispersants, and -R 2, and -R 3 H when Y is 1, the amine-based dispersants, and -R 2, and -R 3 H, - a tertiary amine having a (R 4) z H.
  • the amine-based dispersant when Y is 2, is composed of -R 2 and any one of-(R 3 ) 2 H, a dioxyethylene group, a dioxypropylene group, or an ethylene group, and an H element. Is a tertiary amine having — (AO) 2 H or —C 2 H 5 bonded thereto and — (R 4 ) z H.
  • the amine-based dispersant represented by the above formula (2) for example, a commercially available product that satisfies the above characteristics can be selected and used. Further, the amine-based dispersant may be manufactured so as to satisfy the above characteristics by using a conventionally known manufacturing method.
  • the compounding ratio of the amino acid-based dispersant and the amine-based dispersant contained in the conductive paste is in the range of 1/4 or more and 1/2 or less by mass ratio.
  • the mixing ratio of the amino acid-based dispersant and the amine-based dispersant is 1/4 or more and 2/5 or less, the conductive paste has very high viscosity stability.
  • the lower limit of the mixing ratio of the amino acid-based dispersant and the amine-based dispersant is 1/4 or more, the effect of improving the viscosity of the conductive paste over time is further improved, and the dispersibility of the conductive powder is improved. As a result, a high dry film surface smoothness and a high dry film density can be obtained.
  • the upper limit of the mixing ratio of the amino acid-based dispersant and the amine-based dispersant is 1/2 or less, the amount of the amine-based dispersant is relatively increased, thereby greatly reducing the change over time in the viscosity of the conductive paste. be able to.
  • the total content of the amino acid-based dispersant represented by the above formula (1) and the amine-based dispersant represented by the above formula (2) is 0.7% by mass or more and 1.2% by mass based on the whole conductive paste. % Or less.
  • the total content of the amino acid-based dispersant and the amine-based dispersant is within the above range, the dispersibility of the conductive paste is improved, the dried film has a high dried film density, and has excellent surface smoothness. And the sheet attack and the peeling failure of the green sheet caused by the residual dispersant can be suppressed.
  • the lower limit of the total content of the amino acid-based dispersant and the amine-based dispersant is 0.7% by mass or more, a conductive material containing the amino acid-based dispersant and the amine-based dispersant in the above-described mixing ratio.
  • the dispersibility can be further improved, the smoothness of the dried film and the dried film density can be increased, and the change with time in the viscosity of the conductive paste can be further reduced.
  • the upper limit of the total content of the amino acid-based dispersant and the amine-based dispersant is 1.2% by mass or less, the residual amount of the dispersant on the surface of the dried film is further reduced, and drying during lamination and pressing is performed. Inhibition of adhesion between the film surface and the green sheet surface to prevent peeling is suppressed.
  • the conductive paste may contain a dispersant other than the above-described amino acid-based dispersant and amine-based dispersant within a range not to impair the effects of the present invention.
  • dispersants other than those described above include, for example, acid dispersants including higher fatty acids, polymer surfactants, cationic dispersants other than acid dispersants, nonionic dispersants, amphoteric surfactants, and polymer dispersants. It may contain a dispersant and the like. These dispersants may be used alone or in combination of two or more.
  • the conductive paste of the present embodiment can be manufactured by preparing the above-described components and stirring and kneading them with a mixer. At this time, if the dispersant is applied to the surface of the conductive powder in advance, the conductive powder is sufficiently loosened without agglomeration, and the dispersant spreads over the surface, so that a uniform conductive paste can be easily obtained. Also, the binder resin is dissolved in an organic solvent for the vehicle, an organic vehicle is prepared, and the conductive powder, the ceramic powder, the organic vehicle and the dispersant are added to the organic solvent for the paste, and the mixture is stirred and kneaded with a mixer. A conductive paste may be prepared.
  • the organic solvent it is preferable to use the same organic solvent for the paste as that for adjusting the viscosity of the conductive paste in order to improve the familiarity of the organic vehicle.
  • the content of the organic solvent for the vehicle is, for example, 5 parts by mass or more and 80 parts by mass or less based on 100 parts by mass of the conductive powder.
  • the content of the organic solvent for the vehicle is preferably 10% by mass or more and 40% by mass or less based on the total amount of the conductive paste.
  • the viscosity after standing for 28 days from the reference date is preferably within ⁇ 10%.
  • the surface smoothness of a dried film formed by printing a conductive paste can be evaluated by surface roughness.
  • the surface roughness of the conductive paste is measured, for example, by the method described in the examples (method of measuring arithmetic average height Sa based on the standard of ISO 25178 using VK-X120 manufactured by Keyence Corporation). can do.
  • the surface smoothness of the dried film, when evaluated by the arithmetic mean height Sa is preferably 0.17 ⁇ m or less.
  • the conductive paste can be suitably used for electronic components such as multilayer ceramic capacitors.
  • the multilayer ceramic capacitor has a dielectric layer formed using a green sheet and an internal electrode layer formed using a conductive paste.
  • the dielectric ceramic powder contained in the green sheet and the ceramic powder contained in the conductive paste have the same composition.
  • the multilayer ceramic capacitor manufactured by using the conductive paste of the present embodiment even if the thickness of the green sheet is, for example, 3 ⁇ m or less, sheet attack and poor peeling of the green sheet are suppressed.
  • FIGS. 1A and 1B are views showing a multilayer ceramic capacitor 1 which is an example of an electronic component according to an embodiment.
  • the multilayer ceramic capacitor 1 includes a multilayer body 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and external electrodes 20.
  • a method for manufacturing a multilayer ceramic capacitor using the conductive paste will be described.
  • a conductive paste is printed on a green sheet and dried to form a dried film.
  • a plurality of green sheets having the dried film on the upper surface are laminated and pressed together to obtain a laminate, and then the laminate is fired and integrated to form the internal electrode layer 11 and the dielectric layer 12.
  • the laminate is fired and integrated to form the internal electrode layer 11 and the dielectric layer 12.
  • a pair of external electrodes 20 is formed on both ends of the ceramic laminate 10 to manufacture the multilayer ceramic capacitor 1. The details will be described below.
  • a green sheet which is an unfired ceramic sheet using a dielectric material
  • a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to raw material powder of a predetermined ceramic such as barium titanate is supported on a PET film or the like. Examples thereof include those coated on a film in a sheet form and dried to remove the solvent.
  • the thickness of the green sheet is not particularly limited, but is preferably 0.05 ⁇ m or more and 3 ⁇ m or less from the viewpoint of demand for miniaturization of the multilayer ceramic capacitor.
  • the above-mentioned conductive paste is printed (applied) on one surface of the green sheet by a known method such as a screen printing method and dried, and a plurality of dried sheets are prepared.
  • the thickness of the conductive paste after printing is preferably set to a thickness such that the thickness of the dried film after drying is 1 ⁇ m or less from the viewpoint of a demand for thinning the internal electrode layer 11.
  • the green sheet is peeled off from the support film, and the green sheet and the dried film formed on one side thereof are laminated alternately, and then a laminate is obtained by heating and pressing.
  • a configuration may be adopted in which protective green sheets to which the conductive paste is not applied are further disposed on both surfaces of the laminate.
  • the green chip is subjected to a binder removal treatment and fired in a reducing atmosphere to produce the ceramic laminate 10.
  • the atmosphere in the binder removal treatment is preferably air or an N 2 gas atmosphere.
  • the temperature at the time of performing the binder removal treatment is, for example, 200 ° C. or more and 400 ° C. or less.
  • the holding time of the above-mentioned temperature when performing the binder removal treatment is 0.5 hours or more and 24 hours or less.
  • the firing is performed in a reducing atmosphere in order to suppress the oxidation of the metal used for the internal electrode layer.
  • the firing temperature of the stacked body is, for example, 1000 ° C. or more and 1350 ° C. or less.
  • the temperature holding time at the time of performing is, for example, 0.5 hours or more and 8 hours or less.
  • the organic binder in the green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12.
  • the organic vehicle in the dried film is removed, and the nickel powder or the alloy powder containing nickel as a main component is sintered or melted and integrated to form the internal electrode layer 11, thereby forming the dielectric layer 12.
  • a plurality of internal electrode layers 11 are alternately laminated to form a laminated ceramic fired body.
  • the fired multilayer ceramic fired body may be annealed from the viewpoint of improving reliability by taking oxygen into the dielectric layer and suppressing re-oxidation of the internal electrode.
  • the multilayer ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 to the manufactured multilayer ceramic fired body.
  • the external electrode 20 includes an external electrode layer 21 and a plating layer 22.
  • External electrode layer 21 is electrically connected to internal electrode layer 11.
  • a material of the external electrode 20 for example, copper, nickel, or an alloy thereof can be preferably used.
  • the electronic component is not limited to the multilayer ceramic capacitor, but may be an electronic component other than the multilayer ceramic capacitor.
  • Ceramic powder As the ceramic powder, barium titanate (BaTiO 3 ; SEM average particle size 0.06 ⁇ m) was used.
  • Binder resin As the binder resin, an ethyl cellulose resin and a polyvinyl butyral resin (PVB resin) were used. The binder resin used was prepared as a vehicle dissolved in terpineol.
  • Organic solvent Terpineol was used as the organic solvent.
  • the viscosity stability, dispersibility (dry film density, dry film surface roughness), and adhesion of the prepared conductive paste were evaluated by the following methods. Table 1 shows the evaluation results.
  • the viscosity stability of the conductive paste was evaluated as “A” when the amount of change in the viscosity of the conductive paste after standing for 28 days was 10% or less and “B” when the amount exceeded 10%.
  • the prepared conductive paste was screen-printed on a 2.54 cm (1 inch) square heat-resistant glass and dried in air at 120 ° C. for 1 hour to form a dried film of 20 mm square and a film thickness of 1 to 3 ⁇ m. .
  • the dispersibility of the conductive paste is good, the surface of the dried film becomes a smooth film. If the dispersibility is poor, agglomeration occurs in the conductive paste, the surface of the dried film becomes rough, and the surface smoothness decreases.
  • the surface roughness Sa (arithmetic mean height) and Sz (maximum height) of the manufactured dried film were measured based on the standard of ISO 25178 using a laser microscope (VK-X120 manufactured by Keyence Corporation). The smaller the values of the surface roughness Sa (arithmetic mean height) and Sz (maximum height), the smoother the surface of the dried film is.
  • ⁇ Dry Film Density (DFD)> The prepared conductive paste was placed on a PET film and stretched to about 100 mm in length with an applicator having a width of 50 mm and a gap of 125 ⁇ m. After drying the obtained PET film at 120 ° C. for 40 minutes to form a dried body, the dried body was cut into four pieces of 2.54 cm (1 inch) square, and the PET film was peeled off. The thickness and mass of each of the dried films were measured, and the dry film density (average value) was calculated. When the dispersibility of the conductive paste is low and the conductive powder causes agglomeration, the dry film density is reduced, and the electrical characteristics may be poor. The higher the dry film density, the better the dispersibility.
  • the prepared conductive paste was printed (applied) on a green sheet by a screen printing method, and dried to prepare a plurality of sheets each having a dried film formed on the green sheet. Five of these sheets were laminated and subjected to thermocompression treatment at 80 ° C. and a pressure of 100 kg / cm 2 for 3 minutes to form a laminate. In the obtained laminate, the adhesiveness between the dried film surface (electrode layer surface) and the bottom surface of the green sheet laminated thereon was weak, and if any peeling occurred at any one place, "x" and other peeling were observed. The case where no occurrence occurred was evaluated as “ ⁇ ”, and the adhesion was evaluated.
  • Examples 2, 3 and Comparative Examples 1, 2 A conductive paste was prepared under the same conditions as in Example 1 except that the contents of the amino acid-based dispersant and the amine-based dispersion were set to the amounts shown in Table 1 and the mixing ratio of the dispersant was changed. The amount of change in viscosity, the dry film density, the surface roughness of the dry film, and the adhesion of the prepared conductive paste were evaluated by the above-described methods. Table 1 shows the evaluation results.
  • Examples 4 to 6, Comparative Examples 3 and 4 Except that the content of the amino acid-based dispersant and the content of the amine-based dispersion were set to the amounts shown in Table 2 while the mixing ratio of the dispersant was kept constant, and the total content of the dispersant in the conductive paste was changed.
  • a conductive paste was produced under the same conditions as in Example 1. The amount of change in viscosity, the dry film density, the surface roughness of the dry film, and the adhesion of the prepared conductive paste were evaluated by the above-described methods. Table 2 shows the evaluation results.
  • the conductive paste of the example had a dry film density of 5.5 g / cm 3 or more, a surface roughness Sa (arithmetic mean height) of 0.17 ⁇ m or less, and a laminate. No delamination was observed, indicating good dispersibility and adhesion.
  • the conductive paste of the example has a very low change of the viscosity of the conductive paste over time of 5.4% or less after 28 days, indicating that the conductive paste has very good viscosity stability. .
  • the conductive paste of Comparative Example 1 which has a low compounding ratio of the amino acid-based dispersant and the amine-based dispersant and contains a large amount of the amine-based dispersant, has good viscosity stability, but has a low dry film density. It was 5.5 g / cm 3 or less, the surface roughness Sa exceeded 0.17 ⁇ m, and the dispersibility was low as compared with the conductive paste of Example. Further, the surface roughness Sz (maximum height) also showed a slightly larger value as compared with the example.
  • the conductive paste of Comparative Example 2 containing a large amount of the amino acid-based dispersant and the amino acid-based dispersant and containing a large amount of the amino acid-based dispersant had a change in the viscosity of the conductive paste after 28 days of 16.7%. And changed by 10% or more.
  • the conductive paste of Comparative Example 3 in which the total content of the amino acid-based dispersant and the amine-based dispersant was less than 0.7% by mass had lower dispersibility than the conductive paste of Example, The viscosity stability was also lower as compared with the examples.
  • the conductive paste of Comparative Example 4 in which the total content of the amino acid-based dispersant and the amine-based dispersant exceeds 1.2% by mass may cause peeling of a laminate manufactured using the conductive paste, The adhesiveness was lower than that of the conductive paste of the example.
  • the conductive paste according to the present embodiment is excellent in dispersibility, smoothness of the dried film after application, and, excellent in dry film density, and, because it is very excellent in viscosity stability over time, In particular, it can be suitably used as a raw material for an internal electrode of a multilayer ceramic capacitor which is a chip component (electronic component) of an electronic device such as a mobile phone or a digital device.

