JP4860201B2 - Method and apparatus for treating wastewater containing boron - Google Patents

Method and apparatus for treating wastewater containing boron Download PDF

Info

Publication number
JP4860201B2
JP4860201B2 JP2005227179A JP2005227179A JP4860201B2 JP 4860201 B2 JP4860201 B2 JP 4860201B2 JP 2005227179 A JP2005227179 A JP 2005227179A JP 2005227179 A JP2005227179 A JP 2005227179A JP 4860201 B2 JP4860201 B2 JP 4860201B2
Authority
JP
Japan
Prior art keywords
tank
reaction
sludge
boron
polymer flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005227179A
Other languages
Japanese (ja)
Other versions
JP2007038171A (en
Inventor
祐司 和田
邦仁 今村
俊行 松上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Facilities Ltd
Original Assignee
NEC Facilities Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Facilities Ltd filed Critical NEC Facilities Ltd
Priority to JP2005227179A priority Critical patent/JP4860201B2/en
Publication of JP2007038171A publication Critical patent/JP2007038171A/en
Application granted granted Critical
Publication of JP4860201B2 publication Critical patent/JP4860201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、石炭火力発電所の排煙脱硫排水やごみ焼却場洗煙排水、ニッケルめっき工場排水、ガラス製造工場排水等のホウ素含有排水の処理に関わり、より詳しくは、アルミニウム化合物とカルシウム化合物とを加え、アルカリ性に調整して固液分離するホウ素含有排水の処理方法及び処理装置に関する。   The present invention relates to the treatment of boron-containing wastewater such as flue gas desulfurization wastewater from coal-fired power plants, waste incineration smoke washing wastewater, nickel plating factory wastewater, glass manufacturing factory wastewater, and more specifically, aluminum compounds and calcium compounds. It is related with the processing method and processing apparatus of the boron containing waste water which adjusts to alkalinity and performs solid-liquid separation.

従来、ホウ素含有排水の凝集沈殿処理として、ホウ素含有排水に硫酸アルミニウム等のアルミニウム化合物と消石灰等のカルシウム化合物とを加え、pH9以上のアルカリ性で反応させ、生成する反応液と不溶性析出物とを分離して処理する方法が知られている。   Conventionally, as an agglomeration and precipitation treatment for boron-containing wastewater, an aluminum compound such as aluminum sulfate and a calcium compound such as slaked lime are added to the boron-containing wastewater and reacted with an alkaline solution having a pH of 9 or more to separate the resulting reaction solution from insoluble precipitates. And processing methods are known.

アルミニウム化合物を水中に溶解させ、アルカリ性に調整するとアルミン酸イオンの状態で溶解する。アルミン酸イオンはカルシウムと反応しやすく、白色の不溶性析出物を生成する。この析出物について研究された例は少ないが、アルミン酸カルシウムCa(Al(OH)42であると考えられている。
従ってホウ素は、アルミニウムとカルシウムとがアルカリ条件下で反応し、アルミン酸カルシウムと推定される不溶性析出物を生成する際に吸着、または結晶中に取り込まれるなどして除去されるものと考えられている。
When an aluminum compound is dissolved in water and adjusted to be alkaline, it dissolves in the state of aluminate ions. Aluminate ions easily react with calcium and produce white insoluble precipitates. Although few studies have been made on this precipitate, it is considered to be calcium aluminate Ca (Al (OH) 4 ) 2 .
Therefore, boron is considered to be removed by adsorption or incorporation into crystals when aluminum and calcium react under alkaline conditions to produce an insoluble precipitate presumed to be calcium aluminate. Yes.

アルミニウム化合物とカルシウム化合物とを用いる凝集沈殿法では、ホウ素を排水基準の10mg/l以下まで処理するためには、比較的多くの薬剤を用いる必要があり、重量比でホウ素の100倍程度の不溶性析出物を生成させる必要がある。すなわち薬剤量が多く、また汚泥発生量も多くなるため、より効率的な処理法の開発が望まれている。   In the coagulation precipitation method using an aluminum compound and a calcium compound, it is necessary to use a relatively large amount of chemicals in order to treat boron to 10 mg / l or less of the wastewater standard, and the insolubility is about 100 times that of boron by weight ratio. It is necessary to generate precipitates. That is, since the amount of chemicals is large and the amount of sludge generated is also large, development of a more efficient treatment method is desired.

これらの課題を解決する方法として、特許文献1及び2には、ホウ素含有排水中にアルミニウム化合物およびカルシウム化合物を加えて生成した不溶性析出物を沈殿槽などで固液分離し、分離した汚泥の一部を反応工程に返送する方法が提案されている。また特許文献3には、ホウ素含有排水中にアルミニウム化合物およびカルシウム化合物を加えて生成した不溶性析出物を沈殿槽などで固液分離し、分離した沈殿物を返送して原水と接触させる方法が提案されている。さらに、特許文献4にはホウ素含有水に、アルミニウム化合物及び硫酸化合物を存在させる方法が提案されている。
特開2001−232372号公報 特開2001−239273号公報 特開2002−233881号公報 特開2001−162287号公報
As a method for solving these problems, Patent Documents 1 and 2 disclose a solid sludge obtained by solid-liquid separation of an insoluble precipitate produced by adding an aluminum compound and a calcium compound into a boron-containing wastewater in a precipitation tank or the like. A method of returning the part to the reaction process has been proposed. Patent Document 3 proposes a method in which an insoluble precipitate formed by adding an aluminum compound and a calcium compound to boron-containing wastewater is solid-liquid separated in a precipitation tank or the like, and the separated precipitate is returned to contact with raw water. Has been. Furthermore, Patent Document 4 proposes a method in which an aluminum compound and a sulfuric acid compound are present in boron-containing water.
JP 2001-232372 A JP 2001-239273 A JP 2002-233881 A JP 2001-162287 A

ところで、上述した従来技術は、ホウ素を含有する排水にアルミニウム化合物とカルシウム化合物とを加えてホウ素含有排水を処理する方法である。特許文献1〜3に記載の方法、いわゆる汚泥循環法は、返送した汚泥を核として結晶の成長を促進させる効果や、汚泥の沈降性(沈殿分離性)の改善などの効果があり、重金属を初めとした無機化学物質の排水処理で広く利用されている方法である。しかし発明者らが汚泥循環法について検討を重ねた結果、ホウ素の排水処理に限っては、返送の初期段階では処理性が向上するが、返送する毎に処理性が悪化していくことを見出した。言い換えれば、上記の方法では長期的、かつ安定した処理性を維持することができないという問題がある。また、特許文献4に記載の方法、ホウ素含有原水の沈殿分離方法も長期的、かつ安定した処理性を維持することができないという問題がある。   By the way, the above-mentioned prior art is a method of treating boron-containing wastewater by adding an aluminum compound and a calcium compound to wastewater containing boron. The methods described in Patent Documents 1 to 3, the so-called sludge circulation method, have the effect of promoting the growth of crystals using the returned sludge as the core, and the effect of improving the sedimentation property (sediment separation property) of the sludge. This method is widely used in wastewater treatment of inorganic chemical substances. However, as a result of repeated investigations by the inventors on the sludge circulation method, it was found that the treatment performance was improved at the initial stage of return for boron wastewater treatment, but the treatment performance deteriorated with each return. It was. In other words, there is a problem that the above method cannot maintain long-term and stable processability. Further, the method described in Patent Document 4 and the precipitation separation method of boron-containing raw water also have a problem that long-term and stable processability cannot be maintained.

そこで、本発明はかかる課題を解決するため、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理方法及び処理装置を提供することにある。   Therefore, in order to solve such problems, the present invention can efficiently maintain a long-term and stable good treatability with a smaller amount of chemicals, and can efficiently treat boron-containing wastewater with less sludge generation. To provide an apparatus.

請求項記載の発明は、ホウ素を含有する排水に、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させる第一工程と、前記第一工程から導入された前記反応液に高分子凝集剤を加えて処理水と汚泥とに分離する第二工程と、前記第二工程から導入された前記汚泥の一部に、前記第二工程で加えた高分子凝集剤とは異なるイオン性の高分子凝集剤を加えて混合した後、前記第一工程に返送する第三工程と、を含むことを特徴とする。 The invention according to claim 1 is introduced from the first step, a first step of generating a reaction solution and an insoluble precipitate by adding an aluminum compound and a calcium compound to waste water containing boron and adjusting the pH to 9 or more. A second step of adding a polymer flocculant to the reaction solution and separating it into treated water and sludge, and a polymer added in the second step to a part of the sludge introduced from the second step And a third step of adding and mixing an ionic polymer flocculant different from the flocculant and then returning to the first step.

