KR20090069209A - Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry - Google Patents

Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry Download PDF

Info

Publication number
KR20090069209A
KR20090069209A KR1020080059284A KR20080059284A KR20090069209A KR 20090069209 A KR20090069209 A KR 20090069209A KR 1020080059284 A KR1020080059284 A KR 1020080059284A KR 20080059284 A KR20080059284 A KR 20080059284A KR 20090069209 A KR20090069209 A KR 20090069209A
Authority
KR
South Korea
Prior art keywords
slurry
powder
ceramic slurry
ceramic
subcomponent
Prior art date
Application number
KR1020080059284A
Other languages
Korean (ko)
Other versions
KR100951318B1 (en
Inventor
노부타케 히라이
다카시 마키
코타로 하타
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Publication of KR20090069209A publication Critical patent/KR20090069209A/en
Application granted granted Critical
Publication of KR100951318B1 publication Critical patent/KR100951318B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Ceramic slurry and a manufacture method thereof are provided to secure high dispersibility of main component powder as well as minor component powder, thereby lowering the roughness of surfaces. A method for manufacturing ceramic slurry comprises the following steps of: performing a first dispersing process to a mixture including at least minor component powder in order to control minor component slurry; adding main component powder to the minor component slurry; and performing a second dispersing process so as to obtain ceramic slurry. The minor component powder is one or more compounds having one or more elements selected from the group consisting of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho and Yb. The minor component powder of the minor component slurry has less than 0.1mum of average particle size.

Description

세라믹 슬러리의 제조 방법, 이를 이용하여 제조된 세라믹 슬러리, 세라믹 슬러리를 포함하는 그린시트, 소결체 및 세라믹 콘덴서{Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry}Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry }

본 발명은, 표면 거칠기가 작고 소성 온도 안정성이 높은 그린 시트를 제작할 수 있고, 나아가 쇼트율이 낮은 적층 세라믹 콘덴서를 얻을 수 있는 분산성이 양호한 세라믹 슬러리의 제조 방법, 이를 이용하여 제조된 세라믹 슬러리, 세라믹 슬러리를 포함하는 그린시트, 소결체 및 세라믹 콘덴서에 관한 것이다.The present invention provides a method for producing a ceramic slurry having a good dispersibility, which can produce a green sheet having a small surface roughness and high firing temperature stability, and further capable of obtaining a multilayer ceramic capacitor having a low short rate, a ceramic slurry produced using the same, The present invention relates to a green sheet, a sintered body, and a ceramic capacitor including a ceramic slurry.

종래의 적층 세라믹 콘덴서는, 티탄산바륨(BaTio3)계의 세라믹 유전체 재료를 사용하여 이를 시트형으로 성형하여 그린 시트를 제작하고, 이 그린 시트 상에 전극을 인쇄한 것을 적층하는 공정을 반복함으로써 제작되고 있다.The conventional multilayer ceramic capacitor is manufactured by repeating the process of forming a green sheet by molding it into a sheet shape using a barium titanate (BaTio 3 ) -based ceramic dielectric material and laminating the printed electrode on the green sheet. have.

근래, 전자기기 제품의 소형화에 따라 전자 회로의 고밀도화가 진행되고, 그 결과 적층 세라믹 콘덴서의 소형 대용량화가 크게 요구되고 있다. 그리고 이 요구를 실현하기 위해 내부 전극층과 유전체층의 박층화와 적층수의 증가가 시도되고 있다.In recent years, with the miniaturization of electronic device products, the densification of electronic circuits has progressed, and as a result, there has been a great demand for miniaturization of multilayer ceramic capacitors. In order to realize this demand, the thickness of the internal electrode layer and the dielectric layer is increased and the number of stacked layers is increased.

이로 인해 유전체층을 형성하는 그린 시트도 박층화하고 있고, 그린 시트의 표면 거칠기(요철)가 두께에 대하여 무시할 수 없게 되었다. 이 표면 거칠기에 기인하여 소성 후의 유전체층 두께에 편차가 발생하면, 적층 세라믹 콘덴서의 전계 강도가 불균일해 지고, 단락(쇼트) 불량이 일어나기 때문이다.For this reason, the green sheet which forms a dielectric layer is also made thin, and the surface roughness (unevenness | corrugation) of a green sheet became impossible to ignore about thickness. This is because when the thickness of the dielectric layer after firing is caused due to the surface roughness, the electric field strength of the multilayer ceramic capacitor becomes uneven, and short-circuit (short) defects occur.

따라서, 표면이 평활하고 두께가 균일한 그린 시트를 제작하는 기술이 적층 세라믹 콘덴서의 제조에 불가결하게 되었다. 박층화된 그린 시트의 표면을 평활화하고, 또한 두께를 균일하게 하는데는 그린 시트 중의 세라믹 분말을 미세화하고, 또한 그린 시트 중의 세라믹 분말의 분산성을 높힐 필요가 있다. 또한, 그린 시트 중의 세라믹 분말의 분산이 불충분하면, 소성 후의 세라믹 분말 입경의 안정성, 적층 세라믹 콘덴서의 전기 특성의 안정성에도 악영향을 미친다.Therefore, a technique for producing a green sheet having a smooth surface and uniform thickness has become indispensable for the production of multilayer ceramic capacitors. In order to smooth the surface of the thin green sheet and to make the thickness uniform, it is necessary to refine the ceramic powder in the green sheet and to increase the dispersibility of the ceramic powder in the green sheet. Insufficient dispersion of the ceramic powder in the green sheet also adversely affects the stability of the ceramic powder particle size after firing and the stability of the electrical properties of the multilayer ceramic capacitor.

그린 시트 중의 세라믹 분말의 분산성을 높히기 위해서는 그 원료가 되는 세라믹 슬러리 중의 세라믹 분말의 분산성을 높힐 필요가 있으나, 특허 문헌1에 기재된 바와 같이, 주성분 및 부성분을 함유하는 세라믹 분말을 분산매, 분산제, 바인더, 가소제 등과 소정의 비율로 배합하고, 비즈밀, 볼밀 등의 분산기를 이용하여 혼합·해쇄하여도 세라믹 슬러리 중에 세라믹 분말을 충분히 분산시키기 어렵다. 또한, 특허 문헌2에 기재되어 있는 부성분의 세라믹 분말을 고압 분산 처리하는 방법에 의해서도 균일하게 분산된 세라믹 슬러리를 얻을 수는 없다.In order to increase the dispersibility of the ceramic powder in the green sheet, it is necessary to increase the dispersibility of the ceramic powder in the ceramic slurry used as the raw material. However, as described in Patent Document 1, the ceramic powder containing the main component and the subcomponent may be dispersed in a dispersion medium, a dispersant, Even if it mix | blends with a binder, a plasticizer, etc. in a predetermined ratio, and mixes and disintegrates using a disperser, such as a bead mill and a ball mill, it is difficult to fully disperse a ceramic powder in a ceramic slurry. Moreover, even if the high pressure dispersion process of the ceramic powder of the subcomponent described in patent document 2 is not carried out, a uniformly dispersed ceramic slurry cannot be obtained.

따라서, 세라믹 분말이 균일하게 분산된 세라믹 슬러리를 조제하는 방법이 요구되고 있다.Therefore, there is a need for a method of preparing a ceramic slurry in which ceramic powder is uniformly dispersed.