Abstract

The purpose of the present invention is to provide a conductive paste which has high dry film surface smoothness and a high dry film density, has excellent dispersibility of conductive powder and high adhesion when forming a laminate, and has very small chronological viscosity changes and excellent viscosity stability. Provided is a conductive paste that comprises a conductive powder, a ceramic powder, a dispersant, a binder resin, and an organic solvent, wherein the dispersant includes an amino acid dispersant represented by general formula (1) indicated in the description and an amine dispersant represented by general formula (2) indicated in the description, the compounding ratio of the amino acid dispersant to the amine dispersant (amino acid dispersant/ amine dispersant) is in a range of 1/4 to 1/2 in mass ratio, and the total content of the amino acid dispersant and the amine dispersant relative to the total of the conductive paste is 0.7 to 1.2 mass%.

Description

導電性ペースト、電子部品及び積層セラミックコンデンサConductive paste, electronic components and multilayer ceramic capacitors
 本発明は、導電性ペースト、電子部品及び積層セラミックコンデンサに関する。 The present invention relates to a conductive paste, an electronic component, and a multilayer ceramic capacitor.
 携帯電話やデジタル機器などの電子機器の小型化および高性能化に伴い、積層セラミックコンデンサなどを含む電子部品についても小型化および高容量化が望まれている。積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とが交互に積層された構造を有し、これらの誘電体層及び内部電極層を薄膜化することにより、小型化及び高容量化を図ることができる。 電子 With the miniaturization and high performance of electronic devices such as mobile phones and digital devices, miniaturization and high capacity of electronic components including multilayer ceramic capacitors are also desired. Multilayer ceramic capacitors have a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, and by reducing the thickness of these dielectric layers and internal electrode layers, miniaturization and high capacitance are achieved. Can be achieved.
 積層セラミックコンデンサは、例えば、次のように製造される。まず、チタン酸バリウム(BaTiO)などの誘電体粉末及びバインダー樹脂を含有するグリーンシートの表面上に、内部電極用の導電性ペーストを所定の電極パターンで印刷(塗布)し、乾燥して、乾燥膜を形成する。次に、乾燥膜とグリーンシートとが交互に重なるように積層、加熱圧着して一体化した状態である、積層体を形成する。この積層体を切断し、酸化性雰囲気または不活性雰囲気で脱有機バインダー処理を施した後、焼成を行い、焼成チップを得る。次いで、焼成チップの両端部に外部電極用ペーストを塗布し、焼成後、外部電極表面にニッケルメッキなどを施して、積層セラミックコンデンサが得られる。 The multilayer ceramic capacitor is manufactured, for example, as follows. First, a conductive paste for an internal electrode is printed (applied) on a surface of a green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin in a predetermined electrode pattern, dried, and dried. Form a dry film. Next, a laminated body is formed in which the dried film and the green sheet are laminated so as to be alternately overlapped, and then heat-pressed and integrated. The laminate is cut, subjected to a deorganizing binder treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain a fired chip. Next, an external electrode paste is applied to both ends of the fired chip, and after firing, nickel plating is applied to the surface of the external electrode to obtain a multilayer ceramic capacitor.
 一般的に、内部電極層の形成に用いられる導電性ペーストは、導電性粉末、セラミック粉末、バインダー樹脂及び有機溶剤を含む。また、導電性ペーストは、導電性粉末などの分散性を向上させるために分散剤を含むことがある。近年の内部電極層の薄膜化に伴い、導電性粉末も小粒径化する傾向がある。導電性粉末の粒径が小さい場合、その粒子表面の比表面積が大きくなるため、導電性粉末(金属粉末)の表面活性が高くなり、分散性の低下や、粘度特性の低下が生じる場合がある。 Generally, the conductive paste used to form the internal electrode layer contains a conductive powder, a ceramic powder, a binder resin, and an organic solvent. In addition, the conductive paste may include a dispersant in order to improve the dispersibility of the conductive powder and the like. With the recent thinning of the internal electrode layer, the conductive powder also tends to be reduced in particle size. When the particle size of the conductive powder is small, the specific surface area of the particle surface becomes large, so that the surface activity of the conductive powder (metal powder) becomes high, which may cause a decrease in dispersibility and a decrease in viscosity characteristics. .
 そこで、導電性ペーストの経時的な粘度特性の改善の試みがなされている。例えば、特許文献1には、少なくとも金属成分と、酸化物と、分散剤と、バインダー樹脂とを含有する導電性ペーストであって、金属成分は、その表面組成が、特定の組成比を有するNi粉末であり、分散剤の酸点量は、500~2000μmol/gであり、バインダー樹脂の酸点量は、15~100μmol/gである導電性ペーストが記載されている。そして、特許文献1によれば、この導電性ペーストは、良好な分散性と粘度安定性を有するとされている。 Therefore, attempts have been made to improve the viscosity characteristics of the conductive paste over time. For example, Patent Document 1 discloses a conductive paste containing at least a metal component, an oxide, a dispersant, and a binder resin, wherein the metal component has a surface composition of Ni having a specific composition ratio. A conductive paste is described, which is a powder, the acid point amount of the dispersant is 500 to 2000 μmol / g, and the acid point amount of the binder resin is 15 to 100 μmol / g. According to Patent Literature 1, this conductive paste has good dispersibility and viscosity stability.
 また、特許文献2には、導電性粉末、樹脂、有機溶剤、TiBaOを主とするセラミックス粉末の共材、および凝集抑制剤からなる内部電極用導電ペーストであって、前記凝集抑制剤の含有量が0.1重量%以上5重量%以下であり、前記凝集抑制剤が、特定の構造式で示される3級アミン又は2級アミンである内部電極用導電ペーストが記載されている。特許文献2によれば、この内部電極用導電ペーストは、共材成分の凝集を抑制し、長期保管性に優れ、積層セラミックコンデンサの薄膜化ができるとされている。 Further, Patent Document 2 discloses a conductive paste for an internal electrode, comprising a conductive powder, a resin, an organic solvent, a common material of ceramic powder mainly composed of TiBaO 3 , and a coagulation inhibitor, which contains the coagulation inhibitor. The conductive paste for an internal electrode is described in which the amount is 0.1% by weight or more and 5% by weight or less and the aggregation inhibitor is a tertiary amine or a secondary amine represented by a specific structural formula. According to Patent Literature 2, the conductive paste for an internal electrode suppresses aggregation of the common material component, is excellent in long-term storage properties, and can make a multilayer ceramic capacitor thinner.
 一方、内部電極層を薄膜化する際、グリーンシート表面上に内部電極用の導電性ペーストを印刷して、乾燥させて得られる乾燥膜の密度が高いことが要求される。例えば、特許文献3には、有機溶媒と、界面活性剤と、金属超微粒子とを含有する金属超微粉スラリーであって、前記界面活性剤がオレオイルサルコシンであり、前記金属超微粉スラリー中に、前記金属超微粉を70質量%以上95質量%以下含有し、前記界面活性剤を前記金属超微粉100質量部に対して0.05質量部超2.0質量部未満含有する金属超微粉スラリーが提案されている。特許文献3によれば、超微粒子の凝集を防止することで凝集粒子が存在しない、分散性及び乾燥膜密度に優れる金属超微粉スラリーが得られるとされている。 On the other hand, when thinning the internal electrode layer, it is required that the density of a dry film obtained by printing a conductive paste for the internal electrode on the surface of the green sheet and drying it is high. For example, Patent Document 3 discloses a metal ultrafine powder slurry containing an organic solvent, a surfactant, and metal ultrafine particles, wherein the surfactant is oleoyl sarcosine, and the metal ultrafine powder slurry contains A metal ultrafine powder slurry containing 70% by mass or more and 95% by mass or less of the metal ultrafine powder, and containing the surfactant in an amount of more than 0.05 part by mass and less than 2.0 parts by mass based on 100 parts by mass of the metal ultrafine powder. Has been proposed. According to Patent Document 3, by preventing aggregation of ultrafine particles, it is possible to obtain a metal ultrafine powder slurry having excellent dispersibility and dry film density in which no aggregated particles are present.
特開2015-216244号公報JP-A-2015-216244 特開2013-149457号公報JP 2013-149457 A 特開2006-063441号公報JP 2006-063441 A
 しかしながら、近年の電極パターンの薄膜化に伴い、経時的な粘度特性のさらなる向上、及び、塗布後の乾燥膜の表面平滑性の向上が要求される。 However, with the recent trend toward thinner electrode patterns, further improvement in viscosity characteristics over time and improvement in surface smoothness of the dried film after application are required.
 本発明は、このような状況に鑑み、高い乾燥膜表面平滑性と高い乾燥膜密度を有し、導電性粉末の分散性に優れるとともに、積層体形成時に高い密着性を有し、かつ、経時的な粘度変化が非常に少なく、粘度安定性により優れた、導電性ペーストを提供することを目的とする。 In view of such circumstances, the present invention has high dry film surface smoothness and high dry film density, is excellent in dispersibility of conductive powder, has high adhesion at the time of forming a laminate, and has a long life It is an object of the present invention to provide a conductive paste that has a very small change in viscosity and is excellent in viscosity stability.
 本発明の第1の態様では、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、分散剤は、下記一般式(1)で示されるアミノ酸系分散剤と、下記一般式(2)で示されるアミン系分散剤とを含有し、アミノ酸系分散剤とアミン系分散剤の配合比(アミノ酸系分散剤/アミン系分散剤)は質量比で、1/4以上1/2以下の範囲であり、アミノ酸系分散剤とアミン系分散剤との合計の含有量は、導電性ペースト全体に対して、0.7質量%以上1.2質量%以下である、導電性ペーストが提供される。
Figure JPOXMLDOC01-appb-C000003
(ただし、式(1)中、Rは、炭素数10~20の鎖状炭化水素を表す。)
Figure JPOXMLDOC01-appb-C000004
(ただし、式(2)中、Rは炭素数8~16のアルキル基、アルケニル基、又は、アルキニル基を表し、Rはオキシエチレン基、オキシプロピレン基、又は、メチレン基を表し、Rはオキシエチレン基、又は、オキシプロピレン基を表し、R及びRは、同一でもよく、又は、異なっていてもよい。式(2)中のN原子と、R及びR中のO原子とは直接結合せず、Yは0~2の数であり、Zは1~2の数である。)
According to a first aspect of the present invention, there is provided a conductive paste containing a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent, wherein the dispersant is an amino acid-based dispersant represented by the following general formula (1): And an amine-based dispersant represented by the following general formula (2), and the compounding ratio of the amino acid-based dispersant and the amine-based dispersant (amino acid-based dispersant / amine-based dispersant) is 1/100 by mass ratio. It is in the range of 4 or more and 1/2 or less, and the total content of the amino acid-based dispersant and the amine-based dispersant is 0.7% by mass or more and 1.2% by mass or less with respect to the entire conductive paste. , A conductive paste is provided.
Figure JPOXMLDOC01-appb-C000003
(However, in the formula (1), R 1 represents a chain hydrocarbon having 10 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000004
(Wherein, in the formula (2), R 2 represents an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms, R 3 represents an oxyethylene group, an oxypropylene group, or a methylene group; 4 oxyethylene groups, or represents a oxypropylene group, R 3 and R 4 may be the same, or a different may. N atom in formula (2), in R 3 and R 4 It is not directly bonded to an O atom, Y is a number of 0 to 2, and Z is a number of 1 to 2.)
 また、一般式(1)中、Rは、炭素数10~20の直鎖状炭化水素基を表すことが好ましい。また、導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種類の金属粉末を含むことが好ましい。また、導電性粉末を、導電性ペースト全体に対して、40質量%以上60質量%以下含有することが好ましい。また、導電性粉末は、平均粒径が0.05μm以上1.0μm以下であることが好ましい。また、セラミック粉末は、ペロブスカイト型酸化物を含むことが好ましい。また、セラミック粉末は、平均粒径が0.01μm以上0.5μm以下であることが好ましい。また、バインダー樹脂は、セルロース系樹脂、アクリル系樹脂及びブチラール系樹脂のうち少なくとも1つを含むことが好ましい。また、上記導電性ペーストは、積層セラミックコンデンサの内部電極用であることが好ましい。 Further, in the general formula (1), R 1 preferably represents a linear hydrocarbon group having 10 to 20 carbon atoms. Further, the conductive powder preferably contains at least one kind of metal powder selected from Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. Further, it is preferable that the conductive powder is contained in an amount of 40% by mass or more and 60% by mass or less based on the whole conductive paste. The conductive powder preferably has an average particle size of 0.05 μm or more and 1.0 μm or less. Further, the ceramic powder preferably contains a perovskite oxide. Further, the ceramic powder preferably has an average particle size of 0.01 μm or more and 0.5 μm or less. The binder resin preferably contains at least one of a cellulose resin, an acrylic resin, and a butyral resin. Preferably, the conductive paste is for an internal electrode of a multilayer ceramic capacitor.
 本発明の第2の態様では、上記導電性ペーストを用いて形成された電子部品が提供される。 According to a second aspect of the present invention, there is provided an electronic component formed using the conductive paste.
 本発明の第3の態様では、上記導電性ペーストを用いて形成された内部電極と、誘電体層とを積層した積層体を有する積層セラミックコンデンサが提供される。 According to a third aspect of the present invention, there is provided a multilayer ceramic capacitor having a laminate in which a dielectric layer and an internal electrode formed using the conductive paste are laminated.
