JP2009148750A - Heavy metal-containing water treating method - Google Patents

Heavy metal-containing water treating method Download PDF

Info

Publication number
JP2009148750A
JP2009148750A JP2008304263A JP2008304263A JP2009148750A JP 2009148750 A JP2009148750 A JP 2009148750A JP 2008304263 A JP2008304263 A JP 2008304263A JP 2008304263 A JP2008304263 A JP 2008304263A JP 2009148750 A JP2009148750 A JP 2009148750A
Authority
JP
Japan
Prior art keywords
heavy metal
iron compound
precipitate
containing water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008304263A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
浩志 林
Hidekazu Motohashi
英一 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008304263A priority Critical patent/JP2009148750A/en
Publication of JP2009148750A publication Critical patent/JP2009148750A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method with superior economic performance, and efficiently removing heavy metals from drainage containing heavy metals like cadmium even under a low temperature environment. <P>SOLUTION: The treating method includes steps of: adding a reducing iron compound to heavy metal-containing water; forming precipitation by leading the heavy metal-containing water added with the reducing iron compound to a reaction vessel; separating the formed precipitation (sludge) into solid matter and liquid; and returning all or part of the separated sludge to the reaction vessel by turning it to alkalinity. The returned sludge is adjusted to pH of 11-13, the reaction vessel is adjusted to pH of 8.5 or more, and the reducing iron compound precipitation having green rust and iron ferrite as a main component is made to take in heavy metals in a sealed non-oxidation environment for precipitation. A seed crystal containing magnetite is added to the reactor vessel in advance prior to the adding step of the iron compound. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低温環境下においても重金属類を含む排水などから効率よく重金属類を除去する経済性に優れた処理システムに関する。より詳しくは、工程が簡単で実用性に優れ、低温環境下でも効率よく排水に含まれる重金属類を除去する経済性に優れた重金属類含有水の処理システムに関する。   The present invention relates to an economical treatment system that efficiently removes heavy metals from waste water containing heavy metals even in a low temperature environment. More specifically, the present invention relates to a heavy metal-containing water treatment system that is simple in process, excellent in practicality, and efficient in removing heavy metals contained in wastewater efficiently even in a low temperature environment.

重金属類を含む排水に2価鉄イオンを添加し、次いで液温を30℃以上に加温維持しつつ空気遮断環境下とし、アルカリを添加して澱物を生成させて除去する処理方法が知られている(特許文献1)。また、重金属類を含む排水にアルカリを添加して重金属類の水酸化物を沈澱させ、この処理液に不活性ガスを導入して溶存酸素を除去した後にアルカリ域で第一鉄塩を添加して重金属類を沈澱化し、さらに空気を吹き込んで液中に残留する重金属類を鉄含有沈澱に取り込んで沈澱化する処理方法が知られている(特許文献2)。この他に、排水に水酸化第一鉄とアルカリを加えて重金属類を沈澱化する一方、そのスラッジの一部をアルカリ添加後の反応槽に循環して処理効率を高める処理方法が知られている(特許文献3)。   A processing method is known in which divalent iron ions are added to wastewater containing heavy metals, and then the temperature of the liquid is maintained at 30 ° C. or higher, in an air-blocking environment, and alkali is added to generate and remove starch. (Patent Document 1). In addition, alkali is added to wastewater containing heavy metals to precipitate heavy metal hydroxides, inert gas is introduced into this treatment liquid to remove dissolved oxygen, and then ferrous salt is added in the alkaline region. There is known a processing method for precipitating heavy metals and then blowing air into the iron-containing precipitate to precipitate the heavy metals remaining in the liquid (Patent Document 2). In addition, ferrous hydroxide and alkali are added to the wastewater to precipitate heavy metals, while a part of the sludge is circulated to the reaction tank after alkali addition to increase the processing efficiency. (Patent Document 3).

しかし、従来の上記処理方法は何れも排水中の重金属類濃度を環境基準値0.01mg/L以下に低減するのが難しい。また、単に水酸化第一鉄を添加する方法では、排水中の酸素が第一鉄イオンと反応するため、予め排水中の溶存酸素を除去する必要があり処理工程が煩わしい。さらに、水酸化第一鉄の沈澱は含有水率が大きく嵩高くなるので、このままではスラリー処理の負担が大きい。   However, it is difficult to reduce the concentration of heavy metals in the waste water to an environmental standard value of 0.01 mg / L or less in any of the above conventional treatment methods. Further, in the method of simply adding ferrous hydroxide, oxygen in the wastewater reacts with ferrous ions, so it is necessary to remove dissolved oxygen in the wastewater in advance, and the treatment process is troublesome. Furthermore, since precipitation of ferrous hydroxide has a large water content and becomes bulky, the burden on slurry processing is large as it is.

また、重金属類排水に第一鉄イオン等を添加し、pH5以上に調整して鉄フェライトまたは疑似鉄フェライトを生成させ、生成したフェライト汚泥を固液分離すると共に、その一部を反応槽に返送して汚泥循環することによって重金属類を排水から除去する処理方法が知られている(特許文献4)。この方法は、フェライト汚泥(FeO・Fe23)が第一鉄と第二鉄を含むことに注目し、第一鉄単独よりも第一鉄と第二鉄を有するほうが容易にフェライト汚泥化することを利用して沈澱を生成させているが、この処理方法のフェライト汚泥は還元力が弱く、この汚泥を反応槽に返送しても重金属類の除去効果には限界がある。 In addition, ferrous ions etc. are added to heavy metal wastewater, adjusted to pH 5 or higher to produce iron ferrite or pseudo iron ferrite, and the generated ferrite sludge is separated into solid and liquid, and part of it is returned to the reaction tank And the processing method which removes heavy metals from waste water by circulating sludge is known (patent document 4). This method pays attention to the fact that ferrite sludge (FeO · Fe 2 O 3 ) contains ferrous iron and ferric iron. Ferrite sludge is easier to form with ferrous iron and ferric iron than ferrous alone. However, the ferrite sludge of this treatment method has a weak reducing power, and even if this sludge is returned to the reaction tank, the effect of removing heavy metals is limited.

