JP2014233692A - Treatment method and treatment device for hard-biodegradable organic matter-containing water - Google Patents

Treatment method and treatment device for hard-biodegradable organic matter-containing water Download PDF

Info

Publication number
JP2014233692A
JP2014233692A JP2013117984A JP2013117984A JP2014233692A JP 2014233692 A JP2014233692 A JP 2014233692A JP 2013117984 A JP2013117984 A JP 2013117984A JP 2013117984 A JP2013117984 A JP 2013117984A JP 2014233692 A JP2014233692 A JP 2014233692A
Authority
JP
Japan
Prior art keywords
sludge
water
alkali
added
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013117984A
Other languages
Japanese (ja)
Other versions
JP5720722B2 (en
Inventor
友時 安池
Yuji Yasuike
友時 安池
英之 小森
Hideyuki Komori
英之 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013117984A priority Critical patent/JP5720722B2/en
Priority to PCT/JP2014/064479 priority patent/WO2014196477A1/en
Priority to CN201480029877.1A priority patent/CN105246840B/en
Priority to KR1020157033584A priority patent/KR20160014606A/en
Priority to TW103119360A priority patent/TWI605021B/en
Publication of JP2014233692A publication Critical patent/JP2014233692A/en
Application granted granted Critical
Publication of JP5720722B2 publication Critical patent/JP5720722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Abstract

PROBLEM TO BE SOLVED: To obtain treatment water of high quality reducing the using amount of an iron medicine and a sludge generation amount in a Fenton oxidation treatment for hard-biodegradable organic matter-containing water, and further, improving the dewaterability of sludge.SOLUTION: Hydrogen peroxide and an iron medicine by 0.005 to 0.2 molar time quantity of the amount of the hydrogen peroxide are added to hard-biodegradable organic matter-containing water, reaction is caused at pH 2 to 4 for 1 hr or more, thereafter, an alkali agent is added to oxidation treatment water to generate an insolubilization material, and the produced insolubilization material is subjected to solid-liquid separation. Alkali mixed sludge obtained by adding and mixing the alkali agent into a part of the separated sludge obtained in the solid-liquid separation stage is added at least as a part of an alkali agent added to oxidation treatment water in an insolubilization stage.

Description

本発明は、難生物分解性有機物含有水をフェントン酸化処理により効率的に処理する難生物分解性有機物含有水の処理方法及び処理装置に関する。   The present invention relates to a treatment method and a treatment apparatus for water containing hardly biodegradable organic matter, which efficiently treats water containing hardly biodegradable organic matter by Fenton oxidation treatment.

難生物分解性有機物の処理方法であるフェントン酸化処理の反応機構は、鉄薬剤と過酸化水素の反応により強力な酸化剤であるOHラジカルを生成させて有機物を酸化分解するものである。フェントン酸化処理は、添加した鉄薬剤を除去する必要があるため、酸化工程とその後の凝集工程の二つの工程からなる処理である。   The reaction mechanism of Fenton oxidation treatment, which is a method for treating hardly biodegradable organic substances, is to oxidize and decompose organic substances by generating OH radicals, which are strong oxidizing agents, by the reaction of iron chemicals and hydrogen peroxide. The Fenton oxidation treatment is a treatment consisting of two steps of an oxidation step and a subsequent aggregation step because it is necessary to remove the added iron agent.

フェントン酸化処理は、触媒として用いる鉄薬剤の添加量が多大となり、薬品コストに響いてくるという第1の問題があった。また、鉄汚泥の発生量が非常に多く、その汚泥脱水に伴う脱水費用や汚泥運搬・処分費用が嵩むという第2の問題があった。   The Fenton oxidation treatment has a first problem that the amount of iron agent used as a catalyst is large, which affects the chemical cost. In addition, the amount of iron sludge generated is very large, and there is a second problem that dewatering costs and sludge transportation / disposal costs associated with the sludge dewatering increase.

従来、第1の問題を解決するために、鉄薬剤の添加量を少量とし、pH1.0〜2.0にて3〜8時間反応させるフェントン酸化処理を行い、第一鉄塩と有機物の錯塩を形成させることでスラッジを生成させずに生物処理するという提案(特許文献1)がなされている。しかし、本発明者らの検討によれば、pH1.0〜2.0ではCOD分解速度が非常に遅く、また、生物処理後には最終的にスラッジが生成することになる。   Conventionally, in order to solve the first problem, a small amount of iron agent is added and a Fenton oxidation treatment is performed by reacting at a pH of 1.0 to 2.0 for 3 to 8 hours. The proposal (patent document 1) of making it biologically process without producing | generating sludge by forming is made | formed. However, according to the study by the present inventors, the COD decomposition rate is very slow at a pH of 1.0 to 2.0, and sludge is finally produced after biological treatment.

また、第2の問題を解決するために、排水の凝集処理に当たり、凝集分離汚泥の一部にアルカリ剤を添加して得られたアルカリ混合汚泥を、排水に凝集剤として添加された金属塩の例えば2〜50倍量の金属量となるように凝集反応槽に返送することで、凝集剤の必要量を低減すると共に、発生汚泥量の低減、汚泥脱水性の向上を図る提案がなされている(特許文献2,3)。しかしながら、本発明者らの検討により、この方法をフェントン酸化処理に適用して鉄薬剤の添加量を低減した場合、汚泥脱水性は改善されないことが判明した。
さらに、酸化処理水に2価の鉄薬剤を添加し、2価と3価の鉄の混合汚泥(グリーンラストと鉄フェライト)とし、分離汚泥を返送するという提案がされている(特許文献4)。しかし、この方法では、2価鉄と全鉄の比が0.4〜0.8となる汚泥を生成させる必要があり、2価の鉄薬剤添加量が多く、薬品コストが過大である。
Further, in order to solve the second problem, in the flocculation treatment of the wastewater, the alkali mixed sludge obtained by adding the alkali agent to a part of the flocculated separation sludge is used as the flocculant of the metal salt added to the wastewater as the flocculant. For example, a proposal has been made to reduce the amount of generated sludge and improve sludge dewaterability while returning to the agglomeration reaction tank so that the metal amount is 2 to 50 times the amount. (Patent Documents 2 and 3). However, as a result of studies by the present inventors, it has been found that when this method is applied to Fenton oxidation treatment to reduce the amount of iron agent added, the sludge dewaterability is not improved.
Furthermore, it has been proposed that a divalent iron chemical is added to the oxidized water to form a mixed sludge of divalent and trivalent iron (green last and iron ferrite), and the separated sludge is returned (Patent Document 4). . However, in this method, it is necessary to generate sludge having a ratio of divalent iron to total iron of 0.4 to 0.8, and the amount of divalent iron chemical added is large and the chemical cost is excessive.

特公平4−80758号公報Japanese Patent Publication No. 4-80758 特許第2601441号公報Japanese Patent No. 2601441 特許第2910346号公報Japanese Patent No. 2910346 特開2009−148749号公報JP 2009-148749 A

本発明は上記従来の問題点を解決するものであって、難生物分解性有機物含有水のフェントン酸化処理において、鉄薬剤の使用量及び汚泥発生量を低減すると共に、汚泥の脱水性を改善し、かつ良好な水質の処理水を得る難生物分解性有機物含有水の処理方法及び処理装置を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, and in the Fenton oxidation treatment of water containing hardly biodegradable organic matter, reduces the amount of iron chemicals used and the amount of sludge generated, and improves the dewaterability of sludge. It is another object of the present invention to provide a treatment method and a treatment apparatus for water containing hardly biodegradable organic matter to obtain treated water with good water quality.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、難生物分解性有機物を含む水のフェントン酸化処理において、酸化工程にて、過酸化水素と、過酸化水素添加量の0.005〜0.2モル倍量の鉄薬剤とを添加してpH2〜4の条件下に1時間以上反応させて酸化処理水を得た後、固液分離して得られた汚泥の一部にアルカリ剤を添加したアルカリ混合汚泥を、この酸化処理水に添加することで、良好な処理水質を得るとともに、鉄薬剤量を減らすと同時に鉄汚泥の生成量を低減し、濃縮された脱水性の高い鉄汚泥を得ることができ、さらにはアルカリ混合汚泥を添加することで、酸化処理で残留した過酸化水素を分解することもできることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have conducted hydrogen peroxide and hydrogen peroxide addition amount of 0.1% in the oxidation step in the Fenton oxidation treatment of water containing a hardly biodegradable organic substance. After adding 005-0.2 mol times the amount of iron drug and reacting under conditions of pH 2-4 for 1 hour or longer to obtain oxidized water, a part of the sludge obtained by solid-liquid separation is used. By adding alkaline mixed sludge to which alkaline agent is added to this oxidized treated water, it is possible to obtain good treated water quality, reduce the amount of iron chemicals, and at the same time reduce the amount of iron sludge produced. It has been found that high iron sludge can be obtained, and further, hydrogen peroxide remaining by oxidation treatment can be decomposed by adding alkali mixed sludge.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 難生物分解性有機物を含み水をフェントン酸化処理する方法において、該難生物分解性有機物含有水に、過酸化水素と、該過酸化水素添加量の0.005〜0.2モル倍量の鉄薬剤とを添加して、pH2〜4の条件下に1時間以上反応させるフェントン酸化工程と、該酸化工程で得られた酸化処理水にアルカリ剤を添加して不溶化物を生成させる不溶化工程と、生成した不溶化物を固液分離する固液分離工程とを有し、該固液分離工程で得られた分離汚泥の一部にアルカリ剤を添加混合して得られたアルカリ混合汚泥を、前記不溶化工程で酸化処理水に添加するアルカリ剤の少なくとも一部として添加することを特徴とする難生物分解性有機物含有水の処理方法。 [1] In the method of Fenton oxidation treatment of water containing a hardly biodegradable organic substance, hydrogen peroxide and 0.005 to 0.2 mol times the hydrogen peroxide addition amount to the water containing the hardly biodegradable organic substance A Fenton oxidation process in which an amount of iron agent is added and reacted for 1 hour or more under the condition of pH 2 to 4, and an insolubilization that generates an insolubilized product by adding an alkaline agent to the oxidized water obtained in the oxidation process An alkali mixed sludge obtained by adding and mixing an alkali agent to a part of the separated sludge obtained in the solid-liquid separation step. A method for treating water containing hardly biodegradable organic substances, which is added as at least part of an alkaline agent added to oxidation-treated water in the insolubilization step.