 本発明の導電性ペーストは、経時的な粘度変化が非常に少なく、粘度安定性により優れるとともに、導電性粉末の分散性に優れ、塗布後の乾燥膜において、高い表面平滑性と高い乾燥膜密度を有する。また、本発明の導電性ペーストを用いて形成される積層セラミックコンデンサなどの電子部品の電極パターンは、薄膜化した電極を形成する際も導電性ペーストの密着性に優れ、精度良く均一な幅及び厚みを有する。 The conductive paste of the present invention has a very small change in viscosity over time, is excellent in viscosity stability, is excellent in dispersibility of conductive powder, and has a high surface smoothness and a high dry film density in a dried film after application. Having. Further, the electrode pattern of an electronic component such as a multilayer ceramic capacitor formed using the conductive paste of the present invention has excellent adhesion of the conductive paste even when a thinned electrode is formed, and has a uniform width and precision. It has a thickness.
図1Aは、本実施形態に係る積層セラミックコンデンサを示す斜視図であり、図1Bは、本実施形態に係る積層セラミックコンデンサの断面図である。FIG. 1A is a perspective view illustrating a multilayer ceramic capacitor according to the present embodiment, and FIG. 1B is a cross-sectional view of the multilayer ceramic capacitor according to the present embodiment.
 本実施形態の導電性ペーストは、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む。以下、各成分について詳細に説明する。 導電 The conductive paste of the present embodiment contains a conductive powder, a ceramic powder, a dispersant, a binder resin, and an organic solvent. Hereinafter, each component will be described in detail.
(導電性粉末)
 導電性粉末は、特に限定されず、金属粉末を用いることができ、例えば、Ni、Pd、Pt、Au、Ag、Cu、およびこれらの合金から選ばれる1種類以上の粉末を用いることができる。これらの中でも、導電性、耐食性及びコストの観点から、Ni、またはその合金の粉末が好ましい。Ni合金としては、例えば、Mn、Cr、Co、Al、Fe、Cu、Zn、Ag、Au、PtおよびPdからなる群より選択される少なくとも1種類以上の元素とNiとの合金(Ni合金)を用いることができる。Ni合金におけるNiの含有量は、例えば、50質量%以上、好ましくは80質量%以上である。また、Ni粉末は、脱バインダー処理の際、バインダー樹脂の部分的な熱分解による急激なガス発生を抑制するために、数百ppm程度のSを含んでもよい。
(Conductive powder)
The conductive powder is not particularly limited, and a metal powder can be used. For example, one or more powders selected from Ni, Pd, Pt, Au, Ag, Cu, and an alloy thereof can be used. Among them, Ni or an alloy powder thereof is preferable from the viewpoints of conductivity, corrosion resistance and cost. As the Ni alloy, for example, an alloy of at least one or more elements selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd with Ni (Ni alloy) Can be used. The content of Ni in the Ni alloy is, for example, 50% by mass or more, and preferably 80% by mass or more. Further, the Ni powder may contain about several hundred ppm of S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during the binder removal treatment.
 導電性粉末の平均粒径は、好ましくは0.05μm以上1.0μm以下であり、より好ましくは0.1μm以上0.5μm以下である。導電性粉末の平均粒径が上記範囲である場合、薄膜化した積層セラミックコンデンサの内部電極用ペーストとして好適に用いることができ、例えば、乾燥膜の平滑性及び乾燥膜密度が向上する。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率10,000倍にて観察した画像から、複数の粒子一つ一つの粒径を測定して、得られる平均値である。 平均 The average particle size of the conductive powder is preferably 0.05 μm or more and 1.0 μm or less, and more preferably 0.1 μm or more and 0.5 μm or less. When the average particle size of the conductive powder is within the above range, the conductive powder can be suitably used as a paste for an internal electrode of a laminated ceramic capacitor having a reduced thickness, and for example, the smoothness of a dry film and the dry film density are improved. The average particle diameter is a value obtained by observation with a scanning electron microscope (SEM). The average particle diameter is obtained by measuring the particle diameter of each of a plurality of particles from an image observed with a SEM at a magnification of 10,000 times. Average value.
 導電性粉末の含有量は、導電性ペースト全量に対して、好ましくは30質量%以上70質量%未満であり、より好ましくは40質量%以上60質量%以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 含有 The content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less based on the total amount of the conductive paste. When the content of the conductive powder is in the above range, the conductivity and the dispersibility are excellent.
(セラミック粉末)
 セラミック粉末は、特に限定されず、例えば、積層セラミックコンデンサの内部電極用ペーストである場合、適用する積層セラミックコンデンサの種類により適宜、公知のセラミック粉末が選択される。セラミック粉末としては、例えば、Ba及びTiを含むペロブスカイト型酸化物が挙げられ、好ましくはチタン酸バリウム(BaTiO)である。
(Ceramic powder)
The ceramic powder is not particularly limited. For example, when it is a paste for an internal electrode of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of the multilayer ceramic capacitor to be applied. Examples of the ceramic powder include a perovskite oxide containing Ba and Ti, and preferably barium titanate (BaTiO 3 ).
 セラミック粉末は、チタン酸バリウムを主成分とし、酸化物を副成分として含むセラミック粉末を用いてもよい。酸化物としては、Mn、Cr、Si、Ca、Ba、Mg、V、W、Ta、Nbおよび1種類以上の希土類元素の酸化物が挙げられる。このようなセラミック粉末としては、例えば、チタン酸バリウム(BaTiO)のBa原子やTi原子を他の原子、例えば、Sn、Pb、Zrなどで置換したペロブスカイト型酸化物強誘電体のセラミック粉末が挙げられる。 As the ceramic powder, a ceramic powder containing barium titanate as a main component and an oxide as a subcomponent may be used. Examples of the oxide include oxides of Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb, and one or more rare earth elements. As such a ceramic powder, for example, a perovskite-type oxide ferroelectric ceramic powder in which Ba atom or Ti atom of barium titanate (BaTiO 3 ) is replaced with another atom, for example, Sn, Pb, Zr, or the like. No.
 内部電極用ペーストにおいては、積層セラミックコンデンサのグリーンシートを構成する誘電体セラミック粉末と同一組成の粉末を用いてもよい。これにより、焼結工程における誘電体層と内部電極層との界面での収縮のミスマッチによるクラックの発生が抑制される。このようなセラミック粉末としては、上記以外に、例えば、ZnO、フェライト、PZT、BaO、Al、Bi、R(希土類元素)、TiO、Ndなどの酸化物が挙げられる。なお、セラミック粉末は、1種類を用いてもよく、2種類以上を用いてもよい。 In the internal electrode paste, a powder having the same composition as the dielectric ceramic powder constituting the green sheet of the multilayer ceramic capacitor may be used. This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer in the sintering step. Examples of such a ceramic powder other than the above include, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , TiO 2 , Nd 2 O 3 and the like. Oxides. One type of ceramic powder may be used, or two or more types may be used.
 セラミック粉末の平均粒径は、例えば、0.01μm以上0.5μm以下であり、好ましくは0.01μm以上0.3μm以下の範囲である。セラミック粉末の平均粒径が上記範囲であることにより、内部電極用ペーストとして用いた場合、十分に細く薄い均一な内部電極を形成することができる。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率50,000倍にて観察した像から、複数の粒子一つ一つの粒径を測定して、得られる平均値である。 (4) The average particle size of the ceramic powder is, for example, 0.01 μm or more and 0.5 μm or less, and preferably 0.01 μm or more and 0.3 μm or less. When the average particle diameter of the ceramic powder is in the above range, when used as an internal electrode paste, a sufficiently thin and thin uniform internal electrode can be formed. The average particle size is a value obtained by observation with a scanning electron microscope (SEM). The average particle size is obtained by measuring the particle size of each of a plurality of particles from an image observed at a magnification of 50,000 times with a SEM. Average value.
 セラミック粉末の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上30質量部以下である。 The content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive powder.
 セラミック粉末の含有量は、導電性ペースト全量に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは5質量%以上20質量%以下である。セラミック粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 5% by mass or more and 20% by mass or less based on the total amount of the conductive paste. When the content of the ceramic powder is in the above range, the conductivity and the dispersibility are excellent.
(バインダー樹脂)
 バインダー樹脂は、特に限定されず、公知の樹脂を用いることができる。バインダー樹脂としては、例えば、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロースなどのセルロース系樹脂、アクリル系樹脂、ポリビニルブチラールなどのブチラール系樹脂などが挙げられる。中でも、溶剤への溶解性、燃焼分解性の観点などからエチルセルロースを含むことが好ましい。また、内部電極用ペーストとして用いる場合、グリーンシートとの接着強度を向上させる観点から、ブチラール系樹脂を含む、又は、ブチラール系樹脂を単独で使用してもよい。バインダー樹脂は、1種類を用いてもよいし、2種類以上を用いてもよい。バインダー樹脂は、例えば、セルロース系樹脂とブチラール系樹脂とを用いることができる。また、バインダー樹脂の分子量は、例えば、20000~200000程度である。
(Binder resin)
The binder resin is not particularly limited, and a known resin can be used. Examples of the binder resin include cellulosic resins such as methylcellulose, ethylcellulose, ethylhydroxyethylcellulose, and nitrocellulose; acrylic resins; and butyral-based resins such as polyvinyl butyral. Among them, it is preferable to contain ethyl cellulose from the viewpoint of solubility in a solvent, combustion decomposability, and the like. When used as an internal electrode paste, a butyral-based resin may be used alone, or a butyral-based resin may be used alone from the viewpoint of improving the adhesive strength to the green sheet. One type of binder resin may be used, or two or more types may be used. As the binder resin, for example, a cellulose resin and a butyral resin can be used. The molecular weight of the binder resin is, for example, about 20,000 to 200,000.
 バインダー樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは1質量部以上8質量部以下である。 含有 The content of the binder resin is preferably from 1 part by mass to 10 parts by mass, more preferably from 1 part by mass to 8 parts by mass, based on 100 parts by mass of the conductive powder.
 バインダー樹脂の含有量は、導電性ペースト全量に対して、好ましくは0.5質量%以上10質量%以下であり、より好ましくは1質量%以上6質量%以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。 (4) The content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 6% by mass or less based on the total amount of the conductive paste. When the content of the binder resin is in the above range, the conductivity and the dispersibility are excellent.
(有機溶剤)
 有機溶剤は、特に限定されず、上記バインダー樹脂を溶解することができる公知の有機溶剤を用いることができる。有機溶剤としては、例えば、ジヒドロターピニルアセテート、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート、イソボルニルイソブチレート、エチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテートなどのアセテート系溶剤、ターピネオール、ジヒドロターピネオールなどのテルペン系溶剤、トリデカン、ノナン、シクロヘキサンなどの炭化水素系溶剤などが挙げられる。なお、有機溶剤は、1種類を用いてもよいし、2種類以上を用いてもよい。
(Organic solvent)
The organic solvent is not particularly limited, and a known organic solvent that can dissolve the binder resin can be used. Examples of the organic solvent include dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, and the like. And terpene solvents such as terpineol and dihydroterpineol, and hydrocarbon solvents such as tridecane, nonane and cyclohexane. One type of organic solvent may be used, or two or more types may be used.
 有機溶剤の含有量は、導電性粉末100質量部に対して、好ましくは40質量部以上100質量部以下であり、より好ましくは65質量部以上95質量部以下である。 含有 The content of the organic solvent is preferably 40 parts by mass or more and 100 parts by mass or less, more preferably 65 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the conductive powder.
 有機溶剤の含有量は、導電性ペースト全量に対して、20質量%以上60質量%以下が好ましく、35質量%以上55質量%以下がより好ましい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 (4) The content of the organic solvent is preferably from 20% by mass to 60% by mass, more preferably from 35% by mass to 55% by mass, based on the total amount of the conductive paste. When the content of the organic solvent is in the above range, the conductivity and the dispersibility are excellent.
(分散剤)
 本実施形態の導電性ペーストは、分散剤を含む。分散剤は、一般式(1)で示されるアミノ酸系分散剤(アミノ酸系界面活性剤)、及び、一般式(2)で示されるアミン系分散剤を含む。なお、分散剤は、一般式(1)で示されるアミノ酸系分散剤、及び、一般式(2)で示されるアミン系分散剤以外の分散剤を含んでもよい。
(Dispersant)
The conductive paste of the present embodiment contains a dispersant. The dispersant includes an amino acid dispersant represented by the general formula (1) (amino acid surfactant) and an amine dispersant represented by the general formula (2). The dispersant may include a dispersant other than the amino acid dispersant represented by the general formula (1) and the amine dispersant represented by the general formula (2).
 本発明者らは、導電性ペーストに用いる分散剤について、種々の分散剤を検討した結果、上記の2種類の分散剤を特定の配合比で組み合わせることにより、導電性ペーストの経時的な粘度変化が少なく、粘度安定性に非常に優れ、かつ、導電性粉末の分散性に優れ、塗布後の乾燥膜において高い表面平滑性と高い乾燥膜密度を有することを見出した。 The present inventors have studied various dispersants for the conductive paste, and as a result, by combining the two types of dispersants at a specific compounding ratio, the viscosity change of the conductive paste over time. , The viscosity stability is very excellent, the dispersibility of the conductive powder is excellent, and the dried film after application has high surface smoothness and high dried film density.