さらに、重金属類含有水にアルカリを添加して汚泥を沈澱させ、この汚泥を分離する排水の処理方法において、分離した汚泥の一部にアルカリを添加し、このアルカリ汚泥を反応槽に返送する処理方法が知られている(特許文献5、特許文献6)。しかし、アルカリ汚泥単独では重金属類を環境基準値以下に低減するのは難しい。
特開平08−267076号公報 特開2002−326090号公報 特開2001−9467号公報 特開2001−321781号公報 特公昭61−156号公報 特開平05−57292号(特許第2910346号)公報 特許第3956978号公報
Furthermore, in the wastewater treatment method of adding sludge by adding alkali to water containing heavy metals, separating the sludge, adding alkali to a part of the separated sludge and returning this alkali sludge to the reaction tank Methods are known (Patent Documents 5 and 6). However, it is difficult to reduce heavy metals below the environmental standard value with alkaline sludge alone.
Japanese Patent Laid-Open No. 08-267076 JP 2002-326090 A JP 2001-9467 A Japanese Patent Laid-Open No. 2001-321781 Japanese Patent Publication No. 61-156 Japanese Patent Laid-Open No. 05-57292 (Japanese Patent No. 2910346) Japanese Patent No. 395978

従来のフェライト法に基づく処理方法を改善して上記問題を解決した重金属含有水の処理方法が知られている(特許文献7:特許第3956978号)。この処理方法は、グリーンラストと鉄フェライトを含む沈澱が形成されるので、沈澱が圧密化され、固液分離性が良く、かつ常温でフェライト処理が可能であり、重金属類の濃度を環境基準値0.01mg/L以下に低減することができる利点を有している。   A treatment method for heavy metal-containing water that solves the above problems by improving a treatment method based on a conventional ferrite method is known (Patent Document 7: Japanese Patent No. 395978). In this treatment method, a precipitate containing green rust and iron ferrite is formed, so the precipitate is consolidated, solid-liquid separation is good, and ferrite treatment is possible at room temperature, and the concentration of heavy metals is the environmental standard value. It has the advantage that it can be reduced to 0.01 mg / L or less.

上記グリーンラストと鉄フェライトを含む沈澱を形成する処理方法は、例えば、水温10℃以下の低温環境下ではマグネタイトの生成が遅い傾向があり、沈降性、圧密性も低くなる傾向があった。本発明はこの点を改善し、低温環境下においても重金属類の除去効果が維持され、沈澱物の固体濃度が高く、沈降性に優れた処理方法を提供する。   In the treatment method for forming a precipitate containing green last and iron ferrite, for example, magnetite formation tends to be slow in a low temperature environment at a water temperature of 10 ° C. or less, and sedimentation and compaction tend to be low. The present invention improves this point, and provides a treatment method in which the effect of removing heavy metals is maintained even in a low temperature environment, the solid concentration of the precipitate is high, and the sedimentation property is excellent.

本発明は、以下の[1]〜[5]に示す構成によって上記問題を解決した重金属類含有水の処理方法に関する。
〔1〕重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、反応槽に返送する汚泥をpH11〜13に調整し、沈澱化工程の反応槽をpH8.5以上のアルカリ性に調整し、密閉した非酸化性雰囲気下でグリーンラストと鉄フェライトを主体とする還元性の鉄化合物沈澱を生成させ、該鉄化合物沈澱に重金属類を取り込ませて沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、反応槽にマグネタイトを含む種晶をあらかじめ添加しておくことを特徴とする重金属類含有水の処理方法。
〔2〕種晶がグリーンラストと鉄フェライトの混合沈澱である上記[1]に記載する重金属類含有水の処理方法。
〔3〕鉄化合物添加工程から汚泥返送工程に至る一連の上記処理工程において生成した還元性鉄化合物沈澱を種晶として用いる上記[1]または上記[2]に記載する重金属類含有水の処理方法。
〔4〕水温10℃以下の低温環境下で鉄化合物添加工程から汚泥返送工程に至る一連の処理を行う場合に、あらかじめ反応槽において室温以上の温度で還元性鉄化合物沈澱を生成させ、これを種晶として上記低温環境下の処理を行う上記[1]〜上記[3]の何れかに記載する重金属類含有水の処理方法。
〔5〕種晶を固液分離槽に添加しておく上記[1]〜上記[4]の何れかに記載する重金属類含有水の処理方法。
The present invention relates to a method for treating heavy metal-containing water that solves the above-described problems by the constitution shown in the following [1] to [5].
[1] A step of adding a reducing iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water added with a reducing iron compound into a reaction vessel to generate a precipitate [precipitation step] , A process for solid-liquid separation of the generated precipitate (sludge) (solid-liquid separation process), a process for converting all or part of the separated sludge to alkalinity and returning it to the reaction tank (sludge return process). The sludge to be returned is adjusted to pH 11 to 13, the reaction tank in the precipitation step is adjusted to alkaline of pH 8.5 or more, and a reducing iron compound mainly composed of green last and iron ferrite in a sealed non-oxidizing atmosphere. In the processing method of generating a precipitate, incorporating heavy metals into the iron compound precipitate to cause precipitation, and separating the precipitate into solid and liquid to remove heavy metals, seed crystals containing magnetite are added to the reaction tank in advance. This Processing method of heavy metal containing water, wherein.
[2] The method for treating heavy metal-containing water as described in [1] above, wherein the seed crystal is a mixed precipitate of green last and iron ferrite.
[3] The method for treating heavy metal-containing water according to [1] or [2] above, wherein the reduced iron compound precipitate generated in the series of treatment steps from the iron compound addition step to the sludge return step is used as a seed crystal. .
[4] When performing a series of treatments from the iron compound addition step to the sludge return step in a low temperature environment with a water temperature of 10 ° C. or lower, a reductive iron compound precipitate is generated in advance in a reaction vessel at a temperature of room temperature or higher. The method for treating heavy metal-containing water according to any one of [1] to [3] above, wherein the treatment is performed as a seed crystal in a low-temperature environment.
[5] The method for treating heavy metal-containing water according to any one of [1] to [4] above, wherein seed crystals are added to a solid-liquid separation tank.