[2] [1]において、前記不溶化工程に添加するアルカリ混合汚泥の固形分量が、前記酸化処理水とアルカリ剤が反応して生成する不溶化物量の20〜500倍量であることを特徴とする難生物分解性有機物含有水の処理方法。 [2] In [1], the solid content of the alkali mixed sludge added to the insolubilization step is 20 to 500 times the amount of the insolubilized product generated by the reaction of the oxidation-treated water and the alkali agent. A method for treating water containing hardly biodegradable organic matter.

[3] [1]又は[2]において、前記不溶化工程が、前記酸化処理水をpH3.5〜4.5に調整する予備中和工程と、予備中和処理水をpH5〜12に調整する中和工程とを備えることを特徴とする難生物分解性有機物含有水の処理方法。 [3] In [1] or [2], the insolubilization step adjusts the oxidation-treated water to pH 3.5 to 4.5 and the pre-neutralization treatment water to pH 5 to 12. And a neutralizing step. A method for treating water containing a hardly biodegradable organic substance.

[4] 難生物分解性有機物を含み水をフェントン酸化処理する装置において、該難生物分解性有機物含有水に、過酸化水素と、該過酸化水素添加量の0.005〜0.2モル倍量の鉄薬剤とを添加して、pH2〜4の条件下に1時間以上反応させるフェントン酸化手段と、該酸化手段で得られた酸化処理水にアルカリ剤を添加して不溶化物を生成させる不溶化手段と、生成した不溶化物を固液分離する固液分離手段とを有し、該固液分離手段で得られた分離汚泥の一部にアルカリ剤を添加混合するアルカリ混合手段と、得られたアルカリ混合汚泥を、前記不溶化手段で酸化処理水に添加するアルカリ剤の少なくとも一部として添加する手段とを備えることを特徴とする難生物分解性有機物含有水の処理装置。 [4] In an apparatus for Fenton oxidation treatment of water containing a hardly biodegradable organic substance, the water containing the hardly biodegradable organic substance is added to hydrogen peroxide and 0.005 to 0.2 mol times the hydrogen peroxide addition amount. Fenton oxidation means for adding an amount of iron agent and reacting for 1 hour or more under the conditions of pH 2 to 4, and insolubilization for generating an insolubilized product by adding an alkaline agent to the oxidized water obtained by the oxidation means And an alkali mixing means for adding and mixing an alkaline agent to a part of the separated sludge obtained by the solid-liquid separation means, and a solid-liquid separation means for solid-liquid separation of the generated insolubilized material. An apparatus for adding water containing hardly biodegradable organic matter, comprising: means for adding alkali mixed sludge as at least part of an alkali agent added to oxidation-treated water by the insolubilizing means.

[5] [4]において、前記不溶化手段に添加するアルカリ混合汚泥の固形分量が、前記酸化処理水とアルカリ剤が反応して生成する不溶化物量の20〜500倍量であることを特徴とする難生物分解性有機物含有水の処理装置。 [5] In [4], the solid content of the alkali mixed sludge added to the insolubilization means is 20 to 500 times the amount of the insolubilized product produced by the reaction of the oxidation-treated water and the alkali agent. Equipment for treating water containing hardly biodegradable organic substances.

[6] [4]又は[5]において、前記不溶化手段が、前記酸化処理水をpH3.5〜4.5に調整する予備中和槽と、予備中和処理水をpH5〜12に調整する中和槽とを備えることを特徴とする難生物分解性有機物含有水の処理装置。 [6] In [4] or [5], the insolubilizing means adjusts the oxidation-treated water to a pH of 3.5 to 4.5 and a preliminary neutralization-treated water to a pH of 5 to 12. A treatment apparatus for water containing hardly biodegradable organic substances, comprising a neutralization tank.

本発明によれば、難生物分解性有機物を含む水のフェントン酸化処理において、フェントン酸化におけるpHと鉄薬剤の添加量と反応時間を制御した上で、固液分離汚泥の一部にアルカリ剤を添加したアルカリ混合汚泥を酸化処理水に添加することで、良好な処理水質を得るとともに、鉄薬剤量を減らすと同時に鉄汚泥の生成量を低減し、濃縮された脱水性の高い鉄汚泥を得ることができ、さらにはアルカリ混合汚泥を添加することで、酸化処理で残留した過酸化水素の分解除去を行うことも可能となり、効率的な処理を行える。   According to the present invention, in the Fenton oxidation treatment of water containing a hardly biodegradable organic substance, an alkaline agent is added to a part of the solid-liquid separation sludge after controlling the pH, the amount of iron agent added and the reaction time in Fenton oxidation. By adding the added alkaline mixed sludge to the oxidized water, a good quality of treated water is obtained, and the amount of iron chemicals is reduced and at the same time the amount of iron sludge produced is reduced to obtain a concentrated and highly dewatering iron sludge. Further, by adding alkali mixed sludge, it becomes possible to decompose and remove hydrogen peroxide remaining in the oxidation treatment, and an efficient treatment can be performed.

本発明の難生物分解性有機物含有水の処理装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の実施の形態の他の例を示す系統図である。It is a systematic diagram which shows the other example of embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention. 本発明の難生物分解性有機物含有水の処理装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the processing apparatus of the hardly biodegradable organic substance containing water of this invention.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明で処理する難生物分解性有機物含有水とは、ジメチルスルホキシド(DMSO)、エチレンジアミン四酢酸(EDTA)、フェノール類、有機塩素化合物、環境ホルモン、界面活性剤、生物代謝物等の難生物分解性有機物を含む水であり、通常その有機物含有量はCODCr濃度で50〜1,000mg/L程度である。また、これらの難生物分解性有機物含有水のpHは1〜9程度である。 Non-biodegradable organic substance-containing water to be treated in the present invention is refractory biodegradation of dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA), phenols, organochlorine compounds, environmental hormones, surfactants, biometabolites, etc. a water containing sex organics, usually the organic content is about 50~1,000mg / L at COD Cr concentration. Moreover, the pH of these hardly biodegradable organic substance containing water is about 1-9.

本発明においては、このような難生物分解性有機物含有水を原水として、フェントン酸化処理するに当たり、所定量の過酸化水素と鉄薬剤を添加すると共に必要に応じて硫酸等の酸を添加してpH調整して所定のpH条件下にフェントン酸化反応により難生物分解性有機物を酸化分解し、酸化処理水を中和処理して不溶化物を生成させ、不溶化物を固液分離する処理において、固液分離で得られた分離汚泥の一部を、この汚泥にアルカリ剤を添加混合したアルカリ混合汚泥として中和処理における酸化処理水に添加する。   In the present invention, when such a hardly biodegradable organic substance-containing water is used as a raw water, a predetermined amount of hydrogen peroxide and an iron agent are added, and an acid such as sulfuric acid is added if necessary. In the process of adjusting the pH to oxidatively decompose the hardly biodegradable organic substance by the Fenton oxidation reaction under a predetermined pH condition, neutralize the oxidized water to produce an insolubilized substance, and separate the insolubilized substance into solid and liquid. A part of the separated sludge obtained by liquid separation is added to the oxidation-treated water in the neutralization treatment as an alkali mixed sludge obtained by adding and mixing an alkali agent to this sludge.