[특허문헌1] 일본 특개 2001-106578[Patent Document 1] Japanese Patent Laid-Open No. 2001-106578

[특허문헌2] 일본 특개 2007-137693[Patent Document 2] Japanese Patent Laid-Open No. 2007-137693

따라서 본 발명은, 상기 현상을 감안하여 분산성이 양호한 세라믹 슬러리의 제조 방법, 이를 이용하여 제조된 세라믹 슬러리, 세라믹 슬러리를 포함하는 그린시트, 소결체 및 세라믹 콘덴서을 제공하는 것을 과제로 한다.Accordingly, an object of the present invention is to provide a method for producing a ceramic slurry having good dispersibility in view of the above phenomenon, a ceramic slurry manufactured by using the same, a green sheet including the ceramic slurry, a sintered body and a ceramic capacitor.

즉 본 발명에 관한 세라믹 슬러리의 제조 방법은, 유전체 재료로 이용되는 세라믹 슬러리를 제조하는 방법에 있어, 적어도 부성분 분말을 포함하는 혼합물에 제1 분산 처리를 실시하여 부성분 슬러리를 조정하는 공정; 상기 부성분 슬러리에 주성분 분말을 첨가한 후 제2 분산 처리를 실시하여 상기 세라믹 슬러리를 조제하는 공정;을 구비하고, 상기 부성분 분말은 Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho 또는 Yb 중 어느 1종의 원소를 포함하는 화합물로 이루어진 군에서 선택되는 적어도 1종의 화합물로 이루어진 것이고, 상기 부성분 슬러리 중의 상기 부성분 분말의 평균 입경은 0.1㎛ 이하인 것을 특징으로 한다. That is, the manufacturing method of the ceramic slurry which concerns on this invention is a method of manufacturing the ceramic slurry used as a dielectric material, Comprising: The process of adjusting a subsidiary slurry by giving a 1st dispersion process to the mixture containing at least subsidiary powder; And adding a main component powder to the subcomponent slurry to perform a second dispersion treatment to prepare the ceramic slurry, wherein the subcomponent powder is Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y It consists of at least 1 sort (s) of compound chosen from the group which consists of a compound containing any 1 element of Ho, or Yb, The average particle diameter of the said subcomponent powder in the said subcomponent slurry is 0.1 micrometer or less, It is characterized by the above-mentioned.

이러한 것이면, 부성분 분말로서 평균 입경이 0.1㎛ 이하인 나노 입자를 사용하여 비즈밀 등을 이용하여 분산 처리를 행함으로써, 응집되어 있는 부성분 분말이 풀어져 부성분 분말이 균일하게 분산된 부성분 슬러리를 얻을 수 있다. 나아가, 당해 부성분 슬러리에 주성분 분말을 첨가하고, 비즈밀 등을 이용하여 분산 처리를 행함으로써 응집되어 있는 주성분 분말이 풀어져 주성분 분말과 부성분 분말이 균일하게 분산된 세라믹 슬러리를 얻을 수 있다.If it is such a thing, by disperse | distributing using a bead mill etc. using nanoparticles whose average particle diameter is 0.1 micrometer or less as a subsidiary powder, the subsidiary slurry with which the aggregated subcomponent powder was unwound and the subcomponent powder was uniformly dispersed can be obtained. Furthermore, the main component powder is added to the said subcomponent slurry, and it disperse | distributes using a bead mill etc., and the aggregated main component powder is solved, and the ceramic slurry which the main component powder and the subcomponent powder disperse | distributed uniformly can be obtained.

한편, 특허 문헌2에는 부성분 분말의 원료를 가소성하여 얻어진 것(단락번호 [0043][0095])을 분쇄 처리하여 평균 입경 0.1㎛ 이하의 부성분 분말의 슬러리를 조정한 후, 당해 슬러리를 고압 분산 처리하는 것이 기재되어 있으나, 본 발명에서 [부성분 분말]은 특허 문헌2에서 부성분 분말의 [원료]에 상당하고, 실질적으로 2종 이상의 금속 원소를 포함하지 않는 것이다. 그리고 특허 문헌2에 기재된 방법으로는 이와 같이 빈번한 공정을 거쳐 세라믹 슬러리를 제조함에도 불구하고, 얻어진 세라믹 슬러리의 입도 분포는 D50=0.37㎛에 불과하고(단락번호 [0100]), 그 효과는 아직 불충분하다. 이는 부성분 분말의 평균 입경이 0.1㎛ 이하라도, 입경의 편차가 크고 입경이 큰 것도 상당한 비율로 포함되어 있기 때문인 것으로 생각된다. 이에 반해 후술하는 바와 같이, 본 발명에 관한 방법을 이용하여 제조된 세라믹 슬러리는 모두 D99값이 0.35㎛ 이하이고, 주성분 및 부성분의 세라믹 분말이 극히 균일하게 분산된 것이다.On the other hand, Patent Document 2 has a pulverizing process (paragraph number [0095]) obtained by plasticizing the raw material of the subcomponent powder to adjust the slurry of the subcomponent powder having an average particle diameter of 0.1㎛ or less, and then the slurry is subjected to high pressure dispersion treatment. Although it is described, in the present invention, [subcomponent powder] corresponds to [raw material] of the subcomponent powder in Patent Document 2, and is substantially free of two or more metal elements. In the method described in Patent Document 2, although the ceramic slurry is manufactured through such a frequent process, the particle size distribution of the obtained ceramic slurry is only D50 = 0.37 µm (paragraph [0100]), and the effect is still insufficient. Do. It is thought that this is because even if the average particle diameter of the subsidiary powder is 0.1 µm or less, the variation in the particle diameter is large and the particle size is large. On the other hand, as will be described later, all of the ceramic slurries produced using the method according to the present invention have a D99 value of 0.35 µm or less, and the ceramic powders of the main component and the subcomponent are extremely uniformly dispersed.

본 발명에 있어, 상기 분산 처리는 비즈밀을 이용하여 이루어지는 것이 바람직하다.In the present invention, the dispersion treatment is preferably performed using a bead mill.

상기 비즈밀을 이용한 분산 처리는 입경이 0.03~0.3mm인 비즈를 이용하여 5m/s<v<15m/s의 주속(v)으로 이루어지는 것이 바람직하다.Dispersion treatment using the beads mill is preferably made of a circumferential speed (v) of 5m / s <v <15m / s using beads having a particle diameter of 0.03 ~ 0.3mm.

상기 주성분 분말은 티탄산바륨계 유전체 분말인 것이 바람직하다.The main component powder is preferably a barium titanate-based dielectric powder.

상기 제2 분산 처리 전의 상기 티탄산바륨계 유전체 분말의 평균 입경은 0.3㎛ 이하인 것이 바람직하다.It is preferable that the average particle diameter of the said barium titanate type dielectric powder before a said 2nd dispersion process is 0.3 micrometer or less.

상기 부성분 슬러리 중의 부성분 분말의 최대 입경이 상기 제2 분산 처리 전 의 상기 주성분 분말의 평균 입경의 3/4 이하인 것이 바람직하다.It is preferable that the largest particle diameter of the subcomponent powder in the said subcomponent slurry is 3/4 or less of the average particle diameter of the said main component powder before the said 2nd dispersion process.

적어도 상기 부성분 분말을 함유하는 상기 혼합물은 제1 혼합 용제 및 제1 분산제를 함유하고 있는 것이 바람직하다.It is preferable that the said mixture containing the said subcomponent powder contains the 1st mixed solvent and the 1st dispersing agent.

