JP2009148749A - Heavy metal-containing water treating method - Google Patents

Heavy metal-containing water treating method Download PDF

Info

Publication number
JP2009148749A
JP2009148749A JP2008304262A JP2008304262A JP2009148749A JP 2009148749 A JP2009148749 A JP 2009148749A JP 2008304262 A JP2008304262 A JP 2008304262A JP 2008304262 A JP2008304262 A JP 2008304262A JP 2009148749 A JP2009148749 A JP 2009148749A
Authority
JP
Japan
Prior art keywords
heavy metal
containing water
iron compound
sludge
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008304262A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
浩志 林
Hidekazu Motohashi
英一 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008304262A priority Critical patent/JP2009148749A/en
Publication of JP2009148749A publication Critical patent/JP2009148749A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heavy metal-containing water treating system with simple and practically superior steps, and effectively removing even heavy metals forming a firm complex from drainage. <P>SOLUTION: The treating method includes steps of: adding a reducing iron compound to heavy metal-containing water; forming precipitation by leading the heavy metal-containing water added with the reducing iron compound to a reaction vessel; separating the formed precipitation (sludge) into solid matter and liquid; and returning all or part of the separated sludge to the reaction vessel by turning it to alkalinity. The returned sludge is adjusted to pH of 11-13, the reaction vessel is adjusted to pH of 8.5 or more, and the reducing iron compound precipitation having green rust and iron ferrite as a main component is made to take in heavy metals in a sealed non-oxidation environment for precipitation. The treating method has a step of decomposing the heavy metal complex by adding hydrogen peroxide to the heavy metal-containing water and by Fenton oxidation in the presence of a ferrous compound, prior to the adding step of the iron compound. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、強固な錯体を形成している重金属類についても排水などから効率よく除去することができる経済性に優れた処理システムに関する。より詳しくは、本発明は工程が簡単で実用性に優れ、強固な錯体を形成している重金属類についても効率よく排水などから除去することができる経済性に優れた重金属類含有水の処理システムに関する。   The present invention relates to an economical treatment system capable of efficiently removing heavy metals forming a strong complex from waste water or the like. More specifically, the present invention is a process for treating heavy metal-containing water that is simple in process, excellent in practicality, and capable of efficiently removing heavy metals forming a strong complex from waste water or the like. About.

重金属類を含む排水に2価鉄イオンを添加し、次いで液温を30℃以上に加温維持しつつ空気遮断環境下とし、アルカリを添加して澱物を生成させて除去する処理方法が知られている(特許文献1)。また、重金属類を含む排水にアルカリを添加して重金属類の水酸化物を沈澱させ、この処理液に不活性ガスを導入して溶存酸素を除去した後にアルカリ域で第一鉄塩を添加して重金属類を沈澱化し、さらに空気を吹き込んで液中に残留する重金属類を鉄含有沈澱に取り込んで沈澱化する処理方法が知られている(特許文献2)。この他に、排水に水酸化第一鉄とアルカリを加えて重金属類を沈澱化する一方、そのスラッジの一部をアルカリ添加後の反応槽に循環して処理効率を高める処理方法が知られている(特許文献3)。   A processing method is known in which divalent iron ions are added to wastewater containing heavy metals, and then the temperature of the liquid is maintained at 30 ° C. or higher, in an air-blocking environment, and alkali is added to generate and remove starch. (Patent Document 1). In addition, alkali is added to wastewater containing heavy metals to precipitate heavy metal hydroxides, inert gas is introduced into this treatment liquid to remove dissolved oxygen, and then ferrous salt is added in the alkaline region. There is known a processing method for precipitating heavy metals and then blowing air into the iron-containing precipitate to precipitate the heavy metals remaining in the liquid (Patent Document 2). In addition, ferrous hydroxide and alkali are added to the wastewater to precipitate heavy metals, while a part of the sludge is circulated to the reaction tank after alkali addition to increase the processing efficiency. (Patent Document 3).

しかし、従来の上記処理方法は何れも排水中の重金属類濃度を環境基準値0.01mg/L以下に低減するのが難しい。また、単に水酸化第一鉄を添加する方法では、排水中の酸素が第一鉄イオンと反応するため、予め排水中の溶存酸素を除去する必要があり処理工程が煩わしい。さらに、水酸化第一鉄の沈澱は含有水率が大きく嵩高くなるので、このままではスラリー処理の負担が大きい。   However, it is difficult to reduce the concentration of heavy metals in the waste water to an environmental standard value of 0.01 mg / L or less in any of the above conventional treatment methods. Further, in the method of simply adding ferrous hydroxide, oxygen in the wastewater reacts with ferrous ions, so it is necessary to remove dissolved oxygen in the wastewater in advance, and the treatment process is troublesome. Furthermore, since precipitation of ferrous hydroxide has a large water content and becomes bulky, the burden on slurry processing is large as it is.

また、重金属類排水に第一鉄イオン等を添加し、pH5以上に調整して鉄フェライトまたは疑似鉄フェライトを生成させ、生成したフェライト汚泥を固液分離すると共に、その一部を反応槽に返送して汚泥循環することによって重金属類を排水から除去する処理方法が知られている(特許文献4)。この方法は、フェライト汚泥(FeO・Fe23)が第一鉄と第二鉄を含むことに注目し、第一鉄単独よりも第一鉄と第二鉄を有するほうが容易にフェライト汚泥化することを利用して沈澱を生成させているが、この処理方法のフェライト汚泥は還元力が弱く、この汚泥を反応槽に返送しても重金属類の除去効果には限界がある。 In addition, ferrous ions etc. are added to heavy metal wastewater, adjusted to pH 5 or higher to produce iron ferrite or pseudo iron ferrite, and the generated ferrite sludge is separated into solid and liquid, and part of it is returned to the reaction tank And the processing method which removes heavy metals from waste water by circulating sludge is known (patent document 4). This method pays attention to the fact that ferrite sludge (FeO · Fe 2 O 3 ) contains ferrous iron and ferric iron. Ferrite sludge is easier to form with ferrous iron and ferric iron than ferrous alone. However, the ferrite sludge of this treatment method has a weak reducing power, and even if this sludge is returned to the reaction tank, the effect of removing heavy metals is limited.

さらに、重金属類含有水にアルカリを添加して汚泥を沈澱させ、この汚泥を分離する排水の処理方法において、分離した汚泥の一部にアルカリを添加し、このアルカリ汚泥を反応槽に返送する処理方法が知られている(特許文献5、特許文献6)。しかし、アルカリ汚泥単独では重金属類を環境基準値以下に低減するのは難しい。   Furthermore, in the wastewater treatment method of adding sludge by adding alkali to water containing heavy metals, separating the sludge, adding alkali to a part of the separated sludge and returning this alkali sludge to the reaction tank Methods are known (Patent Documents 5 and 6). However, it is difficult to reduce heavy metals below the environmental standard value with alkaline sludge alone.

