JP4305938B2 - Treatment method for wastewater containing hexavalent chromium - Google Patents

Treatment method for wastewater containing hexavalent chromium Download PDF

Info

Publication number
JP4305938B2
JP4305938B2 JP2002102527A JP2002102527A JP4305938B2 JP 4305938 B2 JP4305938 B2 JP 4305938B2 JP 2002102527 A JP2002102527 A JP 2002102527A JP 2002102527 A JP2002102527 A JP 2002102527A JP 4305938 B2 JP4305938 B2 JP 4305938B2
Authority
JP
Japan
Prior art keywords
hexavalent chromium
ferric
chromium
present
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002102527A
Other languages
Japanese (ja)
Other versions
JP2003300080A (en
Inventor
勇 加藤
徳昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002102527A priority Critical patent/JP4305938B2/en
Publication of JP2003300080A publication Critical patent/JP2003300080A/en
Application granted granted Critical
Publication of JP4305938B2 publication Critical patent/JP4305938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、六価クロム含有排水の処理方法に関する。さらに詳しくは、本発明は、六価クロム含有排水を、簡単な操作により、二次公害を引き起こすことなく処理することができる六価クロム含有排水の処理方法に関する。
【0002】
【従来の技術】
シャドウマスクやリードフレームの製造における回路形成工程の排水、クロメート処理などの表面処理排水、ステンレス鋼製造における脱脂工程排水などには六価クロムが含まれる。六価クロムは、式[1]で示されるように、酸性では重クロム酸イオン、アルカリ性ではクロム酸イオンとなり、pH調整によって水酸化物の沈殿を生成させることができないので、簡単には除去することができない。
【化1】