請求項記載の発明によれば、第一工程でホウ素を含有する排水に化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させ、第二工程で第一工程から導入された反応液に高分子凝集剤を加えて処理水と汚泥とに分離し、第三工程で第二工程の汚泥の一部に前記高分子凝集剤とは異なるイオン性の高分子凝集剤を加えて混合した後、第一工程に返送することにより、化合物や高分子凝集剤が第三工程から第一工程へ循環するので、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理を実現することができる。 According to the first aspect of the invention, the compound added to the waste water containing boron in a first step to produce a reaction solution and an insoluble precipitate was adjusted to pH9 or more, introduced from the first step in the second step In the third step, an ionic polymer flocculant different from the polymer flocculant is added to a part of the sludge in the second step. In addition, after mixing and returning to the first step, the compound and polymer flocculant circulate from the third step to the first step, so that long-term and stable good processability can be maintained with fewer drugs. In addition, it is possible to realize an efficient treatment of boron-containing wastewater that generates less sludge.

請求項記載の発明は、ホウ素を含有する排水に、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させる第一工程と、前記第一工程から導入された前記反応液に高分子凝集剤を加え、処理水と汚泥とに分離する第二工程と、前記第二工程から導入された前記汚泥の一部に超音波を照射した後、前記第一工程に返送する第三工程と、を含むことを特徴とする。 The invention according to claim 2 is introduced from the first step, a first step of generating a reaction solution and an insoluble precipitate by adding an aluminum compound and a calcium compound to waste water containing boron and adjusting the pH to 9 or more. A second step of adding a polymer flocculant to the reaction solution and separating it into treated water and sludge; after irradiating a part of the sludge introduced from the second step with ultrasonic waves, And a third step of returning to the step.

請求項記載の発明によれば、第一工程でホウ素を含有する排水に化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させ、第二工程で第一工程から導入された反応液に高分子凝集剤を加えて処理水と汚泥とに分離し、第三工程で第二工程から導入された汚泥の一部に超音波を照射した後、第一工程に返送することにより、薬剤が第三工程から第一工程へ循環するので、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理を実現することができる。 According to the invention described in claim 2 , a compound is added to the wastewater containing boron in the first step to adjust the pH to 9 or more to produce a reaction solution and an insoluble precipitate, and introduced from the first step in the second step. A polymer flocculant is added to the reaction solution, which is separated into treated water and sludge, and ultrasonic waves are applied to a portion of the sludge introduced from the second step in the third step, and then returned to the first step. Since the chemical circulates from the third step to the first step, efficient boron-containing wastewater that can maintain long-term and stable good treatment with fewer chemicals and generates less sludge. Can be realized.

請求項記載の発明は、ホウ素を含有する排水に、第二工程から返送された反応液の一部を加えて撹拌混合する第一工程と、前記第一工程から導入された反応液にアルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させ、その反応液の一部を前記第一工程に返送する第二工程と、前記第二工程から導入された反応液に高分子凝集剤を加え、処理水と汚泥とに固液分離する第三工程と、を含むことを特徴とする。 The invention according to claim 3 is the first step of adding a part of the reaction solution returned from the second step to the wastewater containing boron and stirring and mixing the aluminum, and the reaction solution introduced from the first step is made of aluminum. A second step of adding a compound and a calcium compound to adjust the pH to 9 or more to produce a reaction solution and an insoluble precipitate, and returning a part of the reaction solution to the first step; And a third step of solid-liquid separation into treated water and sludge.

請求項記載の発明によれば、第一工程でホウ素を含有する排水に反応液の一部を加えて混合し、第二工程で第一工程から導入された反応液に化合物を加えてアルカリ性に調整して反応液と不溶性析出物とを生成させ、第三工程で第二工程から導入された反応液に高分子凝集剤を加えて固液分離することにより、化合物が第二工程から第一工程に循環するので、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理を実現することができる。 According to the invention of claim 3, a part of the reaction solution is added to and mixed with the wastewater containing boron in the first step, and the compound is added to the reaction solution introduced from the first step in the second step to be alkaline. To produce a reaction solution and an insoluble precipitate, and by adding a polymer flocculant to the reaction solution introduced from the second step in the third step and solid-liquid separation, the compound is obtained from the second step. Since it circulates in one step, it is possible to maintain an excellent treatment property in a long term and stably with a smaller amount of chemicals, and to realize an efficient treatment of boron-containing wastewater with less sludge generation.

請求項記載の発明は、ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段が設けられ、該調整手段により反応液と不溶性析出物とを生成させる反応槽と、前記反応槽から導入された前記反応液に高分子凝集剤を加える第一添加手段が設けられた凝集槽と、前記凝集槽から前記反応液が導入され、処理水と汚泥とに分離する沈殿槽と、前記沈殿槽から前記汚泥の一部が導入され、その汚泥に前記凝集槽で加えた高分子凝集剤とは異なるイオン性の高分子凝集剤を加える第二添加手段が設けられ、反応液を混合する混合手段が設けられ、混合された反応液を前記反応槽に返送する凝集剤添加槽と、を含むことを特徴とする。 The invention according to claim 4 is provided with an adjusting means for adjusting the pH to 9 or more by adding wastewater containing boron and adding an aluminum compound and a calcium compound, and the adjusting means generates a reaction solution and an insoluble precipitate. A reaction tank; a coagulation tank provided with a first addition means for adding a polymer flocculant to the reaction liquid introduced from the reaction tank; and the reaction liquid is introduced from the coagulation tank to treat water and sludge. A settling tank for separation and a second addition means for adding a part of the sludge from the settling tank and adding an ionic polymer flocculant different from the polymer flocculant added in the flocculant to the sludge are provided. And a mixing means for mixing the reaction liquid, and a flocculant addition tank for returning the mixed reaction liquid to the reaction tank.

請求項記載の発明によれば、反応槽でホウ素を含有する排水に化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させ、凝集槽で反応槽からの反応液に高分子凝集剤を加え、沈殿槽で処理水と汚泥とに分離し、凝集剤添加槽で沈殿槽からの汚泥の一部に前記高分子凝集剤とは異なるイオン性の高分子凝集剤を加え、反応液を混合し、混合された反応液を反応槽に返送することにより、薬剤が凝集剤添加槽から反応槽へ循環するので、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理を実現することができる。 According to invention of Claim 4 , a compound is added to the wastewater containing boron in a reaction tank, it adjusts to pH9 or more, a reaction liquid and an insoluble precipitate are produced | generated, and the reaction liquid from a reaction tank is made into a coagulation tank. Add polymer flocculant, separate into treated water and sludge in sedimentation tank, add ionic polymer flocculant different from the polymer flocculant to part of sludge from sedimentation tank in flocculant addition tank By mixing the reaction liquid and returning the mixed reaction liquid to the reaction tank, the drug circulates from the flocculant addition tank to the reaction tank, so that long-term and stable good processability can be achieved with fewer drugs. An efficient treatment of boron-containing wastewater that can be maintained and generates little sludge can be realized.

請求項記載の発明は、ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段が設けられ、該調整手段により反応液と不溶性析出物とを生成させる反応槽と、前記反応槽から導入された前記反応液に高分子凝集剤を加える添加手段が設けられた凝集槽と、前記凝集槽から反応液が導入されて処理水と汚泥とに分離する沈殿槽と、前記沈殿槽から前記汚泥の一部が導入され、その汚泥に超音波を照射する超音波発振器が設けられ、該超音波発振器により超音波が照射された反応液を前記反応槽に返送する超音波照射槽と、を含むことを特徴とする。 According to the fifth aspect of the present invention, a wastewater containing boron is introduced, an adjusting means for adjusting the pH to 9 or more by adding an aluminum compound and a calcium compound is provided, and the adjusting means generates a reaction solution and an insoluble precipitate. A reaction tank; a coagulation tank provided with an addition means for adding a polymer flocculant to the reaction liquid introduced from the reaction tank; and a precipitate into which the reaction liquid is introduced from the coagulation tank and separated into treated water and sludge. A part of the sludge is introduced from the tank and the settling tank, and an ultrasonic oscillator for irradiating the sludge with ultrasonic waves is provided, and the reaction liquid irradiated with ultrasonic waves by the ultrasonic oscillator is returned to the reaction tank. And an ultrasonic irradiation tank.