また、有機性排水を処理する方法としてフェントン反応を利用した処理方法が知られている。この方法は第1鉄イオンの存在下で過酸化水素を添加してヒドロキシラジカルを生成させ、この酸化力によって有機物を分解する方法であるが(特許文献7等)、この方法を単独に適用しても重金属類を環境基準値以下に低減するのは難しい。
特開平08−267076号公報 特開2002−326090号公報 特開2001−9467号公報 特開2001−321781号公報 特公昭61−156号公報 特開平05−57292号(特許第2910346号)公報 特開2004−181446号公報 特許第3956978号公報
Moreover, the processing method using Fenton reaction is known as a method of processing organic waste water. This method is a method in which hydrogen peroxide is added in the presence of ferrous ions to generate hydroxy radicals, and organic substances are decomposed by this oxidizing power (Patent Document 7, etc.). Even so, it is difficult to reduce heavy metals below the environmental standard.
Japanese Patent Laid-Open No. 08-267076 JP 2002-326090 A JP 2001-9467 A Japanese Patent Laid-Open No. 2001-321781 Japanese Patent Publication No. 61-156 Japanese Patent Laid-Open No. 05-57292 (Japanese Patent No. 2910346) JP 2004-181446 A Japanese Patent No. 395978

従来のフェライト法に基づく処理方法を改善して上記問題を解決した重金属含有水の処理方法が知られている(特許文献8:特許第3956978号)。この処理方法は、グリーンラストと鉄フェライトを含む沈澱が形成されるので、沈澱が圧密化され、固液分離性が良く、かつ常温でフェライト処理が可能であり、重金属類の濃度を環境基準値0.01mg/L以下に低減することができる利点を有している。   A treatment method for heavy metal-containing water that solves the above problems by improving a treatment method based on the conventional ferrite method is known (Patent Document 8: Japanese Patent No. 395978). In this treatment method, a precipitate containing green rust and iron ferrite is formed, so the precipitate is consolidated, solid-liquid separation is good, and ferrite treatment is possible at room temperature, and the concentration of heavy metals is the environmental standard value. It has the advantage that it can be reduced to 0.01 mg / L or less.

グリーンラストと鉄フェライトを含む沈澱を形成して重金属類を除去する上記処理方法は、排水等に含まれる重金属類がキレート剤や有機酸等と反応して強固な錯体を形成していると、重金属類の除去効果が向上しない傾向があった。本発明はこの点を改善し、排水等に含まれる重金属類が強固な錯体を形成している場合でも、重金属類の除去効果に優れた処理方法を提供する。   In the above treatment method for removing heavy metals by forming a precipitate containing green rust and iron ferrite, the heavy metals contained in the waste water and the like react with a chelating agent or an organic acid to form a strong complex. There was a tendency that the removal effect of heavy metals did not improve. The present invention improves this point and provides a treatment method that is excellent in the effect of removing heavy metals even when heavy metals contained in waste water or the like form a strong complex.

本発明は、以下の[1]〜[4]に示す構成によって上記問題を解決した重金属類含有水の処理方法に関する。
〔1〕重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、反応槽に返送する汚泥をpH11〜13に調整し、沈澱化工程の反応槽をpH8.5以上のアルカリ性に
調整し、密閉した非酸化性雰囲気下でグリーンラストと鉄フェライトを主体とする還元性の鉄化合物沈澱を生成させ、該鉄化合物沈澱に重金属類を取り込ませて沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、鉄化合物添加工程に先立ち、重金属類含有水に第1鉄化合物の存在下で過酸化水素を加えてフェントン酸化によって重金属類錯体を分解し〔フェントン酸化工程〕、この処理した重金属類含有水を鉄化合物添加工程に導入することを特徴とする重金属類含有水の処理方法。
〔2〕フェントン酸化工程の後に還元剤を加えて過酸化水素の残留分を除去し〔過酸化水素除去工程〕、この処理後に重金属類含有水を鉄化合物添加工程に導入する上記[1]に記載する重金属類含有水の処理方法。
〔3〕上記[2]の処理方法において、フェントン酸化工程で残留した過酸化水素を除去する還元剤、および鉄化合物添加工程の還元性鉄化合物として硫酸第1鉄を用い、過酸化水素除去工程と鉄化合物添加工程とが兼用される重金属類含有水の処理方法。
〔4〕フェントン酸化工程の酸化分解槽をpH2〜5に調整して処理する上記[1]〜上記[3]の何れかに記載する重金属類含有水の処理方法。
The present invention relates to a method for treating heavy metal-containing water in which the above-described problems are solved by the configurations shown in the following [1] to [4].
[1] A step of adding a reducing iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water added with a reducing iron compound into a reaction vessel to generate a precipitate [precipitation step] , A process for solid-liquid separation of the generated precipitate (sludge) (solid-liquid separation process), a process for converting all or part of the separated sludge to alkalinity and returning it to the reaction tank (sludge return process). The sludge to be returned is adjusted to pH 11 to 13, the reaction tank in the precipitation step is adjusted to alkaline of pH 8.5 or more, and a reducing iron compound mainly composed of green last and iron ferrite in a sealed non-oxidizing atmosphere. In the treatment method of forming a precipitate, incorporating heavy metals into the iron compound precipitate and precipitating, and removing the heavy metals by solid-liquid separation of the precipitate, prior to the iron compound addition step, Of iron compounds A method for treating heavy metal-containing water comprising adding hydrogen peroxide in the presence to decompose a heavy metal complex by Fenton oxidation [Fenton oxidation step] and introducing the treated heavy metal-containing water into the iron compound addition step .
[2] After the Fenton oxidation step, a reducing agent is added to remove hydrogen peroxide residues [hydrogen peroxide removal step], and after this treatment, heavy metal-containing water is introduced into the iron compound addition step. The processing method of the heavy metal containing water described.
[3] In the treatment method of [2] above, using a reducing agent that removes hydrogen peroxide remaining in the Fenton oxidation step and ferrous sulfate as the reducing iron compound in the iron compound addition step, the hydrogen peroxide removal step And a method for treating heavy metal-containing water in which the iron compound addition step is combined.
[4] The method for treating heavy metal-containing water according to any one of [1] to [3] above, wherein the oxidative decomposition tank in the Fenton oxidation step is adjusted to pH 2 to 5 for treatment.