 また、本発明者らは、上記2種類の分散剤を特定の配合比で組み合わせ、かつ、上記2種類の分散剤の合計含有量を特定の量とすることにより、導電性ペーストの粘度安定性、及び、分散性をより向上させることができるとともに、積層体を形成した際の密着性にも優れることを見出した。 In addition, the present inventors combine the two types of dispersants in a specific compounding ratio, and set the total content of the two types of dispersants to a specific amount, thereby improving the viscosity stability of the conductive paste. It has been found that the dispersibility can be further improved, and the adhesiveness when the laminate is formed is excellent.
 この理由の詳細は不明であるが、分散剤の分子中に存在するアミノ基とカルボキシル基とが、導電性粉末の金属原子への配位等の作用をすることによると考えられる。以下、本実施形態に用いられる分散剤について、説明する。 詳細 The details of this reason are unknown, but it is considered that the amino group and carboxyl group present in the molecule of the dispersant act to coordinate with the metal atom of the conductive powder. Hereinafter, the dispersant used in the present embodiment will be described.
 本実施形態に用いられるアミノ酸系分散剤は、下記の一般式(1)に示されるように、N-アシルアミノ酸骨格を有し、炭素数10以上20以下の鎖状炭化水素基を有する。 The amino acid-based dispersant used in the present embodiment has an N-acylamino acid skeleton and has a chain hydrocarbon group having 10 to 20 carbon atoms as shown in the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
(ただし、式(1)中、R1は、炭素数10~20の鎖状炭化水素を表す。)
Figure JPOXMLDOC01-appb-C000005
(However, in the formula (1), R1 represents a chain hydrocarbon having 10 to 20 carbon atoms.)
 上記式(1)中、Rは、炭素数10以上20以下の鎖状炭化水素基を表す。Rは、炭素数が好ましくは15以上20以下である。また、鎖状炭化水素基は、直鎖状炭化水素基でもよく、分岐状炭化水素基であってもよい。また、鎖状炭化水素基は、アルキル基、アルケニル基、又は、アルキニル基であってもよい。Rは、好ましくは直鎖状炭化水素基であり、より好ましくは直鎖状アルケニル基であり、二重結合を有する。 In the above formula (1), R 1 represents a chain hydrocarbon group having 10 to 20 carbon atoms. R 1 preferably has 15 to 20 carbon atoms. Further, the chain hydrocarbon group may be a linear hydrocarbon group or a branched hydrocarbon group. Further, the chain hydrocarbon group may be an alkyl group, an alkenyl group, or an alkynyl group. R 1 is preferably a straight-chain hydrocarbon group, more preferably a straight-chain alkenyl group, having a double bond.
 上記式(1)で示されるアミノ酸系分散剤は、例えば、市販の製品から、上記特性を満たすものを選択して用いることができる。また、上記アミノ酸系分散剤は、従来公知の製造方法を用いて、上記特性を満たすように製造してもよい。 ア ミ ノ 酸 As the amino acid-based dispersant represented by the above formula (1), for example, one that satisfies the above characteristics can be selected from commercially available products and used. In addition, the amino acid-based dispersant may be manufactured using a conventionally known manufacturing method so as to satisfy the above-described properties.
 上記アミン系分散剤は、下記の一般式(2)で示されるように、3級アミン、又は、2級アミンであり、アミン基と、1又は2のオキシアルキレン基とが結合した構造を有する。 The amine-based dispersant is a tertiary amine or a secondary amine as shown by the following general formula (2), and has a structure in which an amine group and one or two oxyalkylene groups are bonded. .
Figure JPOXMLDOC01-appb-C000006
(ただし、式(2)中、Rは炭素数8~16のアルキル基、アルケニル基、又は、アルキニル基を表し、Rはオキシエチレン基、オキシプロピレン基、又は、メチレン基を表し、Rはオキシエチレン基、又は、オキシプロピレン基を表し、R及びRは、同一でもよく、又は、異なっていてもよい。また、式(2)中のN原子と、R及びR中のO原子とは直接結合せず、Yは0~2の数であり、Zは1~2の数である。)
Figure JPOXMLDOC01-appb-C000006
(Wherein, in the formula (2), R 2 represents an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms, R 3 represents an oxyethylene group, an oxypropylene group, or a methylene group; 4 oxyethylene groups, or represents a oxypropylene group, R 3 and R 4 may be the same or may be different. also, the N atom in formula (2), R 3 and R 4 (It is not directly bonded to the O atom therein, Y is a number of 0 to 2, and Z is a number of 1 to 2.)
 上記式(2)中、Rは、炭素数8~16のアルキル基、アルケニル基、又は、アルキニル基を表す。Rの炭素数が上記範囲である場合、導電性ペースト中の粉末が十分な分散性を有し、溶剤への溶解度に優れる。なお、Rは、直鎖状炭化水素基であることが好ましい。 In the above formula (2), R 2 represents an alkyl group having 8 to 16 carbon atoms, an alkenyl group, or an alkynyl group. When the carbon number of R 2 is in the above range, the powder in the conductive paste has sufficient dispersibility and is excellent in solubility in a solvent. Note that R 2 is preferably a straight-chain hydrocarbon group.
 上記式(2)中、Rは、オキシエチレン基、オキシプロピレン基、又は、メチレン基を表し、Rはオキシエチレン基、又は、オキシプロピレン基を表し、R及びRは、同一でもよく、又は、異なっていてもよい。また、式(2)中のN原子と、R及びR中のO原子とは直接結合せず、Yは0以上2以下の数であり、Zは1以上2以下の数である。 In the above formula (2), R 3 represents an oxyethylene group, an oxypropylene group or a methylene group, R 4 represents an oxyethylene group or an oxypropylene group, and R 3 and R 4 may be the same. Or may be different. Further, the N atom in the formula (2) and the O atom in R 3 and R 4 are not directly bonded, Y is a number from 0 to 2, and Z is a number from 1 to 2.
 例えば、上記式(2)中、Rが、-AO-で示されるオキシアルキレン基であり、Yが1~2の場合、最端部のオキシアルキレン基中のO原子は、(Rと隣接するH原子と結合する。また、Rがメチレン基である場合、(Rは、-(CH-で示され、Yが1~2の場合、隣接するH元素と結合してメチル基(-CH)、又は、エチル基(-CH-CH)を形成する。また、Rが、-AO-で示されるオキシアルキレン基である場合、最端部のオキシアルキレン基中のO原子は、(Rと隣接するH原子と結合する。 For example, in the above formula (2), when R 3 is an oxyalkylene group represented by —AO— and Y is 1 to 2, the O atom in the endmost oxyalkylene group is (R 3 ) Bonds to an H atom adjacent to Y. When R 3 is a methylene group, (R 3 ) Y is represented by — (CH 2 ) Y —, and when Y is 1 to 2, it is bonded to an adjacent H element to form a methyl group (—CH 2 3 ) or an ethyl group (—CH 2 —CH 3 ). When R 4 is an oxyalkylene group represented by —AO—, the O atom in the oxyalkylene group at the extreme end bonds to an H atom adjacent to (R 4 ) Z.
 上記式(2)中、Yが0の場合、上記アミン系分散剤は、-Rと、1つの水素基と、-(RHとを有する2級アミンとなる。例えば、Yが0で、Zが2の場合、上記アミン系分散剤は、炭素数8~16のアルキル基、アルケニル基、又は、アルキニル基と、1つの水素基と、-(RHである、ジオキシエチレン基またはジオキシプロピレン基のいずれかとH元素とが結合した-(AO)Hと、から構成される2級アミンとなる。 In the above formula (2), when Y is 0, the amine-based dispersant is a secondary amine having —R 2 , one hydrogen group, and — (R 4 ) z H. For example, when Y is 0 and Z is 2, the amine-based dispersant includes an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms, one hydrogen group, and — (R 4 ) 2 A secondary amine composed of-(AO) 2 H in which H is bonded to any of a dioxyethylene group or a dioxypropylene group and an H element.
 また、上記式(2)中、Yが1の場合、上記アミン系分散剤は、-Rと、-RHと、-(RHとを有する3級アミンとなる。そして、Yが2の場合、上記アミン系分散剤は、-Rと、-(RHである、ジオキシエチレン基、ジオキシプロピレン基、又は、エチレン基のいずれかとH元素とが結合した-(AO)Hあるいは-Cと、-(RHと、を有する3級アミンとなる。 Further, in the above formula (2), when Y is 1, the amine-based dispersants, and -R 2, and -R 3 H, - a tertiary amine having a (R 4) z H. And, when Y is 2, the amine-based dispersant is composed of -R 2 and any one of-(R 3 ) 2 H, a dioxyethylene group, a dioxypropylene group, or an ethylene group, and an H element. Is a tertiary amine having — (AO) 2 H or —C 2 H 5 bonded thereto and — (R 4 ) z H.
 上記式(2)で示されるアミン系分散剤は、例えば、市販の製品から、上記特性を満たすものを選択して用いることができる。また、上記アミン系分散剤は、従来公知の製造方法を用いて、上記特性を満たすように製造してもよい。 ア ミ ン As the amine-based dispersant represented by the above formula (2), for example, a commercially available product that satisfies the above characteristics can be selected and used. Further, the amine-based dispersant may be manufactured so as to satisfy the above characteristics by using a conventionally known manufacturing method.
 導電性ペーストに含まれる上記アミノ酸系分散剤と上記アミン系分散剤の配合比(アミノ酸系分散剤/アミン系分散剤)は質量比で、1/4以上1/2以下の範囲である。特に、上記アミノ酸系分散剤と上記アミン系分散剤の配合比が1/4以上2/5以下である場合、非常に高い導電性ペーストの粘度安定性を有する。 配合 The compounding ratio of the amino acid-based dispersant and the amine-based dispersant contained in the conductive paste (amino acid-based dispersant / amine-based dispersant) is in the range of 1/4 or more and 1/2 or less by mass ratio. In particular, when the mixing ratio of the amino acid-based dispersant and the amine-based dispersant is 1/4 or more and 2/5 or less, the conductive paste has very high viscosity stability.
 アミノ酸系分散剤とアミン系分散剤の配合比の下限が1/4以上である場合、導電性ペーストの粘度の経時変化への改善効果をより向上させ、かつ、導電性粉末の分散性を向上させ、高い乾燥膜の表面平滑性と、高い乾燥膜密度を有することができる。また、アミノ酸系分散剤とアミン系分散剤の配合比の上限が1/2以下である場合、アミン系分散剤が相対的に多くなることにより、導電性ペースト粘度の経時変化を非常に低減することができる。 When the lower limit of the mixing ratio of the amino acid-based dispersant and the amine-based dispersant is 1/4 or more, the effect of improving the viscosity of the conductive paste over time is further improved, and the dispersibility of the conductive powder is improved. As a result, a high dry film surface smoothness and a high dry film density can be obtained. In addition, when the upper limit of the mixing ratio of the amino acid-based dispersant and the amine-based dispersant is 1/2 or less, the amount of the amine-based dispersant is relatively increased, thereby greatly reducing the change over time in the viscosity of the conductive paste. be able to.
 上記式(1)で示されるアミノ酸系分散剤と上記式(2)で示されるアミン系分散剤との合計含有量は、導電性ペースト全体に対して、0.7質量%以上1.2質量%以下である。上記アミノ酸系分散剤と上記アミン系分散剤の合計含有量が上記範囲である場合、導電性ペーストの分散性が向上して、高い乾燥膜密度を有し、表面の平滑性に優れた乾燥膜を得ることができるとともに、分散剤の残留に起因するシートアタックやグリーンシートの剥離不良を抑制することができる。 The total content of the amino acid-based dispersant represented by the above formula (1) and the amine-based dispersant represented by the above formula (2) is 0.7% by mass or more and 1.2% by mass based on the whole conductive paste. % Or less. When the total content of the amino acid-based dispersant and the amine-based dispersant is within the above range, the dispersibility of the conductive paste is improved, the dried film has a high dried film density, and has excellent surface smoothness. And the sheet attack and the peeling failure of the green sheet caused by the residual dispersant can be suppressed.
 上記アミノ酸系分散剤と上記アミン系分散剤の合計含有量の下限が0.7質量%以上である場合、上記のアミノ酸系分散剤と上記のアミン系分散剤とを上述した配合比で含む導電性ペーストにおいては、分散性がより向上して、高い乾燥膜の平滑性と乾燥膜密度を有することができるとともに、導電性ペースト粘度の経時変化をより低減することができる。また、上記アミノ酸系分散剤と上記アミン系分散剤の合計含有量の上限が1.2質量%以下である場合、乾燥膜表面への分散剤の残留量をより低減し、積層、圧着時に乾燥膜表面とグリーンシート表面との密着性を阻害して剥離を生じることが抑制される。 When the lower limit of the total content of the amino acid-based dispersant and the amine-based dispersant is 0.7% by mass or more, a conductive material containing the amino acid-based dispersant and the amine-based dispersant in the above-described mixing ratio. In the conductive paste, the dispersibility can be further improved, the smoothness of the dried film and the dried film density can be increased, and the change with time in the viscosity of the conductive paste can be further reduced. When the upper limit of the total content of the amino acid-based dispersant and the amine-based dispersant is 1.2% by mass or less, the residual amount of the dispersant on the surface of the dried film is further reduced, and drying during lamination and pressing is performed. Inhibition of adhesion between the film surface and the green sheet surface to prevent peeling is suppressed.
 なお、導電性ペーストは、上記のアミノ酸系分散剤及びアミン系分散剤以外の分散剤を、本発明の効果を阻害しない範囲で含んでもよい。上記以外の分散剤としては、例えば、高級脂肪酸、高分子界面活性剤などを含む酸系分散剤、酸系分散剤以外のカチオン系分散剤、ノニオン系分散剤、両性界面活性剤及び高分子系分散剤などなどを含んでもよい。また、これらの分散剤は、1種類または2種類以上組み合わせて用いてもよい。 Note that the conductive paste may contain a dispersant other than the above-described amino acid-based dispersant and amine-based dispersant within a range not to impair the effects of the present invention. Examples of dispersants other than those described above include, for example, acid dispersants including higher fatty acids, polymer surfactants, cationic dispersants other than acid dispersants, nonionic dispersants, amphoteric surfactants, and polymer dispersants. It may contain a dispersant and the like. These dispersants may be used alone or in combination of two or more.
(導電性ペースト)
 本実施形態の導電性ペーストは、上記の各成分を用意し、ミキサーで攪拌・混練することにより製造することができる。その際、導電性粉末の表面に予め分散剤を塗布すると、導電性粉末が凝集することなく十分にほぐれて、その表面に分散剤が行きわたるようになり、均一な導電性ペーストを得やすい。また、バインダー樹脂をビヒクル用の有機溶剤に溶解させ、有機ビヒクルを作製し、ペースト用の有機溶剤へ、導電性粉末、セラミック粉末、有機ビヒクル及び分散剤を添加し、ミキサーで攪拌・混練し、導電性ペーストを作製してもよい。
(Conductive paste)
The conductive paste of the present embodiment can be manufactured by preparing the above-described components and stirring and kneading them with a mixer. At this time, if the dispersant is applied to the surface of the conductive powder in advance, the conductive powder is sufficiently loosened without agglomeration, and the dispersant spreads over the surface, so that a uniform conductive paste can be easily obtained. Also, the binder resin is dissolved in an organic solvent for the vehicle, an organic vehicle is prepared, and the conductive powder, the ceramic powder, the organic vehicle and the dispersant are added to the organic solvent for the paste, and the mixture is stirred and kneaded with a mixer. A conductive paste may be prepared.