請求項記載の発明は、ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段が設けられ、該調整手段により反応液と不溶性析出物とを生成させる反応槽と、前記反応槽から導入された前記反応液に高分子凝集剤を加える添加手段が設けられた凝集槽と、前記凝集槽から反応液が導入されて処理水と汚泥とに分離する沈殿槽と、前記沈殿槽から前記汚泥の一部が導入され、その汚泥に超音波を照射する超音波発振器が設けられ、該超音波発振器により超音波が照射された反応液を前記反応槽に返送する超音波照射槽と、を含むことを特徴とする。 According to the fifth aspect of the present invention, a wastewater containing boron is introduced, an adjusting means for adjusting the pH to 9 or more by adding an aluminum compound and a calcium compound is provided, and the adjusting means generates a reaction solution and an insoluble precipitate. A reaction tank; a coagulation tank provided with an addition means for adding a polymer flocculant to the reaction liquid introduced from the reaction tank; and a precipitate into which the reaction liquid is introduced from the coagulation tank and separated into treated water and sludge. A part of the sludge is introduced from the tank and the settling tank, and an ultrasonic oscillator for irradiating the sludge with ultrasonic waves is provided, and the reaction liquid irradiated with ultrasonic waves by the ultrasonic oscillator is returned to the reaction tank. And an ultrasonic irradiation tank.

請求項記載の発明は、ホウ素を含有する排水が導入されると共に第二反応槽から返送された反応液の一部を加えて混合する混合手段が設けられた第一反応槽と、前記第一反応槽から導入された反応液にアルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成する調整手段が設けられた第二反応槽と、前記第二反応槽から前記反応液が導入され、高分子凝集剤を添加する添加手段が設けられた凝集槽と、前記凝集槽から前記反応液が導入されて処理水と汚泥とに分離する沈殿槽と、
を含むことを特徴とする。
The invention according to claim 6 is the first reaction tank provided with mixing means for adding and mixing a part of the reaction liquid returned from the second reaction tank while introducing wastewater containing boron, and the first reaction tank. A second reaction tank provided with adjusting means for adding an aluminum compound and a calcium compound to a reaction liquid introduced from one reaction tank to adjust the pH to 9 or more to generate a reaction liquid and an insoluble precipitate; and the second reaction A coagulation tank in which the reaction liquid is introduced from the tank and provided with an addition means for adding a polymer flocculant; a precipitation tank in which the reaction liquid is introduced from the coagulation tank and separated into treated water and sludge;
It is characterized by including.

請求項記載の発明によれば、第一反応槽でホウ素を含有する排水が導入されると共に第二反応槽から返送された反応液の一部を加えて混合し、第二反応槽で第一反応槽から導入された反応液に化合物を加えてpH9以上のアルカリ性に調整して反応液と不溶性析出物とを生成させ、凝集槽で第二反応槽から反応液が導入されて高分子凝集剤が添加され、沈殿槽で処理水と汚泥とに分離することにより、薬剤が第二反応槽から第一反応槽へ循環するので、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理を実現することができる。 According to the invention described in claim 6, wastewater containing boron is introduced into the first reaction tank and a part of the reaction solution returned from the second reaction tank is added and mixed. A compound is added to the reaction liquid introduced from one reaction tank to adjust the alkalinity to pH 9 or higher to produce a reaction liquid and an insoluble precipitate, and the reaction liquid is introduced from the second reaction tank to the polymer agglomeration in the aggregation tank. The agent is added and separated into treated water and sludge in the sedimentation tank, so that the chemical circulates from the second reaction tank to the first reaction tank. An efficient treatment of boron-containing wastewater that can be maintained and generates little sludge can be realized.

本発明によれば、第一工程でホウ素を含有する排水と化合物を加えて反応液と不溶性析出物とを生成させ、第二工程で第一工程の反応液に凝集剤を加えて処理水と汚泥とに分離し、第三工程で第二工程から導入された汚泥の一部に前記凝集剤とは異なる凝集剤を加えて混合した後、第一工程に返送することにより、薬剤が第三工程から第一工程へ循環するので、より少ない薬剤で長期的かつ安定的に良好な処理性を維持することができ、かつ汚泥発生量も少ない効率的なホウ素含有排水の処理を実現することができる。   According to the present invention, waste water containing boron and a compound are added in the first step to generate a reaction solution and an insoluble precipitate, and a flocculant is added to the reaction solution in the first step in the second step, and treated water and After separating into sludge and adding a flocculant different from the flocculant to a part of the sludge introduced from the second step in the third step, the mixture is returned to the first step, whereby the drug is transferred to the third step. Since it is circulated from the process to the first process, it is possible to maintain a good long-term and stable treatment with fewer chemicals, and to achieve efficient treatment of boron-containing wastewater with less sludge generation. it can.

以下、本発明の実施の形態を、図面を用いて更に詳細に説明する。
図1は本発明に係るホウ素含有排水の処理方法を適用した処理装置の一実施の形態を示した設備構成図である。
同図に示す処理装置100は、ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させる調整手段105が設けられ、調整手段105により反応液と不溶性析出物とを生成させる反応槽101と、反応槽101の反応液に高分子凝集剤を加える第一添加手段106が設けられた凝集槽102と、凝集槽102からの反応液が導入され、処理水と汚泥とに分離(固液分離)する沈殿槽103と、沈殿槽103で分離された汚泥の一部が導入され、導入された汚泥に凝集槽102で加えた高分子凝集剤とは異なるイオン性の高分子凝集剤を加える第二添加手段107が設けられ、反応液を混合する混合手段108が設けられ、混合された反応液を図示しないポンプにより反応槽101に返送する凝集剤添加槽104と、を含む。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is an equipment configuration diagram showing an embodiment of a treatment apparatus to which a treatment method for boron-containing wastewater according to the present invention is applied.
The treatment apparatus 100 shown in the figure is provided with adjusting means 105 for introducing waste water containing boron, adjusting the pH to 9 or more by adding an aluminum compound and a calcium compound, and generating a reaction solution and an insoluble precipitate. A reaction tank 101 for generating a reaction solution and an insoluble precipitate by means 105; a coagulation tank 102 provided with a first addition means 106 for adding a polymer flocculant to the reaction liquid in the reaction tank 101; The reaction liquid is introduced, a precipitation tank 103 that separates (solid-liquid separation) into treated water and sludge, and a part of the sludge separated in the precipitation tank 103 is introduced, and added to the introduced sludge in the coagulation tank 102. A second addition means 107 for adding an ionic polymer flocculant different from the polymer flocculant is provided, a mixing means 108 for mixing the reaction liquid is provided, and the mixed reaction liquid is not shown. Including a flocculant tank 104 for returning to the reaction tank 101 by pump, a.

調整手段105としては、例えばアルミニウム化合物を貯蔵するタンク、カルシウム化合物を貯蔵するタンク、pH調整剤を貯蔵するタンク、各タンクから反応槽101へ通じるパイプ、各パイプに挿入された電磁弁及び各電磁弁を作動させる駆動装置で構成される(いずれも図示せず)。
第一添加手段106としては、例えば、高分子凝集剤を貯蔵するタンク、タンクから凝集槽102へ通じるパイプ、パイプに挿入された電磁弁及び電磁弁を作動させる駆動装置で構成される(いずれも図示せず)。
第二添加手段107としては、例えば、前述の高分子凝集剤とは異なるイオン性の高分子凝集剤を貯蔵するタンク、タンクから凝集剤添加槽104へ通じるパイプ、パイプに挿入された電磁弁及び電磁弁を作動させる駆動装置で構成される(いずれも図示せず)。
混合手段108としては、例えばスクリュー及びスクリューを回転させるモータからなり反応液を撹拌することにより混合する手段が挙げられるが多孔質ブロック(例えばバブルストーン)、一端が多孔質ブロックに固定されたパイプ、パイプの他端から空気を圧送するポンプからなり反応液に気泡を吹き込むことにより混合する手段を用いてもよい。
The adjusting means 105 includes, for example, a tank for storing an aluminum compound, a tank for storing a calcium compound, a tank for storing a pH adjusting agent, a pipe leading from each tank to the reaction tank 101, an electromagnetic valve inserted into each pipe, and each electromagnetic valve. It is comprised with the drive device which operates a valve (all are not shown in figure).
The first addition means 106 includes, for example, a tank that stores the polymer flocculant, a pipe that leads from the tank to the flocculation tank 102, an electromagnetic valve that is inserted into the pipe, and a drive device that operates the electromagnetic valve (all of which are Not shown).
As the second addition means 107, for example, a tank for storing an ionic polymer flocculant different from the polymer flocculant described above, a pipe leading from the tank to the flocculant addition tank 104, an electromagnetic valve inserted in the pipe, It is comprised with the drive device which operates a solenoid valve (all are not shown in figure).
Examples of the mixing means 108 include a screw and a means for rotating the screw to mix the reaction liquid by stirring the reaction liquid. For example, a porous block (for example, bubble stone), a pipe having one end fixed to the porous block, A means that comprises a pump that pumps air from the other end of the pipe and mixes by blowing bubbles into the reaction solution may be used.