前述の通り、フェントン酸化処理は、酸化工程と凝集工程とからなる。
酸化工程におけるフェントン反応は、過酸化水素と2価鉄との反応によりOHラジカルを生成させるものであるが、鉄は以下の反応式1に示すように、触媒的に2価と3価を繰り返して利用されるため、鉄は過酸化水素に対し当モル量を添加する必要はない。
<反応式1>
Fe(II)+H→Fe(III)+OH+・OH
Fe(III)+H→Fe(II)+H+・OOH
Fe(III)+・OOH→Fe(II)+H+O
As described above, the Fenton oxidation treatment includes an oxidation process and an aggregation process.
The Fenton reaction in the oxidation process generates OH radicals by the reaction of hydrogen peroxide and divalent iron, but iron repeatedly divalent and trivalent catalytically as shown in the following reaction formula 1. Therefore, it is not necessary to add equimolar amounts of iron to hydrogen peroxide.
<Reaction Formula 1>
Fe (II) + H 2 O 2 → Fe (III) + OH + · OH
Fe (III) + H 2 O 2 → Fe (II) + H + + · OOH
Fe (III) +. OOH → Fe (II) + H + + O 2

鉄は触媒として働くため、鉄量は反応時間に影響する。従来においては、一般に反応時間15〜60分ほどで処理できるように鉄量が決められてきた。しかし、本発明者らが検討を行ったところ、60分以内の反応時間で処理できるように鉄を添加すると、処理水のCOD濃度が悪化することが分かった。これは鉄濃度が高いために、過酸化水素との反応が急速に進むため、以下の反応式2に示すような過酸化水素の自己分解が進むためと考えられる。
<反応式2>
2Fe(II)+2H→2Fe(III)+2OH+2・OH
・OH+・OH→H
Since iron acts as a catalyst, the amount of iron affects the reaction time. Conventionally, the amount of iron has been determined so that it can be generally processed in a reaction time of about 15 to 60 minutes. However, as a result of investigations by the present inventors, it was found that the COD concentration of treated water deteriorates when iron is added so that it can be treated within a reaction time of 60 minutes or less. This is presumably because the reaction with hydrogen peroxide proceeds rapidly because the iron concentration is high, and the self-decomposition of hydrogen peroxide proceeds as shown in the following reaction formula 2.
<Reaction Formula 2>
2Fe (II) + 2H 2 O 2 → 2Fe (III) + 2OH + 2 · OH
・ OH + ・ OH → H 2 O 2

このようなことから、本発明者らは鉄添加量を多く設定して反応時間を短くすることは好ましくないと判断した。   For these reasons, the present inventors have determined that it is not preferable to set a large amount of iron addition to shorten the reaction time.

本発明では、鉄薬剤の添加量を過酸化水素添加量の0.005〜0.2モル倍量と、従来よりも少なくすることで、過酸化水素の自己分解を抑制する。この結果、過酸化水素添加量も従来より低減することができる。また、鉄薬剤の添加量を少なくしたことで反応時間は1時間以上、好ましくは1〜3時間とする。鉄薬剤添加量は、特に過酸化水素添加量の0.02〜0.1モル倍量とすることが好ましい。   In the present invention, the amount of iron agent added is 0.005 to 0.2 mole times the amount of hydrogen peroxide added, which is less than the conventional amount, thereby suppressing hydrogen peroxide self-decomposition. As a result, the amount of hydrogen peroxide added can also be reduced as compared with the prior art. Moreover, reaction time is made into 1 hour or more by reducing the addition amount of an iron chemical | medical agent, Preferably it is 1-3 hours. The amount of iron agent added is particularly preferably 0.02 to 0.1 mol times the amount of hydrogen peroxide added.

原水に添加する鉄薬剤としては、硫酸第一鉄、塩化第一鉄等の第一鉄(Fe(II))化合物、硫酸第二鉄、塩化第二鉄等の第二鉄(Fe(III))化合物などの1種又は2種以上を用いることができる。即ち、前記反応式1のように、酸化工程において、鉄は2価と3価を連続的に繰り返すため、本発明において、添加する鉄薬剤はFe(II)化合物、Fe(III)化合物のどちらも可能である。ただし、酸化分解に使用されるOHラジカルは、2価の鉄との反応で生成するため、好ましくは2価の鉄化合物である。   Iron agents added to raw water include ferrous sulfate (Fe (II)) compounds such as ferrous sulfate and ferrous chloride, ferric sulfate such as ferric sulfate and ferric chloride (Fe (III) ) One or more of compounds can be used. That is, as shown in the above reaction formula 1, in the oxidation process, iron repeats bivalent and trivalent continuously. Therefore, in the present invention, the iron agent to be added is either Fe (II) compound or Fe (III) compound. Is also possible. However, since the OH radical used for oxidative decomposition is produced by reaction with divalent iron, it is preferably a divalent iron compound.

過酸化水素の添加量は、原水のCODCrに対して0.5〜3モル倍、特に0.7〜2モル倍とすることが好ましい。
また、酸化工程におけるpHは2〜4とする。pHが2未満では鉄の溶解量は大きいものの、過酸化水素との反応性が悪く、4を超えると鉄が析出する。好ましくは、酸化工程後の固液分離工程の入口にて、鉄はイオン状態であることが必要であるため、反応時間と鉄濃度、水温、原水組成により最適pHを決定する。
The amount of hydrogen peroxide added is preferably 0.5 to 3 mol times, particularly 0.7 to 2 mol times with respect to COD Cr of raw water.
Moreover, pH in an oxidation process shall be 2-4. If the pH is less than 2, the amount of iron dissolved is large, but the reactivity with hydrogen peroxide is poor, and if it exceeds 4, iron precipitates. Preferably, iron needs to be in an ionic state at the entrance of the solid-liquid separation step after the oxidation step, and therefore the optimum pH is determined based on the reaction time, iron concentration, water temperature, and raw water composition.

上記の酸化工程で得られた酸化処理水に、アルカリ剤を添加して不溶化処理し、不溶化物を固液分離する。本発明ではこの固液分離で得られた分離汚泥の一部にアルカリ剤を添加してアルカリ混合汚泥とし、アルカリ混合汚泥を酸化処理水に添加して不溶化処理する。このように、酸化処理水にアルカリ混合汚泥を添加することにより、酸化処理水中の鉄イオンは、アルカリ混合汚泥の汚泥表面に吸着している水酸化物と反応して汚泥表面で析出するため、高密度で脱水性に優れた汚泥が得られるようになる。   An alkaline agent is added to the oxidized water obtained in the above oxidation step to insolubilize it, and the insolubilized product is separated into solid and liquid. In the present invention, an alkali agent is added to a part of the separated sludge obtained by the solid-liquid separation to obtain an alkali mixed sludge, and the alkali mixed sludge is added to the oxidation-treated water for insolubilization treatment. In this way, by adding alkali mixed sludge to the oxidized water, iron ions in the oxidized water react with the hydroxide adsorbed on the sludge surface of the alkali mixed sludge and precipitate on the sludge surface. Sludge with high density and excellent dewaterability can be obtained.

前述の通り、従来、分離汚泥の一部を返送する処理は、特許文献2,3に記載されるように公知の処理であるが、鉄濃度の低いフェントン酸化処理水については、汚泥返送法を適用しても汚泥の脱水性は改善されないことが判明した。
即ち、特許文献2,3における汚泥返送量は、返送される汚泥中の金属量が、凝集剤として添加される金属量の2〜50倍、好ましくは15〜40倍としているが、このような条件では、フェントン酸化処理においては汚泥は高密度化しないか或いは固液分離が不安定であった。
As described above, the process of returning part of the separated sludge is a known process as described in Patent Documents 2 and 3, but the sludge return method is used for Fenton-oxidized water having a low iron concentration. It was found that even when applied, the dewaterability of sludge was not improved.
That is, the amount of sludge returned in Patent Documents 2 and 3 is such that the amount of metal in the returned sludge is 2 to 50 times, preferably 15 to 40 times the amount of metal added as a flocculant. Under the conditions, the sludge was not densified or the solid-liquid separation was unstable in the Fenton oxidation treatment.

本発明者らの検討により、酸化処理水に添加する汚泥の固形分量を、酸化処理水とアルカリ剤が反応して生成する不溶化物の量(酸化処理水にアルカリ剤のみを添加して不溶化物を生成させた場合に生成する不溶化物の量)の20〜500倍量、好ましくは50〜200倍量とすることで、凝集フロックの大きさが粗大で、脱水性に優れた汚泥となり、固液分離を安定化できることが判明した。この汚泥返送量が20倍量よりも少ないと、返送汚泥量が少ないために、汚泥表面での鉄イオンの析出が進まず、汚泥が高密度化しない傾向にあり、500倍量よりも多いと、汚泥濃度が高いために、汚泥が肥大化せず、分散状態になり、固液分離の沈殿槽からリークしやすくなる。   According to the study by the present inventors, the solid content of sludge added to the oxidized water is determined based on the amount of insolubilized product produced by the reaction of the oxidized water and the alkaline agent (only the alkaline agent is added to the oxidized water to be insolubilized. 20 to 500 times, preferably 50 to 200 times the amount of the insolubilized product produced when the slag is produced, the aggregate floc size is coarse and the sludge has excellent dewatering properties. It has been found that liquid separation can be stabilized. If the amount of returned sludge is less than 20 times the amount, the amount of returned sludge is small, so precipitation of iron ions on the sludge surface does not proceed, and the sludge tends not to be densified. Since the sludge concentration is high, the sludge is not enlarged and becomes in a dispersed state, and easily leaks from the solid-liquid separation settling tank.