상기 부성분 슬러리에 상기 주성분 분말을 첨가할 때 추가로 제2 분산제를 첨가하는 것이 바람직하다.When adding the main ingredient powder to the subcomponent slurry, it is preferable to further add a second dispersant.

본 발명에 관한 제조 방법에 의해 얻어진 세라믹 슬러리에 제2 혼합 용제 및 바인더를 첨가하고 혼합하여 얻어진 슬러리 또한 본 발명의 하나이다.The slurry obtained by adding and mixing a second mixed solvent and a binder to the ceramic slurry obtained by the production method according to the present invention is also one of the present inventions.

본 발명에 관한 슬러리를 기재 상에 시트형으로 도포함으로써 제조되는 그린 시트 또한 본 발명의 하나이다.The green sheet manufactured by apply | coating the slurry which concerns on this invention in a sheet form on a base material is also one of this invention.

본 발명에 관한 그린 시트를 소성함으로써 제조되는 소결체 또한 본 발명의 하나이다.The sintered compact manufactured by baking the green sheet which concerns on this invention is also one of this invention.

복수의 전극; 상기 전극 사이에 구비된 본 발명에 관한 소결체로 이루어진 유전체층; 을 구비하고 있는 세라믹 콘덴서 또한 본 발명의 하나이다.A plurality of electrodes; A dielectric layer made of the sintered body according to the present invention provided between the electrodes; Also provided is a ceramic capacitor having one of the present invention.

상기 전극은 Ni 또는 Ni 합금을 함유하고 있는 것이 바람직하다.It is preferable that the said electrode contains Ni or a Ni alloy.

본 발명에 의하면, 세라믹 분말의 응집이 풀어지고 분산성이 좋은 세라믹 슬러리를 얻을 수 있다. 이와 같은 세라믹 슬러리를 이용하여 제작된 그린 시트는, 주성분 분말 및 부성분 분말의 분산성이 높아 표면 거칠기가 작으므로 소결 후의 유전체층 두께는 균일해지고, 적층 세라믹 콘덴서의 쇼트율이 낮아진다. 또한, 이와 같은 세라믹 슬러리를 이용하여 제작된 그린 시트는, 조직이 치밀하고 입경이 균일하므로 소성 후의 입경도 안정적이고 전기 특성도 안정적인 동시에 유효한 소성 온도의 온도 범위도 넓어진다.According to the present invention, agglomeration of the ceramic powder is released and a ceramic slurry having good dispersibility can be obtained. Since the green sheet produced using such a ceramic slurry has the high dispersibility of a main component powder and a subcomponent powder, and its surface roughness is small, the thickness of the dielectric layer after sintering becomes uniform and the short rate of a multilayer ceramic capacitor becomes low. In addition, since the green sheet produced using such a ceramic slurry has a dense structure and uniform particle diameter, the particle size after firing is stable, the electrical properties are stable, and the temperature range of the effective firing temperature is also widened.

이하, 본 발명의 일 실시 형태에 관한 적층 세라믹 콘덴서(1)에 대해 도면을 참조로 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, the multilayer ceramic capacitor 1 which concerns on one Embodiment of this invention is demonstrated with reference to drawings.

본 실시 형태에 관한 적층 세라믹 콘덴서(1)는, 도1에 나타낸 바와 같이 유전체층(3)과 내부 전극(4)이 교대로 적층되어 이루어지는 콘덴서 칩체(2)와, 이 콘덴서 칩체(2)의 표면에 구비되어 내부 전극(4)과 도통하는 외부 전극(5)을 구비하고 있다. 내부 전극(4)은 그 단부가 콘덴서 칩체(2)의 대향하는 2개의 표면에 교대로 노출되도록 적층되어, 콘덴서 칩체(2)의 당해 표면 상에 형성되어 소정의 콘덴서 회로를 구성하는 외부 전극(5)과 전기적으로 접속되어 있다.As shown in FIG. 1, the multilayer ceramic capacitor 1 according to the present embodiment includes a capacitor chip body 2 in which a dielectric layer 3 and an internal electrode 4 are alternately stacked, and a surface of the capacitor chip body 2. It is provided with the external electrode 5 provided in the electrical conduction with the internal electrode 4. As shown in FIG. The internal electrodes 4 are laminated so that their ends are alternately exposed on two opposite surfaces of the capacitor chip body 2, and are formed on the surface of the capacitor chip body 2 to form an external capacitor ( 5) is electrically connected.

유전체층(3)은, 세라믹 분말의 소결체로 이루어진 것으로, 본 실시 형태에서는 상기 세라믹 분말은 세라믹 슬러리로 얻어진다. 상기 세라믹 분말을 세라믹 슬러리로 얻는데는 우선, 적어도 부성분 분말을 포함하는 혼합물을 분산 처리(제1 분산 처리)하여 부성분 슬러리를 조정한다.The dielectric layer 3 is made of a sintered body of ceramic powder, and in the present embodiment, the ceramic powder is obtained as a ceramic slurry. In order to obtain the ceramic powder as a ceramic slurry, first, the mixture containing at least the accessory powder is dispersed (first dispersion) to adjust the accessory slurry.

상기 부성분 분말로는, Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, Yb 중 어느 1종의 원소를 포함하는 산화물, 탄산염 등의 화합물의 분말을 들 수 있다. 이와 같은 화합물 분말은, 1종이 사용되어도 좋으며, 2종 이상이 병용되어도 좋다.Examples of the subcomponent powders include powders of compounds such as oxides and carbonates containing any one of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, and Yb. 1 type may be used for such a compound powder, and 2 or more types may be used together.

상기 제1 분산 처리는, 비즈밀을 이용하여 이루어지는 것이 바람직하다. 이와 같은 비즈밀을 이용한 분산 처리는, 입경이 0.03~0.3mm의 비즈를 이용하여 5m/s<v<15m/s의 주속(v)으로 이루어지는 것이 바람직하다. 옥석의 입경 및 주속이 이 범위 보다 작으면 응집되어 있는 부성분 분말을 충분히 풀어서 분산시키기 어렵고, 한편으로 옥석의 입경 및 주속이 이 범위 보다 크면 부성분 분말의 결정성이 저하되어 미분말화 되게 된다.It is preferable that a said 1st dispersion process is performed using a bead mill. It is preferable that the dispersion | distribution process using such a bead mill consists of circumferential speed v of 5 m / s <v <15 m / s using the beads whose particle diameter is 0.03-0.3 mm. If the particle size and the circumferential velocity of the gemstone are smaller than this range, it is difficult to sufficiently disperse the aggregated subcomponent powders and disperse. On the other hand, if the particle size and the circumferential velocity of the gemstone are larger than this range, the crystallinity of the subcomponent powder is lowered and becomes fine powder.

상기 혼합물은 부성분 분말에 추가로 제1 혼합 용제 및 제1 분산제를 함유하고 있는 것이 바람직하다.It is preferable that the said mixture contains a 1st mixed solvent and a 1st dispersing agent in addition to a subsidiary powder.

상기 제1 혼합 용제로는 특별히 한정되지 않으며, 예를 들어 에틸카르비톨, 부탄디올, 2-부톡시에탄올 등의 글리콜류: 메탄올, 에탄올, 프로판올, 부탄올 등의 알콜: 아세톤, 메틸에틸케톤, 디아세톤알콜 등의 케톤류: 초산메틸, 초산에틸 등의 에스테르류: 톨루엔, 크실렌, 초산벤질 등의 방향족류 등을 들 수 있다.It does not specifically limit as said 1st mixed solvent, For example, glycols, such as ethyl carbitol, butanediol, 2-butoxyethanol: alcohols, such as methanol, ethanol, a propanol, butanol: acetone, methyl ethyl ketone, diacetone Ketones such as alcohols; esters such as methyl acetate and ethyl acetate; aromatics such as toluene, xylene, benzyl acetate, and the like.