 また、有機溶剤中、ビヒクル用の有機溶剤としては、有機ビヒクルの馴染みをよくするため、導電性ペーストの粘度を調整するペースト用の有機溶剤と同じものを用いることが好ましい。ビヒクル用の有機溶剤の含有量は、導電性粉末100質量部に対して、例えば、5質量部以上80質量部以下である。また、ビヒクル用の有機溶剤の含有量は、導電性ペースト全体量に対して、好ましくは10質量%以上40質量%以下である。 中 In the organic solvent, it is preferable to use the same organic solvent for the paste as that for adjusting the viscosity of the conductive paste in order to improve the familiarity of the organic vehicle. The content of the organic solvent for the vehicle is, for example, 5 parts by mass or more and 80 parts by mass or less based on 100 parts by mass of the conductive powder. The content of the organic solvent for the vehicle is preferably 10% by mass or more and 40% by mass or less based on the total amount of the conductive paste.
 導電性ペーストは、導電性ペーストの製造24時間経過後の粘度を基準(0%)とした場合、その基準日から28日間静置後の粘度は、±10%以内であるのが好ましい。なお、上記導電性ペーストの粘度は、例えば、実施例に記載した方法(ブルックフィールド社製B型粘度計を用いて10rpm(ずり速度=4sec-1)の条件で測定する方法)等により測定することができる。 Assuming that the viscosity of the conductive paste 24 hours after the production of the conductive paste is a reference (0%), the viscosity after standing for 28 days from the reference date is preferably within ± 10%. The viscosity of the conductive paste is measured, for example, by the method described in the examples (method of measuring with a Brookfield B-type viscometer at 10 rpm (shear speed = 4 sec -1 )). be able to.
 また、導電性ペーストを印刷して形成される乾燥膜の表面平滑性は、表面粗さで評価することができる。なお、上記導電ペーストの表面粗さは、例えば、実施例に記載した方法(キーエンス社製VK-X120を用いて、ISO 25178の規格に基づいて算術平均高さSaを測定する方法)等により測定することができる。乾燥膜の表面平滑性は、算術平均高さSaで評価した場合、その値が0.17μm以下であるのが好ましい。 表面 The surface smoothness of a dried film formed by printing a conductive paste can be evaluated by surface roughness. The surface roughness of the conductive paste is measured, for example, by the method described in the examples (method of measuring arithmetic average height Sa based on the standard of ISO 25178 using VK-X120 manufactured by Keyence Corporation). can do. The surface smoothness of the dried film, when evaluated by the arithmetic mean height Sa, is preferably 0.17 μm or less.
 導電性ペーストは、積層セラミックコンデンサなどの電子部品に好適に用いることができる。積層セラミックコンデンサは、グリーンシートを用いて形成される誘電体層、及び、導電性ペーストを用いて形成される内部電極層を有する。 The conductive paste can be suitably used for electronic components such as multilayer ceramic capacitors. The multilayer ceramic capacitor has a dielectric layer formed using a green sheet and an internal electrode layer formed using a conductive paste.
 積層セラミックコンデンサは、グリーンシートに含まれる誘電体セラミック粉末と導電性ペーストに含まれるセラミック粉末とが同一組成の粉末であることが好ましい。本実施形態の導電性ペーストを用いて製造される積層セラミックコンデンサは、グリーンシートの厚さが、例えば3μm以下である場合でも、シートアタックやグリーンシートの剥離不良が抑制される。 In the multilayer ceramic capacitor, it is preferable that the dielectric ceramic powder contained in the green sheet and the ceramic powder contained in the conductive paste have the same composition. In the multilayer ceramic capacitor manufactured by using the conductive paste of the present embodiment, even if the thickness of the green sheet is, for example, 3 μm or less, sheet attack and poor peeling of the green sheet are suppressed.
[電子部品]
 以下、本発明の電子部品等の実施形態について、図面を参照しながら説明する。図面においては、適宜、模式的に表現することや、縮尺を変更して表現することがある。また、部材の位置や方向などを、適宜、図1Aなどに示すXYZ直交座標系を参照して説明する。このXYZ直交座標系において、X方向およびY方向は水平方向であり、Z方向は鉛直方向(上下方向)である。
[Electronic components]
Hereinafter, embodiments of an electronic component and the like of the present invention will be described with reference to the drawings. In the drawings, they may be represented in a schematic manner or in a modified scale as appropriate. The position and direction of the members will be described with reference to an XYZ orthogonal coordinate system shown in FIG. In this XYZ orthogonal coordinate system, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction (up-down direction).
 図1A及び図1Bは、実施形態に係る電子部品の一例である、積層セラミックコンデンサ1を示す図である。積層セラミックコンデンサ1は、誘電体層12及び内部電極層11を交互に積層した積層体10と外部電極20とを備える。 FIGS. 1A and 1B are views showing a multilayer ceramic capacitor 1 which is an example of an electronic component according to an embodiment. The multilayer ceramic capacitor 1 includes a multilayer body 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and external electrodes 20.
 以下、上記導電性ペーストを使用した積層セラミックコンデンサの製造方法について説明する。まず、グリーンシート上に、導電性ペーストを印刷して、乾燥し、乾燥膜を形成する。この乾燥膜を上面に有する複数のグリーンシートを、積層させて圧着することにより、積層体を得た後、該積層体を焼成して一体化することにより、内部電極層11と誘電体層12とが交互に積層したセラミック積層体10を作製する。その後、セラミック積層体10の両端部に一対の外部電極20を形成することにより積層セラミックコンデンサ1が製造される。以下に、より詳細に説明する。 Hereinafter, a method for manufacturing a multilayer ceramic capacitor using the conductive paste will be described. First, a conductive paste is printed on a green sheet and dried to form a dried film. A plurality of green sheets having the dried film on the upper surface are laminated and pressed together to obtain a laminate, and then the laminate is fired and integrated to form the internal electrode layer 11 and the dielectric layer 12. Are alternately laminated to produce a ceramic laminate 10. Thereafter, a pair of external electrodes 20 is formed on both ends of the ceramic laminate 10 to manufacture the multilayer ceramic capacitor 1. The details will be described below.
 まず、誘電体材料を用いた未焼成のセラミックシートであるグリーンシートを用意する。このグリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミックの原料粉末に、ポリビニルブチラール等の有機バインダーとターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したもの等が挙げられる。なお、グリーンシートの厚みは、特に限定されないが、積層セラミックコンデンサの小型化の要請の観点から、0.05μm以上3μm以下が好ましい。 First, a green sheet, which is an unfired ceramic sheet using a dielectric material, is prepared. As the green sheet, for example, a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to raw material powder of a predetermined ceramic such as barium titanate is supported on a PET film or the like. Examples thereof include those coated on a film in a sheet form and dried to remove the solvent. The thickness of the green sheet is not particularly limited, but is preferably 0.05 μm or more and 3 μm or less from the viewpoint of demand for miniaturization of the multilayer ceramic capacitor.
 次いで、このグリーンシートの片面に、スクリーン印刷法等の公知の方法によって、上述の導電性ペーストを印刷(塗布)して乾燥し、乾燥膜を形成したものを複数枚、用意する。なお、印刷後の導電性ペーストの厚みは、内部電極層11の薄層化の要請の観点から、乾燥後の乾燥膜の厚みが1μm以下となる厚みにすることが好ましい。 Next, the above-mentioned conductive paste is printed (applied) on one surface of the green sheet by a known method such as a screen printing method and dried, and a plurality of dried sheets are prepared. Note that the thickness of the conductive paste after printing is preferably set to a thickness such that the thickness of the dried film after drying is 1 μm or less from the viewpoint of a demand for thinning the internal electrode layer 11.
 次いで、支持フィルムから、グリーンシートを剥離するとともに、グリーンシートとその片面に形成された乾燥膜とが交互に配置されるように積層した後、加熱・加圧処理により積層体を得る。なお、積層体の両面に、導電性ペーストを塗布していない保護用のグリーンシートを更に配置する構成としても良い。 Next, the green sheet is peeled off from the support film, and the green sheet and the dried film formed on one side thereof are laminated alternately, and then a laminate is obtained by heating and pressing. Note that a configuration may be adopted in which protective green sheets to which the conductive paste is not applied are further disposed on both surfaces of the laminate.
 次いで、積層体を所定サイズに切断してグリーンチップを形成した後、当該グリーンチップに対して脱バインダー処理を施し、還元雰囲気で焼成することにより、セラミック積層体10を製造する。なお、脱バインダー処理における雰囲気は、大気またはNガス雰囲気にすることが好ましい。脱バインダー処理を行う際の温度は、例えば200℃以上400℃以下である。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間以上24時間以下とすることが好ましい。また、焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われ、また、積層体の焼成を行う際の温度は、例えば、1000℃以上1350℃以下であり、焼成を行う際の、温度の保持時間は、例えば、0.5時間以上8時間以下である。 Next, after cutting the laminate to a predetermined size to form a green chip, the green chip is subjected to a binder removal treatment and fired in a reducing atmosphere to produce the ceramic laminate 10. Note that the atmosphere in the binder removal treatment is preferably air or an N 2 gas atmosphere. The temperature at the time of performing the binder removal treatment is, for example, 200 ° C. or more and 400 ° C. or less. In addition, it is preferable that the holding time of the above-mentioned temperature when performing the binder removal treatment is 0.5 hours or more and 24 hours or less. The firing is performed in a reducing atmosphere in order to suppress the oxidation of the metal used for the internal electrode layer. The firing temperature of the stacked body is, for example, 1000 ° C. or more and 1350 ° C. or less. The temperature holding time at the time of performing is, for example, 0.5 hours or more and 8 hours or less.
 グリーンチップの焼成を行うことにより、グリーンシート中の有機バインダーが完全に除去されるとともに、セラミックの原料粉末が焼成されて、セラミック製の誘電体層12が形成される。また乾燥膜中の有機ビヒクルが除去されるとともに、ニッケル粉末またはニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極層11が形成されることにより、誘電体層12と内部電極層11とが複数枚、交互に積層された積層セラミック焼成体が形成される。なお、酸素を誘電体層の内部に取り込んで信頼性を高めるとともに、内部電極の再酸化を抑制するとの観点から、焼成後の積層セラミック焼成体に対して、アニール処理を施してもよい。 (4) By firing the green chip, the organic binder in the green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. In addition, the organic vehicle in the dried film is removed, and the nickel powder or the alloy powder containing nickel as a main component is sintered or melted and integrated to form the internal electrode layer 11, thereby forming the dielectric layer 12. And a plurality of internal electrode layers 11 are alternately laminated to form a laminated ceramic fired body. The fired multilayer ceramic fired body may be annealed from the viewpoint of improving reliability by taking oxygen into the dielectric layer and suppressing re-oxidation of the internal electrode.
 そして、作製した積層セラミック焼成体に対して、一対の外部電極20を設けることにより、積層セラミックコンデンサ1が製造される。例えば、外部電極20は、外部電極層21及びメッキ層22を備える。外部電極層21は、内部電極層11と電気的に接続される。なお、外部電極20の材料としては、例えば、銅やニッケル、またはこれらの合金が好適に使用できる。なお、電子部品は、積層セラミックコンデンサに限定されず、積層セラミックコンデンサ以外の電子部品であってもよい。 {Circle around (1)} The multilayer ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 to the manufactured multilayer ceramic fired body. For example, the external electrode 20 includes an external electrode layer 21 and a plating layer 22. External electrode layer 21 is electrically connected to internal electrode layer 11. In addition, as a material of the external electrode 20, for example, copper, nickel, or an alloy thereof can be preferably used. Note that the electronic component is not limited to the multilayer ceramic capacitor, but may be an electronic component other than the multilayer ceramic capacitor.
 以下、本発明を実施例と比較例に基づき詳細に説明するが、本発明は実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the examples.
[使用材料]
(導電性粉末)
 導電性粉末としては、Ni粉末(SEM平均粒径0.3μm)を使用した。
[Materials used]
(Conductive powder)
Ni powder (SEM average particle size 0.3 μm) was used as the conductive powder.
(セラミック粉末)
 セラミック粉末としては、チタン酸バリウム(BaTiO;SEM平均粒径0.06μm)を使用した。
(Ceramic powder)
As the ceramic powder, barium titanate (BaTiO 3 ; SEM average particle size 0.06 μm) was used.
(バインダー樹脂)
 バインダー樹脂としては、エチルセルロース樹脂、及び、ポリビニルブチラール樹脂(PVB樹脂)を使用した。なお、バインダー樹脂は、ターピネオールに溶解させたビヒクルとして準備したものを用いた。
(Binder resin)
As the binder resin, an ethyl cellulose resin and a polyvinyl butyral resin (PVB resin) were used. The binder resin used was prepared as a vehicle dissolved in terpineol.
(分散剤)
(1)アミノ酸系分散剤として、上記一般式(1)中、R=C1733(直鎖状炭化水素基)で示される分散剤を用いた。
(2)アミン系分散剤として、上記一般式(2)中、R=C1225、R=CO、R=CO、Y=1、Z=1で示される分散剤を用いた。
(Dispersant)
(1) As the amino acid-based dispersant, a dispersant represented by R 1 CC 17 H 33 (linear hydrocarbon group) in the general formula (1) was used.
(2) As the amine-based dispersant, in the above general formula (2), R 2 CC 12 H 25 , R 3 CC 2 H 4 O, R 4中 C 2 H 4 O, Y = 1, Z = 1 Was used.
(有機溶剤)
 有機溶剤としては、ターピネオールを使用した。
(Organic solvent)
Terpineol was used as the organic solvent.
[実施例1]
 Ni粉末46質量%、セラミック粉末11.5質量%、ビヒクル中のバインダー樹脂(エチルセルロース樹脂とポリビニルブチラール樹脂からなる)を合計で3.2質量%、アミノ酸系分散剤を0.2質量%、アミン系分散剤を0.6質量%、及び、残部としてターピネオール(有機溶剤)を全体として100質量%となるよう配合し、これらの材料を混合して導電性ペーストを作製した。作製した導電性ペーストの粘度安定性、分散性(乾燥膜密度、乾燥膜の表面粗さ)、密着性を下記の方法で評価した。評価結果を表1に示す。