本発明の処理方法は、反応槽にマグネタイトを主体とする種晶をあらかじめ添加しておくので、還元性鉄化合物沈澱が生成しやすく、低温環境下での処理効果が優れる。具体的には、生成する沈澱の固体濃度が格段に高く圧密性に優れ、沈降速度が速い。従って、水温の低い排水や冬季の処理において、初期の処理効果の立ち上がりに優れており、安定な処理効果を得ることができる。   In the treatment method of the present invention, seed crystals mainly composed of magnetite are added in advance to the reaction tank, so that a reductive iron compound precipitate is easily generated, and the treatment effect under a low temperature environment is excellent. Specifically, the solid concentration of the generated precipitate is remarkably high, the compactness is excellent, and the sedimentation rate is fast. Therefore, in the drainage with a low water temperature and the winter treatment, the initial treatment effect is excellent, and a stable treatment effect can be obtained.

以下、本発明の処理方法について、実施形態に基づいて具体的に説明する。
本発明の処理方法は、重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、反応槽に返送する汚泥をpH11〜13に調整し、沈澱化工程の反応槽をpH8.5以上のアルカリ性に調整し、密閉した非酸化性雰囲気下でグリーンラストと鉄フェライトを主体とする還元性の鉄化合物沈澱を生成させ、該鉄化合物沈澱に重金属類を取り込ませて沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、反応槽にマグネタイトを含む種晶をあらかじめ添加しておくことを特徴とする重金属類含有水の処理方法である。
Hereinafter, the processing method of the present invention will be specifically described based on embodiments.
The treatment method of the present invention includes a step of adding a reductive iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water to which the reductive iron compound has been added to a reaction vessel to generate a precipitate [ (Precipitation step), solid-liquid separation of the generated precipitate (sludge) (solid-liquid separation step), and a step (sludge return step) of returning all of the separated sludge to alkalinity and returning it to the reaction tank The sludge to be returned to the reaction tank is adjusted to pH 11 to 13, the reaction tank in the precipitation step is adjusted to alkaline of pH 8.5 or higher, and the reduction mainly consists of green last and iron ferrite in a sealed non-oxidizing atmosphere. In a treatment method in which a heavy iron compound precipitate is formed, heavy metals are taken into the iron compound precipitate and precipitated, and the precipitate is solid-liquid separated to remove heavy metals. It is a method of treating heavy metals containing water, characterized in that to keep pressure.

本発明において、重金属類含有水とは重金属類を含む水を広く意味し、自然発生的および人為的に生じた各種の廃水や排水等を含み、例えば、工場排水や下水、海水、河川水、沼や湖池の水、地表の溜り水、河川等の堰止域の水、地下の流水や溜り水、暗渠の水などであって重金属類を含有するものを云う。なお、以下の説明において、これらの水を含めて排水等と云い、重金属類含有水について重金属類を含有する排水等と云う場合がある。   In the present invention, heavy metal-containing water broadly means water containing heavy metals, and includes various wastewater and wastewater generated naturally and artificially, such as factory wastewater and sewage, seawater, river water, This refers to water from marshes and lakes, surface pools, rivers and other dams, underground running water and pools, underdrains, etc. that contain heavy metals. In the following description, these waters may be referred to as waste water, and the heavy metal containing water may be referred to as waste water containing heavy metals.

また、本発明において重金属類とは、例えば、セレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンなどの重金属元素や金属元素などを云う。本発明の処理システムは排水等に含まれるこれらの汚染源となる重金属類の何れか1種および2種以上に対して優れた除去効果を有する。   In the present invention, heavy metals refer to heavy metal elements such as selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic, and antimony, and metal elements. The treatment system of the present invention has an excellent removal effect with respect to any one or more of the heavy metals that are the sources of contamination contained in the waste water and the like.

なお、本発明において、pHの測定はJIS規格(JIS K0102 12.1)のガラス電極法によるpH測定法によって測定すればよい。   In the present invention, the pH may be measured by the pH measurement method based on the glass electrode method of JIS standard (JIS K0102 12.1).

本処理システムの概略を図1に示す。図示するように本処理システムは、重金属類含有水に還元性鉄化合物を添加する槽10、還元性鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽20、該反応槽20から抜き出したスラリーを固液分離する手段30、分離した汚泥にアルカリを添加する槽40、アルカリ性汚泥を反応槽20に返送する管路、これらの各槽および固液分離手段を連通する管路を備えている。なお、図1に示す処理システムにおいて、反応槽20を2台以上直列に設置し、これらを窒素でパージした密閉構造にし、還元性雰囲気下で上記フェライト化処理を行うようにすると良い。   The outline of this processing system is shown in FIG. As shown in the figure, this treatment system includes a tank 10 for adding a reducing iron compound to heavy metal-containing water, a sealed reaction tank 20 in a non-oxidizing atmosphere for reacting heavy metal-containing water to which a reducing iron compound is added, and the reaction. Means 30 for solid-liquid separation of the slurry extracted from the tank 20, a tank 40 for adding alkali to the separated sludge, a conduit for returning the alkaline sludge to the reaction tank 20, and a pipe for communicating these tanks and the solid-liquid separation means It has a road. In the treatment system shown in FIG. 1, two or more reaction tanks 20 may be installed in series, and these may be sealed in a sealed structure purged with nitrogen so that the ferritization treatment is performed in a reducing atmosphere.

本発明の処理システムでは、重金属類含有水を添加槽10に導き、還元性鉄化合物を添加する。還元性鉄化合物としては、硫酸第一鉄(FeSO4)、塩化第一鉄(FeCl2)などの第一鉄化合物を用いることができる。第一鉄化合物の添加量はFe2+イオン濃度400〜600mg/Lになる量が適当である。還元性鉄化合物を添加した重金属類含有水を反応槽20に導入する。 In the treatment system of the present invention, the heavy metal-containing water is guided to the addition tank 10 and the reducing iron compound is added. As the reducing iron compound, ferrous compounds such as ferrous sulfate (FeSO 4 ) and ferrous chloride (FeCl 2 ) can be used. The addition amount of the ferrous compound is appropriate such that the Fe 2+ ion concentration is 400 to 600 mg / L. Heavy metal-containing water to which the reducing iron compound is added is introduced into the reaction tank 20.