Figure 0004305938
このために、六価クロムは、還元剤を用いて三価クロムに還元する予備処理を行ったのち、pH調整を行って水酸化物とし、凝集沈殿させる。還元剤としては、一般に亜硫酸塩が用いられ、式[2]、式[3]で示されるように、まずpH2〜2.5の酸性側でCr(VI)をCr3+に還元し、次にpH8〜9としてCr3+をCr(OH)3として沈殿分離する。
2CrO4 2-+3SO3 2-+10H+ → 2Cr3++3SO4 2-+5H2O…[2]
Cr3++3OH- → Cr(OH)3 …[3]
この方法によると、過剰の亜硫酸塩の注入を防止するために、酸化還元電位計を用いて酸化還元電位を250〜300mVに制御することが必要であり、pHを2〜2.5に保持しなければ定量的に還元反応が進行しないので、pHの調整に多量の中和剤が必要である。
本発明者らは、先に特開平3−254889号公報において、中性領域で六価クロムを三価クロムに還元する方法として、六価クロム含有排水のpHを4以上に調整し、溶存酸素が2mg/L以下になるように第一鉄イオンを添加する方法を提案した。この方法では、中性で第一鉄イオンが過剰に存在すると、イオンのまま流出して処理水の着色や鉄の排水基準を超えるおそれがあるために、溶存酸素計による薬注制御を行う。また、第一鉄塩として使用される硫酸第一鉄(FeSO4・7H2O)は、粉末状で販売されているために、これを溶解するための第一鉄塩溶解装置が必要であった。
従来の技術では、六価クロム含有排水に還元剤が過剰に注入されると、還元剤による凝集不良や、COD源となって排水流出域の溶存酸素濃度の低下など、二次公害が発生するために、薬注制御の機器類が必要であった。また、亜硫酸塩を用いる還元法においては、中性ないしアルカリ性排水の場合は、pHを下げたり上げたりするための操作が煩雑であり、多量のpH調整用薬剤が必要であった。
このために、操作が簡単で、二次公害を引き起こさない六価クロム含有排水の処理法が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、六価クロム含有排水を、簡単な操作により、二次公害を引き起こすことなく処理することができる六価クロム含有排水の処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、六価クロム含有排水に第二鉄塩を添加し、pH4.5〜6.5に調整して、クロムを生成する水酸化鉄と共沈させ、固液分離することにより、六価クロムが除去された処理水を得ることが可能であることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)六価クロム含有排水に第二鉄塩を六価クロムの20重量倍以上添加し、pH4.5〜.5に調整して、クロムを生成する水酸化鉄と共沈させることを特徴とする六価クロム含有排水の処理方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の六価クロム含有排水の処理方法においては、六価クロム含有排水に第二鉄塩を添加し、pH4.5〜6.5に調整して、クロムを生成する水酸化鉄と共沈させる。
第二鉄塩の水溶液にアルカリを添加してpHを4以上に調整すると、Fe3+は式[4]に示されるように、水酸化第二鉄となって沈殿する。
Fe3++3OH- → Fe(OH)3 …[4]
六価クロム含有排水に第二鉄塩を添加して溶解し、アルカリを添加してpH4.5〜6.5に調整すると、生成する水酸化第二鉄に六価クロムが吸着されて、式[5]で示されるように共沈する。
nFe(OH)3+Cr(VI) → [Fe(OH)3]n・Cr(VI) …[5]
したがって、六価クロムを水酸化第二鉄と共沈させ、生成した沈殿を固液分離することにより、六価クロムが除去された処理水を得ることができる。
【0006】
六価クロムを吸着して共沈した水酸化第二鉄の沈殿は、pH4.5未満の酸性又はpH6.5を超えるアルカリ性とすることにより、式[6]で示される脱着反応が起こり、Cr(VI)が水中に放出される。この処理により、六価クロムを回収することができる。
[Fe(OH)3]n・Cr(VI) → [Fe(OH)3]n+Cr(VI) …[6]
本発明方法において、六価クロム含有排水に第二鉄塩を添加し、pH4.5〜6.5に調整して、六価クロムを生成する水酸化第二鉄に吸着させ共沈させるための反応時間は、5〜60分であることが好ましく、10〜20分であることがより好ましい。
本発明方法において、添加する第二鉄塩の量は、要求される処理水の六価クロム濃度に応じて適宜選択することができる。固液分離後の処理水の六価クロム濃度を、排水基準である0.5mg/L以下とするためには、六価クロムの20重量倍以上の鉄に相当する量の第二鉄塩を添加することが好ましい。したがって、本発明方法によれば比較的多量の汚泥が発生するので、本発明方法は、六価クロムの濃度の低い六価クロム含有排水に好適に適用することができる。
本発明方法に用いる第二鉄塩としては、例えば、塩化第二鉄、臭化第二鉄、硫酸第二鉄、硝酸第二鉄、チオシアン酸第二鉄、クエン酸第二鉄、シュウ酸第二鉄などを挙げることができる。これらの中で、塩化第二鉄を好適に用いることができ、濃度約38重量%の40度ボーメ塩化第二鉄液は、液体品として市販されており、第二鉄塩の溶解操作と溶解槽が不要となるので特に好適に用いることができる。
【0007】
本発明方法に到達するにいたった端緒は、Cr(VI)を第一鉄塩で還元処理したのち、他の重金属含有排水と混合し、凝集処理を行った結果、上澄液からCr(VI)が検出されたことである。すなわち、pH5.0、Cr(VI)8.8mg/L、COD20mg/Lのフォトレジスト排水を、pH5.0に保ちながら溶存酸素2mg/Lになるまで第一鉄塩を添加した。このときの第一鉄塩添加量はFe2+として70mg/Lであり、上澄液のCr(VI)は0.05mg/L以下、全Feは2.5mg/Lであった。この還元処理水を固液分離することなく、還元処理水3重量部に対して、pH2.1、Cu2+72mg/L、Cr3+17mg/L、Cr(VI)0.05mg/L以下の酸性排水1重量部を混合し、水酸化ナトリウム水溶液を加えて、銅、鉄、クロムを分離するためにpH8.5に調整した。次いで、固液分離したのち上澄液の分析を行ったところ、Cu0.2mg/L、全Fe0.6mg/L、Cr3+0.1mg/L以下に対して、Cr(VI)が0.8mg/L検出された。
ここで、上澄液にCr(VI)が存在する原因を究明し、下記の反応機構によるとの結論に到った。すなわち、最初にCr(VI)がFe2+により還元されて、Cr3+となる。
Cr(VI)+3Fe2+ → Cr3++3Fe3+ …[7]
pH4以上の範囲では、Fe3+は水酸化物となって沈殿する。
Fe3++3OH- → Fe(OH)3 …[8]
Cr(VI)の還元が終わると、次いでFe2+と溶存酸素が反応する。
2Fe2++O+H2O+4OH- → 2Fe(OH)3 …[9]
【0008】
以上が第一鉄塩によるCr(VI)の還元機構であるが、pH7以下の弱酸性領域では、次の吸着反応が起こる。
nFe(OH)3+Cr(VI) → [Fe(OH)3]n・Cr(VI) …[10]
式[10]で示される反応により、Cr(VI)は[Fe(OH)3]nで表される水酸化第二鉄のフロックの内部に吸着、固定される。水酸化第二鉄のフロックの内部へFe2+が浸透して式[7]で示される反応を起こすことは、一般的な排水処理の還元槽滞留時間10〜20分では困難である。
このフロックが酸性又はアルカリ性になると、式[11]で示される反応によりCr(VI)が脱着され、放出される。
[Fe(OH)3]n・Cr(VI) → [Fe(OH)3]n+Cr(VI) …[11]
図1は、本発明方法の実施の一態様の工程系統図である。六価クロム含有排水が反応槽1に導入され、第二鉄塩が添加され、pH調整剤として酸又はアルカリが添加されてpH4.5〜6.5に調整される。六価クロムが生成する水酸化第二鉄に吸着され共沈した水は、凝集槽2に送られ、高分子凝集剤が添加されてフロックが凝集する。フロックが凝集して水は、沈澱槽3に送られ、凝集したフロックが沈降分離して汚泥として抜き取られ、上澄水が処理水として得られる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例において、Cr(VI)はJIS K 0102 65.2.1ジフェニルカルバジド吸光光度法により測定し、FeはJIS K 0102 57.2フレーム原子吸光法により測定した。
実施例1