[Example 1]
Ni powder 46 mass%, ceramic powder 11.5 mass%, binder resin (composed of ethyl cellulose resin and polyvinyl butyral resin) in the vehicle in a total of 3.2 mass%, amino acid dispersant 0.2 mass%, amine 0.6 mass% of the system dispersant and 100 mass% of terpineol (organic solvent) as the balance were blended, and these materials were mixed to prepare a conductive paste. The viscosity stability, dispersibility (dry film density, dry film surface roughness), and adhesion of the prepared conductive paste were evaluated by the following methods. Table 1 shows the evaluation results.
[評価方法]
(粘度安定性:導電性ペーストの粘度の変化量)
 導電性ペーストの製造24時間経過後を基準時点とし、その基準時点と、室温(25℃)で基準時点より7日、14日、28日間静置後における、それぞれのサンプルの粘度を下記の方法で測定した。そして、製造24時間経過後(基準時点)の粘度を基準(0%)とした場合の、各静置後のサンプルの粘度の変化量を百分率(%)で表した値([(静置後の粘度-製造24時間経過後の粘度)/製造24時間経過後の粘度]×100)を求め、粘度の変化量とした。導電性ペーストの粘度は、ブルックフィールド社製B型粘度計を用いて10rpm(ずり速度=4sec-1)の条件で測定した。なお、導電性ペーストの粘度の変化量は少ないほど好ましい。28日間静置後の導電性ペーストの粘度の変化量が10%以下である場合を「A」とし、10%を超える場合を「B」として、導電性ペーストの粘度安定性を評価した。
[Evaluation method]
(Viscosity stability: change in viscosity of conductive paste)
The viscosity of each sample after 24 hours of production of the conductive paste is set as a reference time, and the viscosity of each sample after standing at room temperature (25 ° C.) for 7, 14, and 28 days from the reference time is determined by the following method. Was measured. Then, when the viscosity after 24 hours of production (reference time point) is defined as a reference (0%), the amount of change in the viscosity of the sample after each standing is expressed as a percentage (%) ([( (Viscosity after 24 hours of production) / viscosity after 24 hours of production] × 100) was determined as the amount of change in viscosity. The viscosity of the conductive paste was measured using a Brookfield B-type viscometer at 10 rpm (shear rate = 4 sec −1 ). Note that it is preferable that the amount of change in the viscosity of the conductive paste be as small as possible. The viscosity stability of the conductive paste was evaluated as “A” when the amount of change in the viscosity of the conductive paste after standing for 28 days was 10% or less and “B” when the amount exceeded 10%.
(分散性:乾燥膜の表面粗さ、乾燥膜密度)
<表面粗さ>
 2.54cm(1インチ)角の耐熱強化ガラス上に、作製した導電ペーストをスクリーン印刷し、大気中120℃で1時間乾燥させることにより、20mm角、膜厚1~3μmの乾燥膜を作製した。導電性ペーストの分散性が良好な場合、乾燥膜の表面は平滑な膜となる。分散性に劣る場合は、導電性ペースト内に凝集を生じ、乾燥膜の表面が荒れ、表面の平滑性が低下する。そこで、レーザ顕微鏡(キーエンス社製VK-X120)を用いて、作製した乾燥膜の表面粗さSa(算術平均高さ)、Sz(最大高さ)を、ISO 25178の規格に基づいて測定した。表面粗さSa(算術平均高さ)、Sz(最大高さ)の値は、小さいほど、乾燥膜の表面が平滑であることを示す。
(Dispersibility: dry film surface roughness, dry film density)
<Surface roughness>
The prepared conductive paste was screen-printed on a 2.54 cm (1 inch) square heat-resistant glass and dried in air at 120 ° C. for 1 hour to form a dried film of 20 mm square and a film thickness of 1 to 3 μm. . When the dispersibility of the conductive paste is good, the surface of the dried film becomes a smooth film. If the dispersibility is poor, agglomeration occurs in the conductive paste, the surface of the dried film becomes rough, and the surface smoothness decreases. Then, the surface roughness Sa (arithmetic mean height) and Sz (maximum height) of the manufactured dried film were measured based on the standard of ISO 25178 using a laser microscope (VK-X120 manufactured by Keyence Corporation). The smaller the values of the surface roughness Sa (arithmetic mean height) and Sz (maximum height), the smoother the surface of the dried film is.
<乾燥膜密度(DFD:Dry Film Density)>
 作製した導電性ペーストをPETフィルム上に載せ、幅50mm、隙間125μmのアプリケータで長さ約100mmに延ばした。得られたPETフィルムを120℃、40分乾燥させて、乾燥体を形成した後、この乾燥体を2.54cm(1インチ)角に4枚切断し、PETフィルムをはがした上で各4枚の乾燥膜の厚み、質量を測定して、乾燥膜密度(平均値)を算出した。導電性ペーストの分散性が低く、導電性粉末が凝集を生じると乾燥膜密度が低下し、電気的特性等に劣る場合がある。乾燥膜密度は高いほど、分散性が良好であることを示す。
<Dry Film Density (DFD)>
The prepared conductive paste was placed on a PET film and stretched to about 100 mm in length with an applicator having a width of 50 mm and a gap of 125 μm. After drying the obtained PET film at 120 ° C. for 40 minutes to form a dried body, the dried body was cut into four pieces of 2.54 cm (1 inch) square, and the PET film was peeled off. The thickness and mass of each of the dried films were measured, and the dry film density (average value) was calculated. When the dispersibility of the conductive paste is low and the conductive powder causes agglomeration, the dry film density is reduced, and the electrical characteristics may be poor. The higher the dry film density, the better the dispersibility.
<分散性の評価>
 上述の乾燥膜の表面粗さSa(算術平均高さ)が0.17μm以下、かつ、乾燥膜密度DFDが5.50g/cm以上の場合を「A」とし、乾燥膜の表面粗さSa(算術平均高さ)が0.17μmより大きい場合、及び、乾燥膜密度DFDが5.50g/cm未満である場合のいずれか一方、又は、両方を満たす場合を「B」として、分散性を評価した。
<Evaluation of dispersibility>
When the surface roughness Sa (arithmetic mean height) of the dried film is 0.17 μm or less and the dry film density DFD is 5.50 g / cm 3 or more, “A” is defined as the surface roughness Sa of the dried film. (A) when either (arithmetic mean height) is greater than 0.17 μm and / or when dry film density DFD is less than 5.50 g / cm 3 , or when both are satisfied, the dispersibility is defined as “B”. Was evaluated.
(密着性)
 作製した導電性ペーストをグリーンシート上に、スクリーン印刷法にて印刷(塗布)し、乾燥させて、グリーンシート上に乾燥膜を形成したものを複数作製した。これらのシートを5枚積層し、80℃、100kg/cmの圧力で3分間、熱圧着処理を行い、積層体を形成した。得られた積層体において、乾燥膜表面(電極層表面)と、上に積層させたグリーンシート底面との密着性が弱く、1か所でも剥離を生じた場合は「×」、その他、剥離を生じなかった場合を「○」として、密着性を評価した。
(Adhesion)
The prepared conductive paste was printed (applied) on a green sheet by a screen printing method, and dried to prepare a plurality of sheets each having a dried film formed on the green sheet. Five of these sheets were laminated and subjected to thermocompression treatment at 80 ° C. and a pressure of 100 kg / cm 2 for 3 minutes to form a laminate. In the obtained laminate, the adhesiveness between the dried film surface (electrode layer surface) and the bottom surface of the green sheet laminated thereon was weak, and if any peeling occurred at any one place, "x" and other peeling were observed. The case where no occurrence occurred was evaluated as “○”, and the adhesion was evaluated.
[実施例2、3、比較例1、2]
 アミノ酸系分散剤とアミン系分散の含有量を表1に示した量とし、分散剤の配合比を変更させた以外は、実施例1と同様の条件で導電性ペーストを作製した。作製した導電性ペーストの粘度の変化量、乾燥膜密度、乾燥膜の表面粗さ、及び密着性を上記方法で評価した。評価結果を表1に示す。
[Examples 2, 3 and Comparative Examples 1, 2]
A conductive paste was prepared under the same conditions as in Example 1 except that the contents of the amino acid-based dispersant and the amine-based dispersion were set to the amounts shown in Table 1 and the mixing ratio of the dispersant was changed. The amount of change in viscosity, the dry film density, the surface roughness of the dry film, and the adhesion of the prepared conductive paste were evaluated by the above-described methods. Table 1 shows the evaluation results.
[実施例4~6、比較例3、4]
 アミノ酸系分散剤とアミン系分散の含有量を分散剤の配合比は一定のまま、表2に示した量とし、導電性ペースト内の分散剤の総含有量を変更させた以外は、実施例1と同様の条件で導電性ペーストを作製した。作製した導電性ペーストの粘度の変化量、乾燥膜密度、乾燥膜の表面粗さ、及び密着性を上記方法で評価した。評価結果を表2に示す。
[Examples 4 to 6, Comparative Examples 3 and 4]
Except that the content of the amino acid-based dispersant and the content of the amine-based dispersion were set to the amounts shown in Table 2 while the mixing ratio of the dispersant was kept constant, and the total content of the dispersant in the conductive paste was changed. A conductive paste was produced under the same conditions as in Example 1. The amount of change in viscosity, the dry film density, the surface roughness of the dry film, and the adhesion of the prepared conductive paste were evaluated by the above-described methods. Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[評価結果]
 実施例の導電性ペーストは、表1及び2に示されるように、乾燥膜密度が5.5g/cm以上、表面粗さSa(算術平均高さ)が0.17μm以下であり、積層体に剥離も観察されず、良好な分散性や密着性を示した。また、実施例の導電性ペーストは、導電性ペーストの粘度の経時的な変化量が28日後において5.4%以下と非常に低く、非常に良好な粘度安定性を有していることが分かる。
[Evaluation results]
As shown in Tables 1 and 2, the conductive paste of the example had a dry film density of 5.5 g / cm 3 or more, a surface roughness Sa (arithmetic mean height) of 0.17 μm or less, and a laminate. No delamination was observed, indicating good dispersibility and adhesion. In addition, the conductive paste of the example has a very low change of the viscosity of the conductive paste over time of 5.4% or less after 28 days, indicating that the conductive paste has very good viscosity stability. .
 これに対し、アミノ酸系分散剤とアミン系分散剤との配合比が低く、アミン系分散剤を多く含有する比較例1の導電性ペーストは、粘度安定性は良好であるものの、乾燥膜密度が5.5g/cm以下であり、表面粗さSaが0.17μmを超え、実施例の導電性ペーストと比較して、分散性が低かった。また、表面粗さSz(最大高さ)も、実施例と比較して若干大きい値を示した。また、アミノ酸系分散剤とアミン系分散剤との配合比が高く、アミノ酸系分散剤を多く含有する比較例2の導電性ペーストは、28日後の導電性ペースト粘度変化量が16.7%であり、10%以上変化した。 On the other hand, the conductive paste of Comparative Example 1, which has a low compounding ratio of the amino acid-based dispersant and the amine-based dispersant and contains a large amount of the amine-based dispersant, has good viscosity stability, but has a low dry film density. It was 5.5 g / cm 3 or less, the surface roughness Sa exceeded 0.17 μm, and the dispersibility was low as compared with the conductive paste of Example. Further, the surface roughness Sz (maximum height) also showed a slightly larger value as compared with the example. Further, the conductive paste of Comparative Example 2 containing a large amount of the amino acid-based dispersant and the amino acid-based dispersant and containing a large amount of the amino acid-based dispersant had a change in the viscosity of the conductive paste after 28 days of 16.7%. And changed by 10% or more.
 また、アミノ酸系分散剤とアミン系分散剤との合計含有量が0.7質量%未満である比較例3の導電性ペーストは、実施例の導電性ペーストと比較して、分散性が低く、粘度安定性も、実施例と比較して低かった。また、アミノ酸系分散剤とアミン系分散剤との合計含有量が1.2質量%を超える比較例4の導電性ペーストは、これを用いて製造された積層体に剥離が生じる場合があり、実施例の導電性ペーストと比較して、密着性が低下した。 In addition, the conductive paste of Comparative Example 3 in which the total content of the amino acid-based dispersant and the amine-based dispersant was less than 0.7% by mass had lower dispersibility than the conductive paste of Example, The viscosity stability was also lower as compared with the examples. In addition, the conductive paste of Comparative Example 4 in which the total content of the amino acid-based dispersant and the amine-based dispersant exceeds 1.2% by mass may cause peeling of a laminate manufactured using the conductive paste, The adhesiveness was lower than that of the conductive paste of the example.
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本特許出願である特願2018-139501、及び本明細書で引用した全ての文献の内容を援用して本文の記載の一部とする。 技術 Note that the technical scope of the present invention is not limited to the modes described in the above embodiments and the like. One or more of the requirements described in the above embodiments may be omitted. Further, the requirements described in the above embodiments and the like can be appropriately combined. In addition, to the extent permitted by laws and regulations, the contents of Japanese Patent Application No. 2018-139501 and all documents cited in this specification are incorporated herein by reference.
 本実施形態に係る導電性ペーストは、分散性に優れることにより、塗布後の乾燥膜の平滑性、及び、乾燥膜密度に優れ、かつ、経時的な粘度安定性に非常に優れているため、特に携帯電話やデジタル機器などの電子機器のチップ部品(電子部品)である積層セラミックコンデンサの内部電極用の原料として好適に用いることができる。 The conductive paste according to the present embodiment is excellent in dispersibility, smoothness of the dried film after application, and, excellent in dry film density, and, because it is very excellent in viscosity stability over time, In particular, it can be suitably used as a raw material for an internal electrode of a multilayer ceramic capacitor which is a chip component (electronic component) of an electronic device such as a mobile phone or a digital device.
1    積層セラミックコンデンサ
10   セラミック積層体
11   内部電極層
12   誘電体層
20   外部電極
21   外部電極層
22   メッキ層
DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 10 Ceramic laminated body 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Claims (11)