反応槽20には、還元性鉄化合物を添加した重金属類含有水と共に固液分離工程からアルカリ性汚泥が返送され、重金属類含有水と混合される。このアルカリ性汚泥は後工程において固液分離された沈澱(汚泥)の一部または全部にアルカリを添加してpH11〜13に調整したものである。添加するアルカリ物質としては消石灰、生石灰、水酸化ナトリウムなどを用いることができる。アルカリ性汚泥を混合することによって反応槽20のpHは8.5〜11、好ましくはpH9.0〜10に調整される。   The alkaline sludge is returned to the reaction tank 20 from the solid-liquid separation step together with the heavy metal-containing water to which the reducing iron compound is added, and mixed with the heavy metal-containing water. This alkaline sludge is adjusted to pH 11 to 13 by adding alkali to a part or all of the precipitate (sludge) separated into solid and liquid in the subsequent step. As the alkaline substance to be added, slaked lime, quick lime, sodium hydroxide or the like can be used. By mixing alkaline sludge, the pH of the reaction tank 20 is adjusted to 8.5 to 11, preferably 9.0 to 10.

反応槽20において、還元性鉄化合物を添加した重金属類含有水とアルカリ性返送汚泥とを混合し、非酸化性雰囲気下で反応させることによって、還元性の鉄化合物沈澱を生成させる。この鉄化合物沈澱は、グリーンラストと鉄フェライトの混合物であり、還元性の沈澱である。   In the reaction vessel 20, heavy metal-containing water to which a reducing iron compound is added and alkaline return sludge are mixed and reacted in a non-oxidizing atmosphere to generate a reducing iron compound precipitate. This iron compound precipitate is a mixture of green last and iron ferrite and is a reductive precipitate.

グリーンラストは第一鉄と第二鉄の水酸化物が層状をなす青緑色の物質であり、層間に重金属類のアニオンを取り込んだ構造を有し、例えば次式(1)によって表される。
〔FeII (6-x)FeIII x(OH)12x+〔Ax/n・yH2O〕x - …(1)
(0.9<x<4.2、Fe2+/全Fe=0.3〜0.85)
Green last is a blue-green substance in which a hydroxide of ferrous iron and ferric iron forms a layer, and has a structure in which an anion of heavy metals is incorporated between layers, and is represented by, for example, the following formula (1).
[Fe II (6-x) Fe III x (OH) 12 ] x + [A x / n · yH 2 O] x - ... (1)
(0.9 <x <4.2, Fe 2+ / total Fe = 0.3 to 0.85)

また鉄フェライトはFeIIの鉄酸塩であり、マグネタイト(FeIIFeIII 34)を主体とするが、一部に重金属類の鉄酸塩を含むものでもよい。本発明の還元性の鉄化合物沈澱は、例えば、重金属類含有水中の重金属類イオンがグリーンラストの層間に取り込まれ、重金属類を一部に含んだ状態で鉄フェライト化する。具体的には、例えば、排水等に含まれる6価セレン(SeO4 2-)は第一鉄化合物によって還元されて4価セレン(SeO3 2-)および元素セレンになり、これらはグリーンラストの層間に取り込まれた状態で沈澱化する。 Further, iron ferrite is a Fe II ferrate and is mainly composed of magnetite (Fe II Fe III 3 O 4 ), but may also contain a heavy metal ferrate in part. In the reducing iron compound precipitate of the present invention, for example, heavy metal ions in water containing heavy metals are taken in between the layers of the green last, and iron ferrite is formed in a state in which the heavy metals are partially included. Specifically, for example, hexavalent selenium (SeO 4 2- ) contained in waste water and the like is reduced by ferrous compounds to tetravalent selenium (SeO 3 2- ) and elemental selenium, which are It precipitates in the state of being taken in between the layers.

本発明の処理方法は、上記反応槽20にマグネタイトを含む種晶をあらかじめ添加しておく。この種晶はグリーンラストと鉄フェライトの混合沈澱を用いることができる。具体的には、例えば、鉄化合物添加工程から汚泥返送工程に至る一連の上記処理工程において生成した還元性鉄化合物沈澱を種晶として用いることができる。上記したように、この還元性鉄化合物沈澱はマグネタイトを含むので、上記種晶として用いることができる。上記種晶にアルカリを添加してpH11〜13にしたものを反応槽20に添加する。あるいは固液分離槽30に種晶をそのまま添加する。好ましくは固液分離槽30に添加しておくとよい。   In the treatment method of the present invention, seed crystals containing magnetite are added to the reaction vessel 20 in advance. For this seed crystal, a mixed precipitation of green last and iron ferrite can be used. Specifically, for example, the reducible iron compound precipitate generated in the series of treatment steps from the iron compound addition step to the sludge return step can be used as a seed crystal. As described above, since this reducible iron compound precipitate contains magnetite, it can be used as the seed crystal. A solution prepared by adding an alkali to the seed crystal to have a pH of 11 to 13 is added to the reaction vessel 20. Alternatively, the seed crystal is added to the solid-liquid separation tank 30 as it is. Preferably, it may be added to the solid-liquid separation tank 30.

本発明の処理方法を水温10℃以下の低温環境下で実施する場合には、予め反応槽において室温以上の温度で還元性鉄化合物沈澱を生成させ、これを種晶として用い、上記低温環境下での処理を行うと良い。   When the treatment method of the present invention is carried out in a low-temperature environment with a water temperature of 10 ° C. or lower, a reducing iron compound precipitate is generated in advance in a reaction vessel at a temperature of room temperature or higher, and this is used as a seed crystal. It is good to perform the process in.

本発明の処理方法は、反応槽20で上記還元性鉄化合物沈澱を生成させるために、空気の流入を遮断した密閉反応槽を用い、非酸化性雰囲気下、pH8.5〜11、好ましくはpH9.0〜10のアルカリ性下で反応させる。液温は10℃〜30℃程度で良く、加熱する必要はない。反応時間は30分〜3時間程度で良い。   The treatment method of the present invention uses a closed reaction tank in which the inflow of air is blocked in order to produce the reductive iron compound precipitate in the reaction tank 20, and has a pH of 8.5 to 11, preferably pH 9 in a non-oxidizing atmosphere. The reaction is carried out under alkaline conditions of 0.0 to 10. The liquid temperature may be about 10 ° C. to 30 ° C. and does not need to be heated. The reaction time may be about 30 minutes to 3 hours.