図1に示す処理装置100において、ホウ素含有排水は、まず第一工程が施される反応槽101に導入される。
第一工程では、ホウ素含有排水にカルシウム化合物とアルミニウム化合物とを添加してpH9以上のアルカリ性に調整して反応液と不溶性析出物とを生成させ、混合手段108により混合すると同時に、第三工程が施される凝集剤添加槽104から返送される汚泥を受入れる。第一工程では、アルミン酸カルシウムを含む不溶性析出物が生成し、その析出物中にホウ素が吸着、又は結晶中に取り込まれる反応が起こる。
In the processing apparatus 100 shown in FIG. 1, boron-containing wastewater is first introduced into a reaction vessel 101 in which a first step is performed.
In the first step, a calcium compound and an aluminum compound are added to the boron-containing waste water to adjust the pH to 9 or higher to produce a reaction solution and an insoluble precipitate, which are mixed by the mixing means 108. The sludge returned from the flocculant addition tank 104 to be applied is received. In the first step, an insoluble precipitate containing calcium aluminate is generated, and a reaction occurs in which boron is adsorbed or taken into the crystal in the precipitate.

次に第二工程の前半が施される凝集槽102において、凝集槽102内の反応液に第一添加手段106より高分子凝集剤を加えて混合し、不溶性析出物を凝集させる。凝集した粒子は沈降性を有するようになり、第二工程の後半が施される沈殿槽103で静置することで不溶性析出物を沈殿させ、上澄水(処理水)が得られる。   Next, in the agglomeration tank 102 in which the first half of the second step is performed, a polymer flocculant is added to the reaction liquid in the agglomeration tank 102 from the first addition means 106 and mixed to agglomerate insoluble precipitates. The agglomerated particles come to have sedimentation properties, and are allowed to stand in the sedimentation tank 103 in which the second half of the second step is performed, thereby precipitating insoluble precipitates and obtaining supernatant water (treated water).

第三工程が施される凝集剤添加槽104においては、第二工程で分離された沈殿物の一部に、第二添加手段107により高分子凝集剤を加えて混合する。ここで添加する高分子凝集剤のイオン性は、第二工程で加えた高分子凝集剤とは異なるイオン性とする。例えば、第二工程でノニオン系の高分子凝集剤を加えた場合、第三工程ではカチオン系、もしくはアニオン系の高分子凝集剤を加える。このように異なるイオン性の高分子凝集剤を加えることで、第一工程に汚泥を返送しても長期的かつ安定的にホウ素を処理できる。   In the flocculant addition tank 104 subjected to the third step, the polymer flocculant is added and mixed by the second addition means 107 to a part of the precipitate separated in the second step. The ionicity of the polymer flocculant added here is different from that of the polymer flocculant added in the second step. For example, when a nonionic polymer flocculant is added in the second step, a cationic or anionic polymer flocculant is added in the third step. By adding different ionic polymer flocculants in this way, boron can be treated in a long-term and stable manner even if sludge is returned to the first step.

図2は本発明に係るホウ素含有排水の処理方法を適用した処理装置の他の実施の形態を示した設備構成図である。以下、図1に示した部材と同様の部材には共通の符号を用いた。
図2に示した処理装置200と図1に示した処理装置100との相違点は、凝集剤添加槽104を用いる代わりに超音波照射槽201を用いた点である。
FIG. 2 is an equipment configuration diagram showing another embodiment of a treatment apparatus to which the method for treating boron-containing wastewater according to the present invention is applied. Hereinafter, the same reference numerals are used for members similar to those shown in FIG.
The difference between the processing apparatus 200 shown in FIG. 2 and the processing apparatus 100 shown in FIG. 1 is that an ultrasonic irradiation tank 201 is used instead of using the flocculant addition tank 104.

図2に示した処理装置200は、ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段105が設けられ、調整手段105により反応液と不溶性析出物とを生成させる反応槽101と、反応槽101の反応液に高分子凝集剤を加える添加手段(第一添加手段と同様である)106が設けられた凝集槽102と、凝集槽102からの反応液が導入されて処理水と汚泥とに分離する沈殿槽103と、沈殿槽103で分離された汚泥の一部が導入され、導入された汚泥に超音波を照射する超音波発振器202が設けられ、超音波発振器202により超音波が照射された反応液を反応槽101に図示しないポンプで返送する超音波照射槽201と、を含む。   The treatment apparatus 200 shown in FIG. 2 is provided with an adjusting unit 105 into which wastewater containing boron is introduced and an aluminum compound and a calcium compound are added to adjust the pH to 9 or higher. Reaction tank 101, a coagulation tank 102 provided with an addition means (similar to the first addition means) 106 for adding a polymer flocculant to the reaction liquid in the reaction tank 101, and a reaction liquid from the coagulation tank 102 Is introduced into the treated water and sludge, a part of the sludge separated in the sedimentation tank 103 is introduced, and an ultrasonic oscillator 202 for irradiating the introduced sludge with ultrasonic waves is provided, And an ultrasonic irradiation tank 201 for returning the reaction liquid irradiated with ultrasonic waves by the ultrasonic oscillator 202 to the reaction tank 101 with a pump (not shown).

図2に示す処理装置200において、ホウ素含有排水は、まず第一工程が施される反応槽101に導入される。第一工程では、ホウ素含有排水にカルシウム化合物とアルミニウム化合物とを添加してpH9以上のアルカリ性に調整して反応液と不溶性析出物とを生成させ、超音波発信器202から超音波を照射することで混合すると同時に、第三工程が施される超音波照射槽201から返送される汚泥を受入れる。
第一工程では、反応液とアルミン酸カルシウムを含む不溶性析出物とが生成し、その析出物中にホウ素が吸着、又は結晶中に取り込まれる反応が起こる。
In the processing apparatus 200 shown in FIG. 2, boron-containing wastewater is first introduced into the reaction tank 101 in which the first step is performed. In the first step, a calcium compound and an aluminum compound are added to the boron-containing wastewater to adjust the alkalinity to pH 9 or higher to produce a reaction solution and an insoluble precipitate, and an ultrasonic wave is irradiated from the ultrasonic transmitter 202. At the same time, the sludge returned from the ultrasonic irradiation tank 201 subjected to the third step is received.
In the first step, a reaction solution and an insoluble precipitate containing calcium aluminate are generated, and a reaction occurs in which boron is adsorbed or taken into the crystal in the precipitate.

次に第二工程の前半が施される凝集槽102において、凝集槽102内の反応液に添加手段106から高分子凝集剤を加えて混合し、不溶性析出物を凝集させる。凝集した粒子は沈降性を有するようになり、第二工程の後半が施される沈殿槽103で静置することで不溶性析出物を沈殿させ、上澄水(処理水)が得られる。   Next, in the agglomeration tank 102 in which the first half of the second step is performed, the polymer flocculant is added from the addition means 106 to the reaction solution in the agglomeration tank 102 and mixed to agglomerate insoluble precipitates. The agglomerated particles come to have sedimentation properties, and are allowed to stand in the sedimentation tank 103 in which the second half of the second step is performed, thereby precipitating insoluble precipitates and obtaining supernatant water (treated water).

第三工程が施される超音波照射槽201においては、第二工程で分離された沈殿物の一部に超音波発信器202で超音波を照射する。超音波を照射すると、凝集した不溶性析出物は微細化される。不溶性析出物が微細化されることで反応液と均等に混合される。超音波を照射し微細化した汚泥を第一工程が施される反応槽101に返送することで、長期的かつ安定的にホウ素を処理できる。   In the ultrasonic irradiation tank 201 to which the third step is performed, ultrasonic waves are irradiated by the ultrasonic transmitter 202 onto a part of the precipitate separated in the second step. When the ultrasonic wave is irradiated, the aggregated insoluble precipitate is refined. The insoluble precipitate is refined and mixed with the reaction solution evenly. Boron can be treated in a long-term and stable manner by returning the sludge refined by irradiating ultrasonic waves to the reaction tank 101 in which the first step is performed.