本発明における不溶化工程は、予備中和と中和の2段階処理で行うことが好ましい。即ち、前段の中和処理槽と後段の中和槽とで行うことが好ましい。
酸化処理水には有機酸などの酸成分が含まれているため、一段の中和処理では、鉄が十分に析出せずに、一部溶解する場合がある。このため、中和を予備中和と中和の2段階で行うことが好ましい。なお、この2段階中和において、アルカリ混合汚泥は予備中和槽に添加してもよく、中和槽に添加してもよい。また、予備中和槽と中和槽の両方に添加してもよく、アルカリ剤を混合していない汚泥をそのまま添加することもできる。例えば、以下のような中和処理形態を採用することができる。
(1)予備中和槽に汚泥とアルカリ剤を添加し、中和槽にアルカリ混合汚泥を添加する。
(2)予備中和槽にアルカリ混合汚泥を添加し、中和槽に汚泥とアルカリ剤を添加する。
(3)予備中和槽にアルカリ混合汚泥を添加し、中和槽にアルカリ剤を添加する。
(4)予備中和槽と中和槽にそれぞれアルカリ混合汚泥を添加する。
The insolubilization process in the present invention is preferably carried out by a two-stage treatment of preliminary neutralization and neutralization. That is, it is preferable to carry out in a first-stage neutralization tank and a second-stage neutralization tank.
Since the oxidation-treated water contains an acid component such as an organic acid, in one-step neutralization treatment, iron may not be sufficiently precipitated and may be partially dissolved. For this reason, it is preferable to carry out neutralization in two stages of preliminary neutralization and neutralization. In this two-step neutralization, the alkali mixed sludge may be added to the preliminary neutralization tank or may be added to the neutralization tank. Moreover, you may add to both a preliminary | backup neutralization tank and a neutralization tank, and the sludge which is not mixing the alkaline agent can also be added as it is. For example, the following neutralization treatment forms can be employed.
(1) Add sludge and an alkaline agent to the preliminary neutralization tank, and add the alkali mixed sludge to the neutralization tank.
(2) Add alkali mixed sludge to the preliminary neutralization tank, and add sludge and alkaline agent to the neutralization tank.
(3) Add alkali mixed sludge to the preliminary neutralization tank, and add an alkali agent to the neutralization tank.
(4) Add alkali mixed sludge to the preliminary neutralization tank and the neutralization tank, respectively.

これらのうち、特に上記(4)のように、予備中和槽と中和槽とのそれぞれにアルカリ混合汚泥を添加することにより、より高密度で脱水性に優れた汚泥を得ることができる。   Among these, particularly as described in (4) above, by adding alkali mixed sludge to each of the preliminary neutralization tank and the neutralization tank, it is possible to obtain a sludge having higher density and excellent dewaterability.

このように分離汚泥の返送を行うにあたり、汚泥の返送量は、前述の通り、酸化処理水に添加する返送汚泥の固形分量として、酸化処理水とアルカリ剤との反応で生成する不溶化物量の20〜500倍量とすることが好ましい。
なお、以下において、酸化処理水とアルカリ剤との反応で生成する不溶化物量に対する返送汚泥の固形分量の割合を「汚泥返送比」と称す。この汚泥返送比が20倍以上とすることにより、固液分離で得られる汚泥を十分に高密度化して脱水性に優れた汚泥を得ることができる。ただし、汚泥返送比を過度に高くすると処理効率が低下し、また、予備中和槽ないしは中和槽として大容量の槽が必要となるため、汚泥返送比は500倍以下とすることが好ましい。処理効率と汚泥の高密度化の点から、汚泥返送比は特に50〜200倍とすることが好ましい。
As described above, when the separated sludge is returned in this manner, the return amount of the sludge is 20% of the amount of insolubilized matter generated by the reaction between the oxidized water and the alkaline agent as the solid content of the returned sludge added to the oxidized water. It is preferable that the amount is about 500 times.
In the following, the ratio of the solid content of the returned sludge to the amount of insolubilized product generated by the reaction between the oxidized water and the alkaline agent is referred to as “sludge return ratio”. By making this sludge return ratio 20 times or more, the sludge obtained by solid-liquid separation can be sufficiently densified to obtain a sludge excellent in dewaterability. However, if the sludge return ratio is excessively high, the processing efficiency is lowered, and a large-capacity tank is required as a preliminary neutralization tank or neutralization tank. Therefore, the sludge return ratio is preferably 500 times or less. From the viewpoint of processing efficiency and sludge densification, the sludge return ratio is particularly preferably 50 to 200 times.

予備中和槽と中和槽とのそれぞれに返送汚泥又は返送汚泥にアルカリ剤を混合したアルカリ混合汚泥を添加する場合、予備中和槽及び中和槽に添加される汚泥の固形分量の割合については特に制限はないが、返送汚泥は少なくとも予備中和槽に添加されることが好ましく、予備中和槽と中和槽の両方に返送汚泥及び/又はアルカリ混合汚泥を添加する場合は、返送される汚泥(アルカリ混合汚泥の汚泥も含む)のうち、20〜80%を予備中和槽に、残部を中和槽に添加することが好ましい。   When adding the return sludge to each of the pre-neutralization tank and the neutralization tank or the alkali mixed sludge mixed with the alkali agent in the return sludge, the ratio of the solid content of the sludge added to the pre-neutralization tank and the neutralization tank Although there is no particular limitation, it is preferable that the return sludge is added to at least the pre-neutralization tank, and when the return sludge and / or alkali mixed sludge is added to both the pre-neutralization tank and the neutralization tank, the return sludge is returned. It is preferable to add 20 to 80% to the pre-neutralization tank and the remainder to the neutralization tank.

上記のような好適な汚泥返送比で処理を行った場合、通常、分離汚泥、即ち返送される汚泥の濃度(固形分濃度)は10〜30%の高濃度となる。
なお、汚泥や予備中和槽、中和槽に添加するアルカリ剤としては、苛性ソーダ(水酸化ナトリウム)、消石灰などを用いることができる。
When the treatment is performed at a suitable sludge return ratio as described above, the concentration (solid content concentration) of the separated sludge, that is, the returned sludge is usually a high concentration of 10 to 30%.
In addition, caustic soda (sodium hydroxide), slaked lime, etc. can be used as an alkaline agent added to sludge, a preliminary neutralization tank, and a neutralization tank.

予備中和槽における処理は、pH3.5〜4.5、特に3.8〜4.2で行うことが好ましい。また、予備中和槽の滞留時間は5〜20分程度とすることが好ましい。   The treatment in the preliminary neutralization tank is preferably carried out at a pH of 3.5 to 4.5, particularly 3.8 to 4.2. The residence time in the preliminary neutralization tank is preferably about 5 to 20 minutes.

予備中和槽では、酸化工程で残留した過酸化水素も分解される。過酸化水素は水酸化物と鉄により分解されるため(参考文献1:紙パ技協誌 第49巻第4号、下記反応式3)、本発明においては汚泥の返送比を20〜500倍と高くとることで、汚泥に含まれる鉄と汚泥の表面に吸着された高濃度のアルカリ剤により、過酸化水素が分解されると考えられる。なお、過酸化水素の分解を促進するために、補助的に重亜硫酸ナトリウムなどの還元剤を予備中和槽もしくは中和槽に添加することもできる。   In the preliminary neutralization tank, hydrogen peroxide remaining in the oxidation step is also decomposed. Since hydrogen peroxide is decomposed by hydroxide and iron (Reference 1: Paper Partnership Magazine Vol. 49, No. 4, the following reaction formula 3), the sludge return ratio is 20 to 500 times in the present invention. It is considered that hydrogen peroxide is decomposed by the high concentration alkaline agent adsorbed on the surface of iron and sludge contained in the sludge. In order to promote the decomposition of hydrogen peroxide, a reducing agent such as sodium bisulfite can be supplementarily added to the preliminary neutralization tank or the neutralization tank.