pH5.0、Cr(VI)8.8mg/L、COD20mg/Lのフォトレジスト排水1Lに、工業薬品である40度ボーメ塩化第二鉄液をFe3+として200mg添加し、水酸化ナトリウム水溶液を用いてpHを4.0に調整した。室温で30分反応させたのち、ろ紙No5Aを用いてろ過し、ろ液のCr(VI)と全Feの分析を行った。Cr(VI)は1.8mg/L、全Feは2.1mg/Lであった。
pHを4.5、5.0、5.5、6.0、6.5、7.0又は8.0に調整して、同様な処理を繰り返した。pH5.0のとき、Cr(VI)0.12mg/L、全Fe0.1mg/L以下であり、pH6.5のとき、Cr(VI)1.5mg/L、全Fe0.1mg/L以下であった。
結果を、第1表に示す。
【0010】
【表1】
Figure 0004305938
【0011】
第1表の結果から、pH4.5〜6.5の範囲でろ液のCr(VI)濃度が低く、pH5付近で特にCr(VI)濃度が低く、Cr(VI)が水酸化第二鉄に特異的に吸着されて共沈していることが分かる。
実施例2
クロム酸カリウム(試薬、JIS K 8312)を水道水に溶解して、Cr(VI)15mg/Lの試験水を調製した。この試験水1Lに、実施例1と同じ40度ボーメ塩化第二鉄液を、Fe3+として100mg添加し、水酸化ナトリウム水溶液を加えてpH5.0に調整した。室温で20分反応させたのち、ろ紙No5Aを用いてろ過し、ろ液のCr(VI)の分析を行った。また、ろ別された沈殿について、全FeとCr(VI)の分析を行い、Fe/Cr(VI)の重量比を求めた。ろ液のCr(VI)は2.21mg/Lであり、Fe/Cr(VI)は8であった。
Fe3+の添加量を150mg、300mg、500mg又は900mgとして、同様な処理を繰り返した。
結果を、第2表に示す。
【0012】
【表2】
Figure 0004305938
【0013】
第2表に見られるように、Cr(VI)15mg/Lに対して、Fe3+300mg/Lを添加し、pH5.0に調整することにより、排水基準であるCr(VI)0.5mg/L以下にすることができる。排水基準を達成するためには、Cr(VI)に対して20重量倍のFe3+の添加が必要であり、比較的多量の汚泥が発生するので、本発明方法はCr(VI)濃度10mg/L以下の低濃度排水に好適に適用することができる。しかし、第二鉄イオンを多量に含むエッチング廃液を処理対象とする場合は、Cr(VI)濃度の制限はない。
【0014】
【発明の効果】
本発明の六価クロム含有排水の処理方法によれば、六価クロムの還元操作が不要であるために、処理工程は、反応槽、凝集槽及び沈殿槽からなる簡単な構成となる。使用薬品は、汎用薬品である塩化第二鉄とpH調整剤のみであるために、取り扱いやすく、入手が容易である。また、塩化第二鉄は、過剰に注入しても、水酸化鉄として分離されるために、二次公害を引き起こすおそれがない。
【図面の簡単な説明】
【図1】図1は、本発明方法の実施の一態様の工程系統図である。
【符号の説明】
1 反応槽
2 凝集槽
3 沈澱槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating hexavalent chromium-containing wastewater. More specifically, the present invention relates to a method for treating hexavalent chromium-containing wastewater that can treat hexavalent chromium-containing wastewater by a simple operation without causing secondary pollution.
[0002]
[Prior art]
Hexavalent chromium is contained in the drainage of the circuit formation process in the manufacture of shadow masks and lead frames, the drainage of surface treatment such as chromate treatment, and the drainage of degreasing process in the manufacture of stainless steel. Hexavalent chromium, as shown by the formula [1], is dichromate ion in the acidic state and chromate ion in the alkaline state, and since it cannot generate a hydroxide precipitate by adjusting the pH, it is easily removed. I can't.
[Chemical 1]
Figure 0004305938
For this purpose, hexavalent chromium is subjected to a pretreatment for reduction to trivalent chromium using a reducing agent, and then adjusted to pH to form a hydroxide and agglomerate and precipitate. As the reducing agent, sulfite is generally used. As shown in the formulas [2] and [3], Cr (VI) is first reduced to Cr 3+ on the acidic side of pH 2 to 2.5, and then To pH 8-9, Cr 3+ is precipitated and separated as Cr (OH) 3 .
2CrO 4 2− + 3SO 3 2− + 10H + → 2Cr 3+ + 3SO 4 2− + 5H 2 O ... [2]
Cr 3+ + 3OH → Cr (OH) 3 ... [3]
According to this method, in order to prevent excessive sulfite injection, it is necessary to control the redox potential to 250 to 300 mV using a redox potentiometer, and the pH is maintained at 2 to 2.5. Otherwise, the reduction reaction does not proceed quantitatively, and a large amount of neutralizing agent is required for pH adjustment.
As a method for reducing hexavalent chromium to trivalent chromium in the neutral region, the present inventors previously adjusted the pH of the hexavalent chromium-containing wastewater to 4 or more and dissolved oxygen in JP-A-3-254889. Proposed a method of adding ferrous ions so that the amount of iron was 2 mg / L or less. In this method, if there is an excess of ferrous ions in a neutral state, the ions flow out as they are, and there is a risk of exceeding the color of treated water or the iron drainage standard. Therefore, chemical injection control using a dissolved oxygen meter is performed. Moreover, since ferrous sulfate (FeSO 4 · 7H 2 O) used as a ferrous salt is sold in the form of powder, a ferrous salt dissolution apparatus is required to dissolve it. It was.