図3は本発明に係るホウ素含有排水の処理方法を適用した処理装置の他の実施の形態を示した設備構成図である。
図3に示した処理装置300と図1に示した処理装置100との相違点は、第二工程が施される第二反応槽101−2の槽液を第一工程が施される第一反応槽101−1に循環させる点である。
FIG. 3 is an equipment configuration diagram showing another embodiment of a treatment apparatus to which the method for treating boron-containing wastewater according to the present invention is applied.
The difference between the processing apparatus 300 shown in FIG. 3 and the processing apparatus 100 shown in FIG. 1 is that the tank liquid in the second reaction tank 101-2 subjected to the second process is subjected to the first process. It is a point to circulate to the reaction tank 101-1.

図3に示した処理装置300は、ホウ素を含有する排水が導入されると共に第二反応槽101―2からの反応液の一部を加えて混合する混合手段301が設けられた第一反応槽101−1と、第一反応槽101−1からの反応液にアルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段105が設けられた第二反応槽101−2と、第二反応槽101−2からの反応液が導入され、高分子凝集剤を添加する添加手段106が設けられた凝集槽102と、凝集槽102からの反応液が導入されて処理水と汚泥とに固液分離する沈殿槽103と、を含む。   The processing apparatus 300 shown in FIG. 3 is a first reaction tank in which waste water containing boron is introduced and a mixing means 301 is provided for adding and mixing a part of the reaction liquid from the second reaction tank 101-2. 101-1, a second reaction tank 101-2 provided with an adjusting means 105 for adjusting the pH to 9 or higher by adding an aluminum compound and a calcium compound to the reaction solution from the first reaction tank 101-1, and a second reaction tank The reaction liquid from 101-2 is introduced, the coagulation tank 102 provided with the addition means 106 for adding the polymer flocculant, and the reaction liquid from the coagulation tank 102 is introduced to solid-liquid separation into treated water and sludge And a sedimentation tank 103.

図3に示した処理装置300において、ホウ素含有排水は、まず第一反応槽101−1に導入される。第一工程では、第二工程が施される第二反応槽101−2を経た反応液との一部とホウ素含有排水とを混合手段301で撹拌混合する。
第二反応槽101−2では、ホウ素含有排水に添加手段105によりカルシウム化合物とアルミニウム化合物とを添加してpH9以上のアルカリ性に調整し、混合する。
第二工程では反応液とアルミン酸カルシウムを含む不溶性析出物とが生成し、その析出物中にホウ素が吸着、又は結晶中に取り込まれる反応が起こる。
第二工程を経た反応液は、第三工程の前半が施される凝集槽102及び第三工程の後半が施される沈殿槽103で沈殿させて上澄水(処理水)を得るか、第一反応槽101−2への返送に振り分けられるが、第一反応槽101−2に返送される反応液は、不溶性析出物を濃縮してから返送するのではなく、反応液そのままの状態で返送する。このように反応液の状態で返送することで、長期的かつ安定的にホウ素を処理できる。
In the processing apparatus 300 shown in FIG. 3, the boron-containing waste water is first introduced into the first reaction tank 101-1. In the first step, a part of the reaction liquid that has passed through the second reaction tank 101-2 subjected to the second step and the boron-containing wastewater are stirred and mixed by the mixing means 301.
In the second reaction tank 101-2, the calcium compound and the aluminum compound are added to the boron-containing wastewater by the adding means 105 to adjust the alkalinity to pH 9 or higher and mix.
In the second step, a reaction solution and an insoluble precipitate containing calcium aluminate are generated, and a reaction occurs in which boron is adsorbed or taken into the crystal in the precipitate.
The reaction solution that has passed through the second step is precipitated in the agglomeration tank 102 in which the first half of the third step is applied and the precipitation tank 103 in which the second half of the third step is applied to obtain supernatant water (treated water). The reaction liquid returned to the reaction tank 101-2 is distributed, but the reaction liquid returned to the first reaction tank 101-2 is not returned after the insoluble precipitate is concentrated, but is returned as it is. . Thus, by returning in the state of the reaction solution, boron can be treated for a long time and stably.

本発明に係る処理方法を適用した処理装置における固液分離工程以外の各工程は、pHを調整したり、また添加薬剤や返送汚泥を均一に混合する必要から混合操作を併用するのが好ましい。槽内に撹拌機を設置して混合する方式や、ラインミキサーによる混合方式、空気等のエアリフト効果を利用した曝気混合方式を採用することができる。   Each step other than the solid-liquid separation step in the treatment apparatus to which the treatment method according to the present invention is applied preferably uses a mixing operation because it is necessary to adjust the pH and to uniformly mix the additive agent and the returned sludge. It is possible to adopt a method of mixing by installing a stirrer in the tank, a mixing method using a line mixer, or an aeration mixing method using an air lift effect such as air.

本発明に係る処理方法を適用した処理装置用いられる固液分離装置は、一般的な排水処理に用いられる装置を制限なく使用することができ、沈殿分離装置の他、フィルタープレスやベルトプレス等のろ過脱水装置、膜分離装置等を利用することができる。   The solid-liquid separation apparatus used in the treatment apparatus to which the treatment method according to the present invention is applied can use any apparatus used for general wastewater treatment without limitation, and in addition to the precipitation separation apparatus, such as a filter press and a belt press. A filtration dehydration device, a membrane separation device, or the like can be used.

本発明に係る処理方法を適用した処理装置におけるアルミニウム化合物の種類に特に制限はなく、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、水酸化アルミニウム、アルミン酸ナトリウム(アルミン酸ソーダ)等が使用できるが、硫酸イオンを同時に供給できる硫酸バンドが好適である。   The type of aluminum compound in the treatment apparatus to which the treatment method according to the present invention is applied is not particularly limited, and aluminum sulfate (sulfate band), polyaluminum chloride (PAC), aluminum chloride, aluminum hydroxide, sodium aluminate (sodium aluminate) ) And the like, but a sulfate band capable of simultaneously supplying sulfate ions is preferred.

本発明に係る処理方法を適用した処理装置におけるカルシウム化合物の種類に特に制限はなく、2種類以上を混合して使用しても良い。使用できるカルシウム化合物の例として、水酸化カルシウム(消石灰)、塩化カルシウム、酸化カルシウム(生石灰)、炭酸カルシウム、硫酸カルシウム等が挙げられるが、アルミニウムや硫酸イオンと反応して不溶性析出物を生成しやすく、かつ安価な水酸化カルシウムが好適である。   There is no restriction | limiting in particular in the kind of calcium compound in the processing apparatus to which the processing method concerning this invention is applied, You may mix and use 2 or more types. Examples of calcium compounds that can be used include calcium hydroxide (slaked lime), calcium chloride, calcium oxide (quick lime), calcium carbonate, calcium sulfate, and the like, but easily react with aluminum and sulfate ions to form insoluble precipitates. In addition, inexpensive calcium hydroxide is preferable.

本発明によれば、全ての工程においてpH調整用の薬剤を使用することができる。本発明においてはpH9以上のアルカリ性に調整する工程が主体を占めるため、例えばカルシウム化合物として消石灰や生石灰などのアルカリ剤を使用した場合、カルシウムの供給とpH調整を兼ねて使用できるのでpH調整剤は不要の場合もある。しかしホウ素含有排水の酸性度が強い場合には水酸化ナトリウムや水酸化カリウム等のアルカリ剤を併用しても良い。またホウ素含有排水が強アルカリの場合など、酸を添加する必要がある場合には塩酸、硝酸、硫酸などの酸を加えることもできる。   According to the present invention, a drug for pH adjustment can be used in all steps. In the present invention, since the step of adjusting the alkalinity to pH 9 or more occupies the main component, for example, when an alkaline agent such as slaked lime or quicklime is used as the calcium compound, the pH adjuster can be used for both calcium supply and pH adjustment. It may not be necessary. However, when the acidity of the boron-containing wastewater is strong, an alkali agent such as sodium hydroxide or potassium hydroxide may be used in combination. Moreover, when it is necessary to add an acid, such as when the boron-containing wastewater is a strong alkali, an acid such as hydrochloric acid, nitric acid, or sulfuric acid can be added.