本発明の処理方法は、鉄化合物添加工程に先立ち、重金属類含有水に第1鉄化合物および過酸化水素を加えてフェントン酸化によって重金属類錯体を分解するので、排水等に含まれる重金属類がキレート剤や有機酸等と反応して強固な錯体を形成している場合でも、この重金属類錯体が酸化分解された後にグリーンラストと鉄フェライトを含む沈澱形成工程に導入され、重金属類の除去効果を高めることができる。   In the treatment method of the present invention, since the ferrous compound and hydrogen peroxide are added to the heavy metal-containing water and the heavy metal complex is decomposed by Fenton oxidation prior to the iron compound addition step, the heavy metal contained in the wastewater is chelated. Even if it reacts with an agent or an organic acid to form a strong complex, this heavy metal complex is oxidatively decomposed and then introduced into a precipitation process that includes green last and iron ferrite. Can be increased.

以下、本発明の処理方法について、実施形態に基づいて具体的に説明する。
本発明の処理方法は、重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、反応槽に返送する汚泥をpH11〜13に調整し、沈澱化工程の反応槽をpH8.5以上のアルカリ性に調整し、密閉した非酸化性雰囲気下でグリーンラストと鉄フェライトを主体とする還元性の鉄化合物沈澱を生成させ、該鉄化合物沈澱に重金属類を取り込ませて沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、鉄化合物添加工程に先立ち、重金属類含有水に第1鉄化合物の存在下で過酸化水素を加えてフェントン酸化によって重金属類錯体を分解し〔フェントン酸化工程〕、この処理した重金属類含有水を鉄化合物添加工程に導入することを特徴とする重金属類含有水の処理方法である。
Hereinafter, the processing method of the present invention will be specifically described based on embodiments.
The treatment method of the present invention includes a step of adding a reductive iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water to which the reductive iron compound has been added to a reaction vessel to generate a precipitate [ (Precipitation step), solid-liquid separation of the generated precipitate (sludge) (solid-liquid separation step), and a step (sludge return step) of returning all of the separated sludge to alkalinity and returning it to the reaction tank The sludge to be returned to the reaction tank is adjusted to pH 11 to 13, the reaction tank in the precipitation step is adjusted to alkaline of pH 8.5 or higher, and the reduction mainly consists of green last and iron ferrite in a sealed non-oxidizing atmosphere. In the processing method in which a heavy iron compound precipitate is formed, heavy metal is incorporated into the iron compound precipitate to be precipitated, and this precipitate is solid-liquid separated to remove heavy metals, the heavy compound is contained prior to the iron compound addition step. in water 1 Heavy metals characterized by adding hydrogen peroxide in the presence of an iron compound to decompose heavy metal complexes by Fenton oxidation [Fenton oxidation step], and introducing the treated heavy metal-containing water into the iron compound addition step It is a processing method of contained water.

本発明において、重金属類含有水とは重金属類を含む水を広く意味し、自然発生的および人為的に生じた各種の廃水や排水等を含み、例えば、工場排水や下水、海水、河川水、沼や湖池の水、地表の溜り水、河川等の堰止域の水、地下の流水や溜り水、暗渠の水などであって重金属類を含有するものを云う。なお、以下の説明において、これらの水を含めて排水等と云い、重金属類含有水について重金属類を含有する排水等と云う場合がある。   In the present invention, heavy metal-containing water broadly means water containing heavy metals, and includes various wastewater and wastewater generated naturally and artificially, such as factory wastewater and sewage, seawater, river water, This refers to water from marshes and lakes, surface pools, rivers and other dams, underground running water and pools, underdrains, etc. that contain heavy metals. In the following description, these waters may be referred to as waste water, and the heavy metal containing water may be referred to as waste water containing heavy metals.

また、本発明において重金属類とは、例えば、セレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンなどの重金属元素や金属元素などを云う。本発明の処理システムは排水等に含まれるこれらの汚染源となる重金属類の何れか1種および2種以上に対して優れた除去効果を有する。   In the present invention, heavy metals refer to heavy metal elements such as selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic, and antimony, and metal elements. The treatment system of the present invention has an excellent removal effect with respect to any one or more of the heavy metals that are the sources of contamination contained in the waste water and the like.

なお、本発明において、pHの測定はJIS規格(JIS K0102 12.1)のガラス電極法によるpH測定法によって測定すればよい。   In the present invention, the pH may be measured by the pH measurement method based on the glass electrode method of JIS standard (JIS K0102 12.1).

本処理システムの概略を図1に示す。図示するように本処理システムは、重金属類含有水に還元性鉄化合物を添加する槽10〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽20〔沈澱化工程〕、該反応槽20から抜き出したスラリーを固液分離する手段30〔固液分離工程〕、分離した汚泥にアルカリを添加する槽40、アルカリ性汚泥を反応槽20に返送する管路〔汚泥返送工程〕、これらの各槽および固液分離手段を連通する管路を備えた循環処理系が形成されている。   The outline of this processing system is shown in FIG. As shown in the figure, this treatment system includes a tank 10 for adding a reducing iron compound to heavy metal-containing water [iron compound addition step], and sealing a non-oxidizing atmosphere in which the heavy metal-containing water added with the reducing iron compound is reacted. Reaction tank 20 [precipitation step], means 30 for solid-liquid separation of the slurry extracted from the reaction tank 20 [solid-liquid separation step], tank 40 for adding alkali to the separated sludge, and returning alkaline sludge to the reaction tank 20 A circulation processing system including a pipe line [sludge returning step] and a pipe line communicating these tanks and the solid-liquid separation means is formed.

本発明の処理システムは、さらに上記鉄化合物添加工程に先立ち、重金属類含有水に第1鉄化合物の存在下で過酸化水素を加えてフェントン酸化によって重金属類錯体を分解する酸化分解槽50〔フェントン酸化工程〕が設けられている。第1鉄化合物は排水等を酸化分解槽50に導入する途中で添加してもよく、酸化分解槽50に第1鉄化合物を添加した後に過酸化水素を加えてもよい。   Prior to the iron compound addition step, the treatment system of the present invention further includes an oxidative decomposition tank 50 [Fenton, which decomposes heavy metal complexes by Fenton oxidation by adding hydrogen peroxide to heavy metal-containing water in the presence of a ferrous compound. Oxidation process] is provided. The ferrous compound may be added during the introduction of waste water or the like into the oxidative decomposition tank 50, and hydrogen peroxide may be added after the ferrous compound is added to the oxidative decomposition tank 50.

フェントン酸化工程の酸化分解槽50はpH2〜5に調整し、好ましくはpH3〜4に調整すると良い。反応中にpHが上昇する場合には硫酸または塩酸を添加してpHを下げればよい。   The oxidative decomposition tank 50 in the Fenton oxidation process is adjusted to pH 2-5, preferably pH 3-4. If the pH rises during the reaction, sulfuric acid or hydrochloric acid may be added to lower the pH.