なお、重金属類含有水に第一鉄化合物とアルカリとを添加して、鉄化合物沈澱を生成させる処理方法であっても、従来のように反応槽が密閉されておらず、非酸化性雰囲気下ではないもの、またアルカリの程度が弱いものは、上記還元力を有する沈澱が生成せず、本発明と同様の効果を得ることはできない。   Even in a treatment method in which ferrous compound and alkali are added to heavy metal-containing water to produce an iron compound precipitate, the reaction vessel is not sealed as in the conventional case, and the reaction is performed in a non-oxidizing atmosphere. Those having a low alkali level do not produce precipitates having the above reducing power, and the same effects as those of the present invention cannot be obtained.

本発明の処理方法においては、グリーンラストと鉄フェライトの混合物からなる上記鉄化合物沈澱が還元力を有するように、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように沈澱を生成させることが好ましく、上記鉄イオン比を0.55〜0.65に制御するのが更に好ましい。この比が上記範囲を外れると重金属類の還元が不十分になり、あるいは澱物の沈降性が劣化するので好ましくない。上記還元性の鉄化合物沈澱を生成させることによって、含有重金属類が還元され、容易に沈澱に取り込まれる。 In the treatment method of the present invention, the ratio of the divalent iron ions to the total iron ions of the precipitate [Fe 2+ / Fe (T )] Is preferably 0.4 to 0.8, and the iron ion ratio is more preferably controlled to 0.55 to 0.65. When this ratio is out of the above range, the reduction of heavy metals becomes insufficient, or the sedimentation property of starch deteriorates, which is not preferable. By producing the reducible iron compound precipitate, the contained heavy metals are reduced and easily incorporated into the precipitate.

なお、上記[Fe2+/T-Fe]の測定について、[T-Fe]濃度は鉄化合物沈澱を酸溶解してJIS規格(JIS K0102 57.1)の「1,10フェナントロリン吸光光度法」によって測定すればよく、同様に[Fe2+]濃度は還元剤を添加せずに、上記フェナントロリン吸光光度法によって測定すればよい。両者の吸光度の比から[Fe2+/T-Fe]を算出する。 As for the above [Fe 2+ / T-Fe] measurement, the [T-Fe] concentration was measured by “1,10 phenanthroline absorptiometry” of JIS standard (JIS K0102 57.1) after acid precipitation of iron compound precipitate. Similarly, the [Fe 2+ ] concentration may be measured by the phenanthroline spectrophotometry method without adding a reducing agent. [Fe 2+ / T-Fe] is calculated from the ratio of the absorbances of the two.

反応槽20にアルカリ性汚泥の返送を繰り返し、還元性鉄化合物を添加した重金属類含有水との反応を繰り返すことによって、グリーンラストが酸化して鉄フェライト化することによって最初は深青緑色であった沈澱がしだいに黒色に変化する。グリーンラストの大部分が鉄フェライトになると還元性がなくなるので、本発明の処理方法では、上記鉄化合物沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕を上記範囲内に制御して還元性のある沈澱を生成させる。 By repeating the return of the alkaline sludge to the reaction tank 20 and repeating the reaction with the heavy metal-containing water to which the reducing iron compound is added, the green rust is oxidized and iron ferrite is formed. Gradually turns black. Since the reducibility is lost when most of the green rust becomes iron ferrite, in the treatment method of the present invention, the ratio [Fe 2+ / Fe (T)] of the divalent iron ions to the total iron ions in the iron compound precipitate is set as described above. Control within the range to produce a reducing precipitate.

本発明の処理方法では、上記還元性汚泥(鉄化合物沈澱)を分離してその一部または全部をアルカリ化して反応槽に返送し、非酸化性雰囲気下で反応させ、再び還元性汚泥を沈澱させることを繰り返すことによって、汚泥(沈澱)の還元性を維持しつつ鉄フェライト化するので沈澱の圧密化が進み、澱物の濃度が格段に高まるので重金属類の除去効果が向上する。因みに、水酸化鉄を主体とした沈澱(汚泥)は嵩高く、脱水処理の負担が大きい。また、本発明の処理方法では、沈澱を形成している鉄フェライトはマグネタイトを主体とするため磁性を帯びており、分離した沈澱を磁石に吸着させて処理することができる。   In the treatment method of the present invention, the reducing sludge (iron compound precipitation) is separated, and a part or all of the reduced sludge is alkalinized and returned to the reaction tank, reacted in a non-oxidizing atmosphere, and the reducing sludge is precipitated again. By repeating this process, iron ferrite is formed while maintaining the reducibility of the sludge (precipitation), so that the consolidation of the precipitation proceeds and the concentration of the starch is remarkably increased, thereby improving the effect of removing heavy metals. Incidentally, precipitation (sludge) mainly composed of iron hydroxide is bulky and has a heavy dehydration burden. Further, in the treatment method of the present invention, the iron ferrite forming the precipitate is magnetized because it is mainly composed of magnetite, and the separated precipitate can be adsorbed to a magnet for treatment.

反応槽20から排出されたスラリーは、例えばシックナーなどの固液分離手段に導き、汚泥を槽底に沈降させて分離する。この澱物を固液分離して重金属類を系外に除去することができる。また、既に述べたように、汚泥の一部または全部にアルカリを添加してpH11〜13に調整して反応槽20に戻し、反応槽20において沈澱生成反応を繰り返す。返送する汚泥の割合(返送汚泥の循環比)は反応槽20で生成する沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が上記範囲内になるように定めればよい。なお、本発明の処理方法は、バッチ式または連続式の何れの形式でも実施することができる。 The slurry discharged from the reaction tank 20 is guided to a solid-liquid separation means such as a thickener, for example, and the sludge is settled on the tank bottom and separated. This starch can be solid-liquid separated to remove heavy metals out of the system. Moreover, as already stated, an alkali is added to some or all of the sludge to adjust to pH 11 to 13 and returned to the reaction tank 20, and the precipitation generation reaction is repeated in the reaction tank 20. The ratio of sludge to be returned (circulation ratio of the returned sludge) is determined so that the ratio [Fe 2+ / Fe (T)] of the divalent iron ions and total iron ions in the precipitate generated in the reaction tank 20 is within the above range. Just do it. The treatment method of the present invention can be carried out in either a batch type or a continuous type.