本発明に係る処理方法における反応時間、反応温度、反応圧力の条件は、全ての工程で任意に設定できる。反応時間は長ければ長いほど良いが、あまり長くすると設備規模が大きくなる関係から10分〜1時間が好適であり、より好ましくは30分程度が良い。ある。また反応温度は常圧下では0℃〜100℃の広範囲で適用できるが、高圧条件下では更に高温で適用することもできる。   The reaction time, reaction temperature, and reaction pressure conditions in the treatment method according to the present invention can be arbitrarily set in all steps. The longer the reaction time is, the better. However, if the reaction time is too long, the scale of equipment is increased, and therefore, 10 minutes to 1 hour is preferable, and more preferably about 30 minutes. is there. The reaction temperature can be applied in a wide range of 0 ° C. to 100 ° C. under normal pressure, but can also be applied at a higher temperature under high pressure conditions.

以下、実施例及び比較例を示してさらに詳細に説明する。実施例及び比較例では、アルミニウム化合物として工業用硫酸バンド(Al23換算8重量%)、カルシウム化合物としては消石灰(試薬特級)を用い、純水を加えて10重量%に調整し、石灰乳の状態としてから使用した。また、薬剤の添加量(mg/l)は、原水量に対する添加量を表している。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In Examples and Comparative Examples, an industrial sulfuric acid band (8% by weight in terms of Al 2 O 3 ) was used as the aluminum compound, and slaked lime (reagent special grade) was used as the calcium compound, and pure water was added to adjust to 10% by weight. Used after milk condition. The amount of drug added (mg / l) represents the amount added relative to the amount of raw water.

(比較例1)
ホウ酸を純水に溶解させ、ホウ素濃度100mg/lに調整した模擬排水100mlを用い、汚泥を返送する公知の方法にて処理する実験を行った。模擬排水に硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。pHは12程度まで上昇した。その後高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。沈殿物の容積は25mlであった。
(Comparative Example 1)
An experiment was conducted in which boric acid was dissolved in pure water, and 100 ml of simulated waste water adjusted to a boron concentration of 100 mg / l was used to treat the sludge by a known method. The simulated wastewater was added with a sulfuric acid band of 500 mg / l as aluminum and slaked lime as calcium at 4000 mg / l and stirred for 1 hour. The pH rose to about 12. Thereafter, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added, and the mixture was gently stirred to aggregate insoluble precipitates to obtain clear supernatant water (treated water). At the same time, the precipitate was separated. The volume of the precipitate was 25 ml.

次に1回目の返送実験を行った。上述の沈殿物25mlを取り出し、ホウ素濃度100mg/lに調整した模擬排水に加えると同時に、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。pHは12程度まで上昇した。
その後、高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。沈殿物の容積は37mlであった。
Next, the first return experiment was performed. 25 ml of the above precipitate was taken out and added to a simulated waste water adjusted to a boron concentration of 100 mg / l. At the same time, a sulfuric acid band was added to 500 mg / l as aluminum and slaked lime was set to 4000 mg / l as calcium, followed by stirring for 1 hour. The pH rose to about 12.
Thereafter, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added, and the mixture was gently stirred to aggregate insoluble precipitates. As obtained, the precipitate separated. The volume of the precipitate was 37 ml.

上述と同様の方法で、返送回数5回まで実験を繰り返した。返送する汚泥は25ml(原水量の25容量%)で一定とし、残りは余剰汚泥として系外に排出した。結果を表1に示す。

Figure 0004860201
The experiment was repeated up to 5 times of return in the same manner as described above. The sludge to be returned was fixed at 25 ml (25% by volume of the raw water), and the rest was discharged out of the system as surplus sludge. The results are shown in Table 1.
Figure 0004860201

表1によれば、汚泥返送なしの処理水ホウ素濃度は38mg/lであるのに対し、返送1回目ではホウ素濃度1.5mg/lとなり、返送することでの処理性改善効果が認められるが、返送回数を重ねる毎に処理性が悪化していることが分かる。   According to Table 1, the boron concentration in the treated water without sludge return is 38 mg / l, whereas the boron concentration is 1.5 mg / l in the first return, and the treatment efficiency improvement effect by returning is recognized. , It can be seen that the processability deteriorates every time the return number is repeated.

(実施例1)
図1の連続処理装置に準拠したビーカー実験を行った。すなわち、ホウ酸を純水に溶解させ、ホウ素濃度100mg/lに調整した模擬排水100mlに、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。その結果pHは12程度まで上昇した。
その後高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。沈殿物の容積は25mlであった。
Example 1
A beaker experiment based on the continuous processing apparatus of FIG. 1 was conducted. That is, boric acid was dissolved in pure water and added to 100 ml of simulated waste water adjusted to a boron concentration of 100 mg / l so that the sulfuric acid band was 500 mg / l as aluminum and slaked lime was calcium as 4000 mg / l, and stirred for 1 hour. As a result, the pH rose to about 12.
Thereafter, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added, and the mixture was gently stirred to aggregate insoluble precipitates to obtain clear supernatant water (treated water). At the same time, the precipitate was separated. The volume of the precipitate was 25 ml.

次に1回目の返送実験を行った。上述の沈殿物25mlを取り出し、高分子凝集剤(ヘルスフロック社製アニオン性高分子凝集剤・品番A−151)15mg/lを沈殿物に加え、10分間撹拌した。
次いで、ホウ素濃度100mg/lに調整した模擬排水に加えると同時に、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。その結果、pHは12程度まで上昇した。
その後、高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。
Next, the first return experiment was performed. 25 ml of the above-mentioned precipitate was taken out, 15 mg / l of a polymer flocculant (anionic polymer flocculant manufactured by Health Flock, product number A-151) was added to the precipitate, and the mixture was stirred for 10 minutes.
Subsequently, at the same time as adding to the simulated waste water adjusted to a boron concentration of 100 mg / l, a sulfuric acid band was added to 500 mg / l as aluminum, and slaked lime was set to 4000 mg / l as calcium, followed by stirring for 1 hour. As a result, the pH increased to about 12.
Thereafter, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added, and the mixture was gently stirred to aggregate insoluble precipitates. As obtained, the precipitate separated.

上述と同様の方法で、返送回数7回まで実験を繰り返した。返送する汚泥は25ml(原水量の25容量%)で一定とし、残りは余剰汚泥として系外に排出した。
図4は、比較例1に示した従来の汚泥返送方式により処理した場合の汚泥返送回数と処理水ホウ素濃度との関係、後述する実施例1〜3に対応する汚泥返送回数と処理水ホウ素濃度との関係を示す図である。
同図において横軸が回数を示し、縦軸が処理水ホウ素濃度を示す。
The experiment was repeated up to 7 times of return in the same manner as described above. The sludge to be returned was fixed at 25 ml (25% by volume of the raw water), and the rest was discharged out of the system as surplus sludge.
FIG. 4 shows the relationship between the sludge return count and the treated water boron concentration when treated by the conventional sludge return method shown in Comparative Example 1, and the sludge return count and treated water boron concentration corresponding to Examples 1 to 3 described later. It is a figure which shows the relationship.
In the figure, the horizontal axis indicates the number of times, and the vertical axis indicates the treated water boron concentration.

図4によれば、図1の方法で処理することにより、返送回数に関わらず長期的かつ安定的にホウ素を処理できると認められる。   According to FIG. 4, it can be recognized that boron can be treated in a long-term and stable manner regardless of the number of returns by treating with the method of FIG. 1.

(実施例2)
図2の連続処理装置に準拠したビーカー実験を行った。すなわち、ホウ酸を純水に溶解させ、ホウ素濃度100mg/lに調整した模擬排水100mlに、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。pHは12程度まで上昇した。その後高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。沈殿物の容積は25mlであった。
(Example 2)
A beaker experiment based on the continuous processing apparatus of FIG. 2 was conducted. That is, boric acid was dissolved in pure water and added to 100 ml of simulated waste water adjusted to a boron concentration of 100 mg / l so that the sulfuric acid band was 500 mg / l as aluminum and slaked lime was calcium as 4000 mg / l, and stirred for 1 hour. The pH rose to about 12. Thereafter, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added, and the mixture was gently stirred to aggregate insoluble precipitates to obtain clear supernatant water (treated water). At the same time, the precipitate was separated. The volume of the precipitate was 25 ml.