  1.  導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、
     前記分散剤は、下記一般式(1)で示されるアミノ酸系分散剤と、下記一般式(2)で示されるアミン系分散剤とを含有し、
     前記アミノ酸系分散剤と前記アミン系分散剤の配合比(アミノ酸系分散剤/アミン系分散剤)は質量比で、1/4以上1/2以下の範囲であり、
     前記アミノ酸系分散剤と前記アミン系分散剤との合計含有量は、導電性ペースト全体に対して、0.7質量%以上1.2質量%以下である、導電性ペースト。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、式(1)中、Rは、炭素数10~20の鎖状炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (ただし、式(2)中、Rは炭素数8~16のアルキル基、アルケニル基、又は、アルキニル基を表し、Rはオキシエチレン基、オキシプロピレン基、又は、メチレン基を表し、Rはオキシエチレン基、又は、オキシプロピレン基を表し、R及びRは、同一でもよく、又は、異なっていてもよい。また、式(2)中のN原子と、R及びR中のO原子とは直接結合せず、かつ、Yは0~2の数であり、Zは1~2の数である。)
    Conductive paste containing conductive powder, ceramic powder, dispersant, binder resin and organic solvent,
    The dispersant contains an amino acid-based dispersant represented by the following general formula (1) and an amine-based dispersant represented by the following general formula (2),
    The mixing ratio of the amino acid-based dispersant and the amine-based dispersant (amino acid-based dispersant / amine-based dispersant) is in a mass ratio of 以上 or more and 以下 or less,
    A conductive paste, wherein the total content of the amino acid-based dispersant and the amine-based dispersant is 0.7% by mass or more and 1.2% by mass or less based on the entire conductive paste.
    Figure JPOXMLDOC01-appb-C000001
    (However, in the formula (1), R 1 represents a chain hydrocarbon group having 10 to 20 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, in the formula (2), R 2 represents an alkyl group, an alkenyl group, or an alkynyl group having 8 to 16 carbon atoms, R 3 represents an oxyethylene group, an oxypropylene group, or a methylene group; 4 oxyethylene groups, or represents a oxypropylene group, R 3 and R 4 may be the same or may be different. also, the N atom in formula (2), R 3 and R 4 (It is not directly bonded to the O atom therein, and Y is a number from 0 to 2 and Z is a number from 1 to 2.)
  2.  前記一般式(1)中、Rは、炭素数10~20の直鎖状炭化水素基を表す請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein in the general formula (1), R 1 represents a linear hydrocarbon group having 10 to 20 carbon atoms.
  3.  前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種類の金属粉末を含む請求項1又は請求項2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2, wherein the conductive powder includes at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu, and an alloy thereof.
  4.  前記導電性粉末を、導電性ペースト全体に対して、40質量%以上60質量%以下含有する請求項1~3のいずれか一項に記載の導電性ペースト。 (4) The conductive paste according to any one of (1) to (3), wherein the conductive powder is contained in an amount of 40% by mass or more and 60% by mass or less based on the whole conductive paste.
  5.  前記導電性粉末は、平均粒径が0.05μm以上1.0μm以下である請求項1~4のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4, wherein the conductive powder has an average particle size of 0.05 μm or more and 1.0 μm or less.
  6.  前記セラミック粉末は、ペロブスカイト型酸化物を含む、請求項1~5のいずれか一項に記載の導電性ペースト。 (6) The conductive paste according to any one of (1) to (5), wherein the ceramic powder contains a perovskite oxide.
  7.  前記セラミック粉末は、平均粒径が0.01μm以上0.5μm以下である請求項1~6のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 6, wherein the ceramic powder has an average particle size of 0.01 μm or more and 0.5 μm or less.
  8.  前記バインダー樹脂は、セルロース系樹脂、アクリル系樹脂及びブチラール系樹脂のうちの少なくとも1つを含む請求項1~7のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 7, wherein the binder resin includes at least one of a cellulose resin, an acrylic resin, and a butyral resin.
  9.  積層セラミックコンデンサの内部電極用である請求項1~8のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 8, which is used for an internal electrode of a multilayer ceramic capacitor.
  10.  請求項1~8のいずれか一項に記載の導電性ペーストを用いて形成された電子部品。 An electronic component formed by using the conductive paste according to any one of claims 1 to 8.
  11.  請求項9に記載の導電性ペーストを用いて形成された内部電極層と、誘電体層とを積層した積層体を有する積層セラミックコンデンサ。 A multilayer ceramic capacitor having a laminate in which an internal electrode layer formed by using the conductive paste according to claim 9 and a dielectric layer are laminated.
PCT/JP2019/028713 2018-07-25 2019-07-22 Conductive paste, electronic component, and laminated ceramic capacitor WO2020022291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207037657A KR20210040290A (en) 2018-07-25 2019-07-22 Conductive paste, electronic components and multilayer ceramic capacitors
CN201980048675.4A CN112470236B (en) 2018-07-25 2019-07-22 Conductive paste, electronic component, and multilayer ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139501 2018-07-25
JP2018139501A JP7206671B2 (en) 2018-07-25 2018-07-25 Conductive paste, electronic parts and laminated ceramic capacitors