酸化分解槽50では、第1鉄イオン[Fe2+]の存在下で、過酸化水素[H2O2]を加えると、過酸化水素がヒドロキシラジカル[HO+]とヒドロキシイオン[OH-]に分解するフェントン反応を生じ、このヒドロキシラジカル[HO+]によって重金属類の錯体が分解される。ヒドロキシラジカルの酸化力は強いので、排水等に含まれる重金属類がキレート剤や有機酸等と反応して強固な錯体を形成している場合でも、この重金属類錯体を酸化分解することができる。さらに、排水中に有機物が含まれているときには、この有機物も分解される。 In the oxidative decomposition tank 50, when hydrogen peroxide [H 2 O 2 ] is added in the presence of ferrous ions [Fe 2+ ], the hydrogen peroxide is converted into hydroxyl radicals [HO + ] and hydroxy ions [OH ]. A Fenton reaction that decomposes into a heavy metal is produced, and the complex of heavy metals is decomposed by this hydroxy radical [HO + ]. Since the oxidizing power of hydroxy radicals is strong, even when heavy metals contained in waste water or the like react with a chelating agent or an organic acid to form a strong complex, this heavy metal complex can be oxidatively decomposed. Furthermore, when organic matter is contained in the waste water, this organic matter is also decomposed.

さらに、図1の処理システムでは、酸化分解槽50の次に、残留した過酸化水素を除去する過酸化水素除去槽51〔過酸化水素除去工程〕が設けられている。上記除去槽51には還元剤を添加して残留した過酸化水素が除去される。還元剤としては、亜硫酸イオン[SO3 2-]、蓚酸、アスコルビン酸,硫酸鉄、鉄粉などを用いることができる。残留した過酸化水素はこれらの還元剤と反応して分解される。 Further, in the treatment system of FIG. 1, a hydrogen peroxide removal tank 51 (hydrogen peroxide removal process) for removing residual hydrogen peroxide is provided after the oxidative decomposition tank 50. The removal tank 51 is added with a reducing agent to remove residual hydrogen peroxide. As the reducing agent, sulfite ions [SO 3 2− ], oxalic acid, ascorbic acid, iron sulfate, iron powder and the like can be used. Residual hydrogen peroxide reacts with these reducing agents and is decomposed.

上記フェントン反応によってヒドロキシラジカルが生じる際に、第1鉄イオン[Fe2+]が第2鉄イオン[Fe3+]に酸化され、水酸化第2鉄の沈澱が生じる。また、上記過酸化水素除去工程において水酸化第2鉄の沈澱が形成される。これらの沈澱は後段のグリーンラスト/鉄フライト沈澱に取り込まれるので、上記酸化分解工程および過酸化水素除去工程において除去しなくてもよい。なお、これらの沈澱の吸着物が後段のグリーンラスト/鉄フライト沈澱にダメージを与えるようであれば、上記沈澱を除去する。 When hydroxy radicals are generated by the Fenton reaction, ferrous ions [Fe 2+ ] are oxidized to ferric ions [Fe 3+ ], and precipitation of ferric hydroxide occurs. Further, ferric hydroxide precipitate is formed in the hydrogen peroxide removal step. Since these precipitates are incorporated into the subsequent green last / iron flight precipitation, they need not be removed in the oxidative decomposition step and the hydrogen peroxide removal step. If the adsorbate of these precipitates damages the subsequent green last / iron flight precipitate, the precipitate is removed.

残留過酸化水素を除去する還元剤として硫酸第1鉄を用い、これを次工程で排水等に添加する還元性鉄化合物として兼用することができる。この場合、図2に示すように上記除去槽51を省略し、酸化分解槽50で処理した重金属類含有排水等を直接に添加槽10に導入し、該排水等に含まれている残留過酸化水素分解する量の硫酸第1鉄を増加して加えればよい。   Ferrous sulfate can be used as a reducing agent for removing residual hydrogen peroxide, and this can also be used as a reducing iron compound to be added to waste water or the like in the next step. In this case, as shown in FIG. 2, the removal tank 51 is omitted, and heavy metal containing wastewater treated in the oxidative decomposition tank 50 is directly introduced into the addition tank 10, and residual peroxidation contained in the wastewater etc. What is necessary is just to increase and add the quantity of ferrous sulfate which carries out hydrogenolysis.

本発明の処理システムでは、重金属類含有水を添加槽10に導き、還元性鉄化合物を添加する。還元性鉄化合物としては、硫酸第一鉄(FeSO4)、塩化第一鉄(FeCl2)などの第一鉄化合物を用いることができる。第一鉄化合物の添加量はFe2+イオン濃度400〜600mg/Lになる量が適当である。還元性鉄化合物を添加した重金属類含有水を反応槽20に導入する。 In the treatment system of the present invention, the heavy metal-containing water is guided to the addition tank 10 and the reducing iron compound is added. As the reducing iron compound, ferrous compounds such as ferrous sulfate (FeSO 4 ) and ferrous chloride (FeCl 2 ) can be used. The addition amount of the ferrous compound is appropriate such that the Fe 2+ ion concentration is 400 to 600 mg / L. Heavy metal-containing water to which the reducing iron compound is added is introduced into the reaction tank 20.

反応槽20には、還元性鉄化合物を添加した重金属類含有水と共に固液分離工程からアルカリ性汚泥が返送され、重金属類含有水と混合される。このアルカリ性汚泥は後工程において固液分離された沈澱(汚泥)の一部または全部にアルカリを添加してpH11〜13に調整したものである。添加するアルカリ物質としては消石灰、生石灰、水酸化ナトリウムなどを用いることができる。アルカリ性汚泥を混合することによって反応槽20のpHは8.5〜11、好ましくはpH9.0〜10に調整される。   The alkaline sludge is returned to the reaction tank 20 from the solid-liquid separation step together with the heavy metal-containing water to which the reducing iron compound is added, and mixed with the heavy metal-containing water. This alkaline sludge is adjusted to pH 11 to 13 by adding alkali to a part or all of the precipitate (sludge) separated into solid and liquid in the subsequent step. As the alkaline substance to be added, slaked lime, quick lime, sodium hydroxide or the like can be used. By mixing alkaline sludge, the pH of the reaction tank 20 is adjusted to 8.5 to 11, preferably 9.0 to 10.

反応槽20において、還元性鉄化合物を添加した重金属類含有水とアルカリ性返送汚泥とを混合し、非酸化性雰囲気下で反応させることによって、還元性の鉄化合物沈澱を生成させる。この鉄化合物沈澱は、グリーンラストと鉄フェライトの混合物であり、還元性の沈澱である。   In the reaction vessel 20, heavy metal-containing water to which a reducing iron compound is added and alkaline return sludge are mixed and reacted in a non-oxidizing atmosphere to generate a reducing iron compound precipitate. This iron compound precipitate is a mixture of green last and iron ferrite and is a reductive precipitate.