상기 제1 분산제로는 특별히 한정되지 않으며, 예를 들어 폴리비닐부티랄계 분산제, 폴리비닐아세탈계 분산제, 폴리카르본산계 분산제, 말레산계 분산제, 폴리에틸렌글리콜계 분산제, 알릴에테르코폴리머계 분산제 등을 들 수 있다.The first dispersant is not particularly limited, and examples thereof include polyvinyl butyral dispersants, polyvinyl acetal dispersants, polycarboxylic acid dispersants, maleic acid dispersants, polyethylene glycol dispersants, allyl ether copolymer dispersants, and the like. Can be.

상기 제1 분산 처리에 의해 얻어진 부성분 슬러리 중의 부성분 분말의 평균 입경은 0.1㎛ 이하이고, 바람직하게는 0.02~0.06㎛이다. 0.1㎛를 초과하면 표면의 평활성이 낮고 두께가 불균일한 그린 시트를 얻게 된다.The average particle diameter of the subcomponent powder in the subcomponent slurry obtained by the first dispersion treatment is 0.1 µm or less, preferably 0.02 to 0.06 µm. If it exceeds 0.1 µm, a green sheet having a low surface smoothness and a nonuniform thickness is obtained.

상기 세라믹 슬러리를 얻기 위해서는 이어서, 부성분 슬러리에 주성분 분말을 첨가하여 분산 처리(제2 분산 처리)를 행한다.In order to obtain the said ceramic slurry, main component powder is then added to a subcomponent slurry, and a dispersion process (2nd dispersion process) is performed.

상기 주성분 분말로는 특별히 한정되지 않으나, 예를 들어 BaxCa1-xTiO3(0<x ≤1) 등으로 이루어진 티탄산바륨계 유전체 분말을 적합하게 이용할 수 있다.As the main component powder is not particularly limited, for example, Ba x Ca 1 - x TiO 3 (0 <x ≤1) can be adapted to the barium titanate-based dielectric powder consisting of such use.

상기 티탄산바륨계 유전체 분말의 평균 입경은, 0.3㎛ 이하인 것이 바람직하다. 0.3㎛를 초과하면 표면의 평활성이 낮고 두께가 불균일한 그린 시트를 얻게 된다.It is preferable that the average particle diameter of the said barium titanate type dielectric powder is 0.3 micrometer or less. When the thickness exceeds 0.3 µm, a green sheet having a low surface smoothness and a nonuniform thickness is obtained.

상기 제2 분산 처리 전에, 부성분 슬러리 중의 부성분 분말의 최대 입경은, 주성분 분말의 평균 입경의 3/4 이하인 것이 바람직하다. 부성분 슬러리 중의 부성분 분말의 최대 입경이 이 범위를 초과하면, 소성 시에 주성분 분말과 부성분 분말의 소결 반응이 균일하게 일어나기 어렵게 된다.It is preferable that the largest particle diameter of the subcomponent powder in a subcomponent slurry is 3/4 or less of the average particle diameter of a main component powder before a said 2nd dispersion process. When the maximum particle diameter of the subcomponent powder in the subcomponent slurry exceeds this range, the sintering reaction of the main component powder and the subcomponent powder hardly occurs uniformly during firing.

상기 부성분 슬러리에 주성분 분말을 첨가할 때 추가로 제2 분산제를 첨가하는 것이 바람직하다. 제2 분산제로는 특별히 한정되지 않으며 예를 들어 제1 분산제와 동일한 것을 들 수 있다.It is preferable to further add a second dispersant when adding the main component powder to the subcomponent slurry. It does not specifically limit as a 2nd dispersing agent, For example, the same thing as a 1st dispersing agent is mentioned.

상기 제2 분산 처리는 상기 제1 분산 처리와 마찬가지로 예를 들어 비즈밀을 이용하여 행하는 것이 바람직하다.It is preferable to perform a said 2nd dispersion process similarly to the said 1st dispersion process using a bead mill, for example.

이와 같이 하여 얻어진 세라믹 슬러리에 제2 혼합 용제 및 바인더를 첨가하고 혼합함으로써 그린 시트 형성용의 슬러리를 얻을 수 있다.The slurry for green sheet formation can be obtained by adding and mixing a 2nd mixing solvent and a binder with the ceramic slurry obtained in this way.

제2 혼합 용제로는 특별히 한정되지 않으며 예를 들어 제1 혼합 용제와 동일한 것을 들 수 있다.It does not specifically limit as a 2nd mixed solvent, For example, the same thing as a 1st mixed solvent is mentioned.

상기 바인더로는 특별히 한정되지 않으며 예를 들어 아크릴 수지, 폴리비닐부티랄 수지, 폴리비닐아세탈 수지, 에틸셀룰로스 수지 등을 들 수 있다.The binder is not particularly limited, and examples thereof include acrylic resins, polyvinyl butyral resins, polyvinyl acetal resins, and ethyl cellulose resins.

상기 바인더는 미리 상기 제2 혼합 용제에 용해하고 여과하여 용액으로 해둔 후, 이 용액에 상기 세라믹 슬러리를 첨가하는 것이 바람직하다. 고중합도의 바인더 수지는 용제에 용해되기 어렵고, 통상의 방법으로는 슬러리의 분산성이 악화되는 경향이 있다. 고중합도의 바인더 수지를 용제에 용해한 후, 이 용액에 기타 성분을 첨가함으로써, 그린 시트 형성용 슬러리에서 각 성분의 분산성을 개선할 수 있고, 또한 미용해 바인더 수지의 발생을 억제할 수도 있다. 한편, 상기 제2 혼합 용제 이외의 용제로는 고형분 농도를 높힐 수 없으며 또한 래커 점도의 경시 변화가 증대하는 경향이 있다. It is preferable that the binder is dissolved in the second mixed solvent in advance, filtered and left as a solution, and then the ceramic slurry is added to the solution. Binder resin of high polymerization degree is hard to melt | dissolve in a solvent, and there exists a tendency for the dispersibility of a slurry to deteriorate by a normal method. After dissolving the binder resin of high polymerization degree in a solvent, adding other components to this solution can improve the dispersibility of each component in the slurry for green sheet formation, and can also suppress the generation of undissolved binder resin. On the other hand, it is not possible to raise solid content concentration with solvents other than the said 2nd mixed solvent, and there exists a tendency for the aging change of lacquer viscosity to increase.

이와 같이 하여 제조된 그린 시트 형성용 슬러리를 폴리에틸렌테레프탈레이트 등으로 이루어진 기재 상에 시트형으로 도포함으로써 그린 시트가 형성된다. 유전체층(3)은 얻어진 그린 시트를 소성함으로써 얻어지는 소결체로 이루어진다.The green sheet is formed by applying the thus prepared green sheet forming slurry to a substrate made of polyethylene terephthalate or the like in a sheet form. The dielectric layer 3 consists of a sintered compact obtained by baking the obtained green sheet.