Publications (1)

Publication Number Publication Date
WO2020022291A1 true WO2020022291A1 (en) 2020-01-30

Family

ID=69181532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028713 WO2020022291A1 (en) 2018-07-25 2019-07-22 Conductive paste, electronic component, and laminated ceramic capacitor

Country Status (5)

Country Link
JP (1) JP7206671B2 (en)
KR (1) KR20210040290A (en)
CN (1) CN112470236B (en)
TW (1) TWI810336B (en)
WO (1) WO2020022291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177420A1 (en) * 2020-03-04 2021-09-10 住友金属鉱山株式会社 Electroconductive paste, electronic component, and laminated ceramic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215047B2 (en) * 2018-09-28 2023-01-31 住友金属鉱山株式会社 Conductive paste, electronic parts, and laminated ceramic capacitors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149457A (en) * 2012-01-19 2013-08-01 Sumitomo Metal Mining Co Ltd Conductive paste for internal electrode
WO2017150438A1 (en) * 2016-02-29 2017-09-08 住友金属鉱山株式会社 Electrically conductive paste, electronic component, and laminated ceramic capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495644B2 (en) 2004-07-30 2010-07-07 Jfeミネラル株式会社 Metal super fine slurry
JP5038935B2 (en) * 2008-02-25 2012-10-03 積水化学工業株式会社 Conductive paste for multilayer ceramic capacitor internal electrode
WO2015141623A1 (en) * 2014-03-20 2015-09-24 積水化学工業株式会社 Electroconductive paste
JP6292014B2 (en) 2014-05-12 2018-03-14 株式会社村田製作所 Conductive paste and ceramic electronic components
KR102410080B1 (en) * 2014-07-31 2022-06-16 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive paste
JP2017143202A (en) * 2016-02-12 2017-08-17 住友金属鉱山株式会社 Paste for internal electrodes, method for manufacturing the same, and multilayer ceramic capacitor
JP2018037630A (en) * 2016-08-25 2018-03-08 住友金属鉱山株式会社 Paste for internal electrodes, method for manufacturing the same, and multilayer ceramic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149457A (en) * 2012-01-19 2013-08-01 Sumitomo Metal Mining Co Ltd Conductive paste for internal electrode
WO2017150438A1 (en) * 2016-02-29 2017-09-08 住友金属鉱山株式会社 Electrically conductive paste, electronic component, and laminated ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177420A1 (en) * 2020-03-04 2021-09-10 住友金属鉱山株式会社 Electroconductive paste, electronic component, and laminated ceramic capacitor

Also Published As

Publication number Publication date
CN112470236B (en) 2023-02-28
CN112470236A (en) 2021-03-09
JP2020017405A (en) 2020-01-30
KR20210040290A (en) 2021-04-13
TWI810336B (en) 2023-08-01
JP7206671B2 (en) 2023-01-18
TW202008394A (en) 2020-02-16

Similar Documents

Publication Publication Date Title
JP7176227B2 (en) Conductive paste, electronic parts and laminated ceramic capacitors
JP7420076B2 (en) Conductive paste, electronic components, and multilayer ceramic capacitors
WO2021106470A1 (en) Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
WO2020022291A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2021177420A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2020067362A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
WO2021060540A1 (en) Electroconductive composition, electroconductive paste, electronic component, and laminated ceramic capacitor
WO2024010075A1 (en) Conductive paste, dried film, internal electrode and layered ceramic capacitor
JP7119454B2 (en) Method for producing organic vehicle and method for producing conductive paste
JP2021064607A (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2021180073A (en) Conductive paste, electronic component, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840892

Country of ref document: EP

Kind code of ref document: A1