グリーンラストは第一鉄と第二鉄の水酸化物が層状をなす青緑色の物質であり、層間に重金属類のアニオンを取り込んだ構造を有し、例えば次式(1)によって表される。
〔FeII (6-x)FeIII x(OH)12x+〔Ax/n・yH2O〕x - …(1)
(0.9<x<4.2、Fe2+/全Fe=0.3〜0.85)
Green last is a blue-green substance in which a hydroxide of ferrous iron and ferric iron forms a layer, and has a structure in which an anion of heavy metals is incorporated between layers, and is represented by, for example, the following formula (1).
[Fe II (6-x) Fe III x (OH) 12 ] x + [A x / n · yH 2 O] x - ... (1)
(0.9 <x <4.2, Fe 2+ / total Fe = 0.3 to 0.85)

また、鉄フェライトはFeIIの鉄酸塩であり、マグネタイト(FeIIFeIII 34)を主体とするが、一部に重金属類の鉄酸塩を含むものでもよい。本発明の還元性の鉄化合物沈澱は、例えば、重金属類含有水中の重金属類イオンがグリーンラストの層間に取り込まれ、重金属類を一部に含んだ状態で鉄フェライト化する。具体的には、例えば、排水等に含まれる6価セレン(SeO4 2-)は第一鉄化合物によって還元されて4価セレン(SeO3 2-)および元素セレンになり、これらはグリーンラストの層間に取り込まれた状態で沈澱化する。 Further, iron ferrite is an iron salt of Fe II , which is mainly composed of magnetite (Fe II Fe III 3 O 4 ), but may contain a heavy metal ferrate in part. In the reducing iron compound precipitate of the present invention, for example, heavy metal ions in water containing heavy metals are taken in between the layers of the green last, and iron ferrite is formed in a state in which the heavy metals are partially included. Specifically, for example, hexavalent selenium (SeO 4 2- ) contained in waste water and the like is reduced by ferrous compounds to tetravalent selenium (SeO 3 2- ) and elemental selenium, which are It precipitates in the state of being taken in between the layers.

本発明の処理方法は、反応槽20で上記還元性鉄化合物沈澱を生成させるために、空気の流入を遮断した密閉反応槽を用い、非酸化性雰囲気下、pH8.5〜11、好ましくはpH9.0〜10のアルカリ性下で反応させる。液温は10℃〜30℃程度で良く、加熱する必要はない。反応時間は30分〜3時間程度で良い。   The treatment method of the present invention uses a closed reaction tank in which the inflow of air is blocked in order to produce the reductive iron compound precipitate in the reaction tank 20, and has a pH of 8.5 to 11, preferably pH 9 in a non-oxidizing atmosphere. The reaction is carried out under alkaline conditions of 0.0 to 10. The liquid temperature may be about 10 ° C. to 30 ° C. and does not need to be heated. The reaction time may be about 30 minutes to 3 hours.

なお、重金属類含有水に第一鉄化合物とアルカリとを添加して、鉄化合物沈澱を生成させる処理方法であっても、従来のように反応槽が密閉されておらず、非酸化性雰囲気下ではないもの、またアルカリの程度が弱いものは、上記還元力を有する沈澱が生成せず、本発明と同様の効果を得ることはできない。   Even in a treatment method in which ferrous compound and alkali are added to heavy metal-containing water to produce an iron compound precipitate, the reaction vessel is not sealed as in the conventional case, and the reaction is performed in a non-oxidizing atmosphere. Those having a low alkali level do not produce precipitates having the above reducing power, and the same effects as those of the present invention cannot be obtained.

本発明の処理方法においては、グリーンラストと鉄フェライトの混合物からなる上記鉄化合物沈澱が還元力を有するように、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように沈澱を生成させることが好ましく、上記鉄イオン比を0.55〜0.65に制御するのが更に好ましい。この比が上記範囲を外れると重金属類の還元が不十分になり、あるいは澱物の沈降性が劣化するので好ましくない。上記還元性の鉄化合物沈澱を生成させることによって、含有重金属類が還元され、容易に沈澱に取り込まれる。 In the processing method of the present invention, as described above iron compound precipitate comprising a mixture of green rust and iron ferrite has a reducing power, the ratio of divalent iron ion and total iron ions該沈lees [Fe 2+ / Fe (T )] Is preferably 0.4 to 0.8, and the iron ion ratio is more preferably controlled to 0.55 to 0.65. When this ratio is out of the above range, the reduction of heavy metals becomes insufficient, or the sedimentation property of starch deteriorates, which is not preferable. By producing the reducible iron compound precipitate, the contained heavy metals are reduced and easily incorporated into the precipitate.

なお、上記[Fe2+/T-Fe]の測定について、[T-Fe]濃度は鉄化合物沈澱を酸溶解してJIS規格(JIS K0102 57.1)の「1,10フェナントロリン吸光光度法」によって測定すればよく、同様に[Fe2+]濃度は還元剤を添加せずに、上記フェナントロリン吸光光度法によって測定すればよい。両者の吸光度の比から[Fe2+/T-Fe]を算出する。 As for the above [Fe 2+ / T-Fe] measurement, the [T-Fe] concentration was measured by “1,10 phenanthroline absorptiometry” of JIS standard (JIS K0102 57.1) after acid precipitation of iron compound precipitate. Similarly, the [Fe 2+ ] concentration may be measured by the phenanthroline spectrophotometry method without adding a reducing agent. [Fe 2+ / T-Fe] is calculated from the ratio of the absorbances of the two.

反応槽20にアルカリ性汚泥の返送を繰り返し、還元性鉄化合物を添加した重金属類含有水との反応を繰り返すことによって、グリーンラストが酸化して鉄フェライト化することによって最初は深青緑色であった沈澱がしだいに黒色に変化する。グリーンラストの大部分が鉄フェライトになると還元性がなくなるので、本発明の処理方法では、上記鉄化合物沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕を上記範囲内に制御して還元性のある沈澱を生成させる。 By repeating the return of the alkaline sludge to the reaction tank 20 and repeating the reaction with the heavy metal-containing water to which the reducing iron compound is added, the green rust is oxidized and iron ferrite is formed. Gradually turns black. Since the reducibility is lost when most of the green rust becomes iron ferrite, in the treatment method of the present invention, the ratio [Fe 2+ / Fe (T)] of the divalent iron ions to the total iron ions in the iron compound precipitate is set as described above. Control within the range to produce a reducing precipitate.