Figure 2014233692
Figure 2014233692

また、予備中和後の中和槽における処理は、pH5〜12で行うことが好ましい。前述の如く、予備中和槽では鉄が十分に析出せず、一部溶解する場合があるので、その場合は中和槽に分離汚泥もしくはアルカリ混合汚泥を添加して晶析化を促進させることができる。排水に鉄以外の金属が含まれる場合も、排水中の金属成分により最適なpHを選択して分離汚泥もしくはアルカリ混合汚泥を添加することができる。鉄が酸化処理水中の金属の主な構成成分の場合は、中和槽中における処理は好ましくはpH6.0〜8.5で行われる。
この中和槽の滞留時間は5〜20分程度とすることが好ましい。
Moreover, it is preferable to perform the process in the neutralization tank after preliminary neutralization by pH 5-12. As mentioned above, in the pre-neutralization tank, iron may not be sufficiently precipitated and may partially dissolve. In this case, crystallization is promoted by adding separated sludge or alkali mixed sludge to the neutralization tank. Can do. Even when metals other than iron are contained in the wastewater, it is possible to select the optimum pH according to the metal components in the wastewater and add the separated sludge or the alkali mixed sludge. When iron is the main component of the metal in the oxidation treated water, the treatment in the neutralization tank is preferably carried out at a pH of 6.0 to 8.5.
The residence time of this neutralization tank is preferably about 5 to 20 minutes.

上記の中和処理水は次いで凝集剤を添加して凝集処理し、凝集フロックを形成させる。
凝集剤としては、高分子凝集剤が用いられ、原水の性状に応じて、アニオン系ポリマー、カチオン系ポリマー、両性ポリマー、及びノニオン系ポリマーの中から1種を単独であるいは複数種を組み合わせて用いることができるが、好ましくはアニオン系ポリマーである。これらの凝集剤の添加量は通常1〜5mg/Lである。
The neutralized water is then agglomerated by adding a flocculant to form agglomerated flocs.
As the flocculant, a polymer flocculant is used, and one kind of anionic polymer, cationic polymer, amphoteric polymer, and nonionic polymer is used alone or in combination of plural kinds depending on the properties of raw water. The anionic polymer is preferable. The amount of these flocculants added is usually 1 to 5 mg / L.

凝集処理水は、次いで固液分離して処理水と汚泥とを分離する。固液分離手段としては固液分離を行えるものであればよく、沈殿槽、膜分離装置、濾過器などを適用することができる。分離した汚泥の一部は、予備中和槽、もしくは中和槽、もしくはアルカリ混合槽に送られ、残部は余剰汚泥として系外へ排出される。   The agglomerated treated water is then subjected to solid-liquid separation to separate the treated water and sludge. Any solid-liquid separation means may be used as long as it can perform solid-liquid separation, and a precipitation tank, a membrane separation device, a filter, and the like can be applied. Part of the separated sludge is sent to a preliminary neutralization tank, a neutralization tank, or an alkali mixing tank, and the remainder is discharged out of the system as excess sludge.

アルカリ混合槽では、汚泥をアルカリ剤と混合してアルカリ混合汚泥とする。アルカリ混合汚泥を予備中和槽もしくは中和槽へ移送するには、アルカリ混合槽から連続的に越流させればよい。アルカリ混合槽へのアルカリ剤の添加量は、予備中和槽もしくは中和槽のpH変動に基づいて制御される。   In the alkali mixing tank, the sludge is mixed with an alkali agent to form an alkali mixed sludge. In order to transfer the alkali mixed sludge to the preliminary neutralization tank or the neutralization tank, the alkali mixed sludge may be continuously overflowed from the alkali mixing tank. The amount of the alkali agent added to the alkali mixing tank is controlled based on the pH fluctuation of the preliminary neutralizing tank or the neutralizing tank.

図1〜4は、本発明の難生物分解性有機物含有水の処理装置の実施の形態の一例を示す系統図であり、図1〜4において、1はフェントン酸化反応槽、2は予備中和槽、3は中和槽、4は凝集槽、5は沈殿槽、6,6A,6Bはアルカリ混合槽であり、いずれの装置においても、フェントン酸化反応槽1にて原水に過酸化水素と硫酸第一鉄(FeSO)等の鉄薬剤と必要に応じて硫酸(H)等の酸が添加されて、pH2〜4の条件下に1時間以上フェントン酸化が行われ、フェントン酸化反応槽1の酸化処理水は次いで予備中和槽2、中和槽3で順次中和処理され、中和処理水は凝集槽4で高分子凝集剤(ポリマー)が添加されて凝集処理され、凝集処理水は沈殿槽5で固液分離される。分離汚泥の一部は予備中和槽2、中和槽3、アルカリ混合槽6,6A,6Bのいずれかに送給され、アルカリ混合汚泥又は分離汚泥が予備中和槽2及び/又は中和槽3に添加される。 1 to 4 are system diagrams showing an example of an embodiment of the apparatus for treating water containing hardly biodegradable organic substances of the present invention. In FIGS. 1 to 4, 1 is a Fenton oxidation reaction tank, and 2 is pre-neutralization Tank 3, neutralization tank 4, coagulation tank 5, precipitation tank 5, 6, 6 A and 6 B are alkali mixing tanks, and in either apparatus, hydrogen peroxide and sulfuric acid were added to the raw water in the Fenton oxidation reaction tank 1. An iron agent such as ferrous iron (FeSO 4 ) and, if necessary, an acid such as sulfuric acid (H 2 O 2 ) are added, and Fenton oxidation is carried out for 1 hour or more under pH 2 to 4 conditions. The oxidized water in tank 1 is then neutralized in order in pre-neutralizing tank 2 and neutralizing tank 3, and the neutralized water is agglomerated by adding a polymer flocculant (polymer) in agglomeration tank 4, and agglomerated. The treated water is solid-liquid separated in the precipitation tank 5. Part of the separated sludge is fed to one of the preliminary neutralization tank 2, the neutralization tank 3, and the alkali mixing tank 6, 6A, 6B, and the alkali mixed sludge or the separated sludge is supplied to the preliminary neutralization tank 2 and / or neutralization. Added to tank 3.

図1は、前記(1)の汚泥返送形態を示すものであり、分離汚泥の一部は予備中和槽2に、他の一部はアルカリ混合槽6に移送され、アルカリ混合槽6でNaOH等のアルカリ剤が添加混合されたアルカリ混合汚泥は中和槽3に添加される。図2は前記(2)の汚泥返送形態を示すものであり、分離汚泥の一部は中和槽3に、他の一部はアルカリ混合槽6に移送され、アルカリ混合槽6でNaOH等のアルカリ剤が添加混合されたアルカリ混合汚泥は予備中和槽1に添加される。図3は、前記(3)の汚泥返送形態を示すものであり、分離汚泥の一部はアルカリ混合槽6に移送され、アルカリ混合槽6でアルカリ剤が添加混合されたアルカリ混合汚泥は予備中和槽1に添加され、中和槽3にはNaOH等のアルカリ剤が添加される。図4は前記(4)の汚泥返送形態を示すものであり、分離汚泥の一部はアルカリ混合槽6Aに、他の一部はアルカリ混合槽6Bに移送され、アルカリ混合槽6A,6BでそれぞれNaOH等のアルカリ剤が添加混合されたアルカリ混合汚泥は、予備中和槽2,中和槽3にそれぞれ添加される。   FIG. 1 shows the sludge return form of (1) above. Part of the separated sludge is transferred to the preliminary neutralization tank 2, and the other part is transferred to the alkali mixing tank 6. Alkaline mixed sludge mixed with an alkali agent such as is added to the neutralization tank 3. FIG. 2 shows the sludge return form of (2) above, in which part of the separated sludge is transferred to the neutralization tank 3 and the other part is transferred to the alkali mixing tank 6, such as NaOH in the alkali mixing tank 6. The alkali mixed sludge to which the alkali agent is added and mixed is added to the preliminary neutralization tank 1. FIG. 3 shows the sludge return form of (3) above, in which a part of the separated sludge is transferred to the alkali mixing tank 6 and the alkali mixed sludge to which the alkali agent is added and mixed in the alkali mixing tank 6 is in reserve. An alkali agent such as NaOH is added to the neutralization tank 3. FIG. 4 shows the sludge return form of (4) above, in which part of the separated sludge is transferred to the alkali mixing tank 6A, and the other part is transferred to the alkali mixing tank 6B, and the alkali mixing tanks 6A and 6B respectively. The alkali mixed sludge mixed with an alkali agent such as NaOH is added to the preliminary neutralization tank 2 and the neutralization tank 3, respectively.

このように、本発明では、フェントン酸化反応槽に添加する鉄薬剤量とpH条件、反応時間を制御すると共に、固液分離で得られた分離汚泥の一部をアルカリ混合汚泥としてフェントン酸化処理水に添加して中和処理を行うことにより、鉄薬剤の必要量を減らすと同時に汚泥生成量を低減し、濃縮された脱水性の高い汚泥を得、さらにアルカリ混合汚泥を添加することで、フェントン酸化処理で残存する過酸化水素の分解も可能となり、効率的な処理を行える。   Thus, in the present invention, the amount of iron chemical added to the Fenton oxidation reaction tank, the pH condition, and the reaction time are controlled, and a part of the separated sludge obtained by solid-liquid separation is used as alkali mixed sludge to treat Fenton oxidation treated water. The amount of iron chemicals required is reduced and the amount of sludge produced is reduced, and concentrated dewatered sludge is obtained. Further, by adding alkali mixed sludge, Fenton The remaining hydrogen peroxide by the oxidation treatment can be decomposed, and an efficient treatment can be performed.