重金属類含有水にケイ酸イオンやアルミニウムイオン、あるいは微量の有機物が含まれていると、これらのイオンによってフェライト化が影響を受け、重金属類の除去効果が低下する場合がある。このような重金属類含有水に対しては、図3に示すように、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加してこれらのイオンを沈殿化し、この沈澱を濾過してケイ酸イオン等を除去する前処理工程を設けるのが好ましい。   If the heavy metal-containing water contains silicate ions, aluminum ions, or trace amounts of organic substances, ferritization is affected by these ions, and the removal effect of heavy metals may be reduced. For such heavy metal-containing water, as shown in FIG. 3, before the iron compound addition step, the iron compound or aluminum compound is added to the heavy metal-containing water to precipitate these ions, It is preferable to provide a pretreatment step for removing silicate ions and the like by filtration.

上記前処理工程において、重金属類含有水に鉄化合物を添加してアルカリを加え、アルカリ性下で鉄水酸化物を生成させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを鉄水酸化物沈澱と共に沈澱化し、この沈澱を固液分離して系外に除去する。鉄化合物としては塩化第二鉄などの第二鉄化合物が好ましい。鉄化合物に代えてアルミニウム化合物を用いてもよい。重金属類含有水にアルミニウム化合物を添加してアルカリを加え、アルカリ性下でアルミニウム水酸化物を沈殿させる。この沈殿にケイ酸イオンや微量有機物が取り込まれて沈殿化するので、これを固液分離して系外に除去する。   In the pretreatment step, an iron compound is added to the heavy metal-containing water, an alkali is added, and an iron hydroxide is generated under alkalinity, whereby at least one of silicate ions, aluminum ions, and a trace amount of organic substances is added to the iron water. It precipitates together with the oxide precipitate, and this precipitate is separated from the system by solid-liquid separation. A ferric compound such as ferric chloride is preferred as the iron compound. An aluminum compound may be used in place of the iron compound. An aluminum compound is added to heavy metal-containing water, an alkali is added, and an aluminum hydroxide is precipitated under alkalinity. Since silicate ions and trace organic substances are taken into this precipitate and precipitate, it is separated from the system by solid-liquid separation.

上記前処理によって、フェライト化に影響を与えるケイ酸イオンやアルミニウムイオン、あるいは微量有機物をあらかじめ除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行えば、上記フェライト化が阻害されず、重金属類の除去効果を高めることができる。この前処理工程は、重金属類含有水に還元性鉄化合物を添加する槽の前に、鉄化合物またはアルミニウム化合物を重金属類含有水に添加する槽と、生成した沈澱の固液分離手段を設ければ良い。   About the heavy metal-containing water from which silicate ions and aluminum ions that affect ferritization or trace organic substances have been removed in advance by the pretreatment, the reducing iron compound addition step, the precipitation step, the solid-liquid separation step, If each process of the said sludge return process is performed, the said ferritization will not be inhibited and the removal effect of heavy metals can be heightened. In this pretreatment step, a tank for adding an iron compound or an aluminum compound to heavy metal-containing water and a solid-liquid separation means for the generated precipitate are provided before the tank for adding the reducing iron compound to the heavy metal-containing water. It ’s fine.

また、先に述べたように、固液分離手段において分離した汚泥の全部または一部はアルカリ性にして反応槽に返送されるが、反応槽に返送されない汚泥はフィルタープレスなどによって濾過脱水し、水分は系外に排水する。一方、濾渣は還元力が残存しており、しかもこの濾渣は透水性が良いので、必要に応じ、図3に示すように、この濾渣に汚染度の高くない別系統の排水等を通水し、濾渣に残存する還元力を利用して排水等に含まれる汚染を分解し、排水等から除去することができる。   Further, as described above, all or part of the sludge separated in the solid-liquid separation means is made alkaline and returned to the reaction tank, but the sludge not returned to the reaction tank is filtered and dehydrated by a filter press or the like, Drains out of the system. On the other hand, the filter residue still has a reducing power, and the filter residue has good water permeability. Therefore, as shown in FIG. The contamination contained in the drainage can be decomposed and removed from the drainage by utilizing the reducing power remaining in the residue.

本発明の処理方法によれば、排水等に含まれる重金属類の濃度を排水基準値の0.01mg/L以下に低減することができる。さらに本処理方法は加熱する必要がなく、常温で鉄フェライト化を進めることができ、圧密されたコンパクトな澱物を形成するので脱水性が格段に良く、重金属類の除去効果も高く、経済性および取扱性に優れた処理方法である。   According to the treatment method of the present invention, the concentration of heavy metals contained in waste water or the like can be reduced to 0.01 mg / L or less of the waste water reference value. Furthermore, this treatment method does not require heating, can be ferritized at room temperature, forms a compact compact starch, and has a very good dehydration, high removal effect of heavy metals, and economic efficiency. In addition, it is a processing method with excellent handleability.

以下、本発明を実施例および比較例によって具体的に示す。なお、各例において、澱物のフェライトは磁性によって判定し、澱物の圧密性は嵩高さと沈降性によって判定した。また、重金属類の測定方法について、CdはJIS規格(JIS K0102 55.3)、PbはJIS規格(JIS K0102 54.3)、CuはJIS規格(JIS K0102 52.4)、ZnはJIS規格(JIS K0102 53.3)、NiはJIS規格(JIS K0102 59.3)、Cr(VI)はJIS規格(JIS K0102 65.2.4)、MnはJIS規格(JIS K0102 56.4)のICP発光分光分析法によって測定した。AsはJIS規格(JIS K0102 61.2)の水素化合物発生原子吸光法によって測定した。   Hereinafter, the present invention will be specifically described by Examples and Comparative Examples. In each example, the ferrite of the starch was determined by magnetism, and the compactness of the starch was determined by bulkiness and sedimentation. Regarding heavy metal measurement methods, Cd is JIS standard (JIS K0102 55.3), Pb is JIS standard (JIS K0102 54.3), Cu is JIS standard (JIS K0102 52.4), Zn is JIS standard (JIS K0102 53.3), Ni JIS standard (JIS K0102 59.3), Cr (VI) JIS standard (JIS K0102 65.2.4), Mn was measured by JIS standard (JIS K0102 56.4) ICP emission spectroscopy. As was measured by the hydrogen compound generation atomic absorption method of JIS standard (JIS K0102 61.2).