次に1回目の返送実験を行った。上述の沈殿物25mlを取り出し、卓上型超音波洗浄器(出力300W、周波数38kHz)内で10分間超音波を照射した。超音波照射後の汚泥を、ホウ素濃度100mg/lに調整した模擬排水に加えると同時に、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。その結果、pHは12程度まで上昇した。
その後、高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。
Next, the first return experiment was performed. 25 ml of the above precipitate was taken out and irradiated with ultrasonic waves for 10 minutes in a tabletop ultrasonic cleaner (output 300 W, frequency 38 kHz). The sludge after ultrasonic irradiation was added to a simulated waste water adjusted to a boron concentration of 100 mg / l. At the same time, a sulfuric acid band was added to 500 mg / l as aluminum and slaked lime was set to 4000 mg / l as calcium, followed by stirring for 1 hour. As a result, the pH increased to about 12.
Thereafter, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added, and the mixture was gently stirred to aggregate insoluble precipitates. As obtained, the precipitate separated.

上述と同様の方法で、返送回数7回まで実験を繰り返した。返送する汚泥は25ml(原水量の25容量%)で一定とし、残りは余剰汚泥として系外に排出した。処理水ホウ素濃度の結果を図4に示す。   The experiment was repeated up to 7 times of return in the same manner as described above. The sludge to be returned was fixed at 25 ml (25% by volume of the raw water), and the rest was discharged out of the system as surplus sludge. The result of the treated water boron concentration is shown in FIG.

図4によれば、図2の方法で処理することにより、返送回数に関わらず長期的かつ安定的にホウ素を処理できると認められる。   According to FIG. 4, it is recognized that boron can be treated in a long-term and stable manner regardless of the number of returns by treating with the method of FIG. 2.

(実施例3)
図3の連続処理装置に準拠したビーカー実験を行った。すなわち、ホウ酸を純水に溶解させ、ホウ素濃度100mg/lに調整した模擬排水100mlに、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。その結果、pHは12程度まで上昇した。
(Example 3)
A beaker experiment based on the continuous processing apparatus of FIG. 3 was conducted. That is, boric acid was dissolved in pure water and added to 100 ml of simulated waste water adjusted to a boron concentration of 100 mg / l so that the sulfuric acid band was 500 mg / l as aluminum and slaked lime was calcium as 4000 mg / l, and stirred for 1 hour. As a result, the pH increased to about 12.

次に、反応液200mlのうち100mlに高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。   Next, 15 mg / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) was added to 100 ml of 200 ml of the reaction solution, and the mixture was gently stirred to clump insoluble precipitates. Supernatant water (treated water) was obtained, and the precipitate was separated.

次いで1回目の返送実験を行った。上述の残りの反応液100mlをホウ素濃度100mg/lに調整した模擬排水100mlに加え、1時間撹拌した。
その後、硫酸バンドをアルミニウムとして500mg/l、消石灰をカルシウムとして4000mg/lとなるよう加え、1時間撹拌した。pHは12程度まで上昇した。反応液200mlのうち100mlに高分子凝集剤(ヘルスフロック社製ノニオン性高分子凝集剤・品番N−217)を15mg/l加え、緩やかに撹拌して不溶性析出物を凝集させ、清澄な上澄水(処理水)を得るとともに、沈殿物を分離した。
Next, the first return experiment was performed. The remaining 100 ml of the reaction solution was added to 100 ml of simulated waste water adjusted to a boron concentration of 100 mg / l and stirred for 1 hour.
Then, the sulfuric acid band was added to 500 mg / l as aluminum, and slaked lime was set to 4000 mg / l as calcium, followed by stirring for 1 hour. The pH rose to about 12. 15 ml / l of a polymer flocculant (nonionic polymer flocculant manufactured by Health Flock Co., Ltd., product number N-217) is added to 100 ml out of 200 ml of the reaction solution, and gently stirred to agglomerate insoluble precipitates. (Treated water) was obtained and the precipitate was separated.

上述と同様の方法で、返送回数7回まで実験を繰り返した。返送する反応液は100ml(原水量の100容量%)で一定とした。処理水ホウ素濃度の結果を図4に示す。   The experiment was repeated up to 7 times of return in the same manner as described above. The reaction solution to be returned was fixed at 100 ml (100% by volume of the raw water). The result of the treated water boron concentration is shown in FIG.

図4によれば、図3の連続処理装置で処理することにより、返送回数に関わらず長期的かつ安定的にホウ素を処理できると認められる。   According to FIG. 4, it is recognized that boron can be treated stably over a long period of time regardless of the number of returns by performing the treatment with the continuous treatment apparatus of FIG. 3.

以上において、本発明に係るホウ素含有排水の処理方法及び装置によれば、より少ない薬剤で、長期的かつ安定的に良好な処理性を維持することができるという利点がある。   In the above, according to the treatment method and apparatus for boron-containing wastewater according to the present invention, there is an advantage that good treatment can be maintained stably and stably for a long time with fewer chemicals.

本発明に係るホウ素含有排水の処理方法を適用した処理装置の一実施の形態を示した設備構成図である。It is the equipment block diagram which showed one Embodiment of the processing apparatus to which the processing method of the boron containing waste water which concerns on this invention was applied. 本発明に係るホウ素含有排水の処理方法を適用した処理装置の他の実施の形態を示した設備構成図である。It is the equipment block diagram which showed other embodiment of the processing apparatus to which the processing method of the boron containing wastewater which concerns on this invention was applied. 本発明に係るホウ素含有排水の処理方法を適用した処理装置の他の実施の形態を示した設備構成図である。It is the equipment block diagram which showed other embodiment of the processing apparatus to which the processing method of the boron containing wastewater which concerns on this invention was applied. 比較例1に示した従来の汚泥返送方式により処理した場合の汚泥返送回数と処理水ホウ素濃度との関係、後述する実施例1〜3に対応する汚泥返送回数と処理水ホウ素濃度との関係を示す図である。The relationship between the sludge return count and the treated water boron concentration when treated by the conventional sludge return method shown in Comparative Example 1, the relationship between the sludge return count and the treated water boron concentration corresponding to Examples 1 to 3 described later. FIG.

符号の説明Explanation of symbols

100 処理装置
101 反応槽
102 凝集槽
103 沈殿槽
104 凝集剤添加槽
DESCRIPTION OF SYMBOLS 100 Processing apparatus 101 Reaction tank 102 Coagulation tank 103 Precipitation tank 104 Coagulant addition tank

Claims (6)