本発明の処理方法では、上記還元性汚泥(鉄化合物沈澱)を分離してその一部または全部をアルカリ化して反応槽に返送し、非酸化性雰囲気下で反応させ、再び還元性汚泥を沈澱させることを繰り返すことによって、汚泥(沈澱)の還元性を維持しつつ鉄フェライト化するので沈澱の圧密化が進み、澱物の濃度が格段に高まるので重金属類の除去効果が向上する。因みに、水酸化鉄を主体とした沈澱(汚泥)は嵩高く、脱水処理の負担が大きい。また、本発明の処理方法では、沈澱を形成している鉄フェライトはマグネタイトを主体とするため磁性を帯びており、分離した沈澱を磁石に吸着させて処理することができる。   In the treatment method of the present invention, the reducing sludge (iron compound precipitation) is separated, and a part or all of the reduced sludge is alkalinized and returned to the reaction tank, reacted in a non-oxidizing atmosphere, and the reducing sludge is precipitated again. By repeating this process, iron ferrite is formed while maintaining the reducibility of the sludge (precipitation), so that the consolidation of the precipitation proceeds and the concentration of the starch is remarkably increased, thereby improving the effect of removing heavy metals. Incidentally, precipitation (sludge) mainly composed of iron hydroxide is bulky and has a heavy dehydration burden. Further, in the treatment method of the present invention, the iron ferrite forming the precipitate is magnetized because it is mainly composed of magnetite, and the separated precipitate can be adsorbed to a magnet for treatment.

反応槽20から排出されたスラリーは、例えばシックナーなどの固液分離手段に導き、汚泥を槽底に沈降させて分離する。この澱物を固液分離して重金属類を系外に除去することができる。また、既に述べたように、汚泥の一部または全部にアルカリを添加してpH11〜13に調整して反応槽20に戻し、反応槽20において沈澱生成反応を繰り返す。返送する汚泥の割合(返送汚泥の循環比)は反応槽20で生成する沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が上記範囲内になるように定めればよい。なお、本発明の処理方法は、バッチ式または連続式の何れの形式でも実施することができる。 The slurry discharged from the reaction tank 20 is guided to a solid-liquid separation means such as a thickener, for example, and the sludge is settled on the tank bottom and separated. This starch can be solid-liquid separated to remove heavy metals out of the system. Moreover, as already stated, an alkali is added to some or all of the sludge to adjust to pH 11 to 13 and returned to the reaction tank 20, and the precipitation generation reaction is repeated in the reaction tank 20. The ratio of sludge to be returned (circulation ratio of the returned sludge) is determined so that the ratio [Fe 2+ / Fe (T)] of the divalent iron ions and total iron ions in the precipitate generated in the reaction tank 20 is within the above range. Just do it. The treatment method of the present invention can be carried out in either a batch type or a continuous type.

また、先に述べたように、固液分離手段において分離した汚泥の全部または一部はアルカリ性にして反応槽に返送されるが、反応槽に返送されない汚泥はフィルタープレスなどによって濾過脱水し、水分は系外に排水する。一方、濾渣は還元力が残存しており、しかもこの濾渣は透水性が良いので、必要に応じ、図3に示すように、この濾渣に汚染度の高くない別系統の排水等を通水し、濾渣に残存する還元力を利用して排水等に含まれる汚染を分解し、排水等から除去することができる。   Further, as described above, all or part of the sludge separated in the solid-liquid separation means is made alkaline and returned to the reaction tank, but the sludge not returned to the reaction tank is filtered and dehydrated by a filter press or the like, Drains out of the system. On the other hand, the filter residue still has a reducing power, and the filter residue has good water permeability. Therefore, as shown in FIG. The contamination contained in the drainage can be decomposed and removed from the drainage by utilizing the reducing power remaining in the residue.

本発明の処理方法によれば、排水等に含まれる重金属類の濃度を排水基準値の0.01mg/L以下に低減することができる。さらに本処理方法は加熱する必要がなく、常温で鉄フェライト化を進めることができ、圧密されたコンパクトな澱物を形成するので脱水性が格段に良く、重金属類の除去効果も高く、経済性および取扱性に優れた処理方法である。   According to the treatment method of the present invention, the concentration of heavy metals contained in waste water or the like can be reduced to 0.01 mg / L or less of the waste water reference value. Furthermore, this treatment method does not require heating, can be ferritized at room temperature, forms a compact compact starch, and has a very good dehydration, high removal effect of heavy metals, and economic efficiency. In addition, it is a processing method with excellent handleability.

以下、本発明を実施例および比較例によって具体的に示す。なお、澱物のフェライトは磁性によって判定し、澱物の圧密性は嵩高さと沈降性によって判定した。また、重金属類の測定方法について、CdはJIS規格(JIS K0102 55.3)、PbはJIS規格(JIS K0102 54.3)、CuはJIS規格(JIS K0102 52.4)、ZnはJIS規格(JIS K0102 53.3)、Cr(VI)はJIS規格(JIS K0102 65.2.4)のICP発光分光分析法によって測定した。AsはJIS規格(JIS K0102 61.2)の水素化合物発生原子吸光法によって測定した。   Hereinafter, the present invention will be specifically described by Examples and Comparative Examples. In addition, the ferrite of starch was determined by magnetism, and the compactness of starch was determined by bulkiness and sedimentation. For heavy metal measurement methods, Cd is JIS standard (JIS K0102 55.3), Pb is JIS standard (JIS K0102 54.3), Cu is JIS standard (JIS K0102 52.4), Zn is JIS standard (JIS K0102 53.3), Cr (VI) was measured by ICP emission spectroscopic analysis of JIS standard (JIS K0102 65.2.4). As was measured by the hydrogen compound generation atomic absorption method of JIS standard (JIS K0102 61.2).