以下に実施例を挙げて本発明をより具体的に説明する。
なお、以下の実施例及び比較例において、原水の難生物分解性有機物含有水としては、以下のようにして調製した模擬原水を用いて処理を行った。
<模擬原水の調製>
イソプロピルアルコール(IPA)、ジメチルスルホキシド(DMSO)、テトラメチルアンモニウムヒドロキシド(TMAH)をそれぞれ100mg/L含む合成排水を生物処理した後、凝集処理、逆浸透膜分離処理して得られた濃縮水をさらに蒸発濃縮することで、CODCr600mg/Lの難生物分解性有機物含有水を調製した。
Hereinafter, the present invention will be described more specifically with reference to examples.
In the following Examples and Comparative Examples, treatment was performed using simulated raw water prepared as follows as the raw material containing hardly biodegradable organic matter-containing water.
<Preparation of simulated raw water>
After biologically treating synthetic wastewater containing 100 mg / L of isopropyl alcohol (IPA), dimethyl sulfoxide (DMSO), and tetramethylammonium hydroxide (TMAH), concentrated water obtained by coagulation treatment and reverse osmosis membrane separation treatment is used. Furthermore, COD Cr 600 mg / L water containing hardly biodegradable organic matter was prepared by evaporating and concentrating.

また、以下の実施例、比較例及び参考例で得られた処理水のCODCrは、残留した過酸化水素を重亜硫酸ナトリウムにて分解した後測定した。また、処理水の過酸化水素濃度は、栗田工業(株)製過酸化水素試験紙「チェクルKS」(測定下限値3mg/L)にて測定した。 In addition, COD Cr of treated water obtained in the following examples, comparative examples and reference examples was measured after decomposing residual hydrogen peroxide with sodium bisulfite. Further, the hydrogen peroxide concentration of the treated water was measured with a hydrogen peroxide test paper “Checkle KS” (measurement lower limit 3 mg / L) manufactured by Kurita Kogyo Co., Ltd.

[実施例1]
図1の装置で通水量1L/hrの連続通水処理を行った。
フェントン酸化反応槽1では、過酸化水素を1500mg/L、硫酸第一鉄を100mg/L as Feの添加量で添加し、pH3、滞留時間2時間、25℃の条件とした([Fe]/[H]=0.04)。
次に、予備中和槽2で沈殿槽5の分離汚泥を返送して添加すると共に、pHが4.2±0.1となるようにNaOHを添加した。予備中和槽2の滞留時間は0.2時間とした。
次に、中和槽3で、pHが8.0±0.1となるようにアルカリ混合槽6からのアルカリ混合汚泥を添加した。この中和槽の滞留時間は0.4時間とした。
このときの返送汚泥濃度は12%であった。返送汚泥比は80とし、予備中和槽2とアルカリ混合槽6に返送した。即ち、酸化処理水から発生するSS濃度はFe(OH)換算で190mg/Lであるため、返送比80とし、汚泥返送量127mL/hr(汚泥濃度12%)で汚泥を返送した。なお、返送汚泥のうち、70%が予備中和槽2へ、30%が中和槽3に添加されるように調整した。
凝集槽4では、高分子凝集剤の栗田工業(株)製アニオン系ポリマー「PA331」を3mg/L添加して、100rpmで緩速撹拌を行い、滞留時間0.1時間で凝集処理を行った。
次の沈殿槽5では凝集処理で生成した粗大フロックを沈降分離して、水槽内のトラフを越流する上澄水を実施例1の処理水とした。
この操作を2週間行った後の処理水を分析した。結果を表1に示す。また、沈殿槽5から排出される汚泥を脱水処理した脱水汚泥の含水率を表1に示す。
[Example 1]
Continuous water treatment with a water flow rate of 1 L / hr was performed with the apparatus shown in FIG.
In the Fenton oxidation reactor 1, hydrogen peroxide was added in an amount of 1500 mg / L and ferrous sulfate was added in an amount of 100 mg / L as Fe, and the conditions were pH 3, residence time 2 hours, and 25 ° C. ([Fe] / [H 2 O 2] = 0.04 ).
Next, while separating and adding the separated sludge of the precipitation tank 5 in the preliminary neutralization tank 2, NaOH was added so that the pH was 4.2 ± 0.1. The residence time in the preliminary neutralization tank 2 was 0.2 hours.
Next, in the neutralization tank 3, the alkali mixed sludge from the alkali mixing tank 6 was added so that the pH was 8.0 ± 0.1. The residence time of this neutralization tank was 0.4 hours.
The return sludge concentration at this time was 12%. The return sludge ratio was 80, and the sludge was returned to the preliminary neutralization tank 2 and the alkali mixing tank 6. That is, since the SS concentration generated from the oxidized water is 190 mg / L in terms of Fe (OH) 3 , the return ratio is 80, and the sludge is returned at a sludge return rate of 127 mL / hr (sludge concentration 12%). In addition, it adjusted so that 70% might be added to the preliminary | backup neutralization tank 2 and 30% might be added to the neutralization tank 3 among returned sludge.
In the aggregating tank 4, 3 mg / L of an anionic polymer “PA331” manufactured by Kurita Kogyo Co., Ltd., a polymer aggregating agent, was added, and the agitation was performed at 100 rpm and agglomeration was performed for a residence time of 0.1 hour. .
In the next settling tank 5, the coarse floc produced by the coagulation treatment was settled and separated, and the supernatant water that overflowed the trough in the water tank was used as the treated water of Example 1.
The treated water after performing this operation for 2 weeks was analyzed. The results are shown in Table 1. Table 1 shows the water content of the dewatered sludge obtained by dewatering the sludge discharged from the settling tank 5.

[実施例2]
図2の装置で通水量1L/hrの連続通水とし、実施例1と同様の反応時間、薬注条件、汚泥返送条件で処理水を得た。処理水の分析結果と脱水汚泥の含水率を表1に示す。
[Example 2]
The treated water was obtained under the same reaction time, chemical injection conditions, and sludge return conditions as in Example 1 with continuous water flow of 1 L / hr with the apparatus of FIG. Table 1 shows the analysis results of the treated water and the moisture content of the dewatered sludge.

[実施例3]
図3の装置で通水量1L/hrの連続通水とし、実施例1と同様の反応時間、薬注条件、汚泥返送条件で処理水を得た。ただし、返送汚泥はアルカリ混合汚泥としてその全量を予備中和槽2に添加した。処理水の分析結果と脱水汚泥の含水率を表1に示す。
[Example 3]
The treated water was obtained under the same reaction time, chemical injection conditions, and sludge return conditions as in Example 1 with continuous water flow of 1 L / hr with the apparatus of FIG. However, the return sludge was added to the preliminary neutralization tank 2 in its entirety as alkali mixed sludge. Table 1 shows the analysis results of the treated water and the moisture content of the dewatered sludge.

[実施例4]
図4の装置で通水量1L/hrの連続通水とし、実施例1と同様の反応時間、薬注条件、汚泥返送条件で処理水を得た。処理水の分析結果と脱水汚泥の含水率を表1に示す。
[Example 4]
The treated water was obtained under the same reaction time, chemical injection conditions, and sludge return conditions as in Example 1 with continuous water flow of 1 L / hr with the apparatus of FIG. Table 1 shows the analysis results of the treated water and the moisture content of the dewatered sludge.

[比較例1]
フェントン酸化と凝集沈殿処理による試験を実施した。
原水をpH3の条件下で、過酸化水素1500mg/Lと、硫酸第一鉄200mg/L as Feを添加して25℃にて0.5時間反応させた後、pH9に調整して10分撹拌し、次いで栗田工業(株)製アニオン系ポリマー「PA331」を3mg/L添加し、生成した粗大フロックを沈降分離して、上澄水を比較例1の処理水とした。
[Comparative Example 1]
Tests by Fenton oxidation and coagulation sedimentation treatment were carried out.
Under conditions of pH 3, the raw water was added with 1500 mg / L of hydrogen peroxide and 200 mg / L as Fe of ferrous sulfate, reacted at 25 ° C. for 0.5 hours, then adjusted to pH 9 and stirred for 10 minutes. Then, 3 mg / L of an anionic polymer “PA331” manufactured by Kurita Kogyo Co., Ltd. was added, and the generated coarse floc was settled and separated, and the supernatant water was used as the treated water of Comparative Example 1.