In the conventional technology, when excessive reducing agent is injected into the hexavalent chromium-containing wastewater, secondary pollution such as poor aggregation due to the reducing agent and reduction of dissolved oxygen concentration in the drainage outflow area as a COD source occurs. Therefore, equipment for chemical injection control was necessary. In addition, in the reduction method using sulfite, in the case of neutral or alkaline wastewater, the operation for lowering or raising the pH is complicated, and a large amount of a pH adjusting agent is required.
For this reason, the processing method of the hexavalent chromium containing waste_water | drain which is easy to operate and does not cause a secondary pollution was calculated | required.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for treating hexavalent chromium-containing wastewater, which can treat hexavalent chromium-containing wastewater by simple operations without causing secondary pollution.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors add ferric salt to wastewater containing hexavalent chromium and adjust the pH to 4.5 to 6.5 to produce chromium. It was found that it is possible to obtain treated water from which hexavalent chromium has been removed by coprecipitation with iron hydroxide and solid-liquid separation, and the present invention has been completed based on this finding.
That is, the present invention
(1) a ferric salt in hexavalent chromium-containing waste water was added over 20 times by weight of hexavalent chromium, adjusted to pH4.5~ 5 .5, that is co-precipitated with ferric hydroxide to produce a chromium A method for treating wastewater containing hexavalent chromium,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method for treating wastewater containing hexavalent chromium of the present invention, ferric salt is added to wastewater containing hexavalent chromium and adjusted to pH 4.5 to 6.5 to coprecipitate with iron hydroxide that produces chromium. Let
When the pH is adjusted to 4 or more by adding an alkali to an aqueous solution of ferric salt, Fe 3+ precipitates as ferric hydroxide as shown in the formula [4].
Fe 3+ + 3OH - → Fe ( OH) 3 ... [4]
When ferric salt is added to and dissolved in hexavalent chromium-containing wastewater, and alkali is added to adjust the pH to 4.5 to 6.5, hexavalent chromium is adsorbed to the ferric hydroxide produced, and the formula Coprecipitate as shown in [5].
nFe (OH) 3 + Cr (VI) → [Fe (OH) 3 ] n · Cr (VI) [5]
Therefore, treated water from which hexavalent chromium has been removed can be obtained by coprecipitation of hexavalent chromium with ferric hydroxide and solid-liquid separation of the generated precipitate.
[0006]
The precipitation of ferric hydroxide co-precipitated by adsorbing hexavalent chromium is made acidic with a pH of less than 4.5 or alkaline with a pH of more than 6.5, whereby the desorption reaction represented by the formula [6] occurs, and Cr (VI) is released into the water. By this treatment, hexavalent chromium can be recovered.
[Fe (OH) 3 ] n · Cr (VI) → [Fe (OH) 3 ] n + Cr (VI) [6]
In the method of the present invention, a ferric salt is added to waste water containing hexavalent chromium, adjusted to pH 4.5 to 6.5, and adsorbed to ferric hydroxide to produce hexavalent chromium for coprecipitation. The reaction time is preferably 5 to 60 minutes, and more preferably 10 to 20 minutes.