내부 전극(4)으로는 특별히 한정되지 않으며, 예를 들어 Cu, Ni, W, Mo, Ag 등의 금속 또는 이들의 합금 등을 들 수 있다.It does not specifically limit as the internal electrode 4, For example, metals, such as Cu, Ni, W, Mo, Ag, these alloys, etc. are mentioned.

외부 전극(5)으로는 특별히 한정되지 않으며, 예를 들어 Cu, Ni, W, Mo, Ag 등의 금속 또는 이들의 합금; In-Ga, Ag-10Pd 등의 합금; 카본, 그라파이트, 카본과 그라파이트의 혼합물 등으로 이루어진 것을 들 수 있다.It does not specifically limit as the external electrode 5, For example, metals, such as Cu, Ni, W, Mo, Ag, or alloys thereof; Alloys such as In-Ga and Ag-10Pd; Carbon, graphite, the mixture which consists of carbon and graphite, etc. are mentioned.

본 실시 형태에 관한 적층 세라믹 콘덴서의 제조 방법으로는 특별히 한정되지 않으나, 예를 들어 이하와 같이 하여 제조된다. 우선, 상기 그린 시트 상에 상기의 각종 금속 등을 함유하는 내부 전극(4)용 도전 페이스트를 소정의 형상으로 스크린 인쇄하여 내부 전극(4)용 도전성 페이스트막을 형성한다.Although it does not specifically limit as a manufacturing method of the multilayer ceramic capacitor which concerns on this embodiment, For example, it manufactures as follows. First, the electrically conductive paste for internal electrode 4 containing the said various metals etc. is screen-printed in the predetermined shape on the said green sheet, and the electrically conductive paste film for internal electrode 4 is formed.

이어서, 상술한 바와 같이 내부 전극(4)용 도전성 페이스트막이 형성된 복수 의 그린 시트를 적층함과 동시에 이들 그린 시트를 끼워 넣는 형태로 도전성 페이스트막이 형성되어 있지 않은 그린 시트를 적층하여 압착한 후, 필요에 따라 컷팅함으로써 적층체(그린 칩)를 얻는다.Subsequently, as described above, a plurality of green sheets on which the conductive paste film for the internal electrode 4 is formed are laminated, and the green sheets on which the conductive paste film is not formed in the form of sandwiching these green sheets are laminated and pressed, and then necessary. By cutting according to the above, a laminate (green chip) is obtained.

그리고, 얻어진 그린칩에 탈바인더 처리를 실시한 후 당해 그린칩을 예를 들어 환원성 분위기 중에서 소성하여 콘덴서 칩체(2)를 얻는다. 콘덴서 칩체(2)에서는 그린 시트를 소성하여 이루어지는 소결체로 이루어진 유전체층(3)과 내부 전극(4)이 교대로 적층되어 있다.Then, after the binder is subjected to the binder removal process, the green chip is fired in a reducing atmosphere, for example, to obtain the capacitor chip body 2. In the capacitor chip body 2, the dielectric layer 3 and the internal electrode 4 which consist of a sintered compact formed by baking a green sheet are alternately laminated | stacked.

얻어진 콘덴서 칩체(2)에는 유전체층(3)을 재산화하기 위해 어닐 처리를 실시하는 것이 바람직하다.It is preferable to perform an annealing treatment on the obtained capacitor chip body 2 in order to reoxidize the dielectric layer 3.

다음으로, 콘덴서 칩체(2)의 단면에서 노출된 내부 전극(4)의 각단 가장자리각각에 외부 전극(5)이 전기적으로 접속하도록 콘덴서 칩체(2)의 단면 상에 상기 각종 금속으로 이루어진 전극을 도포함으로써 외부 전극(5)을 형성한다. 그리고 필요에 따라 외부 전극(5) 표면에 도금 등에 의해 피복층을 형성한다.Next, an electrode made of the above various metals is applied on the end face of the capacitor chip body 2 so that the external electrode 5 is electrically connected to each end edge of the internal electrode 4 exposed at the end face of the capacitor chip body 2. The external electrode 5 is formed by this. If necessary, a coating layer is formed on the surface of the external electrode 5 by plating or the like.

이하, 실시예를 들어 본 발명을 더욱 상세히 설명하지만 본 발명은 이들 실시예에만 한정되는 것은 아니다.Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to these Examples.

부성분으로 BaCO3, MgO, SiO2, Mn3O4 및 Dy2O3를 준비하였다. 후에 부성분에 첨가하게 되는 주성분인 티탄산바륨(BaCO3)에 대해, Ba 원소의 첨가량은 0.95mol%이고, Si 원소의 첨가량은 1.55mol% 이고, Dy 원소의 첨가량은 0.65mol% 이고, Mg 원 소의 첨가량은 1.2mol%이고, Mn 원소의 첨가량은 0.13mol%이다.BaCO 3 , MgO, SiO 2 , Mn 3 O 4, and Dy 2 O 3 were prepared as side components. For after the main component of the sub-component added to the barium titanate (BaCO 3), the added amount of Ba element is 0.95mol%, and the addition amount of Si elements is 1.55mol%, and the addition amount of 0.65mol% Dy element, Mg source cattle The addition amount is 1.2 mol%, and the addition amount of the Mn element is 0.13 mol%.

다음으로, 준비한 부성분 100중량부에 대해 용제로 에탄올과 톨루엔의 혼합 용액을 390중량부, 분산제로 폴리비닐부티랄계 분산제(세키스이카가꾸코교가부시끼카이샤 제 BL-1)를 6중량부 첨가하고, 호모지나이저로 혼합하였다. 다음으로 이들 혼합물을 원심력으로 비즈와 슬러리의 분리를 행하는 기능이 있는 종형 비즈밀을 이용하여 표1에 나타낸 조건으로 분산·해쇄하였다. 한편, 시료 공급량은 100ml/min이다.Next, 390 parts by weight of a mixed solution of ethanol and toluene were added to 100 parts by weight of the prepared subcomponent, and 6 parts by weight of a polyvinyl butyral dispersant (BL-1, manufactured by Sekisui Chemical Co., Ltd.) was used as a dispersant. And mixed with a homogenizer. Next, these mixtures were dispersed and pulverized under the conditions shown in Table 1 using a vertical bead mill having a function of separating beads and slurry by centrifugal force. On the other hand, the sample supply amount is 100 ml / min.

비즈밀 조건Biz Mill Condition 비즈 지름(mm)Bead diameter (mm) 주속(m·s)Circumferential speed (ms) Pass(회수)Pass 비교예1Comparative Example 1 0.40.4 1212 77 비교예2Comparative Example 2 0.050.05 1515 77 비교예3Comparative Example 3 -- -- -- 비교예4Comparative Example 4 0.050.05 1212 77 실시예1Example 1 0.050.05 1212 77 실시예2Example 2 0.050.05 1212 1414 실시예3Example 3 0.050.05 1010 77 실시예4Example 4 0.10.1 1212 77 실시예5Example 5 0.050.05 88 77

다음으로, 주성분인 티탄산바륨 분말 100중량부에 대해, 분산·해쇄 처리 후의 부성분 슬러리를 각 원소가 상술한 첨가량이 되도록 첨가하였다. 한편, 부성분 슬러리 중의 부성분 분말과 주성분 분말의 입경은 표2에 나타낸 바와 같다. 표2에 기재된 입경은, 주사형 전자 현미경에 의해 각 분말을 관찰하고, 각각 300개의 입자의 입경을 측정하여 그 평균치를 산출하여 구하였다.Next, with respect to 100 weight part of barium titanate powder which is a main component, the subcomponent slurry after dispersion and disintegration process was added so that each element might add the above-mentioned addition amount. On the other hand, the particle diameters of the subcomponent powder and the main component powder in the subcomponent slurry are shown in Table 2. The particle diameter of Table 2 observed each powder with the scanning electron microscope, measured the particle diameter of 300 particle | grains, respectively, and calculated | required the average value.