[比較例2]
フェントン酸化における硫酸第一鉄添加量を100mg/L as Feとし、反応時間を2時間としたこと以外は、比較例1と同様にして試験を実施し、沈降分離で得られた上澄水を比較例2の処理水とした。処理水の分析結果と脱水汚泥の含水率を表1に示す。
[Comparative Example 2]
The test was carried out in the same manner as in Comparative Example 1 except that the ferrous sulfate addition amount in Fenton oxidation was 100 mg / L as Fe, and the reaction time was 2 hours, and the supernatant water obtained by sedimentation separation was compared. The treated water of Example 2 was used. Table 1 shows the analysis results of the treated water and the moisture content of the dewatered sludge.

[参考例1]
汚泥返送比を20とした以外は実施例1と同条件で試験を実施し、沈殿槽5の上澄水を参考例1の処理水とした。このときの返送汚泥濃度は5.5%であった。即ち、酸化処理水から発生するSS濃度はFe(OH)換算で190mg/Lであるため、返送比20とし、汚泥返送量69mL/hr(汚泥濃度5.5%)で汚泥を返送した。処理水の分析結果と脱水汚泥の含水率を表1に示す。
[Reference Example 1]
The test was carried out under the same conditions as in Example 1 except that the sludge return ratio was set to 20, and the supernatant water of the sedimentation tank 5 was used as the treated water of Reference Example 1. The return sludge concentration at this time was 5.5%. That is, since the SS concentration generated from the oxidized water is 190 mg / L in terms of Fe (OH) 3 , sludge was returned with a return ratio of 20 and a sludge return amount of 69 mL / hr (sludge concentration 5.5%). Table 1 shows the analysis results of the treated water and the moisture content of the dewatered sludge.

Figure 2014233692
Figure 2014233692

表1より、次のことが分かる。
比較例1では鉄薬剤添加量が200mg−Fe/Lと実施例1〜4に比べて2倍あるためにフェントン酸化反応で過酸化水素が自己分解を起こしており、処理水CODCrが高く、汚泥の脱水性も悪い。また、比較例2は実施例1と同等の鉄薬剤添加量であるため、処理水CODCr濃度は同等であるが、汚泥が高密度化していないために、脱水汚泥の含水率が79%と高い。参考例1は、実施例1と同じく高密度化のための汚泥返送を行っており、処理水CODCrは実施例1に比べて若干高い程度であるが、汚泥返送比が20と低いために、汚泥の高密度化が不十分であり、脱水汚泥の含水率が68%と高い。また汚泥返送比が低く、アルカリ混合汚泥と過酸化水素との反応が不足しているために、処理水中に過酸化水素が残留している。
これに対して、実施例1〜4では脱水汚泥の含水率が51〜56%と低く、特に予備中和槽と中和槽にそれぞれアルカリ混合汚泥を添加した実施例4では最も含水率が低く、高密度な汚泥が得られる。
以上の結果から、本発明に従って、フェントン酸化反応を少ない鉄薬剤の添加量で行い、固液分離して得られた汚泥にアルカリ剤を添加してアルカリ混合汚泥の返送を行うことで、良好な水質を得ると共に、鉄薬剤添加量の低減、汚泥発生量の低減と、汚泥脱水性の向上、更には残留過酸化水素の分解除去を達成することができることが分かる。
Table 1 shows the following.
In Comparative Example 1, the amount of iron agent added is 200 mg-Fe / L, which is twice that of Examples 1 to 4, so that hydrogen peroxide undergoes autolysis in the Fenton oxidation reaction, and the treated water COD Cr is high. Sludge has poor dewaterability. In addition, since Comparative Example 2 has the same amount of iron chemical addition as Example 1, the treated water COD Cr concentration is equivalent, but since the sludge is not densified, the moisture content of the dewatered sludge is 79%. high. Reference Example 1 performs sludge return for densification as in Example 1, and the treated water COD Cr is slightly higher than Example 1, but the sludge return ratio is as low as 20. The density of the sludge is insufficient, and the moisture content of the dewatered sludge is as high as 68%. Moreover, since the sludge return ratio is low and the reaction between the alkali mixed sludge and hydrogen peroxide is insufficient, hydrogen peroxide remains in the treated water.
On the other hand, in Examples 1 to 4, the moisture content of the dewatered sludge is as low as 51 to 56%. In particular, in Example 4 in which alkali mixed sludge is added to the preliminary neutralization tank and the neutralization tank, the moisture content is the lowest. High density sludge can be obtained.
From the above results, according to the present invention, the Fenton oxidation reaction is carried out with a small amount of iron agent added, the alkali agent is added to the sludge obtained by solid-liquid separation, and the alkali mixed sludge is returned. It can be seen that water quality can be obtained, iron agent addition amount, sludge generation amount, sludge dewaterability can be improved, and residual hydrogen peroxide can be decomposed and removed.

1 フェントン酸化反応槽
2 予備中和槽
3 中和槽
4 凝集槽
5 沈殿槽
6 アルカリ混合槽
1 Fenton oxidation reaction tank 2 Preliminary neutralization tank 3 Neutralization tank 4 Coagulation tank 5 Precipitation tank 6 Alkali mixing tank

Claims (6)

難生物分解性有機物を含み水をフェントン酸化処理する方法において、
該難生物分解性有機物含有水に、過酸化水素と、該過酸化水素添加量の0.005〜0.2モル倍量の鉄薬剤とを添加して、pH2〜4の条件下に1時間以上反応させるフェントン酸化工程と、該酸化工程で得られた酸化処理水にアルカリ剤を添加して不溶化物を生成させる不溶化工程と、生成した不溶化物を固液分離する固液分離工程とを有し、
該固液分離工程で得られた分離汚泥の一部にアルカリ剤を添加混合して得られたアルカリ混合汚泥を、前記不溶化工程で酸化処理水に添加するアルカリ剤の少なくとも一部として添加することを特徴とする難生物分解性有機物含有水の処理方法。
In a method for Fenton oxidation treatment of water containing a non-biodegradable organic substance,
Add hydrogen peroxide and 0.005 to 0.2 mol times the amount of the hydrogen peroxide to the water containing the hardly biodegradable organic substance, and add 1 hour under conditions of pH 2 to 4 The Fenton oxidation process to be reacted as described above, the insolubilization process for generating an insolubilized product by adding an alkaline agent to the oxidized water obtained in the oxidizing process, and the solid-liquid separation process for solid-liquid separation of the generated insolubilized product. And
Adding an alkali mixed sludge obtained by adding and mixing an alkali agent to a part of the separated sludge obtained in the solid-liquid separation step as at least a part of the alkali agent added to the oxidized water in the insolubilization step; A method for treating non-biodegradable organic substance-containing water, characterized by:
請求項1において、前記不溶化工程に添加するアルカリ混合汚泥の固形分量が、前記酸化処理水とアルカリ剤が反応して生成する不溶化物量の20〜500倍量であることを特徴とする難生物分解性有機物含有水の処理方法。   In Claim 1, the solid content amount of the alkali mixed sludge added to the insolubilization step is 20 to 500 times the amount of the insolubilized product produced by the reaction of the oxidation-treated water and the alkali agent. For treatment of water containing organic substances. 請求項1又は2において、前記不溶化工程が、前記酸化処理水をpH3.5〜4.5に調整する予備中和工程と、予備中和処理水をpH5〜12に調整する中和工程とを備えることを特徴とする難生物分解性有機物含有水の処理方法。   3. The insolubilization step according to claim 1 or 2, wherein the insolubilization step adjusts the oxidation-treated water to pH 3.5 to 4.5 and a neutralization step to adjust the pre-neutralization treatment water to pH 5-12. A method for treating water containing hardly biodegradable organic matter, comprising: 難生物分解性有機物を含み水をフェントン酸化処理する装置において、
該難生物分解性有機物含有水に、過酸化水素と、該過酸化水素添加量の0.005〜0.2モル倍量の鉄薬剤とを添加して、pH2〜4の条件下に1時間以上反応させるフェントン酸化手段と、該酸化手段で得られた酸化処理水にアルカリ剤を添加して不溶化物を生成させる不溶化手段と、生成した不溶化物を固液分離する固液分離手段とを有し、
該固液分離手段で得られた分離汚泥の一部にアルカリ剤を添加混合するアルカリ混合手段と、得られたアルカリ混合汚泥を、前記不溶化手段で酸化処理水に添加するアルカリ剤の少なくとも一部として添加する手段とを備えることを特徴とする難生物分解性有機物含有水の処理装置。
In an apparatus that includes a non-biodegradable organic substance and fenton-oxidizes water,
Add hydrogen peroxide and 0.005 to 0.2 mol times the amount of the hydrogen peroxide to the water containing the hardly biodegradable organic substance, and add 1 hour under conditions of pH 2 to 4 Fenton oxidation means for reaction, an insolubilization means for generating an insolubilized product by adding an alkaline agent to the oxidized water obtained by the oxidizing means, and a solid-liquid separation means for solid-liquid separation of the generated insoluble material. And
Alkali mixing means for adding and mixing an alkali agent to a part of the separated sludge obtained by the solid-liquid separation means, and at least a part of the alkali agent for adding the obtained alkali mixed sludge to the oxidized water by the insolubilization means And a means for adding as a non-biodegradable organic substance-containing water treatment apparatus.
請求項4において、前記不溶化手段に添加するアルカリ混合汚泥の固形分量が、前記酸化処理水とアルカリ剤が反応して生成する不溶化物量の20〜500倍量であることを特徴とする難生物分解性有機物含有水の処理装置。   In Claim 4, the solid content amount of the alkali mixed sludge added to the insolubilization means is 20 to 500 times the amount of the insolubilized product produced by the reaction of the oxidation-treated water and the alkali agent. Equipment for water containing organic substances. 請求項4又は5において、前記不溶化手段が、前記酸化処理水をpH3.5〜4.5に調整する予備中和槽と、予備中和処理水をpH5〜12に調整する中和槽とを備えることを特徴とする難生物分解性有機物含有水の処理装置。   In Claim 4 or 5, the said insolubilization means is a pre-neutralization tank which adjusts said oxidation treatment water to pH 3.5-4.5, and a neutralization tank which adjusts pre-neutralization treatment water to pH 5-12. An apparatus for treating water containing hardly biodegradable organic substances, comprising:
JP2013117984A 2013-06-04 2013-06-04 Method and apparatus for treating water containing hardly biodegradable organic matter Active JP5720722B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013117984A JP5720722B2 (en) 2013-06-04 2013-06-04 Method and apparatus for treating water containing hardly biodegradable organic matter
PCT/JP2014/064479 WO2014196477A1 (en) 2013-06-04 2014-05-30 Method and device for treating water containing hardly biodegradable organic substances
CN201480029877.1A CN105246840B (en) 2013-06-04 2014-05-30 The processing method and processing unit of water containing biological hard-decomposed organic
KR1020157033584A KR20160014606A (en) 2013-06-04 2014-05-30 Method and device for treating water containing hardly biodegradable organic substances
TW103119360A TWI605021B (en) 2013-06-04 2014-06-04 Method and treatment device for water containing biologically difficult to decompose organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117984A JP5720722B2 (en) 2013-06-04 2013-06-04 Method and apparatus for treating water containing hardly biodegradable organic matter