〔実施例1〕
図1に示す本発明の処理フローに従い、水温10℃の重金属類を含む排水を回分式で以下のように処理した。まず、上記重金属類含有水(Cd、Pb、Cu、Zn、Ni、Cr(VI)、As、Mnの濃度:各々2mg/L)2.0Lを添加槽10に導入して硫酸第一鉄をFe(II)として300mg/Lになるように添加した。一方、前回の処理によって生成したグリーンラストと鉄フェライトの混合沈澱を種晶として用い、これに12.5wt%濃度のNaOHを5ml添加して強アルカリ性(pH13)にしたものを反応槽20に予め添加した。この反応槽20に硫酸第一鉄を添加した排水を導入して混合し、15分間反応させた。次いで、反応槽から抜き出したスラリーをシックナーで20時間静置して沈澱を沈降させて固液分離した。この沈澱は冷蔵庫(4℃)にて行った。この固液分離した沈澱の全量をアルカリ添加槽40に導き、消石灰を加えてpH11〜13に調整したものを反応槽20に戻して沈澱の生成分離を繰り返した。処理条件と共に処理結果を表1〜表3、および図2に示した。生成殿物のX線回折パターンを図3に示した。
[Example 1]
According to the treatment flow of the present invention shown in FIG. 1, wastewater containing heavy metals with a water temperature of 10 ° C. was treated in a batch manner as follows. First, 2.0 L of the above heavy metal-containing water (concentration of Cd, Pb, Cu, Zn, Ni, Cr (VI), As, Mn: 2 mg / L each) is introduced into the addition tank 10 to introduce ferrous sulfate. Fe (II) was added so as to be 300 mg / L. On the other hand, a mixed precipitate of green last and iron ferrite produced by the previous treatment was used as a seed crystal, and 5 ml of 12.5 wt% NaOH was added to make it strongly alkaline (pH 13) in the reaction tank 20 in advance. Added. Waste water added with ferrous sulfate was introduced into the reaction vessel 20 and mixed for reaction for 15 minutes. Next, the slurry extracted from the reaction vessel was allowed to stand for 20 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. This precipitation was performed in a refrigerator (4 ° C.). The total amount of the solid-liquid separated precipitate was introduced into the alkali addition tank 40, and slaked lime was added to adjust the pH to 11-13, and the reaction product was returned to the reaction tank 20 to repeat the formation and separation of the precipitate. The processing results together with the processing conditions are shown in Tables 1 to 3 and FIG. The X-ray diffraction pattern of the product is shown in FIG.

〔比較例1〕
種晶を加えない以外は実施例1と同様にして上記重金属類を含む排水を処理した。この結果を表1〜表3、図2に示した。生成殿物のX線回折パターンを図3に示した。
[Comparative Example 1]
Exhaust water containing the above heavy metals was treated in the same manner as in Example 1 except that seed crystals were not added. The results are shown in Tables 1 to 3 and FIG. The X-ray diffraction pattern of the product is shown in FIG.

表1の結果に示すように、本処理方法によれば、排水に含まれるCd、Pb、Cu、Zn、Ni、Cr(VI)、Asの濃度を何れも0.01mg/L未満に低減することができ、Mnの濃度を0.04mg/Lに低減することができる。さらに、本発明の処理方法によれば生成する沈澱の磁性が強いので沈澱の圧密性が高く、また沈澱(汚泥)の濃度が種晶を用いない比較例に対して14〜32倍程度である。また、図1に示すように沈澱の沈降速度も4倍以上高い。   As shown in the results of Table 1, according to this treatment method, the concentrations of Cd, Pb, Cu, Zn, Ni, Cr (VI), and As contained in the waste water are all reduced to less than 0.01 mg / L. The concentration of Mn can be reduced to 0.04 mg / L. Further, according to the treatment method of the present invention, the precipitate produced is strong in magnetism, so the compaction of the precipitate is high, and the concentration of the precipitate (sludge) is about 14 to 32 times that of the comparative example in which no seed crystal is used. . Moreover, as shown in FIG. 1, the sedimentation rate of precipitation is also four times or more high.

図3のX線回折パターンによる構造解析結果に示すように、種晶ありのときはグリーンラストと強磁性体のマグネタイト(鉄フェライト)が共存する結晶構造が確認された。一方、種晶なしでは明確な回折像がなく非晶質であることが確認された。   As shown in the structural analysis result by the X-ray diffraction pattern of FIG. 3, when the seed crystal is present, a crystal structure in which green last and ferromagnetic magnetite (iron ferrite) coexist is confirmed. On the other hand, it was confirmed that without seed crystals, there was no clear diffraction image and it was amorphous.

Figure 2009148750
Figure 2009148750

Figure 2009148750
Figure 2009148750

Figure 2009148750
Figure 2009148750

本発明の処理工程図Process chart of the present invention 本発明の実施例1と比較例1の処理効果を示すグラフThe graph which shows the processing effect of Example 1 and Comparative Example 1 of the present invention 生成殿物のX線回折パターンを示すグラフGraph showing the X-ray diffraction pattern of the product

符号の説明Explanation of symbols

10−添加槽、20−反応槽、30−固液分離槽、40−アルカリ添加槽。 10-addition tank, 20-reaction tank, 30-solid-liquid separation tank, 40-alkali addition tank.