부성분 입경(㎛)Subsidiary Particle Size (㎛) 주성분 입경(㎛)Principal component particle size (㎛) 비교예4Comparative Example 4 0.20.2 0.20.2 다른예Another example 0.050.05 0.20.2

추가로, 분산제로 상기의 BL-1을 티탄산바륨 분말 100중량부에 대해 0.87wt% 첨가하고, 호모지나이저로 혼합하였다. 다음으로 이들 혼합물을 원심력으로 비즈와 슬러리의 분리를 행하는 기능이 있는 종형 비즈밀을 이용하여 표3에 나타낸 조건으로 분산·해쇄하였다. 한편, 시료 공급량은 100ml/min이다.Furthermore, 0.87 wt% of said BL-1 was added with respect to 100 weight part of barium titanate powders as a dispersing agent, and it mixed with the homogenizer. Next, these mixtures were dispersed and disintegrated under the conditions shown in Table 3 using a vertical bead mill having a function of separating beads and slurry by centrifugal force. On the other hand, the sample supply amount is 100 ml / min.

비즈밀 조건Biz Mill Condition 비즈 지름(mm)Bead diameter (mm) 주속(m·s)Circumferential speed (ms) Pass(회수)Pass 비교예1Comparative Example 1 0.40.4 1212 44 비교예2Comparative Example 2 0.050.05 1515 66 비교예3Comparative Example 3 0.10.1 66 44 비교예4Comparative Example 4 0.050.05 1212 44 실시예1Example 1 0.050.05 1212 44 실시예2Example 2 0.050.05 1212 66 실시예3Example 3 0.050.05 1010 44 실시예4Example 4 0.10.1 1212 1010 실시예5Example 5 0.050.05 88 88

다음으로, 얻어진 세라믹 슬러리를 볼밀에 넣고 톨루엔-에탄올 혼합 용제, 폴리비닐부티랄계 바인더 및 가소제와 함께 적당한 점도가 될 때까지 혼합하고, 그린 시트 형성용 슬러리를 조제하였다. 그리고, 폴리에틸렌테레프탈레이트 필름 상에 닥터브레이드법에 의해 당해 슬러리를 도포하여 그린 시트를 제작하였다.Next, the obtained ceramic slurry was put into a ball mill and mixed with a toluene-ethanol mixed solvent, a polyvinyl butyral system binder, and a plasticizer until it became a suitable viscosity, and the slurry for green sheet formation was prepared. And the said slurry was apply | coated by the doctor blade method on the polyethylene terephthalate film, and the green sheet was produced.

이어서, 각 그린 시트 상에 Ni 분말로 이루어진 내부 전극용 도전 페이스트를 소정의 형상으로 스크린 인쇄한 후, 도전 페이스트막이 형성된 그린 시트를 여러장 적층하고 열압착하여 일체화하여 적층체를 제작하였다.Subsequently, after screen-printing the conductive paste for internal electrodes which consisted of Ni powder on each green sheet to a predetermined | prescribed shape, several green sheets in which the conductive paste film was formed were laminated | stacked, thermocompression-bonded, and the laminated body was produced.

그리고, 이 적층체를 300℃에서 10시간, 공기 중에서 가열함으로써 유기 바인더를 제거한 후, 1100℃의 환원성 분위기에서 2시간 소성하고, 나아가 1000℃의 N2가스 분위기 중에서 2시간 재산화 처리하여 소결하여 콘덴서 칩체를 얻었다. 다음으로, 얻어진 콘덴서 칩체의 단면을 샌드블라스트로 연마한 후, In-Ga 전극을 상기 단면에 도포함으로써 외부 전극을 형성하고, 도1에 예시된 구조를 갖는 적층 세라믹 콘덴서를 제작하였다.The laminate was heated at 300 ° C. for 10 hours in air to remove the organic binder, and then calcined for 2 hours in a reducing atmosphere of 1100 ° C., followed by reoxidation and sintering for 2 hours in an N 2 gas atmosphere at 1000 ° C. The capacitor chip body was obtained. Next, after the end face of the obtained capacitor chip body was polished by sandblasting, an In-Ga electrode was applied to the end face to form an external electrode, and a multilayer ceramic capacitor having the structure illustrated in FIG. 1 was produced.

세라믹 슬러리, 그린 시트 및 적층 세라믹 콘덴서에 대해 이하와 같이 각종 특성을 평가하고 결과를 표4에 기재하였다.Various characteristics of the ceramic slurry, the green sheet, and the multilayer ceramic capacitor were evaluated as follows, and the results are shown in Table 4.

<세라믹 슬러리의 평가><Evaluation of Ceramic Slurry>

제작된 세라믹 슬러리의 입도 분포를 호리바세이사쿠쇼 제의 LA-920으로 측정하였다. D99값이 0.35㎛를 초과한 시료를 NG로 평가하였다.The particle size distribution of the produced ceramic slurry was measured by LA-920 manufactured by Horiba Seisakusho. The sample whose D99 value exceeded 0.35 micrometer was evaluated by NG.

<그린 시트의 평가><Evaluation of Green Sheet>

그린 시트의 표면 거칠기(Rz)를 주사형 프로브 현미경(시마즈 세이사쿠쇼 제 SPM-9500J3)으로 측정하였다. Rz가 0.4㎛를 초과한 시료를 NG로 평가하였다.The surface roughness (Rz) of the green sheet was measured by a scanning probe microscope (SPM-9500J3 manufactured by Shimadzu Corporation). Samples with Rz exceeding 0.4 μm were evaluated by NG.

<적층 세라믹 콘덴서의 평가><Evaluation of Multilayer Ceramic Capacitor>

각 적층 세라믹 콘덴서 당 100개의 샘플의 저항치를 절연 저항계로 측정하여, 저항치가 100kΩ 이하가 되는 샘플을 불량품으로 판정함으로써, 쇼트율을 구하였다. 쇼트율이 10%를 초과한 시료를 NG로 평가하였다.The short rate was calculated | required by measuring the resistance value of 100 samples per laminated ceramic capacitor with the insulation ohmmeter, and determining the sample whose resistance value becomes 100 k ohm or less as a defective product. Samples with short rates above 10% were evaluated by NG.