In the method of the present invention, the amount of ferric salt to be added can be appropriately selected according to the required hexavalent chromium concentration of the treated water. In order to reduce the hexavalent chromium concentration of the treated water after solid-liquid separation to 0.5 mg / L or less, which is the drainage standard, an amount of ferric salt equivalent to iron more than 20 times the weight of hexavalent chromium is required. It is preferable to add. Therefore, since a relatively large amount of sludge is generated according to the method of the present invention, the method of the present invention can be suitably applied to hexavalent chromium-containing wastewater having a low hexavalent chromium concentration.
Examples of the ferric salt used in the method of the present invention include ferric chloride, ferric bromide, ferric sulfate, ferric nitrate, ferric thiocyanate, ferric citrate, and oxalic acid For example, ferrous iron. Among these, ferric chloride can be suitably used. The 40 ° Baume ferric chloride solution having a concentration of about 38% by weight is commercially available as a liquid product. Since a tank becomes unnecessary, it can be used especially suitably.
[0007]
The starting point for reaching the method of the present invention was that Cr (VI) was reduced with ferrous salt, mixed with other heavy metal-containing waste water, and subjected to agglomeration treatment. As a result, Cr (VI) was obtained from the supernatant. ) Is detected. That is, ferrous salt was added until the dissolved oxygen was 2 mg / L while maintaining the pH of 5.0, photoresist drainage of Cr (VI) 8.8 mg / L, COD 20 mg / L. At this time, the ferrous salt addition amount was 70 mg / L as Fe 2+ , Cr (VI) in the supernatant was 0.05 mg / L or less, and the total Fe was 2.5 mg / L. Without this reduced treated water being separated into solid and liquid, pH 2.1, Cu 2+ 72 mg / L, Cr 3+ 17 mg / L, Cr (VI) 0.05 mg / L or less with respect to 3 parts by weight of the reduced treated water 1 part by weight of acidic waste water was mixed and an aqueous sodium hydroxide solution was added to adjust the pH to 8.5 in order to separate copper, iron and chromium. Subsequently, the supernatant was analyzed after solid-liquid separation. As a result, Cr (VI) was reduced to 0.2 mg / L of Cu, 0.6 mg / L of total Fe, or less than Cr 3+ 0.1 mg / L. 8 mg / L was detected.
Here, the cause of the presence of Cr (VI) in the supernatant was investigated, and the conclusion was reached that the following reaction mechanism was used. That is, Cr (VI) is first reduced by Fe 2+ to become Cr 3+ .
Cr (VI) + 3Fe 2+ → Cr 3+ + 3Fe 3+ ... [7]
In the range of pH 4 or more, Fe 3+ precipitates as hydroxide.
Fe 3+ + 3OH → Fe (OH) 3 ... [8]
When the reduction of Cr (VI) is completed, Fe 2+ and dissolved oxygen then react.
2Fe 2+ + O + H 2 O + 4OH → 2Fe (OH) 3 ... [9]
[0008]
The above is the reduction mechanism of Cr (VI) by ferrous salt, but the following adsorption reaction occurs in the weakly acidic region at pH 7 or lower.
nFe (OH) 3 + Cr (VI) → [Fe (OH) 3 ] n · Cr (VI) [10]
By the reaction shown by the formula [10], Cr (VI) is adsorbed and fixed inside the ferric hydroxide floc represented by [Fe (OH) 3 ] n. It is difficult for Fe 2+ to permeate into the ferric hydroxide floc and cause the reaction represented by the formula [7] in a reduction tank residence time of 10 to 20 minutes in a general waste water treatment.
When this floc becomes acidic or alkaline, Cr (VI) is desorbed and released by the reaction shown by the formula [11].
[Fe (OH) 3 ] n · Cr (VI) → [Fe (OH) 3 ] n + Cr (VI) [11]
FIG. 1 is a process flow diagram of one embodiment of the method of the present invention. Hexavalent chromium-containing wastewater is introduced into the reaction vessel 1, ferric salt is added, and acid or alkali is added as a pH adjuster to adjust the pH to 4.5 to 6.5. The water adsorbed and coprecipitated by the ferric hydroxide produced by hexavalent chromium is sent to the coagulation tank 2, where a polymer coagulant is added to aggregate the floc. The flocs are aggregated and the water is sent to the sedimentation tank 3, and the aggregated flocs settle and separate and are extracted as sludge, and the supernatant water is obtained as treated water.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples, Cr (VI) was measured by JIS K 0102 65.2.1 diphenylcarbazide absorption photometry, and Fe was measured by JIS K 0102 57.2 flame atomic absorption spectrometry.