〔実施例〕
図1に示す本発明の処理フローに従い、重金属類とキレート剤エチレンジアミン4酢酸(EDTA)を含む排水を回分式で以下のように処理した。まず、上記排水(Cd,Pb,Cu,Zn,As,Cr(VI)の濃度:各々2mg/L,EDTA:75mg/L)2.0Lを、酸化分解槽50に導入し、硫酸第1鉄をFe(II)として50mg/Lになるように添加し、これに3.5質量%濃度の過酸化水素13mLを2時間かけて添加した。この排水を除去槽51に導入して硫酸第1鉄100mg/Lを加え、残留過酸化水素を分解除去した後に、添加槽10に導入して、硫酸第一鉄を500mg/Lになるように添加した。添加槽10で硫酸第1鉄を加えた排水を反応槽20に導入して20分反応させ、沈殿を形成させた。次いで、反応槽20から抜き出したスラリーをシックナーで18時間静置して沈殿を沈降させて固液分離した。この固液分離した沈殿の全量をアルカリ添加槽40に導き、25質量%濃度の苛性ソーダを加えてpH11〜13に調整したものを反応槽20に戻して沈殿の生成分離を繰り返した。フェントン酸化分解工程の有無による重金属類の処理結果の比較を表1に示した。
〔Example〕
According to the treatment flow of the present invention shown in FIG. 1, wastewater containing heavy metals and the chelating agent ethylenediaminetetraacetic acid (EDTA) was treated in a batch manner as follows. First, 2.0 L of the waste water (concentration of Cd, Pb, Cu, Zn, As, and Cr (VI): 2 mg / L and EDTA: 75 mg / L, respectively) is introduced into the oxidative decomposition tank 50 and ferrous sulfate. Was added as Fe (II) to 50 mg / L, and 13 mL of hydrogen peroxide having a concentration of 3.5% by mass was added thereto over 2 hours. This waste water is introduced into the removal tank 51 and ferrous sulfate 100 mg / L is added to decompose and remove residual hydrogen peroxide, and then introduced into the addition tank 10 so that the ferrous sulfate is 500 mg / L. Added. Wastewater added with ferrous sulfate in the addition tank 10 was introduced into the reaction tank 20 and reacted for 20 minutes to form a precipitate. Next, the slurry extracted from the reaction vessel 20 was allowed to stand for 18 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. The total amount of the solid-liquid separated precipitate was introduced into the alkali addition tank 40, and the one adjusted to pH 11 to 13 by adding 25% by mass of caustic soda was returned to the reaction tank 20 to repeat the formation and separation of the precipitate. Table 1 shows a comparison of treatment results of heavy metals with and without the Fenton oxidative decomposition process.

表1に示すように、フェントン酸化工程を有する本発明の処理方法と、フェトン酸化工程がない比較例の処理方法と比較すると、EDTA錯体を形成しないAs,Cr(VI)については、何れも処理後の排水中の濃度は0.01mg/L未満であり、同様の濃度であった。一方、EDTAと錯体を形成しやすいCd,Pb,Znについては、本発明の処理方法ではフェントン酸化により処理濃度が大幅に低減された。比較例の処理方法と比較すると、特に、Cdは除去率20%が96%に,Pbは除去率70%から99.5%以上に向上し、排水基準を下回る水質を得た。なお、フェントン酸化工程はpH2〜5の範囲に調整するのが好ましく、pH3〜4の範囲がより好ましいことが実験によって確認された。   As shown in Table 1, when compared with the treatment method of the present invention having the Fenton oxidation step and the treatment method of the comparative example without the Feton oxidation step, both As and Cr (VI) not forming an EDTA complex were treated. The concentration in the later effluent was less than 0.01 mg / L, a similar concentration. On the other hand, for Cd, Pb, and Zn that easily form a complex with EDTA, the treatment concentration was significantly reduced by the Fenton oxidation in the treatment method of the present invention. Compared with the treatment method of the comparative example, in particular, Cd improved the removal rate from 20% to 96%, and Pb improved from the removal rate from 70% to 99.5% or more, and water quality lower than the drainage standard was obtained. The Fenton oxidation step was preferably adjusted to a pH range of 2 to 5, and it was confirmed by experiments that a pH range of 3 to 4 was more preferable.

Figure 2009148749
Figure 2009148749

本発明の処理工程図Process chart of the present invention 本発明に係る他の処理工程図Other process steps according to the present invention

符号の説明Explanation of symbols

10−添加槽、20−反応槽、30−固液分離槽、40−アルカリ添加槽、50−酸化分解槽、51−残留過酸化水素除去槽。 10-addition tank, 20-reaction tank, 30-solid-liquid separation tank, 40-alkali addition tank, 50-oxidative decomposition tank, 51-residual hydrogen peroxide removal tank.

Claims (4)

重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、反応槽に返送する汚泥をpH11〜13に調整し、沈澱化工程の反応槽をpH8.5以上のアルカリ性に調整し
、密閉した非酸化性雰囲気下でグリーンラストと鉄フェライトを主体とする還元性の鉄化合物沈澱を生成させ、該鉄化合物沈澱に重金属類を取り込ませて沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、鉄化合物添加工程に先立ち、重金属類含有水に第1鉄化合物の存在下で過酸化水素を加えてフェントン酸化によって重金属類錯体を分解し〔フェントン酸化工程〕、この処理した重金属類含有水を鉄化合物添加工程に導入することを特徴とする重金属類含有水の処理方法。
A step of adding a reducing iron compound to heavy metal-containing water [iron compound addition step], a step of introducing heavy metal-containing water added with a reducing iron compound into a reaction vessel to generate a precipitate [precipitation step], Sludge that has a step of solid-liquid separation of the precipitate (sludge) (solid-liquid separation step), a step of returning all of the separated sludge to alkalinity and returning it to the reaction tank (sludge return process) and returning it to the reaction tank Is adjusted to pH 11-13, the reaction tank in the precipitation step is adjusted to alkaline of pH 8.5 or more, and a reductive iron compound precipitate mainly composed of green last and iron ferrite is produced in a sealed non-oxidizing atmosphere. In the treatment method in which heavy metal is taken into the iron compound precipitate to be precipitated, and this precipitate is solid-liquid separated to remove heavy metal, prior to the iron compound addition step, the ferrous compound is added to the heavy metal-containing water. In the presence Adding hydrogen peroxide to decompose heavy metals complex by Fenton oxidation [Fenton oxidation step] The method for treating heavy metals containing water to the treated heavy metals containing water and introducing the iron compounds addition step.
フェントン酸化工程の後に還元剤を加えて過酸化水素の残留分を除去し〔過酸化水素除去工程〕、この処理後に重金属類含有水を鉄化合物添加工程に導入する請求項1に記載する重金属類含有水の処理方法。
The heavy metal according to claim 1, wherein a reducing agent is added after the Fenton oxidation step to remove the hydrogen peroxide residue [hydrogen peroxide removal step], and the heavy metal-containing water is introduced into the iron compound addition step after this treatment. Treatment method of contained water.
請求項2の処理方法において、フェントン酸化工程で残留した過酸化水素を除去する還元剤、および鉄化合物添加工程の還元性鉄化合物として硫酸第1鉄を用い、過酸化水素除去工程と鉄化合物添加工程とが兼用される重金属類含有水の処理方法。
3. The treatment method according to claim 2, wherein the reducing agent for removing hydrogen peroxide remaining in the Fenton oxidation step, and ferrous sulfate as the reducing iron compound in the iron compound addition step, the hydrogen peroxide removal step and the iron compound addition A method for treating heavy metal-containing water that is also used in the process.
フェントン酸化工程の酸化分解槽をpH2〜5に調整して処理する請求項1〜請求項3の何れかに記載する重金属類含有水の処理方法。 The processing method of the heavy metal containing water in any one of Claims 1-3 which adjusts the oxidative decomposition tank of a Fenton oxidation process to pH 2-5, and processes.
JP2008304262A 2007-11-30 2008-11-28 Heavy metal-containing water treating method Withdrawn JP2009148749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304262A JP2009148749A (en) 2007-11-30 2008-11-28 Heavy metal-containing water treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007309861 2007-11-30
JP2008304262A JP2009148749A (en) 2007-11-30 2008-11-28 Heavy metal-containing water treating method