세라믹 슬러리의 분산성 D99(㎛)Dispersibility of the Ceramic Slurry D99 (㎛) 시트의 표면 거칠기 Rz(㎛)Surface Roughness Rz (µm) of Sheet 쇼트율 (%)Short rate (%) 비예교1Non-professional 1 0.450.45 0.460.46 1515 비교예2Comparative Example 2 0.420.42 0.480.48 1313 비교예3Comparative Example 3 0.430.43 0.490.49 2020 비교예4Comparative Example 4 0.440.44 0.450.45 3030 실시예1Example 1 0.340.34 0.350.35 55 실시예2Example 2 0.300.30 0.320.32 33 실시예3Example 3 0.340.34 0.300.30 55 실시예4Example 4 0.350.35 0.360.36 44 실시예5Example 5 0.300.30 0.340.34 33

<단판 시료의 제작 방법과 측정 조건><Production Method and Measurement Conditions of Single-Plate Samples>

단판의 평가 시료는 이하와 같이 하여 제작하였다. 그린 시트를 1cm 각으로 잘라, 두께가 1mm가 되도록 쌓았다. 다음으로 이것을 1000kg/cm3의 압력으로 성형하였다. 이어서 수지 성분을 소각하기 위해 300℃에서 10시간, 대기 중에서 소성하고 그 후 표5에 나타내는 소성 온도 및 환원 분위기 중에서 2시간 소성하였다. 그 후, 질소 가스 중에서 1000℃로 안정시켜 2시간 재산화 처리를 하였다.The evaluation sample of the single plate was produced as follows. The green sheets were cut at 1 cm squares and stacked to have a thickness of 1 mm. This was then molded at a pressure of 1000 kg / cm 3 . Next, in order to incinerate a resin component, it baked at 300 degreeC in air | atmosphere for 10 hours, and baked at the baking temperature and reducing atmosphere shown in Table 5 after that for 2 hours. Thereafter, the mixture was stabilized at 1000 ° C. in nitrogen gas and subjected to reoxidation for 2 hours.

얻어진 단판 시료에 대해 밀도, 입경 및 유효 소성 온도 범위를 이하와 같이 하여 평가하고 결과를 표5에 기재하였다.About the obtained single plate sample, the density, particle diameter, and effective baking temperature range were evaluated as follows, and the result was shown in Table 5.

밀도(g/cm3)는 아르키메데스법을 이용하여 측정하였다.Density (g / cm 3 ) was measured using the Archimedes method.

입경 0.5㎛ 이상의 입자의 유무는 주사형 전자 현미경에 의해 소결체의 입경을 측정함으로써 판정하였다.The presence or absence of the particle | grains of particle size 0.5 micrometer or more was determined by measuring the particle diameter of a sintered compact with a scanning electron microscope.

유효 소성 온도 범위는 밀도 5.8g/cm3 이상, 입경 0.5㎛ 이상의 입자가 없는 것을 조건으로 하는 소성 온도의 유효 범위를 나타낸다.The effective firing temperature range indicates the effective range of the firing temperature on the condition that there are no particles having a density of 5.8 g / cm 3 or more and a particle diameter of 0.5 µm or more.

밀도가 5.8g/cm3 이상, 소결 후의 입경이 0.5㎛ 미만, 유효 소성 온도 범위가 20℃ 이상의 각 조건 중, 적어도 어느 하나를 만족하지 않는 경우, 원하는 특성을 얻지 못한 것으로 하여 평가 결과를 [NG]로 하였다.If the density is 5.8 g / cm 3 or more, the particle size after sintering is less than 0.5 μm, and the effective firing temperature range does not satisfy at least one of the conditions of 20 ° C. or more, the evaluation results are regarded as failing to obtain desired characteristics. ].

평가evaluation 소성온도(℃)Firing temperature (℃) 밀도(g/cm3)Density (g / cm 3 ) 0.5㎛ 이상 입자의 유무Presence of particles over 0.5㎛ 유효 소성 온도 범위(℃)Effective firing temperature range (℃) NGNG 비교예1 Comparative Example 1 11501150 5.745.74 소성 불충분Plastic insufficiency NGNG 11551155 5.805.80 radish 5℃ (1155~1160℃)5 ℃ (1155 ~ 1160 ℃) NGNG 11601160 5.855.85 radish NGNG 11651165 5.895.89 U NGNG 비교예2 Comparative Example 2 11251125 5.765.76 radish radish NGNG 11301130 5.835.83 U NGNG 비교예3 Comparative Example 3 11201120 5.795.79 소성 불충분Plastic insufficiency NGNG 11251125 5.825.82 radish 15℃ (1125~1140℃)15 ℃ (1125 ~ 1140 ℃) NGNG 11401140 5.895.89 radish NGNG 11451145 5.895.89 U NGNG 비교예4 Comparative Example 4 11651165 5.795.79 소성 불충분Plastic insufficiency radish NGNG 11901190 5.855.85 U NGNG 실시예1 Example 1 11201120 5.705.70 소성 불충분Plastic insufficiency 11251125 5.805.80 radish 65℃ (1125~1190℃) 65 ℃ (1125 ~ 1190 ℃) 11301130 5.835.83 radish 11341134 5.875.87 radish 11491149 5.935.93 radish 11761176 5.905.90 radish 11901190 5.915.91 radish NGNG 11951195 5.925.92 U NGNG 실시예2 Example 2 11201120 5.705.70 소성 불충분Plastic insufficiency 11251125 5.805.80 radish 85℃ (1125~1210℃) 85 ℃ (1125 ~ 1210 ℃) 11301130 5.835.83 radish 11341134 5.875.87 radish 11501150 5.935.93 radish 11741174 5.905.90 radish 12101210 5.915.91 radish NGNG 12151215 5.925.92 U NGNG 실시예3 Example 3 11201120 5.705.70 소성 불충분Plastic insufficiency 11251125 5.855.85 radish 65℃ (1125~1190℃) 65 ℃ (1125 ~ 1190 ℃) 11301130 5.845.84 radish 11341134 5.865.86 radish 11481148 5.875.87 radish 11751175 5.895.89 radish 11901190 5.905.90 radish NGNG 11951195 5.905.90 U NGNG 실시예4 Example 4 11251125 5.765.76 소성 불충분Plastic insufficiency 11301130 5.835.83 radish 30℃ (1130~1160℃) 30 ℃ (1130 ~ 1160 ℃) 11431143 5.875.87 radish 11501150 5.935.93 radish 11601160 5.905.90 radish NGNG 11651165 5.915.91 U NGNG 실시예5 Example 5 11251125 5.765.76 소성 불충분Plastic insufficiency 11301130 5.835.83 radish 30℃ (1130~1160℃) 30 ℃ (1130 ~ 1160 ℃) 11431143 5.875.87 radish 11501150 5.935.93 radish 11601160 5.905.90 radish NGNG 11651165 5.915.91 U

도 1은, 본 발명의 일 실시 형태에 관한 적층 세라믹 콘덴서의 모식 단면도이다.1: is a schematic cross section of the multilayer ceramic capacitor which concerns on one Embodiment of this invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 적층 세라믹 콘덴서1 multilayer ceramic capacitor

2 콘덴서 칩체2 condenser chip

3 적층체층3 laminate layer

4 내부 전극4 internal electrodes

5 외부 전극5 external electrodes

Claims (13)