Publications (2)

Publication Number Publication Date
JP2014233692A true JP2014233692A (en) 2014-12-15
JP5720722B2 JP5720722B2 (en) 2015-05-20

Family

ID=52008121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117984A Active JP5720722B2 (en) 2013-06-04 2013-06-04 Method and apparatus for treating water containing hardly biodegradable organic matter

Country Status (5)

Country Link
JP (1) JP5720722B2 (en)
KR (1) KR20160014606A (en)
CN (1) CN105246840B (en)
TW (1) TWI605021B (en)
WO (1) WO2014196477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282813A (en) * 2019-05-17 2019-09-27 兴源环境科技股份有限公司 A kind of leather printing and dyeing wastewater treatment system and technique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439694B (en) * 2018-02-12 2021-04-13 东华大学 Treatment method for high-salt high-organic matter wastewater evaporation concentration coupling thermocatalysis carbon crystallization
JP7237640B2 (en) * 2018-03-26 2023-03-13 三菱ケミカルアクア・ソリューションズ株式会社 Method for treating waste liquid containing acidic flocculate and water treatment apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520665A (en) * 1978-07-31 1980-02-14 Gunze Ltd Dye waste water treating method
JPS56163796A (en) * 1980-05-22 1981-12-16 Ebara Infilco Co Ltd Treatment of cod-containing sewage
JPS56168898A (en) * 1980-06-02 1981-12-25 Ebara Infilco Co Ltd Treatment of cod containing waste water
JPH01299692A (en) * 1988-05-27 1989-12-04 Nkk Corp Treatment of waste water containing organic matter
JPH0352692A (en) * 1989-07-19 1991-03-06 Ebara Infilco Co Ltd Fenton's treatment of waste water
JPH07136408A (en) * 1993-11-17 1995-05-30 Kankyo Eng Kk Wastewater treatment method
JPH11156375A (en) * 1997-11-28 1999-06-15 Nkk Corp Method for treating water containing organic substance
JPH11290894A (en) * 1998-04-07 1999-10-26 Shinko Electric Ind Co Ltd Method for treating waste liquid containing polymeric organic substance
JP2008229415A (en) * 2007-03-16 2008-10-02 Japan Organo Co Ltd Method and apparatus for water treatment
JP2009101262A (en) * 2007-10-22 2009-05-14 Japan Organo Co Ltd Method and apparatus for water treatment
JP2009148749A (en) * 2007-11-30 2009-07-09 Mitsubishi Materials Corp Heavy metal-containing water treating method
JP2012157865A (en) * 2012-06-01 2012-08-23 Kurita Water Ind Ltd Method for treating fluorine-containing water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480758A (en) 1990-07-23 1992-03-13 Fuji Photo Film Co Ltd Photosensitive composition
JP2910346B2 (en) 1991-08-29 1999-06-23 栗田工業株式会社 Treatment method for wastewater containing heavy metals
CN101921028B (en) * 2010-08-25 2011-12-28 常州大学 Method for treating liquid waste of silicon steel passivation solution

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520665A (en) * 1978-07-31 1980-02-14 Gunze Ltd Dye waste water treating method
JPS56163796A (en) * 1980-05-22 1981-12-16 Ebara Infilco Co Ltd Treatment of cod-containing sewage
JPS56168898A (en) * 1980-06-02 1981-12-25 Ebara Infilco Co Ltd Treatment of cod containing waste water
JPH01299692A (en) * 1988-05-27 1989-12-04 Nkk Corp Treatment of waste water containing organic matter
JPH0352692A (en) * 1989-07-19 1991-03-06 Ebara Infilco Co Ltd Fenton's treatment of waste water
JPH07136408A (en) * 1993-11-17 1995-05-30 Kankyo Eng Kk Wastewater treatment method
JPH11156375A (en) * 1997-11-28 1999-06-15 Nkk Corp Method for treating water containing organic substance
JPH11290894A (en) * 1998-04-07 1999-10-26 Shinko Electric Ind Co Ltd Method for treating waste liquid containing polymeric organic substance
JP2008229415A (en) * 2007-03-16 2008-10-02 Japan Organo Co Ltd Method and apparatus for water treatment
JP2009101262A (en) * 2007-10-22 2009-05-14 Japan Organo Co Ltd Method and apparatus for water treatment
JP2009148749A (en) * 2007-11-30 2009-07-09 Mitsubishi Materials Corp Heavy metal-containing water treating method
JP2012157865A (en) * 2012-06-01 2012-08-23 Kurita Water Ind Ltd Method for treating fluorine-containing water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282813A (en) * 2019-05-17 2019-09-27 兴源环境科技股份有限公司 A kind of leather printing and dyeing wastewater treatment system and technique

Also Published As

Publication number Publication date
WO2014196477A1 (en) 2014-12-11
CN105246840B (en) 2017-08-08
KR20160014606A (en) 2016-02-11
CN105246840A (en) 2016-01-13
JP5720722B2 (en) 2015-05-20
TW201509828A (en) 2015-03-16
TWI605021B (en) 2017-11-11

Similar Documents

Publication Publication Date Title
US20130168314A1 (en) Method for Treating Wastewater Containing Copper Complex
KR100778754B1 (en) Method for chemical treatment of wastewater comprising cyanide compounds
JP5073017B2 (en) Apparatus and method for treating phosphorus-containing wastewater
JP5720722B2 (en) Method and apparatus for treating water containing hardly biodegradable organic matter
JP2005000801A (en) Waste water treatment method
KR101653128B1 (en) Process for treatment of water containing azole-type anticorrosive for copper
JP4860201B2 (en) Method and apparatus for treating wastewater containing boron
JP5628704B2 (en) Treatment method of electroless nickel plating waste liquid
JP2009254959A (en) Method and apparatus for treating wastewater
KR101533979B1 (en) Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant
JP2013208599A (en) Apparatus for treating wastewater by high density sludge method
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
JP2014012880A (en) Method for disposing electroless copper plating waste solution, and device for the same
JP2621090B2 (en) Advanced wastewater treatment method
JP4527896B2 (en) Wastewater treatment equipment
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP4631420B2 (en) Fluorine-containing water treatment method
JPS6339307B2 (en)
JP2019202254A (en) Waste water treatment equipment and waste water treatment method
JPS59375A (en) Treatment of water containing difficultly biodegradative substance
JPH10180266A (en) Treatment of waste liquid of electroless nickel plating
JP2023167782A (en) Method and apparatus for treating wastewater containing organic chelating agent and heavy metals
JP2021074663A (en) Wastewater treatment method and wastewater treatment system
JPS5942099A (en) Treatment of waste water containing hardly biologically decomposable material
JP2008093609A (en) Method and apparatus for treating organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250