Publications (1)

Publication Number Publication Date
JP2009148749A true JP2009148749A (en) 2009-07-09

Family

ID=40918567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304262A Withdrawn JP2009148749A (en) 2007-11-30 2008-11-28 Heavy metal-containing water treating method

Country Status (1)

Country Link
JP (1) JP2009148749A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633322A (en) * 2012-04-17 2012-08-15 西安建筑科技大学 Semi-coke waste water pretreatment method based on Electro-Fenton oxidization technology
WO2012144369A1 (en) 2011-04-21 2012-10-26 旭化成ケミカルズ株式会社 Silica-loaded catalyst
JP2012211055A (en) * 2011-03-31 2012-11-01 Mitsubishi Materials Corp Method for purifying tungsten-containing alkali solution
WO2014196477A1 (en) * 2013-06-04 2014-12-11 栗田工業株式会社 Method and device for treating water containing hardly biodegradable organic substances
US8980183B2 (en) 2010-12-17 2015-03-17 Asahi Kasei Chemicals Corporation Apparatus and method for producing catalyst, and method for producing unsaturated acid or unsaturated nitrile
CN106554140A (en) * 2015-09-29 2017-04-05 中国石油化工股份有限公司 A kind of residual active sludge cracks decrement method
CN107265797A (en) * 2016-04-06 2017-10-20 中国石油化工股份有限公司 A kind of residual active sludge depth decrement method
JP6347886B1 (en) * 2017-12-04 2018-06-27 株式会社セイネン Green last manufacturing method and use thereof
CN112209488A (en) * 2020-07-24 2021-01-12 东莞理工学院 Improvement of catalytic H by modifying domestic garbage incinerator slag2O2Method for treating organic wastewater
CN114620911A (en) * 2022-03-11 2022-06-14 华中科技大学 Electrochemical treatment method for heavy metals in sludge
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products
WO2022227571A1 (en) * 2021-04-29 2022-11-03 东莞理工学院 Method for mxene-enhanced fenton-like oxidative degradation of heavy metal complex and recovery of heavy metal

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980183B2 (en) 2010-12-17 2015-03-17 Asahi Kasei Chemicals Corporation Apparatus and method for producing catalyst, and method for producing unsaturated acid or unsaturated nitrile
JP2012211055A (en) * 2011-03-31 2012-11-01 Mitsubishi Materials Corp Method for purifying tungsten-containing alkali solution
WO2012144369A1 (en) 2011-04-21 2012-10-26 旭化成ケミカルズ株式会社 Silica-loaded catalyst
US9199921B2 (en) 2011-04-21 2015-12-01 Asahi Kasei Chemicals Corporation Silica-supported catalyst
CN102633322A (en) * 2012-04-17 2012-08-15 西安建筑科技大学 Semi-coke waste water pretreatment method based on Electro-Fenton oxidization technology
KR20160014606A (en) 2013-06-04 2016-02-11 쿠리타 고교 가부시키가이샤 Method and device for treating water containing hardly biodegradable organic substances
CN105246840A (en) * 2013-06-04 2016-01-13 栗田工业株式会社 Method and device for treating water containing hardly biodegradable organic substances
WO2014196477A1 (en) * 2013-06-04 2014-12-11 栗田工業株式会社 Method and device for treating water containing hardly biodegradable organic substances
CN105246840B (en) * 2013-06-04 2017-08-08 栗田工业株式会社 The processing method and processing unit of water containing biological hard-decomposed organic
JP2014233692A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Treatment method and treatment device for hard-biodegradable organic matter-containing water
CN106554140A (en) * 2015-09-29 2017-04-05 中国石油化工股份有限公司 A kind of residual active sludge cracks decrement method
CN107265797B (en) * 2016-04-06 2020-06-09 中国石油化工股份有限公司 Method for deeply reducing residual activated sludge
CN107265797A (en) * 2016-04-06 2017-10-20 中国石油化工股份有限公司 A kind of residual active sludge depth decrement method
JP6347886B1 (en) * 2017-12-04 2018-06-27 株式会社セイネン Green last manufacturing method and use thereof
JP2019099423A (en) * 2017-12-04 2019-06-24 株式会社セイネン Production method of green last and its use
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products
CN112209488A (en) * 2020-07-24 2021-01-12 东莞理工学院 Improvement of catalytic H by modifying domestic garbage incinerator slag2O2Method for treating organic wastewater
WO2022227571A1 (en) * 2021-04-29 2022-11-03 东莞理工学院 Method for mxene-enhanced fenton-like oxidative degradation of heavy metal complex and recovery of heavy metal
CN114620911A (en) * 2022-03-11 2022-06-14 华中科技大学 Electrochemical treatment method for heavy metals in sludge

Similar Documents

Publication Publication Date Title
JP2009148749A (en) Heavy metal-containing water treating method
KR100853970B1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP3956978B2 (en) Method and apparatus for treating heavy metal-containing water
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
JP5943176B2 (en) Method and apparatus for treating harmful substance-containing water.
US8709259B2 (en) Method for treating a variety of wastewater streams
JP4973864B2 (en) Method and apparatus for treating heavy metal-containing water
CN105293775A (en) Method adopting combined technology of pre-oxidation and coagulating sedimentation to process wastewater containing thallium and ammonia-nitrogen
US6238571B1 (en) Removal of contaminant metals from waste water
JP2009148750A (en) Heavy metal-containing water treating method
CN109592821A (en) A kind of method of EDTA- thallium complex in removal waste water
JP3928650B2 (en) Reducing water purification material and method for producing the same
JP4747269B2 (en) Method and apparatus for treating heavy metal-containing water
JP2007117816A (en) Water purification method and apparatus
JP4936559B2 (en) Arsenic remover
JP4264226B2 (en) Purification of wastewater, groundwater or soil leachate
JPS643552B2 (en)
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP4706827B2 (en) Method and apparatus for treating organic halide-containing water
JP2006263705A (en) Nitrate nitrogen-containing water treatment method and apparatus
JPH0128629B2 (en)
JP4305938B2 (en) Treatment method for wastewater containing hexavalent chromium
CN117285144A (en) Method for precisely breaking chromium-containing organic wastewater and removing trivalent chromium in situ
JPS6019092A (en) Treatment of waste liquid
JPH06485A (en) Treatment of chelate drainage

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207