유전체 재료로 이용되는 세라믹 슬러리를 제조하는 방법에 있어,In the method for producing a ceramic slurry used as a dielectric material, 적어도 부성분 분말을 포함하는 혼합물에 제1 분산 처리를 실시하여 부성분 슬러리를 조정하는 공정;Performing a first dispersion treatment on the mixture containing at least the accessory powder to adjust the accessory slurry; 상기 부성분 슬러리에 주성분 분말을 첨가한 후 제2 분산 처리를 실시하여 상기 세라믹 슬러리를 조제하는 공정;을 구비하고,And adding a main component powder to the subcomponent slurry, and then performing a second dispersion treatment to prepare the ceramic slurry. 상기 부성분 분말은 Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho 또는 Yb 중 어느 1종의 원소를 포함하는 화합물로 이루어진 군에서 선택되는 적어도 1종의 화합물로 이루어진 것이고,The subcomponent powder is made of at least one compound selected from the group consisting of compounds containing any one element of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho or Yb, 상기 부성분 슬러리 중의 상기 부성분 분말의 평균 입경은 0.1㎛ 이하인 세라믹 슬러리의 제조 방법.The average particle diameter of the said subcomponent powder in the said subcomponent slurry is 0.1 micrometer or less, The manufacturing method of the ceramic slurry. 제1 항에 있어서,According to claim 1, 상기 분산 처리는 비즈밀을 이용하여 이루어지는 세라믹 슬러리의 제조 방법.The said dispersion process is a manufacturing method of the ceramic slurry which uses a bead mill. 제2 항에 있어서,The method of claim 2, 상기 비즈밀을 이용한 분산 처리는 입경이 0.03~0.3mm인 비즈를 이용하여 5m/s<v<15m/s의 주속(v)으로 이루어지는 세라믹 슬러리의 제조 방법.The dispersion process using the bead mill is a ceramic slurry production method comprising a circumferential speed (v) of 5 m / s <v <15 m / s using beads having a particle diameter of 0.03 ~ 0.3mm. 제1 항에 있어서,According to claim 1, 상기 주성분 분말은 티탄산바륨계 유전체 분말인 세라믹 슬러리의 제조 방법.The main component powder is a method for producing a ceramic slurry is a barium titanate-based dielectric powder. 제4 항에 있어서,The method of claim 4, wherein 상기 제2 분산 처리 전의 상기 티탄산바륨계 유전체 분말의 평균 입경은 0.3㎛ 이하인 세라믹 슬러리의 제조 방법.The average particle diameter of the said barium titanate type dielectric powder before a said 2nd dispersion process is a manufacturing method of the ceramic slurry which is 0.3 micrometer or less. 제1 항에 있어서,According to claim 1, 상기 부성분 슬러리 중의 부성분 분말의 최대 입경이 상기 제2 분산 처리 전의 상기 주성분 분말의 평균 입경의 3/4 이하인 세라믹 슬러리의 제조 방법.The maximum particle size of the subcomponent powder in the said subcomponent slurry is 3/4 or less of the average particle diameter of the said main component powder before a said 2nd dispersion process. 제1 항에 있어서,According to claim 1, 적어도 상기 부성분 분말을 함유하는 상기 혼합물은 제1 혼합 용제 및 제1 분산제를 함유하고 있는 세라믹 슬러리의 제조 방법.The said mixture containing at least the said subcomponent powder contains the 1st mixed solvent and the 1st dispersing agent, The manufacturing method of the ceramic slurry. 제1 항에 있어서,According to claim 1, 상기 부성분 슬러리에 상기 주성분 분말을 첨가할 때 추가로 제2 분산제를 첨가하는 세라믹 슬러리의 제조 방법.A method of producing a ceramic slurry in which a second dispersant is further added when the main component powder is added to the subcomponent slurry. 제1항 내지 제8항 중 어느 한 항에 기재된 제조 방법에 의해 얻어진 세라믹 슬러리에 제2 혼합 용제 및 바인더를 첨가하고 혼합하여 얻어진 슬러리.The slurry obtained by adding and mixing a 2nd mixing solvent and a binder with the ceramic slurry obtained by the manufacturing method in any one of Claims 1-8. 제9항에 기재된 슬러리를 기재 상에 시트형으로 도포함으로써 제조되는 그린 시트.The green sheet manufactured by apply | coating the slurry of Claim 9 in the sheet form on a base material. 제10항에 기재된 그린 시트를 소성함으로써 제조되는 소결체.The sintered compact manufactured by baking the green sheet of Claim 10. 복수의 전극;A plurality of electrodes; 상기 전극 사이에 구비된 제11항에 기재된 소결체로 이루어진 유전체층;A dielectric layer made of the sintered body according to claim 11 provided between the electrodes; 을 구비하고 있는 세라믹 콘덴서.Ceramic capacitor provided with. 제12항에 있어서,The method of claim 12, 상기 전극은 Ni 또는 Ni 합금을 함유하고 있는 것을 특징으로 하는 세라믹 콘덴서.And the electrode contains Ni or a Ni alloy.
KR1020080059284A 2007-12-25 2008-06-23 Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry KR100951318B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-00333294 2007-12-25
JP2007333294A JP5459951B2 (en) 2007-12-25 2007-12-25 Method for producing ceramic slurry

Publications (2)

Publication Number Publication Date
KR20090069209A true KR20090069209A (en) 2009-06-30
KR100951318B1 KR100951318B1 (en) 2010-04-05

Family

ID=40959555

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080059284A KR100951318B1 (en) 2007-12-25 2008-06-23 Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry

Country Status (2)

Country Link
JP (1) JP5459951B2 (en)
KR (1) KR100951318B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936534B2 (en) * 2012-12-27 2016-06-22 国立大学法人九州大学 Ceramic slurry, method for producing the same, and solid oxide fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255549A (en) * 1997-03-05 1998-09-25 Tdk Corp Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JP2000154059A (en) 1998-11-19 2000-06-06 Ngk Spark Plug Co Ltd Production of piezoelectric ceramics
JP4506138B2 (en) * 2003-09-30 2010-07-21 Tdk株式会社 Method for producing slurry, method for producing green sheet, and method for producing multilayer electronic component
KR100674846B1 (en) * 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP4687412B2 (en) * 2005-11-15 2011-05-25 Tdk株式会社 Method for producing ceramic slurry
JP4930149B2 (en) * 2007-03-29 2012-05-16 Tdk株式会社 Manufacturing method of multilayer electronic component

Also Published As

Publication number Publication date
JP5459951B2 (en) 2014-04-02
KR100951318B1 (en) 2010-04-05
JP2009155142A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
EP1528578B1 (en) Multilayer ceramic capacitor
CN106575574B (en) Paste for internal electrode of multilayer ceramic capacitor and multilayer ceramic capacitor
JP4268844B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP2010153486A (en) Electronic component
JP5018154B2 (en) Internal electrode forming paste, multilayer ceramic electronic component, and manufacturing method thereof
JP4687412B2 (en) Method for producing ceramic slurry
JP4152841B2 (en) Method for producing ceramic slurry, green sheet and multilayer ceramic component
JP4896364B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101021361B1 (en) Dielectric ceramic composition and method of production thereof
KR20110074486A (en) Method for manufacturing dielectric ceramic material
KR100951318B1 (en) Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry
KR100951319B1 (en) Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
KR101101598B1 (en) Method of manufacturing dielectric ceramic material
KR100819981B1 (en) Green sheet, method for producing green sheet, and method for manufacturing electronic parts
JP4001241B2 (en) Multilayer ceramic electronic component and paste for multilayer ceramic electronic component
JP3756885B2 (en) Paint for thick film green sheet, method for producing paint for thick film green sheet, method for producing thick film green sheet, method for producing thick film green sheet and electronic component
JP2007180217A (en) Manufacturing method of laminated ceramic electronic components
JP2006206379A (en) Method for producing green sheet
JP4837721B2 (en) Method for manufacturing dielectric ceramic material
KR100593906B1 (en) A Method for Preparing Metal Inner Electrode Paste Having High Dispersibility for Multi Layer Ceramic Capacitor Having Super High Capacity
KR100881260B1 (en) Coating material for thick green sheet, process for producing the same, and process for producing electronic component with the coating material
KR20220140441A (en) Electrode composition for electrospraying
JP2016199446A (en) Dielectric composition and electronic component
JP2013112536A (en) Method for manufacturing high dielectric constant ceramics

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131224

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 11