Claims (5)

重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、反応槽に返送する汚泥をpH11〜13に調整し、沈澱化工程の反応槽をpH8.5以上のアルカリ性に調整し、密閉した非酸化性雰囲気下でグリーンラストと鉄フェライトを主体とする還元性の鉄化合物沈澱を生成させ、該鉄化合物沈澱に重金属類を取り込ませて沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、反応槽にマグネタイトを含む種晶をあらかじめ添加しておくことを特徴とする重金属類含有水の処理方法。
A step of adding a reducing iron compound to heavy metal-containing water [iron compound addition step], a step of introducing a heavy metal-containing water added with a reducing iron compound to a reaction vessel to generate a precipitate [precipitation step], Sludge that has a step of solid-liquid separation of the precipitate (sludge) (solid-liquid separation step), a step of returning all of the separated sludge to alkalinity and returning it to the reaction vessel (sludge return step), and returning it to the reaction vessel Is adjusted to pH 11-13, the reaction tank in the precipitation step is adjusted to alkaline of pH 8.5 or higher, and a reductive iron compound precipitate mainly composed of green last and iron ferrite is produced in a sealed non-oxidizing atmosphere. In the treatment method in which heavy metal is incorporated into the iron compound precipitate to be precipitated, and this precipitate is solid-liquid separated to remove heavy metal, a seed crystal containing magnetite is previously added to the reaction vessel. Processing method of heavy metal containing water to.
種晶がグリーンラストと鉄フェライトの混合沈澱である請求項1に記載する重金属類含有水の処理方法。
The method for treating heavy metal-containing water according to claim 1, wherein the seed crystal is a mixed precipitate of green last and iron ferrite.
鉄化合物添加工程から汚泥返送工程に至る一連の上記処理工程において生成した還元性鉄化合物沈澱を種晶として用いる請求項1または請求項2に記載する重金属類含有水の処理方法。
The method for treating heavy metal-containing water according to claim 1 or 2, wherein the reducing iron compound precipitate generated in the series of treatment steps from the iron compound addition step to the sludge return step is used as a seed crystal.
水温10℃以下の低温環境下で鉄化合物添加工程から汚泥返送工程に至る一連の処理を行う場合に、あらかじめ反応槽において室温以上の温度で還元性鉄化合物沈澱を生成させ、これを種晶として上記低温環境下の処理を行う請求項1〜請求項3の何れかに記載する重金属類含有水の処理方法。
When performing a series of treatments from the iron compound addition process to the sludge return process in a low temperature environment with a water temperature of 10 ° C. or less, a reducing iron compound precipitate is generated at a temperature higher than room temperature in a reaction tank in advance, and this is used as a seed crystal The method for treating heavy metal-containing water according to any one of claims 1 to 3, wherein the treatment is performed in the low temperature environment.
種晶を固液分離槽に添加しておく請求項1〜請求項4の何れかに記載する重金属類含有水の処理方法。 The method for treating heavy metal-containing water according to any one of claims 1 to 4, wherein seed crystals are added to the solid-liquid separation tank.
JP2008304263A 2007-11-30 2008-11-28 Heavy metal-containing water treating method Withdrawn JP2009148750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304263A JP2009148750A (en) 2007-11-30 2008-11-28 Heavy metal-containing water treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007309862 2007-11-30
JP2008304263A JP2009148750A (en) 2007-11-30 2008-11-28 Heavy metal-containing water treating method

Publications (1)

Publication Number Publication Date
JP2009148750A true JP2009148750A (en) 2009-07-09

Family

ID=40918568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304263A Withdrawn JP2009148750A (en) 2007-11-30 2008-11-28 Heavy metal-containing water treating method

Country Status (1)

Country Link
JP (1) JP2009148750A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050809A (en) * 2009-08-31 2011-03-17 Mitsubishi Materials Corp Method of treating selenium-containing waste water
CN102060368A (en) * 2010-11-24 2011-05-18 南京大学 Method for improving utilization rate of zero-valent iron in zero-valent iron pretreatment of chemical wastewater
JP2013075261A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus that removes harmful substance
JP2017074585A (en) * 2015-10-16 2017-04-20 Jfeスチール株式会社 Method for treating hexavalent chromium-containing waste liquid and equipment for treating hexavalent chromium-containing waste liquid
JP6347886B1 (en) * 2017-12-04 2018-06-27 株式会社セイネン Green last manufacturing method and use thereof
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050809A (en) * 2009-08-31 2011-03-17 Mitsubishi Materials Corp Method of treating selenium-containing waste water
CN102001762A (en) * 2009-08-31 2011-04-06 三菱综合材料株式会社 Process method of a selenium-containing discharge water
CN102060368A (en) * 2010-11-24 2011-05-18 南京大学 Method for improving utilization rate of zero-valent iron in zero-valent iron pretreatment of chemical wastewater
JP2013075261A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus that removes harmful substance
JP2017074585A (en) * 2015-10-16 2017-04-20 Jfeスチール株式会社 Method for treating hexavalent chromium-containing waste liquid and equipment for treating hexavalent chromium-containing waste liquid
JP6347886B1 (en) * 2017-12-04 2018-06-27 株式会社セイネン Green last manufacturing method and use thereof
JP2019099423A (en) * 2017-12-04 2019-06-24 株式会社セイネン Production method of green last and its use
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Similar Documents

Publication Publication Date Title
JP2009148749A (en) Heavy metal-containing water treating method
JP3956978B2 (en) Method and apparatus for treating heavy metal-containing water
KR100853970B1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP5943176B2 (en) Method and apparatus for treating harmful substance-containing water.
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
JP5170461B2 (en) Treatment of selenium-containing wastewater
JP4973864B2 (en) Method and apparatus for treating heavy metal-containing water
JP2009148750A (en) Heavy metal-containing water treating method
JP3928650B2 (en) Reducing water purification material and method for producing the same
JP5915834B2 (en) Method for producing purification treatment material
JP4747269B2 (en) Method and apparatus for treating heavy metal-containing water
JP2013075260A (en) Treatment method and treatment apparatus for removing fluorine and harmful substance
JP6307276B2 (en) Selenium-containing water treatment apparatus and selenium-containing water treatment method
JP2007117816A (en) Water purification method and apparatus
JP4936559B2 (en) Arsenic remover
JP4706828B2 (en) Method and apparatus for treating nitrate-containing water
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP4706827B2 (en) Method and apparatus for treating organic halide-containing water
CN114620858B (en) Method for treating nickel-containing waste liquid
JP4305938B2 (en) Treatment method for wastewater containing hexavalent chromium
Kumano et al. Anisotropic EPR line-width in a linear chain-like organic free radical, TANOL
Ghosh et al. TREATING DISSOVLED IRON IN GROUNDWATER AND FINDING ITS CORRESPONDING SLUDGE USAGE FOR COMMERCIAL PURPOSES

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207