ホウ素を含有する排水に、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させる第一工程と、
前記第一工程から導入された前記反応液に高分子凝集剤を加えて処理水と汚泥とに分離する第二工程と、
前記第二工程から導入された前記汚泥の一部に、前記第二工程で加えた高分子凝集剤とは異なるイオン性の高分子凝集剤を加えて混合した後、前記第一工程に返送する第三工程と、
を含むことを特徴とするホウ素含有排水の処理方法。
A first step of adding an aluminum compound and a calcium compound to wastewater containing boron and adjusting the pH to 9 or more to produce a reaction solution and an insoluble precipitate;
A second step of adding a polymer flocculant to the reaction liquid introduced from the first step and separating it into treated water and sludge;
An ionic polymer flocculant different from the polymer flocculant added in the second step is added to and mixed with a part of the sludge introduced from the second step, and then returned to the first step. The third step;
A method for treating wastewater containing boron, comprising:
ホウ素を含有する排水に、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させる第一工程と、
前記第一工程から導入された前記反応液に高分子凝集剤を加え、処理水と汚泥とに分離する第二工程と、
前記第二工程から導入された前記汚泥の一部に超音波を照射した後、前記第一工程に返送する第三工程と、
を含むことを特徴とするホウ素含有排水の処理方法。
A first step of adding an aluminum compound and a calcium compound to wastewater containing boron and adjusting the pH to 9 or more to produce a reaction solution and an insoluble precipitate;
A second step of adding a polymer flocculant to the reaction liquid introduced from the first step, and separating into treated water and sludge;
After irradiating a part of the sludge introduced from the second step with ultrasonic waves, a third step returning to the first step;
A method for treating wastewater containing boron, comprising:
ホウ素を含有する排水に、第二工程から返送された反応液の一部を加えて撹拌混合する第一工程と、
前記第一工程から導入された反応液にアルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成させ、その反応液の一部を前記第一工程に返送する第二工程と、
前記第二工程から導入された反応液に高分子凝集剤を加え、処理水と汚泥とに固液分離する第三工程と、
を含むことを特徴とするホウ素含有排水の処理方法。
A first step of adding a part of the reaction liquid returned from the second step to the wastewater containing boron and stirring and mixing;
An aluminum compound and a calcium compound are added to the reaction solution introduced from the first step to adjust the pH to 9 or more to produce a reaction solution and an insoluble precipitate, and a part of the reaction solution is returned to the first step. The second step;
A third step of adding a polymer flocculant to the reaction liquid introduced from the second step and separating the liquid into treated water and sludge;
A method for treating wastewater containing boron, comprising:
ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段が設けられ、該調整手段により反応液と不溶性析出物とを生成させる反応槽と、
前記反応槽から導入された前記反応液に高分子凝集剤を加える第一添加手段が設けられた凝集槽と、
前記凝集槽から前記反応液が導入され、処理水と汚泥とに分離する沈殿槽と、
前記沈殿槽から前記汚泥の一部が導入され、その汚泥に前記凝集槽で加えた高分子凝集剤とは異なるイオン性の高分子凝集剤を加える第二添加手段が設けられ、反応液を混合する混合手段が設けられ、混合された反応液を前記反応槽に返送する凝集剤添加槽と、
を含むことを特徴とするホウ素含有排水の処理装置。
A wastewater containing boron is introduced, and an adjusting means for adjusting the pH to 9 or more by adding an aluminum compound and a calcium compound is provided, and a reaction vessel for generating a reaction liquid and an insoluble precipitate by the adjusting means,
A coagulation tank provided with a first addition means for adding a polymer flocculant to the reaction liquid introduced from the reaction tank;
A settling tank in which the reaction solution is introduced from the coagulation tank and separated into treated water and sludge;
A part of the sludge is introduced from the settling tank, and a second addition means is provided for adding an ionic polymer flocculant different from the polymer flocculant added in the flocculent to the sludge and mixing the reaction liquid And a flocculant addition tank for returning the mixed reaction liquid to the reaction tank,
An apparatus for treating boron-containing wastewater, comprising:
ホウ素を含有する排水が導入され、アルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整する調整手段が設けられ、該調整手段により反応液と不溶性析出物とを生成させる反応槽と、
前記反応槽から導入された前記反応液に高分子凝集剤を加える添加手段が設けられた凝集槽と、
前記凝集槽から反応液が導入されて処理水と汚泥とに分離する沈殿槽と、
前記沈殿槽から前記汚泥の一部が導入され、その汚泥に超音波を照射する超音波発振器が設けられ、該超音波発振器により超音波が照射された反応液を前記反応槽に返送する超音波照射槽と、
を含むことを特徴とするホウ素含有排水の処理装置。
A wastewater containing boron is introduced, and an adjusting means for adjusting the pH to 9 or more by adding an aluminum compound and a calcium compound is provided, and a reaction vessel for generating a reaction liquid and an insoluble precipitate by the adjusting means,
A coagulation tank provided with an addition means for adding a polymer flocculant to the reaction liquid introduced from the reaction tank;
A precipitation tank in which a reaction liquid is introduced from the aggregating tank and separated into treated water and sludge;
A part of the sludge is introduced from the sedimentation tank, an ultrasonic oscillator is provided for irradiating the sludge with ultrasonic waves, and an ultrasonic wave is sent back to the reaction tank for the reaction liquid irradiated with ultrasonic waves by the ultrasonic oscillator An irradiation tank;
An apparatus for treating boron-containing wastewater, comprising:
ホウ素を含有する排水が導入されると共に第二反応槽から返送された反応液の一部を加えて混合する混合手段が設けられた第一反応槽と、
前記第一反応槽から導入された反応液にアルミニウム化合物及びカルシウム化合物を加えてpH9以上に調整して反応液と不溶性析出物とを生成する調整手段が設けられた第二反応槽と、
前記第二反応槽から前記反応液が導入され、高分子凝集剤を添加する添加手段が設けられた凝集槽と、
前記凝集槽から前記反応液が導入されて処理水と汚泥とに分離する沈殿槽と、
を含むことを特徴とするホウ素含有排水の処理装置。
A first reaction tank provided with a mixing means for adding and mixing a part of the reaction liquid returned from the second reaction tank while introducing wastewater containing boron;
A second reaction tank provided with an adjusting means for adding an aluminum compound and a calcium compound to the reaction liquid introduced from the first reaction tank to adjust the pH to 9 or more to produce a reaction liquid and an insoluble precipitate;
A coagulation tank in which the reaction solution is introduced from the second reaction tank and an addition means for adding a polymer flocculant is provided;
A precipitation tank in which the reaction liquid is introduced from the coagulation tank and separated into treated water and sludge;
An apparatus for treating boron-containing wastewater, comprising:
JP2005227179A 2005-08-04 2005-08-04 Method and apparatus for treating wastewater containing boron Active JP4860201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227179A JP4860201B2 (en) 2005-08-04 2005-08-04 Method and apparatus for treating wastewater containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227179A JP4860201B2 (en) 2005-08-04 2005-08-04 Method and apparatus for treating wastewater containing boron

Publications (2)

Publication Number Publication Date
JP2007038171A JP2007038171A (en) 2007-02-15
JP4860201B2 true JP4860201B2 (en) 2012-01-25

Family

ID=37796644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227179A Active JP4860201B2 (en) 2005-08-04 2005-08-04 Method and apparatus for treating wastewater containing boron

Country Status (1)

Country Link
JP (1) JP4860201B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863302B2 (en) * 2007-10-19 2012-01-25 Necファシリティーズ株式会社 Method and apparatus for treating wastewater containing boron
JP4827876B2 (en) * 2008-03-28 2011-11-30 Dowaエコシステム株式会社 Method for treating boron-containing water
JP2009233641A (en) * 2008-03-28 2009-10-15 Dowa Eco-System Co Ltd Method for treating boron-containing water
JP6053261B2 (en) * 2011-07-07 2016-12-27 三菱瓦斯化学株式会社 Treatment method for boron-containing wastewater
JP5831914B2 (en) * 2013-11-08 2015-12-09 学校法人早稲田大学 Water treatment method
CN114524602B (en) * 2022-02-23 2022-10-25 生态环境部华南环境科学研究所 Reduction device and method for reduction treatment of electroplating sewage sludge

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153193A (en) * 1984-12-27 1986-07-11 Unitika Ltd Treatment of waste water containing boron
JPS6328492A (en) * 1986-07-22 1988-02-06 Takuma Co Ltd Treatment of waste liquid of stack gas scrubbing
JPH04267994A (en) * 1991-02-25 1992-09-24 Kurita Water Ind Ltd Metal-containing waste-water method
JP3429018B2 (en) * 1992-12-01 2003-07-22 栗田工業株式会社 Treatment of acidic fluorine-containing water
JPH10225682A (en) * 1997-02-17 1998-08-25 Nkk Corp Method of removing boron in reverse osmosis seawater desalination
JP2001079584A (en) * 1999-09-14 2001-03-27 Nihon Hels Industry Corp Cleaning method of organic waste water
JP4543478B2 (en) * 2000-02-21 2010-09-15 栗田工業株式会社 Method for treating boron-containing water
JP4543481B2 (en) * 2000-03-01 2010-09-15 栗田工業株式会社 Method for treating water containing boron and fluorine
JP4535419B2 (en) * 2001-05-31 2010-09-01 オルガノ株式会社 Coagulation sedimentation equipment
JP4508600B2 (en) * 2003-10-21 2010-07-21 栗田工業株式会社 Method and apparatus for treating fluorine-containing wastewater

Also Published As

Publication number Publication date
JP2007038171A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
TWI626990B (en) Treatment method and treatment device for radioactive waste water
JP4860201B2 (en) Method and apparatus for treating wastewater containing boron
WO2004110940A1 (en) Wastewater treatment process
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JP6269651B2 (en) Method and apparatus for treating borofluoride-containing water
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4396965B2 (en) Heavy metal removal method and apparatus
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
CN104692557A (en) Chemical pretreatment method and device thereof for treating high-salinity wastewater
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
JP5547875B2 (en) Aggregation method
JP2014233692A (en) Treatment method and treatment device for hard-biodegradable organic matter-containing water
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP7509357B2 (en) Water Treatment Methods
JP2002346574A (en) Boron-containing water treatment method
JPH0592198A (en) Softening treatment of hard water
JP2006320869A (en) Method for treating waste water containing fluoride ion
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP5330329B2 (en) Method and apparatus for treating wastewater containing boron
JP7295535B2 (en) water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110916

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3