Example 1
pH5.0, Cr (VI) 8.8mg / L, the photoresist waste water 1L of COD20mg / L, a 40 ° Baume ferric chloride solution is industrial chemicals 200mg was added as Fe 3+, sodium hydroxide solution Was used to adjust the pH to 4.0. After reacting at room temperature for 30 minutes, it was filtered using filter paper No5A, and Cr (VI) and total Fe in the filtrate were analyzed. Cr (VI) was 1.8 mg / L and total Fe was 2.1 mg / L.
The same treatment was repeated with the pH adjusted to 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 or 8.0. When the pH is 5.0, Cr (VI) is 0.12 mg / L, and the total Fe is 0.1 mg / L or less. At pH 6.5, Cr (VI) is 1.5 mg / L, and the total Fe is 0.1 mg / L or less. there were.
The results are shown in Table 1.
[0010]
[Table 1]
Figure 0004305938
[0011]
From the results in Table 1, the filtrate has a low Cr (VI) concentration in the range of pH 4.5 to 6.5, especially in the vicinity of pH 5, the Cr (VI) concentration is low, and Cr (VI) becomes ferric hydroxide. It can be seen that it is specifically adsorbed and co-precipitated.
Example 2
Potassium chromate (reagent, JIS K 8312) was dissolved in tap water to prepare test water of Cr (VI) 15 mg / L. To 1 L of the test water, 100 mg of the same 40 ° Baume ferric chloride solution as in Example 1 was added as Fe 3+ , and the pH was adjusted to 5.0 by adding an aqueous sodium hydroxide solution. After reacting at room temperature for 20 minutes, the mixture was filtered using filter paper No5A, and Cr (VI) of the filtrate was analyzed. Moreover, about the precipitate separated by filtration, the total Fe and Cr (VI) were analyzed, and the weight ratio of Fe / Cr (VI) was calculated | required. The Cr (VI) of the filtrate was 2.21 mg / L, and Fe / Cr (VI) was 8.
The same treatment was repeated with the amount of Fe 3+ added being 150 mg, 300 mg, 500 mg or 900 mg.
The results are shown in Table 2.
[0012]
[Table 2]
Figure 0004305938
[0013]
As can be seen in Table 2, by adding Fe 3+ 300 mg / L to Cr (VI) 15 mg / L and adjusting to pH 5.0, the drainage standard Cr (VI) 0.5 mg / L or less. In order to achieve the drainage standard, it is necessary to add 20 3 times as much Fe 3+ to Cr (VI), and a relatively large amount of sludge is generated. Therefore, the method of the present invention has a Cr (VI) concentration of 10 mg. / L or less low concentration drainage can be suitably applied. However, when an etching waste liquid containing a large amount of ferric ions is a processing target, there is no restriction on the Cr (VI) concentration.
[0014]
【The invention's effect】
According to the method for treating wastewater containing hexavalent chromium of the present invention, since the reduction operation of hexavalent chromium is not necessary, the treatment process has a simple configuration including a reaction tank, a coagulation tank, and a precipitation tank. Since the chemicals used are only general-purpose chemicals ferric chloride and a pH adjuster, they are easy to handle and easy to obtain. Further, even if ferric chloride is injected excessively, it is separated as iron hydroxide, so there is no possibility of causing secondary pollution.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of the method of the present invention.
[Explanation of symbols]
1 Reaction tank 2 Coagulation tank 3 Precipitation tank

Claims (1)

六価クロム含有排水に第二鉄塩を六価クロムの20重量倍以上添加し、pH4.5〜.5に調整して、クロムを生成する水酸化鉄と共沈させることを特徴とする六価クロム含有排水の処理方法。A ferric salt is added to hexavalent chromium-containing wastewater at least 20 times the weight of hexavalent chromium , adjusted to pH 4.5 to 5.5, and coprecipitated with iron hydroxide that produces chromium. Treatment method for wastewater containing hexavalent chromium.
JP2002102527A 2002-04-04 2002-04-04 Treatment method for wastewater containing hexavalent chromium Expired - Fee Related JP4305938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102527A JP4305938B2 (en) 2002-04-04 2002-04-04 Treatment method for wastewater containing hexavalent chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002102527A JP4305938B2 (en) 2002-04-04 2002-04-04 Treatment method for wastewater containing hexavalent chromium

Publications (2)

Publication Number Publication Date
JP2003300080A JP2003300080A (en) 2003-10-21
JP4305938B2 true JP4305938B2 (en) 2009-07-29

Family

ID=29388968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102527A Expired - Fee Related JP4305938B2 (en) 2002-04-04 2002-04-04 Treatment method for wastewater containing hexavalent chromium

Country Status (1)

Country Link
JP (1) JP4305938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196798B (en) * 2022-06-15 2023-10-20 山东大学 Method for promoting quick flocculation of chromium in water

Also Published As

Publication number Publication date
JP2003300080A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
CN110818173B (en) Comprehensive treatment method of electroplating mixed wastewater
JP4374636B2 (en) Treatment method of waste liquid containing heavy metal complex
JP2009056379A (en) Heavy metals-containing water treatment method and apparatus
JPH08224585A (en) Removal of selenium from spent liquor
JP2009148750A (en) Heavy metal-containing water treating method
CN110981018B (en) Method for treating electroplating wastewater of potassium chloride cadmium cobalt alloy
JP4305938B2 (en) Treatment method for wastewater containing hexavalent chromium
JP2005152741A (en) Treatment method for dust in cement kiln extraction gas
JP2007203239A (en) Method for treatment of arsenic-containing wastewater
CN110818123A (en) Treatment method of trivalent chromium plating waste water
CN108503103A (en) The method for handling waste water
JP4747269B2 (en) Method and apparatus for treating heavy metal-containing water
JP2847864B2 (en) Chromium-containing wastewater treatment method
JP2001179266A (en) Method for treating selenium-containing water
JP2009136873A (en) Treatment method for dust in cement kiln extraction gas
JPS634478B2 (en)
JPH0824910B2 (en) Metal-containing waste liquid treatment device
JP2906521B2 (en) Chromium-containing wastewater treatment method
CN115043474B (en) Application of potassium titanium oxalate in removing heavy metals in water
JP2003063826A (en) Method for recovering chromic acid and bichromic acid
JPH0432716B2 (en)
JP2001293486A (en) Method for treating hexavalent chromium-containing waste water
JPH06304578A (en) Treatment of hexavalent chromium-containing waste liquid
JP3398692B2 (en) Treatment method for wastewater containing heavy metals
JP5024643B2 (en) Method and apparatus for reducing permanganate-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees